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Abstract

Solving real-world complex tasks using reinforcement learning (RL) without high-fidelity
simulation environments or large amounts of offline data can be quite challenging. Online
RL agents trained in imperfect simulation environments can suffer from severe sim-to-real
issues. Offline RL approaches although bypass the need for simulators, often pose demanding
requirements on the size and quality of the offline datasets. The recently emerged hybrid
offline-and-online RL provides an attractive framework that enables joint use of limited
offline data and imperfect simulator for transferable policy learning. In this paper, we
develop a new algorithm, called H2O+, which offers great flexibility to bridge various
choices of offline and online learning methods, while also accounting for dynamics gaps
between the real and simulation environment. Through extensive simulation and real-world
robotics experiments, we demonstrate superior performance and flexibility over advanced
cross-domain online and offline RL algorithms. The real-world experiment videos are
available at https://sites.google.com/view/h2oplusauthors/.
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1 Introduction

The past successes of reinforcement learning (RL) are primarily restricted to single-domain
tasks with the same environment dynamics during the training and testing phases (Silver
et al., 2017; Mnih et al., 2015). However, it has been observed that most RL algorithms are
highly vulnerable to changes in environment dynamics (Luo et al., 2022; Eysenbach et al.,
2020; Niu et al., 2022), resulting in suboptimal policy performance and limiting the broader
success of RL in real-world tasks. In robotics applications (Kober et al., 2013; Lee et al.,
2020; O’Connell et al., 2022; Andrychowicz et al., 2020), for instance, we typically train
control policies in simulators for the sake of training efficiency and safety considerations.
However, the dynamics modeling within the simulator can be hard to strictly align with the
diverse and complex real-world scenarios, leading to severe performance degradation due to
dynamics mismatch (Peng et al., 2018; Sandha et al., 2021; Akkaya et al., 2019).

To address sim-to-real transfer issues, recent RL methods have adopted several design
paradigms. System identification methods (Yu et al., 2017; Chebotar et al., 2019; Muratore
et al., 2021; Du et al., 2021; Ramos et al., 2019) aim to calibrate and align the physical
properties in simulation with those in the real world. Domain randomization techniques (Peng
et al., 2018; Rajeswaran et al., 2016; Mehta et al., 2020; Akkaya et al., 2019) randomize
simulation parameters to generalize policies across multiple environments. However, the
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selection of parameters and the range of their randomization could require a great amount of
human effort and domain expertise (Vuong et al., 2019; Andrychowicz et al., 2020), as well
as sufficient configurability of the simulator (Chen et al., 2022). Thus, another avenue of
works (Eysenbach et al., 2020; Liu et al., 2022) regards simulators as black boxes and turn to
perform policy learning adaptation via modifying the reward to account for the sim-to-real
dynamics gap. More recently, the rapid developments in offline RL (Levine et al., 2020;
Fujimoto et al., 2019; Kumar et al., 2019; Fujimoto and Gu, 2021; Kostrikov et al., 2022;
Xu et al., 2022, 2023; Garg et al., 2023) have brought renewed interest in learning policies
directly from pre-collected real-world datasets to bypass the need for simulation environments.
These methods adopt conservative principles to overcome the notorious distributional shift
issue (Kumar et al., 2019) in offline learning, thus often requiring large, high state-action
space coverage and high-quality datasets to achieve good performance (Li et al., 2023), which
can be hard to satisfy in scenarios with high data collection costs.

All of the aforementioned approaches bear certain limitations, suggesting that solely relying
on online simulation samples with imperfect dynamics or potentially limited, low-coverage
real-world offline data may not be sufficient to achieve desirable policy transferability. To
this end, dynamics-aware hybrid offline-and-online RL (H2O) (Niu et al., 2022) is the first
study to combine offline and online policy learning using both limited offline real-world data
and off-dynamics online simulated samples for cross-domain policy learning. It introduces a
dynamics-aware value regularization scheme that punishes Q-values on simulation samples
based on explicit dynamics gap quantification and boosts Q-values on offline real data.
Although promising, H2O also bears several drawbacks. First, it is built upon the conservative
Q-learning (CQL) (Kumar et al., 2020) offline RL framework, which is over-conservative
and lacks flexibility for extension to stronger and less conservative offline RL paradigms. Its
over-conservative design hinders sufficient exploration and state-action coverage improvement
in the simulation environment. Lastly, explicit dynamics gap quantification in H2O also
poses computation challenges.

