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Abstract

We present ComSum, a data set of 7 million commit messages for text summa-1

rization. When documenting commits, software code changes, both a message2

and its summary are posted. We gather and filter those to curate developers’ work3

summarization data set. Along with its growing size, practicality and challenging4

language domain, the data set benefits from the living field of empirical software5

engineering. As commits follow a typology, we propose to not only evaluate out-6

puts by Rouge, but by their meaning preservation.7

1 Introduction8

There is an ever-growing amount of code written in the world. When code is created by large groups9

of developers, documentation becomes essential. As a part of it, developers’ proper documentation10

is also related to code quality [Santos and Hindle, 2016]. The need to communicate is especially11

important in distributed development, where shouting over the hallway cannot compensate for im-12

proper documentation.13

Code development nowadays is usually supported by version control systems that track the source14

code modification. The most common such version control system is Git. In Git, each modification15

is called a commit. A commit lists the changed lines in the source code and a description by the16

developer. The description contains a one-line subject and a longer message describing the commit.17

Git and GitHub treat the subject line as a summary2, further incentivizing developers to do the same.18

Hence, in order to build a text summarization data set, we use the subject as the summary and the19

rest of the commit message as the source.20

In Section §3, we describe the process of querying and filtering commits to curate ComSum, a21

commit summarization data set. The data set is described in Section §4. We consider several baseline22

results on the data set (see Section §5). The baselines include both neural summarization baselines23

and baselines based on relations between the subject and the message. Those shed light on the state24

of the art on the data set and the data set characteristics.25

Since commits are used to describe code changes, the taxonomy of changes is an important part of26

their meaning. That enables us to evaluate a summary model by how well it preserves the meaning27

rather than by word overlap with a reference. We explain and provide initial analysis in Section §6.28

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.



Dataset # Docs. Coverage Density Comp. Ratio

Arxiv/PubMed [Cohan et al., 2018] 346,187 0.87 3.94 31.17
BigPatent [Sharma et al., 2019] 1,341,306 0.86 2.38 36.84
CNN/DM [Nallapati et al., 2016] 311,971 0.85 3.47 14.89
Newsroom [Grusky et al., 2018] 1,212,739 0.83 9.51 43.64
XSum [Narayan et al., 2018] 226,677 0.66 1.09 19.25
BOOKSUM Paragraph [Kryściński et al., 2021] 142,753 0.5 0.92 6.47
ComSum 7,540,026 0.27 0.89 8.1

Table 1: ComSum is more abstractive, as seen in low coverage and density.

2 Related Work29

Textual Summarization has become a central task in Natural Language Processing, attracting pre-30

trained models [Zhang et al., 2020, Qi et al., 2020] and specialized models [Dou et al., 2021]. With31

this came also a need for larger, more diverse and more challenging data sets.32

News is the most common domain for summarization data sets [Over et al., 2007, Nallapati et al.,33

2016]. Narayan et al. [2018] proposed a data set under the motivation of creating a large news34

data set which does not favor copying the source and extractive summarization. In parallel, Grusky35

et al. [2018] proposed an even larger data set for news extractive summarization. While news is36

advocated for its general domain, we find the vocabulary which should demonstrate it is rather low37

in comparison to our domain. The vocabulary of the commits is over 2M in the validation set alone38

(to be fair in terms of size) and 19M overall (top reported is 1.4M NYTimes dataset[Narayan et al.,39

2018, Sandhaus, 2008]). Similarly, the vocabulary of the summaries is 0.5M and 3.9M (NYTimes40

0.3M).41

Kryściński et al. [2021] called for more challenging and diverse abstractive summarization data sets,42

releasing a long narrative summarization data set providing several versions with 143K examples at43

the largest one. We compare (Table 1) the abstractness as measured by low density and coverage44

[Grusky et al., 2018].45

Others offered large datasets of different domains 4M crawled TL;DR from reddit [Völske et al.,46

2017] and 1.3M patents [Sharma et al., 2019].47

Our work follows all those desirable traits. It is more abstractive, it introduces a new natural sum-48

marization domain, it is even larger than current data sets and it is expected to keep growing in size49

substantially.50

Several data sets and tasks share similarities with summarization. Those include simplification51

[Alva-Manchego et al., 2020], sentence compression [Filippova and Altun, 2013], web-page snippet52

generation by query [Chen et al., 2020] and single sentence summarization [Rush et al., 2015].53

Evaluation of summarization mainly focuses on general quality of summarizations [Bhandari et al.,54

2020, Zhang et al., 2019], with some exceptions [Wilber et al., 2021, Xu and Durrett, 2021]. Some55

work showed hallucinations are a problem [Kryscinski et al., 2020] and focused on evaluation of56

factual consistency [Gabriel et al., 2020, Honovich et al., 2021, Pagnoni et al., 2021]. Other fields57

of text generation provide additional ways to extract informative measures [Ribeiro et al., 2020].58