In this paper, we follow the offline-and-online RL recipe in H2O, but develop a more flexible
and powerful algorithm through a different lens, to enable sufficient utilization of both the
offline dataset and imperfect simulator for transferable policy learning. We refer our algorithm
as H2O+, which has two favorable design ingredients: 1) a flexible and less conservative
learning framework that is compatible with various strong in-sample learning offline RL
backbones and exploration designs; and 2) the dynamics-aware mixed value update that
bridges offline and online value function learning, while also accounting for dynamics gaps
between real and simulated samples. Through extensive simulation and real wheel-legged
robot experiments, we demonstrate the superiority and flexibility of H2O+ over competing
online, offline and cross-domain RL baseline methods.

2 Related Work

High-fidelity simulators are crucial for online RL methods to learn deployable policies.
However, as accurate simulators are hard to build, addressing the sim-to-real gaps become a
pressing challenge. Various cross-domain online RL approaches have been proposed to tackle
this challenge, such as using system identification methods (Ljung, 1998; Chebotar et al., 2019;
Muratore et al., 2021; Du et al., 2021; Ramos et al., 2019) to align simulated dynamics with
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real dynamics, or adding domain randomizations (Peng et al., 2018; Rajeswaran et al., 2016;
Andrychowicz et al., 2020; Mehta et al., 2020; Akkaya et al., 2019) that trains RL policies in a
randomized simulated dynamics setting. The former typically requires a considerable amount
of offline or costly real-world interaction data (Yu et al., 2017), while the latter necessitates
manually-specified randomized parameters (Vuong et al., 2019). Recently, another line of
research leverages additional real-world data to mitigate the dynamics shift in simulation
environments (Eysenbach et al., 2020; Liu et al., 2022; Niu et al., 2022). Specifically,
DARC (Eysenbach et al., 2020) and DARA (Liu et al., 2022) add dynamics-gap-related
penalization terms on rewards in online and offline RL settings, respectively. H2O (Niu et al.,
2022) proposes a new setting that enables simultaneous offline-and-online policy learning on
both real offline data and simulated samples, which shows promising results and advantages
over prior methods.

3 Preliminaries

Reinforcement Learning We formulate RL problem as a Markov Decision Process (MDP) (Sut-
ton et al., 1998), defined by a tuple M := (S,A, r, PM, γ). S and A denote the state and ac-
tion space, r represents the reward function, PM stands for the transition dynamics under M.
The goal of RL is to find the optimal policy π∗ that maximizes cumulative discounted reward
starting from an initial state distribution ρ, π∗ = argmaxπ Es0∈ρ,at∼π,st+1∼PM

[∑∞
t=0 γ

tr (st,at)
]
.

RL methods based on approximated dynamic programming typically learn an action-value
function Q(s, a), and optionally, a state value function V (s) to practically estimate the
cumulative discounted reward for policy optimization.

In many cases, RL training in the real environment is infeasible, so most online RL methods
train the agents in simulation environments. However, building a high-fidelity simulator can
be costly or even impossible in many real-world tasks. Learning with an imperfect simulator
will lead to a MDP M̂ :=

(
S,A, r, PM̂, γ

)
with biased dynamics PM̂, which can cause serious

sim-to-real transfer issues. When a large offline real-world dataset D generated by some
behavior policy µ is given, one can also resort to offline RL (Fujimoto et al., 2019; Levine
et al., 2020) to bypass the sim-to-real issue and directly learn a policy from the offline data.
However, the performances of existing offline RL methods are heavily dependent on the size
and quality of datasets, which restricts their practical application (Li et al., 2023).

Hybrid Offline-and-Online RL with Imperfect Simulator As both online and offline
RL bear some practical challenges in solving real-world problems, there is a growing interest in
merging online and offline RL for sample-efficient and high-performance policy learning (Song
et al., 2023; Ball et al., 2023; Wagenmaker and Pacchiano, 2022; Niu et al., 2022). Many of
these studies (Song et al., 2023; Ball et al., 2023; Wagenmaker and Pacchiano, 2022) assume
identical online and offline system dynamics, thus are not applicable if an imperfect simulator
is used as the online environment. Among them, H2O (Niu et al., 2022) is the first study
that enables simultaneous offline and online policy learning with an imperfect simulator.
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H2O is built upon the conservative Q-learning (CQL) (Kumar et al., 2020) framework, with
its learning objective designed as follows:

min
Q

αc ·
(
log

∑
s,a

ω(s, a) exp (Q(s, a)) − Es,a∼D [Q(s, a)]
)

︸ ︷︷ ︸
(i) Conservative value regularization

+ E(s,a,s′)∼D

[(
Q − B̂π

Q̂
)
(s, a)

]2
+ E(s,a,s′)∼B

PM(s′|s, a)
PM̂(s′|s, a)

[(
Q − B̂π

Q̂
)
(s, a)

]2
︸ ︷︷ ︸

(ii) Bellman error on offline and online data
(1)

H2O’s learning objective is comprised of two parts: the first part pushes down dynamics-gap
weighted Q-values and pulls up Q-values on trustworthy real offline data; the second part
enables simultaneous offline and online learning on both offline dataset D and simulated replay
buffer B while also correcting the problematic next state s′ from the simulator dynamics PM̂
using the dynamics ratio as an importance weight. In H2O, the dynamics gap measure ω(s, a)
is explicitly calculated as the normalized KL-divergence DKL(PM̂(s′|s,a)∥PM(s′|s,a)) over
all (s,a) pairs in the state-action space, which can only be approximated.

4 Method

Although H2O provides a successful attempt to tackle sim-to-real dynamics gaps by combining
offline and online RL, it suffers from four notable drawbacks. First, the CQL backbone of
H2O is over-conservative (Nakamoto et al., 2023; Li et al., 2023) and may cause conflict
when incorporating online learning. For example, as shown in (Nakamoto et al., 2023), when
performing online fine-tuning on a conservative value function initialization, policy learning
has to first "unlearn" the underestimated values before making further progress. Second,
the CQL framework lacks flexibility, which is not possible to be extended nor compatible
with many recent strong offline RL frameworks (Kostrikov et al., 2022; Xu et al., 2023;
Hansen-Estruch et al., 2023; Garg et al., 2023). H2O also has no exploration design, which
hinders effective state-action coverage improvement through simulation interactions. Lastly,
H2O has to approximate an explicit dynamics gap measure, which is costly and error-prone.
These drawbacks motivate us to rethink what are the desirable properties in hybrid offline-
and-online RL. In this paper, we propose H2O+, which offers a highly flexible and less
conservative algorithm, enabling full utilization of the online samples from the imperfect
simulator. The key of H2O+ is the dynamics-aware mixed value update, which bridges
various choices of offline and online learning methods, while also accounting for dynamics
gaps between the real and simulation environment.

4.1 Separate Considerations for Offline and Online Learning

Before introducing our method, we first review two popular modeling frameworks in both
offline and online RL: behavior-regularized RL (Eq.(2)) and maximum entropy RL (Eq.(3)):

Offline: max
π

E

[ ∞∑
t=0

γt

(
r (st,at)− α · f

(
π (at | st)
µ (at | st)

))]
(2)

Online: max
π

E

[ ∞∑
t=0

γt (r (st,at) + β · H (π (at | st)))
]

(3)