Measures that tell about certain characteristics of the output, rather than bottom-line scores. Such59

methods include evaluation on minimal changes to the input [Warstadt et al., 2020], challenge sets60

[Macketanz et al., 2018, Choshen and Abend, 2019], metrics dedicated to specific characteristics61

such as grammaticality [Vadlapudi and Katragadda, 2010] or meaning preservation [Choshen and62

Abend, 2018c], manual evaluation [Graham et al., 2015], evaluation dependent on the domain data63

[Choshen and Abend, 2018a], understanding the inner workings of networks [Tenney et al., 2019,64

Slobodkin et al., 2021, Voita et al., 2020] and more. In addition to the data set, we propose (see65

Section §6) an evaluation procedure specific to the domain at hand that emphasizes the overall66

meaning of the summary rather than its similarity to a reference.67

∗First two authors contributed equally.
2See for example here: https://github.com/tensorflow/tensorflow/commits/master
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Apart from the summarization aspects, this work also contributes to the growing field of aiding68

programming through NLP, including a dedicated workshop 3. This field includes tasks such as code69

generation [Hayati et al., 2018], automatic documentation [Miceli Barone and Sennrich, 2017], code70

search [Gu et al., 2018] and updating documentation by code changes [Panthaplackel et al., 2020].71

3 Data Set Creation72

In this section, we describe the creation of the proposed data set, ComSum. Specifically, we describe73

how we acquire and filter projects and commits to extract reliable summarizations of messages from74

the subjects.75

3.1 Data acquisition76

Open source code is shared in large amounts on different platforms. GitHub, owned by Microsoft, is77

a large hosting service for projects using the Git version control system. In 2018 GitHub published78

that they hosted 100 million projects4.79

We base our data set on the BigQuery GitHub schema5. The schema allows querying commits80

pushed to GitHub by various metadata attributes. The BigQuery GitHub schema contains about 3.481

million public projects prior to 2021, but the vast majority are not appropriate for studies of software82

engineering, being small, non-recent, or not even code.83

3.2 Projects selection84

Code is written in the context of repositories or projects, sharing a general goal and mostly devel-85

oped by the same people or groups. While some projects consist of a few files shared, others are86

constantly updating. We focus on the latter, aiming to filter the first to avoid commits where clear87

communication is neither crucial nor enforced.88

Therefore, the main effort in the data set construction is to identify projects of interest and filter89

irrelevant ones. We base our filtering on the methodology developed by Amit and Feitelson [2020]90

to study software code quality. First, we choose only large enough and up to date projects by91

requiring at least 50 commits during 20206. Note that this is less than one commit per week, a rather92

low bound filtering tiny projects. However, this step alone was enough to reduce the number of93

relevant projects to 32,562, 0.96% of the prior step.94

The next step is the removal of redundant projects. Github enables ‘forking’: copying a project,95

sometimes for investigation and sometimes for modifying without altering the main project. We96

identified forks using the GitHub API and removed them from our data set. We also removed97

projects that shared too many commits with a more popular project, having more stars, in order to98

use ‘Spark’ of the ‘Apache Software Foundation’ and not a hobbyist project built upon it. This step99

ended with 25,535 projects, 78% of the prior step.100

We filtered projects not likely to be software projects, identified by the lack of bugs. A project101

without commits fixing bugs was identified by a negative Corrective Commit Probability (CCP)102

[Amit and Feitelson, 2020]. Projects with negative CCP are less likely to be software projects,103

externally validated by programming languages identification and imply no use of the pull request104

development mechanism. After filtering projects with invalid CCP we were left with 22,820 projects,105

89% of the previous step. Out of these, 19,720 projects had commits fitting the conditions described106

next, 86% of the previous step and 0.57% of overall projects.107

3https://nlp4prog.github.io/2021/cfp/
4https://github.blog/2018-11-08-100m-repos/
5https://console.cloud.google.com/marketplace/product/github/github-repos
6Future projects requiring more data or updated data should consider keeping the requirement of 50 commits

per year, but setting a different set of years instead of the singleton (2020). Also, consider changing other filters,
specifically the 100 characters difference.
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3.3 Commits Selection108

When constructing a data set, the intended use is of high importance. In our case, many future uses109

are possible. One might want to remove single-person projects since they do not represent communi-110

cation. Others might be interested only in single person projects since they represent documentation111

for a future self. We choose not to add needless filtering here in order to allow future flexibility.112