The behavior-regularized RL is formally studied in (Xu et al., 2023), which has been shown
closely related to a class of recent state-of-the-art (SOTA) in-sample learning offline RL
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methods (Xu et al., 2023; Hansen-Estruch et al., 2023). Depending on different choices of
the f function, it can be shown that all these algorithms share the following general learning
objectives for V (s) and Q(s,a):

min
V

E(s,a)∼D Lf
V (Q(s,a)− V (s)) (4)

min
Q

E(s,a,s′)∼D
[
r(s,a) + γV (s′)−Q(s,a)

]2 (5)

In particular, if f = log(x), it correspond to EQL (Xu et al., 2023) and XQL (Garg et al., 2023)
with Lf

V (y) = exp(y/α)−y/α. If f = x−1, it corresponds to SQL (Xu et al., 2023) (equivalent
to an in-sample learning version of CQL) with Lf

V (y) = 1(1 + y/2α > 0)(1 + y/2α)2 − y/α.
The well-known offline RL algorithm IQL (Kostrikov et al., 2022) also belongs to this family
of algorithms but does not have a closed-form f , with Lf

V (y) = |τ − 1(y < 0)|y2, where
τ ∈ (0, 1) is the expectile hyperparameter. These offline RL methods learn V (s) and Q(s, a)
completely using dataset samples, thus enjoying stable value function learning as compared
to CQL-style algorithms that distort the value estimates. However, their in-sample learning
nature also creates obstacles to incorporating online learning with imperfect simulators.

On the other hand, the maximum entropy RL (Haarnoja et al., 2018) (Eq.(3)) also achieves
great success in online RL studies, which maximizes the expected reward while also maximizing
the entropy of the policy H(π) to promote exploration. If we consider an off-policy setting
and denote B as the training replay buffer, its corresponding action-value function learning
objective is given as:

min
Q

E(s,a)∼B

[
r(s,a) + γEs′∼P,a′∼π

[
Q̂(s′,a′)− β · log(π(a′|s′))

]
−Q(s,a)

]2 (6)

4.2 Dynamics-Aware Mixed Value Update

Both the behavior-regularized RL and the maximum entropy RL frameworks bear some
attractive features for the hybrid offline-and-online RL setting. Specifically, behavior-
regularized RL ensures high-quality offline learned value functions without posing too much
conservatism. While maximum entropy RL offers natural exploration capabilities to improve
the state-action space coverage of the offline dataset. Now the question is: how can we
leverage the merits of both frameworks to build a strong hybrid RL algorithm while also being
capable of tackling the sim-to-real dynamics gaps between real and simulation environments?

In this paper, we provide a simple and elegant solution by proposing a dynamics-aware mixed
value update that seamlessly mixes offline and online learning without introducing excessive
conservatism. Our insight is by noting that we can use the more reliable state value function
V (s) learned solely with the real offline data in Eq.(4) as an anchor to mildly regulate Q(s, a)
estimation on potentially biased simulation samples. We can achieve this by utilizing the
following mixed Bellman operator, sharing a similar philosophy explored by previous work
on balancing exploitation and exploration in online RL (Ji et al., 2023):

Bmix
λ Q̂(s,a) = λ

[
r(s,a) + γV (s′)

]
+ (1− λ)

[
r(s,a) + γEa′∼π

[
Q̂(s′,a′)− β · log(π(a′|s′))

]]
(7)

= r(s,a) + λγV (s′) + (1− λ)γEa′∼π

[
Q̂(s′,a′)− β · log(π(a′|s′))

]
(8)

where the state value function is learned only with real-world offline data D as in Eq.(4);
λ ∈ [0, 1] is a trade-off hyperparameter to control the level of influence between offline and
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online learning. With the mixed Bellman operator, we can learn Q-function from both
real dataset D and online simulation replay buffer B. Moreover, to correct potentially
problematic next states s′ from the simulator dynamics PM̂, we adopt the same dynamics
ratio reweighting as in H2O (Niu et al., 2022):

min
Q

E(s,a,s′)∼D

[(
Q− Bmix

λ Q̂
)2

(s,a)

]
+ E(s,a)∼BEs′∼PM

[(
Q− Bmix

λ Q̂
)2

(s,a)

]
(9)

=E(s,a,s′)∼D

[(
Q− Bmix

λ Q̂
)2

(s,a)

]
+ E(s,a,s′)∼B

[
PM (s′ | s,a)
PM̂ (s′ | s,a)

(
Q− Bmix

λ Q̂
)2

(s,a)

]
(10)

The dynamics ratio PM̂/PM can be conveniently estimated by learning a pair of domain
discriminators p(real|s,a, s′) and p(real|s,a) using the following formulation, which is also
adopted in a number of previous studies (Eysenbach et al., 2020; Liu et al., 2022):

PM (s′ | s,a)
PM̂ (s′ | s,a)

=
p (s′ | s,a, real)
p (s′ | s,a, sim)

=
p(sim | s,a)
p(real | s,a)

/
p (sim | s,a, s′)
p (real | s,a, s′)

=
1− p(real | s,a)
p(real | s,a)

/
1− p (real | s,a, s′)
p (real | s,a, s′)

(11)

Finally, with the learned action value function Q(s,a), we can optimize the policy π by
maximizing the following objective on both real and simulated samples:

π∗ = argmax
π

E(s,a)∈D∪B [Q(s,a)− β · log(π(s,a))] (12)

5 Experiments

In this section, we present empirical validations of our approach. We begin with our
algorithmic implementation and experimental setups, followed by benchmark experiments
with original and dynamics-modified MuJoCo simulation environments. Our baselines consist
of the online RL method SAC (Haarnoja et al., 2018) for zero-shot transfer, offline RL
algorithms CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2022), cross-domain online
RL method DARC (Eysenbach et al., 2020), and H2O (Niu et al., 2022) that in a similar
setting with H2O+. We run all experiments with 5 random seeds. Finally, we deploy H2O+
and baselines on a wheel-legged robot to complete real-world tasks. Furthermore, we provide
ablations on choices of dynamics-aware mixed value update designings, different levels of
intensity of dynamics gap, and different offline RL backbones.

5.1 Experimental Setups

Algorithmic implementation of H2O+ In all our comparative experiments, we in-
stantiate Lf

V (y) = |τ − 1(y < 0)|y2 as in IQL (Kostrikov et al., 2022), due to its simplicity.
The scaling parameter β of the entropy term is automatically tuned following the treatment
in SAC (Haarnoja et al., 2018). We follow the treatment in SAC (Haarnoja et al., 2018)
to automatically tune the scaling parameter β of the entropy term. We set the trade-off
hyperparameter λ to 0.1 in all our experiments. It might be preferable to select a larger λ
for tasks that are carried out in more reliable simulators.

Simulation experiments We treat the original MuJoCo task environment as the “real-
world” scenario, and create ten imperfect simulation environments by deliberately introducing
various types of dynamics gaps (illustrated in Figure 1). These dynamics gaps are introduced
by adjusting either the dynamics parameters of the robot or the environmental physical
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(a) Original environments

(b) Example modified environments

Figure 1: Original environ-
ments and some illustrations of
the modified dynamics

Table 1: Average returns for MuJoCo HalfCheetah and Walker2d tasks

DataDynamics Gap SAC CQL IQL DARC H2O H2O+

H
al

fC
he

et
ah

-m
r

Gravity 4513±513 5774±214 5207±149 5105±460 6813±289 6861±268
Friction 2684±26465774±214 5207±149 5503±263 5928±896 6278±1336
Joint Noise 4137±805 5774±214 5207±149 5137±225 6747±427 6985±328
Big Thigh 4509±877 5774±214 5207±149 5336±389 6278±305 6675±231
Small Thigh 6632±10275774±214 5207±149 8331±454 6751±231 7425±148
Broken Thigh 6517±10765774±214 5207±149 8704±1726 6717±226 7018±147
Flexible Thigh 5623±28625774±214 5207±149 5554±88 6976±234 7497±196
Long Torso 1047±30895774±214 5207±149 45±322 6225±100 6718±245
Soft Feet 5684±587 5774±214 5207±149 9058±374 6731±319 7068±244