We used only two constraints. We require that the message will be at least 100 characters longer113

than the subject. While the value of 100 is arbitrary, a significant gap in the length is required in114

order to have a meaningful summarization.115

We considered only commits earlier than 2021 to help future reproducibility. Note that this condition116

is not enough to guarantee the stability of the data set since existing projects might be deleted and117

their content will be removed from the index. In order to cope with that, we release a static version118

of the data set together with the code to extract it.119

Overall, the data set has 7,540,026 commits. A commit might appear in a few repositories, having120

the same subject, message and content. Since we are interested in text summarization, those are con-121

sidered duplicates and we remove those 16% of the data that was repetitive. This step is especially122

important to prevent training data leaking to the test set.123

A message or a subject might appear more than once. For example, the most common subject is124

“Updating submodules”, appearing 6612 times. However, 96% of the subjects are unique. We left125

the multiple appearing message since this represents software development. Researchers looking for126

uniqueness can remove multiple appearing texts. We provide appearance distribution and common127

messages.128

In 0.8% of the cases the subject appeared in the rest of the message. We extract the common129

ones and they seem to be due to a generic subject. The leading ones are ’WebCore:’ (1554 times),130

‘Updated Spanish translation.’ (809 times), ‘Updated Norwegian bokmål translation.’ (347 times).131

Again, in order to enable maximal future flexibility we left them. An interested researcher can filter132

these few commits out.133

Another question of interest is to what extent, the subject represent a summary of the message.134

Our labeling protocol is described in the supplementary materials. In essence, we require a proper135

summary to add no new information and to contain the gist. We also labeled whether the summary136

was generic or specific to the commit.137

We manually labeled 100 samples. In 80% the subject was a summary of the message. Out of the138

rest, 20%: 35% had administrative message (e.g., just the reviewer detail). 20% had a subject which139

indicates a merge (e.g., merge branch 3.4) and the message as the content. In 15% the subject was140

by reference (e.g., fixed #123) In 5%, there was a generic subject. The rest of the 25% are diverse141

and harder to identify and handle.142

We provide a list of 429K merge commits (identified by having more then one commit parent, might143

have informative subject) to enable to remove them.144

We also provide a heuristic for administrative messages. We identify them by the distance of ad-145

ministrative terms (e.g., ’Signed-off-by:’, ’Change-Id:’) from the beginning of the message. Manual146

labeling (See App. §B) shows those to have 98.9% precision and 75% recall. We didn’t filter these147

commits, allowing researchers to change the distance threshold and trade off recall and precision.148

Using both filtering leads to about 90% of the subjects serving as summaries on our labeled sample.149

4 Data Set Description150

Following all the above procedures we create ComSum, a data set of commit messages and their151

summarization. ComSum contains 7,540,026 commits from 19,720 projects, written by 317,423152

authors.153

In addition to the summarization objective, we publish metadata on each commit. Each record also154

has the commit hash, a unique identifier that can be used for future work. Last, we provide the name155

of the repository from which the commit was taken. We note that a commit might be included in156

several repositories (projects), but we choose only one (see Section §3).157
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Our guideline in the data set construction was to ease consistent use by researchers. Hence, each158

record contains the subject, the message without the subject and the entire commit message com-159

bining the two. While it almost doubles the storage, it prevents future noise due to different imple-160

mentations.161

The average subject has 53 characters, the average message has 494 characters. The average com-162

pression rate, the commit message length divided by its subject length is 11.08 .163

We separate the data set into train, validation and test in order to compare future results in a consis-164

tent way. The separation is based on the commit hash so it is both pseudo-random and reproducible.165

The test set and the validation set have about 472K examples each. Hence, a project may appear in166

both the train and the test, and so does the same summary. However, a message and its summary167

never repeats.168

Overall, 418,994 (89%) subject lines from the test set lines never appear in the training set. Other169

lines are common and appear repeatedly in the train set (e.g., Merge branch 2.7 into 2.8). However,170

manual inspection suggests their corresponding commit messages share little resemblance. As the171

model should learn when to recall more generic summaries as well as to generate specific ones well,172

we leave those in the test set and do not separate train and test by subjects. We also create subsets173

of meaning-preserving commits, explained in Section §6.174

5 Baselines175

We inspect the behavior of neural models and baselines. Those provide insight on the characteristics176

of the data set, set a baseline for future work and allow us to consider unique evaluation motivated177

by domain knowledge (see Section §6). In all experiments, we compute the Rouge1, Rouge2 and178

RougeL scores [Lin, 2004].179

For a neural model we used BART [Lewis et al., 2020]. We consider two variations of BART, one180

untrained for zero-shot performance and another fine-tuned on the train data set. We used max target181

length of 128 and source length of 512, learning rate of 1e−4 and 256 batch size. The rest of the182

parameters are the defaults by the HuggingFace library. The model was trained for a week on 4183

Nvidia M60 GPUs.184

BART is originally trained in the domains of Wikipedia and Books and it was not exposed to the non-185

formal and technical language found in commit messages. On the other hand, BART, pre-trained186

that way, showed impressive results even on very far domains such as malware detection based on187

dynamic analysis [Oak et al., 2019]. Anyway, BART results are high (Table 2) and it surpasses188