Mean Return 4594 5774 5207 5863 6573 6947

H
al

fC
he

et
ah

-m

Gravity 4513±513 6066±73 5605±25 5011±456 7085±416 6965±659
Friction 2684±2646 6066±73 5605±25 6113±104 6848±445 7186±859
Joint Noise 4137±805 6066±73 5605±25 5484±171 7212±236 7503±237
Big Thigh 4509±877 6066±73 5605±25 6302±1832 6625±579 7094±371
Small Thigh 6632±1027 6066±73 5605±25 9127±907 7020±337 7706±185
Broken Thigh 6517±1076 6066±73 5605±25 7509±707 6800±378 7321±213
Flexible Thigh 5623±2862 6066±73 5605±25 7266±1771 7005±757 7805±139
Long Torso 1047±3089 6066±73 5605±25 724±921 6327±602 5484±1382
Soft Feet 5684±587 6066±73 5605±25 6952±3330 7138±326 7622±53

Mean Return 4594 6066 5605 6054 6896 7187
W

al
ke

r2
d-

m
r

Gravity 1698±16113261±802 3390±326 2969±1043 3366±740 3518±605
Friction 2779±870 3261±802 3390±326 3644±213 3916±549 3866±840
Joint Noise 173±727 3261±802 3390±326 -3±0 3045±911 3446±862
Big Thigh 1151±716 3261±8023390±326 57±126 1789±1781 2977±771
Small Thigh 894±519 3261±802 3390±326 1294±905 2455±1301 3920±417
Broken Thigh 3845±6073261±802 3390±326 893±180 2702±1054 3911±405
Flexible Thigh 2518±16273261±802 3390±326 2511±1048 1891±1001 3535±493

Mean Return 1865 3261 3390 1624 2738 3596

properties. For example, in the HalfCheetah and Walker2d task environment, the modifica-
tions include modifying the gravitational gravity (×2, Gravity), friction coefficient (×0.3,
Friction), thigh size (×0.5 and ×2, Small/Big Thigh), the motion range of the joint
connections of thighs (×0.5 and ×2, Broken/Flexible Thigh), stretching the torso length
(×4, Long Torso, only for HalfCheetah), lowering the foot stiffness (×0, Soft Feet, only for
HalfCheetah) and adding joint noise (N(0, I), Joint Noise). In terms of the “real-world” of-
fline dataset (original MuJoCo environment), we utilize the corresponding task datasets from
the widely-used offline RL benchmark D4RL (Fu et al., 2020). Specifically, the Medium (-m)
and Medium Replay (-mr) datasets are considered as they are closer to real-world settings,
where we are more likely to obtain medium-level or highly mixed offline datasets from real
systems. The online training of algorithms is performed in the created imperfect simulation
environment, and we evaluate the learned policy in the original MuJoCo environment.

Real-robot transfer experiments We also perform real robot transfer experiments on a
wheel-legged robot with a main body and a pair of legs with wheels attached to the end. We
also construct the simulation environment based on Isaac Gym (Makoviychuk et al., 2021).
Both the real robot and its simulation are shown in Figure 2a. Our wheel-legged robot bears
a substantially large weight (about 12 kg) and possesses an intricate mechanical structure.
Moreover, our testing environment features a furry carpet on the ground, which introduces
the possibility of sagging and unloading as the robot traverses the surface. These distinctive
factors collectively contribute to a very challenging real-world transfer procedure.

According to its sensors and actuators, the state space of the robot control tasks is designed
as a quadratic-tuple (θ, θ̇, x, v) where θ denotes the forward pitch angle of the body, x is
the displacement of the robot, θ̇ and v are the angular and linear velocity respectively. The
execution action is the torque τ of the motors at the two wheels. We construct two tasks for
real-world validation: (1) standing still: the robot needs to keep balanced at the initial
location and maintain stability as much as possible. (2) moving forward: the robot needs
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(a) Simulation/Real robot (b) Displacement in standing still (c) Linear velocity in moving forward

Figure 2: Real-robot experiment results of the “(b) standing still” and “(c) moving forward” tasks.

to move at a fixed forward speed vtgt = 0.2m/s and maintain balance as long as possible.
Detailed setups are elaborated in Appendix D.

5.2 Comparative Results

Simulation experiments. The results in Table 1 highlight the superiority of H2O+
compared to all the baselines in terms of the mean return across all tasks in the HalfCheetah
and Walker2d environments. Note that for offline RL baselines (CQL/IQL), we train the
policies using the “real” offline datasets and evaluate them in the “real” environments, so
their scores remain the same across modified environments with dynamics gaps.

It is found that online cross-domain baseline DARC performs strongly when the dynamics
gap is small (i.e. when online SAC achieves better performance than offline RL baselines).
However, DARC fails miserably when the dynamics gap is large (e.g. HalfCheetah long torso
and Walker2d joint noise tasks), which underscores its limitations of the dynamics-gap-related
reward penalization scheme. On the other hand, offline RL baselines are not impacted by the
sim-to-real issue, but their performances are heavily impacted by the dataset quality. Our
H2O+ not only outperforms H2O in most tasks but also consistently achieves comparable or
better performance than online, offline, and cross-domain RL methods in both small and large
dynamics gap settings. These results showcase the effectiveness of H2O+ in leveraging both
offline data and imperfect simulation for improved and transferable policy learning. In-depth
ablation studies in terms of hyperparameter λ and dynamics ratio, generalizability of offline
RL backbones, and ability to face different levels of dynamics gaps are in Appendix C.

Real-robot experiments In the real-robot experiments, H2O+ demonstrated a strong
transfer ability compared to other benchmarks. As shown in Figure 2b and 2c, the control
performance of this method far exceeds that of others in both tasks. In the standing still
task, only H2O+ and IQL policies successfully maintain the balance of the robot for over 30
seconds (s), while the robot deployed with SAC, H2O, and DARC policies cannot even keep
the balance for over 3s before it hit the ground. Moreover, as illustrated in Figure 2b, H2O+
regulated the displacement of the robot within 0.2m, whereas IQL only barely maintains
balance, yet with a large range swinging even reaches 1.6m. The advantage of H2O+ is
more significant in the moving forward task. As illustrated in Figure 2c, only the H2O+
policy achieves the goal of moving forward and even follows the target velocity precisely.
During the moving process, the speed of robot changes smoothly and the pitch angle remains
steady. In comparison, IQL policy is capable to keep balance, but the robot moves backward
and also spends more time and effort on keeping balance, resulting in a shaking period of
over 7s. In addition, H2O, SAC and DARC fail to maintain balance and fall down in 4s.
Additionally, as in Figure 3 in the Appendix, we observe that H2O explores a more focused
high-value area, whereas H2O+ spans a broader high-value region, thus indicating superior
diversity characteristics in simulated data, which would benefit the overall performance.
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6 Conclusion

In this paper, we propose an improved hybrid offline-and-online RL framework (H2O+) to
enable full utilization of real-world offline datasets and imperfect simulators for cross-domain
policy learning. Our method addresses several key weaknesses in the previous method
H2O, and offers flexibility to bridge various choices of strong offline RL backbones without
introducing excessive conservatism. Through extensive simulation and real-world experiments,
we show that our method outperforms the SOTA cross-domain RL methods in a wide range
of dynamics gap settings. This makes H2O+ an ideal candidate for many real-world tasks
without high-fidelity simulators and sufficient offline data.
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Appendix A. Discussion and Comparison with H2O

Using the above dynamics-aware mixed value update, H2O+ effectively addresses all the
aforementioned drawbacks of H2O. First, H2O+ uses in-sample learning state-value function
V (s) and the dynamics ratio to mildly regulate the value function learning on potentially
problematic online simulated samples. There is no distortion nor extra conservative penalty
on the Q-values, thus removing excessive conservatism during policy learning. Second, H2O+
is compatible with a series of recent strong in-sample learning offline RL methods (Kostrikov
et al., 2022; Xu et al., 2023; Hansen-Estruch et al., 2023; Garg et al., 2023), and the policy
entropy in Eq.(7) is also possible to be replaced with other terms to promote exploration, thus
offering great flexibility. Moreover, H2O+ removes the need to estimate explicit dynamics
gap measures, thus providing a simpler and more efficient algorithmic implementation. In
the next section, we will show in empirical experiments, that although it removes much
conservatism to regulate off-dynamics samples, H2O+ consistently outperforms H2O and
other cross-domain RL baselines.