Zero-shot results by a large margin, suggesting the data set is large enough to overcome the domain189

shift at least partially. Lewis et al. [2020] reported that BART achieved RougeL of 44.2 on the CNN190

and Daily Mail data sets [Hermann et al., 2015] and 37.6 on the XSum data set [Narayan et al.,191

2018], better results than on ComSum.192

Following previous work [Kryściński et al., 2021], we provide heuristic summarization techniques193

for analysis. Results were computed on 10k samples and presented in Table 2. These heuristic194

summarizing techniques do not learn and therefore the train and test splits are irrelevant to them.195

As a first, ‘Subject and Message’ do not summarize at all and include both the subject and the196

message, acquiring a 29.5 RougeL. This demonstrates the need for compression. Note that this197

method cannot be used for prediction since it uses the summary.198

We perform another such test using the Message without Subject as the summarization. This method199

reached a RougeL score of 12.3 which is better than other baselines but worse than zero-shot per-200

formance of BART. This implies that while there is information in the commit message, repeating it201

is far from enough to achieve a good summarization score in ComSum.202

Similarly, we define a Random Message Sentence baseline. We split the message into sentences and203

randomly pick a single non-empty sentence as the summarization, which achieves a RougeL of 12.4.204

This comes to see how well a more reasonably sized extraction of the input would do (on average,205

messages are 11.08 times longer than subject). As expected it is worse than the whole message and206

shows sentence extraction is unlikely to be considered a good commit summarization.207
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Model Data set RougeL Rouge1 Rouge2
Bart Train 36.6 38.5 22.1
Bart Test 36.3 38.2 21.8
Zero-Shot Bart Train 17.8 20 8.2
Zero-Shot Bart Test 17.9 20 8.3
Subject and Message All 36.7 36.7 34.5
Message without Subject All 15.2 18.0 8.3
Related Fix All 14.9 17.4 8.6
Random Message Sentence Train 12.4 13.9 5.8
Random Message Sentence Test 12.4 13.8 6.0
Related Commit All 7.6 8.0 3.4

Table 2: Baselines results on different data sets. Training on the data set provides a significant
boost. Repeating the commit message or a related subject is not enough for a high score.

Another test case is Related Commit. We generate pairs of commits by the same author, in the same208

project, within a week’s range of each other. We consider the subject of one commit as the summary209

of its paired message, mimicking a situation in which the summarizing is at the level of the same210

person speaking on the same topic, regardless of the specific message. We expect high scores from211

such a measure if subjects are general and quite similar or even repetitive upon related commits. The212

related commit subject benchmark reached the score of 14.4 , suggesting this is not the case. Where213

we require both commits to be a bug fix, a setting we term Related Fix the results are higher. Results214

are also somewhat higher than those achieved by extracting a ‘Random Message Sentence’ from the215

commit. This shows that the topic and style conserve some of the meaning needed for the summary,216

but they are far from satisfactory surrogates of a summary. Please note that in the text summarizing217

we treat each commit on its own and compare the commit message and subject. We use more than218

one commit here only as a predictor for benchmark.219

Memorization is both a sign of over-fitting and a known model behavior in some cases [Feldman,220

2020]. A way to evaluate its influence is to compare the performance on the train and test sets Arpit221

et al. [2017]. It appears that memorization is not a strong problem as both BART and Zero-Shot Bart222

results on the train and test are quite similar (and the sets do not contain duplicates).223

Surprisingly, BART achieves similar results to that of the message and subject, which is a summa-224

rization that includes all needed summary (the actual reference) and a lot of unneeded text.225

Manually inspecting the outputs of BART shows mixed results. On the one hand, a reasonable226

percentage of sentences resemble the reference and in general convey the right action done in the227

commit. On the other hand, many errors are found. Even well-structured sentences fail in terms of228

factual consistency. The network hallucinates terms, names and numbers. For example, ”Merge pull229

request #14” instead of #1110, ”Bump flake8-isort from 2.9.0 to 2.8.1” instead of to 2.9.1 and other230

more complex cases. The high Rouge score co-existing with common mistakes suggest that other231

evaluation procedures should be suggested to differentiate allowed sentence variants from outputs232

of wrong meaning.233

6 Meaning Preserving Summarization234

Meaning preserving is part of the definition of the text summarization problem Gupta and Lehal235

[2010], Chopra et al. [2016]. Gupta and Lehal [2010] suggested an elegant mathematical definition236

model summary = argmaxx p(message|x).237

While attractive, this definition suffers from several drawbacks. The choice of the probability model238

is subjective. The computation of the most likely summary might not be feasible. Last, it is not clear239

if the writer intends and is capable of summarising the message that way, meaning that the samples240

that we use do not fit the concept aimed to learn.241

Testing summarization quality by word overlap alone might be unreliable [Choshen and Abend,242

2018b] and human annotation is costly. Fine-grained factual consistency is less specific to this243

domain and is an active field of study [Gabriel et al., 2020, Honovich et al., 2021]. We hence,244

provide specialized test approaches, asserting that the output summaries preserve the meaning.245
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There are many aspects of meaning that one might choose to preserve. For example, the sentiment of246

the author, the register of the language, etc. A good aspect to preserve should have a few properties.247

First, there should be an agreement that this meaning should be preserved. Given a model that does248

not preserve sentiment, one might claim that this is desirable, leading to a more concise summary249

removing irrelevant information.250

The second property should be that the aspect can be estimated using a computable function, a251

requirement for automation on a large scale. The aspect should be as objective as possible, (e.g., as252

measured by agreement between human annotators), in order to avoid a model that has a different253

subjective “point of view”.254

Our data set enables the use of the commit type, having these properties. We use the classical255

commit taxonomy of Swanson, suggested in 1976, classifying commits as: corrective (aka bug256

fix), adaptive (adding new features) and perfective (refactoring and documentation improvements)257

[Swanson, 1976]. This taxonomy is very common among developers and software engineering258

researchers [Mockus and Votta, 2000]. Therefore we used a model for corrective, adaptive and259

refactor, a subset of perfective. We chose to focus on the latter as refactor changes are related to260

the source code and are therefore more important to communicate. The classification captures the261

essence of the work done in the commit, hence, its meaning should be preserved.262

A commit might be tangled and serve several goals, for example, both fix a bug and refactor the263

fixed code [Herzig and Zeller, 2013, Herbold et al., 2020]. Other than being less common, being a264

bug does not influence being a refactor and both meanings should be preserved.265

Human annotators reach an agreement of 95% on the classification of a commit as a bug [Amit and266

Feitelson, 2020]. We use the classifiers of [Amit and Feitelson, 2019, 2020], reaching accuracy of267

93% for corrective and refactoring , very close to the human level, and the adaptive classifier of268

accuracy 65%. Hence we are capable of estimating the classification at scale accurately.269

One could use the classification on random commits as the meaning to preserve. However, a naive270

model identifying a list of core terms, whose appearance is indicative of the concept, like ’bug’, ’bug-271

fix’, ’error’, ’fail’, and ’fix’ reaches an accuracy of 88% classifying the corrective concept. Since272

these words are common in commit messages, a model ignorant of the meaning might still use them273

as a summary. Therefore, we suggest a more challenging cases for meaning preservations analysis.274

We compute for all the discussed concepts the precision-like meaning-preservation metric,275

P (concept(model(message))|P (concept(message). BART’s highest precision for any of the276

concepts we tested on was 75%. This emphasizes how common and severe non-preserving sum-277

maries are and it calls for further investigation. However, an alternative claim is that omitting the278

concept from the summarization is fine since it is not important. In order to cope with this claim, we279

construct cases in which the classification as the concept is added and not omitted.280

A naive model will fail on sentences like “Added error handling”, “Used fixed point arithmetic”,281

“This is not a bug fix but a new requirement”, etc. In order to build a suitable data set, we selected282

messages that contain a core term yet classified as negative by the concept’s classifier. I.e., they283

contain a core term that usually suggests they belong to one concept, but they do not.284

Hence, in order to preserve the meaning, the summary should match the message in concept. In that285

case, the system output should be of the negative class too and preferably contain the core term.286

Before evaluating meaning preservation, we present the Rouge score on the meaning preserving data287

sets. Comparing the results in Table 2 and Table 3, shows similar performance trends.288

However, the meaning-preserving property allows us to extend our analysis beyond this bottom line.289

Table 4 presents the classification of the summaries of the meaning-preserving messages that have290

a core term of a concept yet are not part of the concept’s class. Such a message might be “Added291

error handling” that is not classified as a bug fix despite the appearance of the core term “error”.292

When a message contains a core term but is still classified as having a concept, it indicates that the293

concept is indeed not the core’s one, as the prior on matching concept and core term is very high.294

We build such data sets for corrective, refactor and adaptive concepts in order to demonstrate it is295

not a property of a specific concept.296

Next, we observe the summaries generated by Bart. When the summaries include a core term, yet297

are not classified as discussing a concept, the meaning is correct, matching the message. This is the298
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Model Data set RougeL Rouge1 Rouge2
Bart Adaptive 36.3 38.4 21.5
Bart Refactor 36.1 38.0 22.2
Bart Corrective 36.8 38.6 22.2
Zero-Shot Bart Adaptive 18.6 20.5 8.7
Zero-Shot Bart Refactor 18.5 20.5 8.5
Zero-Shot Bart Corrective 18.8 20.8 9.4
Random Message Sentence Adaptive 12.4 13.9 5.5
Random Message Sentence Refactor 11.4 12.8 4.8
Random Message Sentence Corrective 12.3 13.9 6.2

Table 3: Rouge scores on typed test sets. Trends are similar to those on the general test set.

Model Data set Not
Preserved

Core and
Concept

Not Core
and
Concept

Core
and Not
Concept

Not Core
and Not
Concept

Bart Corrective 0.21 0.16 0.04 0.28 0.52
Bart Refactor 0.11 0.07 0.04 0.11 0.78
Bart Adaptive 0.39 0.27 0.12 0.19 0.42

Table 4: Meaning Preserving on summaries containing a distractor core term (e.g., ”bug”) not
fitting their concept type (e.g., corrective). Models are more likely to preserve the core term than the
meaning. Furthermore. those cases are confusing for the model.

best case where the summary matches both the concept and the core term. Optimally, all summaries299

would fall under this case.300

When there is no core term and the summary is not classified as a (wrong) concept, it might be a301

good summary in terms of meaning, not stating the nonexistent concept. On the other hand, these302

cases might be a result of hallucinations, as they do not mention the core term.303

However, when there is a core term and the summary is classified as the concept, then the meaning304

was changed. Last, when there is no core term and the message is classified as discussing the305

concept, not only the meaning is changed, the core term disappears and the summary might be a306

result of hallucinations too. “Not Preserved” in the table represents the cases where the meaning307

was changed. It is the sum of “Core and Concept” and “Not Core and Concept”. We find that 11-308

39% of sentences checked change their meaning. These meaning-preserving probabilities serve as309

quality metrics for the summary. Future work may integrate them into the loss function, forcing the310

model to both produce the right words and keep the meaning.311

It is worth reiterating that the commit classifiers are not perfect. While they were trained on thou-312

sands of messages, the meaning preserving messages are different in nature and the distracting core313

term makes them harder to classify. We manually labeled 20 messages for each concept, in order to314

estimate how many of the messages in the sub data sets indeed have the desired properties. For the315

adaptive labels, all had the core term and 60% were not adaptive, fitting for meaning preserving. For316

refactoring, only 35% of the labels fit the meaning preserving data set, and in the corrective 75%.317

We use the same classifiers for the message and the summary, mitigating the accuracy importance.318

However, when comparing results between data sets, the classifier accuracy should be taken into ac-319

count. Assuming independence, estimating mistakes with P (Not Preserving) ∗ (1−Accuracy),320

which is much higher in corrective and adaptive compared to refactor.321

The fact that meaning is often not preserved is likely to be general. We used off-the-shelf pre-trained322

models. Moreover, we did not train the model directly to preserve the meaning, rather we trained it323

to generate the summary token by token. Thus, the models are trained in a rather general way one324

that is not specific to summarizing commits or to preserving meaning. The only change is that the325

models were trained on data which meaning could be evaluated on. Thus, we rely on the distinctions326

known in software engineering research to evaluate the behavior of current models expecting it to327

be relevant to other summarization domains as well.328
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7 Ethical Considerations329

The messages contained in the data set were written by 317,423 developers contributing to open330

source projects. We could not get their direct approval to use the messages in the data set. However,331

open source projects allow not only access to the commit messages but even to the source code.332

Developers are aware of that and agree to it as it is a part of the development project of all public333

open source projects. We validated in GitHub and all the projects included in ComSum have an334

OSI-approved open source license.335

While we do not store developers’ personal information, each commit is identified by a hash. Given336

the hash, a look up in the project metadata retrieves the developer’s profile. Since it is required from337

the development process, the developers accept that and we do not ease look up or provide new338

information about the developer. In any case, the developer controls the data published on them and339

not us. Moreover, they can remove or alter it in any way that does not violate GitHub’s terms. We340

consider this concern as addressed too.341

Another concern is whether the data set is merely pointing out to commit messages as a possible342

source of text summarization. While this is one novelty of our work, it is not the case. Our work343

included filtering unsuitable projects, their vast majority. We also propose a dedicated evaluation344

procedure of meaning preservation. Hence, the value is larger than one would have gotten from just345

the idea of using commit messages.346

Note that 7K commits were identified7 to contain swearing and 325k commits were identified to347

contain negative sentiment. The true numbers might be higher due to the classifiers’ false negatives.348

As this data is already open we did not filter those, but warn future users of the data to filter profanity349

if their needs so require.350

8 Limitations and Threats to Validity351

The data set is based on active open source projects. These projects will keep advancing and in352

the future will have more commits that will enable building larger data sets. We extract the current353

commits and freeze them to enable reproducibility. We also provide the extraction code and limit354

the commits to commits earlier than 2021. However, the current data set might not represent future355

development activity. A data set that will be generated in the future might not match the frozen data356

sets since projects that will be deleted will not be included.357

For the meaning preserving analysis we use commit classification models. Each model has different358

biases and prediction performance. We believe that further improving current models and using359

more models will reduce the influence of current models weaknesses. In turn, this makes the model360

exact details part of the reporting and reproducibility.361

As an external validity concern, it is not clear how much the projects in the data set represent open362

source development. While we control our project selection, we could not find documentation ex-363

plaining how projects are selected into the BigQuery schema that we rely on. Some well known364

projects are not included (e.g. The Apache Software Foundation’s Mahout and ActiveMQ). An ab-365

sence which is even harder to explain is that of Microsoft’s VSCode, an extremely popular editor366

with more than 100K stars. It existed and was later removed, though the project is still publicly367

developed. On the other hand, our data set contains 19,720 projects research more than is usual368

based on the GitHub schema: 7,557 Amit and Feitelson [2020], 1,531 Amit and Feitelson [2019],369

and 677 Amit et al. [2021].370

Git enables developers to create commits in a dedicated ‘branch’ and then ‘squash’ them into a371

single commit. The default message of the squashed commit is the concatenated messages of all372

the branch commits. While all the commits in a branch are related, the cohesion is lower than in373

a regular commit and the messages are longer. These cases can be identified, either by filtering374

commits having more than one parent or simply long messages. We want to allow future researchers375

maximal flexibility and therefore we just alert on this issue instead of enforcing a specific filter.376

Our data set is specific to software development. Hence, improvement on Comsum might not gen-377

eralize to other domains. Clearly, bugs and refactoring will not appear in other domains. Other than378

7Using classifiers from https://github.com/evidencebp/commit-classification
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this obvious difference, high percent of software developers are males Terrell et al. [2017], raising379

another external validity threat.380

Our choice to set a minimal difference of 100 characters between subject and message is not the only381

option. 48 million commits, 94% of all of the commits in our projects, have a message longer than382

their corresponding subject. Our choice led to an average ratio of len(message)
len(subject) = 11.08 , requiring383

significant compression. In this case we did not provide the messages with a smaller difference since384

that will require a much higher storage of less interesting or even misleading messages. The code385

that we provide enables others to generate similar data sets to their taste.386

Training models is costly. Therefore we could not repeat the training on many samples in order387

to provide error bars for the benchmarks. However, we evaluate the performance on large test sets.388

Table 2 shows that both Bart, Zero-Shot Bart and ‘Random Message Sentence’ get very close results389

on the train and test which is another reason to believe results are robust.390

9 Future Work391

The commit data set has the important property of task type meaning-preserving. This property392

enables requiring and evaluating beyond lexical similarity. It will be interesting to identify such393

properties in general texts. For example, forbidding a change from a positive sentiment to a negative394

one (e.g., in dropping the ‘not’ in ‘not bad’) might be a general property. Negation, modals, and395

idioms seem to be a suitable area to find such properties. Text topics, like security or performance396

in commit messages, might be suitable for meaning preserving too.397

Our data set is also useful as a test bed for active learning. In active learning, there is a large amount398

of unlabeled data and the goal is to find a small group of informative samples that can be labeled399

in a feasible cost Settles [2010]. One can use labeling functions [Ratner et al., 2016, Amit et al.,400

2017], computational functions that are weak learners [Schapire, 1990]. For example, commits not401

classified as neither corrective, perfective or adaptive, are assured to be a false negative of one of402

the classifiers. The method was used to boost the corrective commit classifier model [Amit and403

Feitelson, 2020].404

One can use the 19,720 projects for topic detection, a data set that is expected to be challenging405

since all the projects deal with software and hence the topic difference is more delicate. Another406

possible use is to enhance the data set with author identifier, and use pairing [Amit et al., 2019] in407

order to learn author writing style.408

10 Conclusions409

We present a text summarization data set, ComSum, of significant size, and a methodology to extract410

larger such data sets in the future. ComSum is not only of a large size, it provides new challenges411

such as summarizing in a new domain, where a lot of terms appear and constantly change.412

We present benchmarks based on related messages, allowing us to assign meaning to a model per-413

formance evaluation. We also identify meaning-preserving properties that enable training and eval-414

uating models on goals beyond lexical similarity.415
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11 Paper Checklist650

Check: Do the main claims made in the abstract and introduction accurately reflect the651

paper’s contributions and scope? Response: Yes652

Check: Have you read the ethics review guidelines and ensured that your paper conforms653

to them? Response: Yes654

Check: Did you discuss any potential negative societal impacts of your work?655

Response: We do not think our work has any potential negative societal impacts.656

Check: Did you describe the limitations of your work? Response: Yes. See Section §8657

Check: Did you state the full set of assumptions of all theoretical results? Response: Not658

applicable.659

Check: Did you include complete proofs of all theoretical results?660

Response: Not applicable.661

Check: Did you include the code, data, and instructions needed to reproduce the main662

experimental results (either in the supplemental material or as a URL)?663

Response: Yes. See ‘Supplementary Materials’664

Check: Did you specify all the training details (e.g., data splits, hyperparameters, how they665

were chosen)?666

Response: Yes. Moreover, all code and data are in ‘Supplementary Materials’.667

Check: Did you report error bars (e.g., with respect to the random seed after running668

experiments multiple times)?669

Response: No. Training took too long and we could not perform multiple training sessions.670

We stated it as a threat and we mitigated it by evaluation on large data sets and showing671
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similar results on the train and test sets. Note that we use the results only to present basic672

baselines and meaning preserving demonstration. We do not claim any SOTA results.673

Check: Did you include the amount of compute and the type of resources used (e.g., type674

of GPUs, internal cluster, or cloud provider)? Response: Yes.675

Check: If your work uses existing assets, did you cite the creators?676

Response: We used the GitHub BigQuery scheme and added a reference to it. It was not677

published in an academic paper so we did not cite it.678

Check: Did you mention the license of the assets?679

Response: The data set is based on 19,720 with various licences. We checked in GitHub680

that all the selected projects had a OSI compliant open source licence.681

Check: Did you include any new assets either in the supplemental material or as a URL?682

Response: We created a new asset by selecting the relevant projects, commits and for-683

matting them. For the data set, see ‘Supplementary Materials’.684

Check: Did you discuss whether and how consent was obtained from people whose data685

you’re using/curating?686

Response: The commits were written by 317,423 developers over years. It is not feasible to687

obtain a direct contest from each one of them. We checked in GitHub that all the selected688

projects had a OSI compliant open source licence.689

Check: Did you discuss whether the data you are using/curating contains personally iden-690

tifiable information or offensive content?691

Response: Yes, we discussed. Our data set does not contain personally identifiable data.692

However, a commit is an identifier that can be used to look up the developer’s profile.693

Nicknames are common but many developers use their names. This data is provided as694

part of open source development, the developers are aware of that and we did not add any695

new data or make the identification easier.696

Response: A small part of the commits contains swearing and negative sentiment, a fact697

that we stated in the paper.698

Check: Did you include the full text of instructions given to participants and screenshots, if699

applicable? Response: Not applicable.700

Check: Did you describe any potential participant risks, with links to Institutional Review701

Board (IRB) approvals, if applicable? Response: Not applicable.702

Check: Did you include the estimated hourly wage paid to participants and the total amount703

spent on participant compensation? Response: Not applicable.704

A Supplementary Materials705

Source code and documentation are available at Choshen and Amit [2021b] and https://github.706

com/evidencebp/comsum. Data is available at Choshen and Amit [2021a].707

B Labeling for the administrative heuristic708

Commit message can be viewd as contanining content describing the code change (e.g., ‘extracted709

method’) and administrative content (e.g., ’Signed-off-by: Alan Turing’).710

The administrative content usually uses few specific terms that can be identified. Our heuristic looks711

for these terms in the message and classify it as administrative if an administrative term appears in712

the first 20 characters. The intuiting of the heuristic is that 20 characters do not leave space for code713

change description. We labeled all 265 hits in a 5,000 commits samples. 2 samples were summaries714

with a change/details relation. 1 sample was a merge. 98.9% of the matches needed removing. 46715

samples, with distance closer to 20 were reference commits (e.g., fixed bug #123). These are also716

not suitable for summary and should be removed. The hit rate is 5.3% compared to 7% positive rate717
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in the random sample, indicating a recall of about 75%. All administrative commits in the random718

samples were identified.719

C Author Statement of Responsibility720

We, the authors of “ComSum: Commit Messages Summarization and Meaning Preservation” bear721

all responsibility in case of violation of rights, etc. due to the publication of the data set.722

We publish the data set with the license Creative Commons version 4.0 (aka, CC-4) in order to723

enable researchers to use it.724

D Hosting, Licensing, and Maintenance plan725

We release the data with the license Creative Commons version 4.0 (aka, CC-4), allowing copy,726

redistribution and other common uses without the need of permission but with proper credit. We do727

not plan to change it.728

For the purpose of reviewing we host the data set in figshare. After publication, we will host the data729

set at GitHub. Sharing in GitHub has a built-in modification and tracking mechanism. This way, it730

is easy to add clarification, utility code, etc. Other than that, GitHub is the ideal hosting service for731

a data set of GitHub commit messages.732

As for the maintenance plan, we provide all the code used to generate the data set. The infrastructure733

code is already public and it is not linked currently to preserve anonymity. Of course, it will be linked734

after publication.735

The code will enable any researcher to maintain the data set and keep extending it. This includes736

adding data from future work in the projects, using different selection conditions, enhancement with737

more features, etc.738
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