Appendix B. Additional Related Work on Combining Offline/Online RL

The recently emerged offline RL methods (Fujimoto et al., 2019; Kumar et al., 2019; Fujimoto
and Gu, 2021; Kostrikov et al., 2022; Xu et al., 2022, 2023; Garg et al., 2023) has provided
an attractive solution to learn policies directly from offline data without online interactions.
However, the performances of existing offline RL methods are heavily limited by the quality
and state-action space coverage of offline datasets (Kumar et al., 2019; Li et al., 2023). To
mitigate this issue, offline-to-online RL methods (Nair et al., 2020; Lee et al., 2022; Zhang
et al., 2023) are developed to separate RL policy learning into a two-stage training process:
first pretrain a policy using offline RL and then finetune with online RL. It can improve
sample efficiency with favorable initialization for the online learning stage. More recently,
some RL studies (Song et al., 2023; Ball et al., 2023; Wagenmaker and Pacchiano, 2022; Ji
et al., 2023) directly merge offline RL ingredients into online RL algorithms as a single-stage
learning process, which have been shown to greatly improve sample efficiency and policy
performance. However, all these methods are only applicable to a single domain, with no
dynamics gaps between the online and offline data. H2O (Niu et al., 2022) also adopts
simultaneous offline and online learning, but is specifically designed to tackle off-dynamics
online samples from an imperfect simulator. Our proposed H2O+ follows the same hybrid
offline-and-online RL setting, but uses a different methodological framework to address
several key drawbacks of H2O.

Appendix C. Ablation Studies

Ablation on the hyperparameter λ and dynamics ratio Table 2 presents the results
of different choices of the trade-off parameter λ and the dynamics ratio on Bellman error in
dynamics-aware mixed value update, as used in Eq. 10. Specifically, we investigate the cases
where λ = 0 corresponds to Q-value update on both simulation and real data using Eq. 6,
and λ = 1 formulates Q-value update with Eq. 5. Among the different parameter choices,
the original implementation of H2O+ with a mixed Q-value update at λ = 0.1 achieves
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Figure 3: Comparison of H2O / H2O+ simulation data quality in real-world tasks. (Top: standing still;
Down: moving forward)

Figure 4: Different choices of offline RL backbone for state-value function learning

the highest performance compared to other selections. It reveals that there is no necessity
to heavily regulate the Q target by incorporating too much information from the value
function learned as an anchor from offline data. Moreover, it is evident that H2O+ exhibits
a remarkable level of hyper-parameter insensitivity, as indicated by its minor performance
discrepancies across the λ range of 0.0 to 0.5. Essentially, our analysis also reveals that the
absence of dynamics ratio reweighting in the Bellman error results in significant performance
degradation.

Ablation on offline RL backbones Furthermore, we plug in other offline RL backbones
like SQL (Xu et al., 2023) into the H2O+ paradigm for state-value learning, by replacing the
value loss in Eq.(2) with Lf

V (y) = 1(1 + y/2α > 0)(1 + y/2α)2 − y/α. We demonstrate that
H2O+ offers flexibility to bridge other offline RL algorithms in Small and Big Thigh tasks
on HalfCheetah Medium and Medium Replay datasets, producing comparable performance
as shown in Figure 4.

Investigations on different levels of dynamics gaps We further compare H2O and
H2O+ under different levels of dynamics gaps (HalfCheetah-mr with 1.25 to 3 times gravity).
The results are presented in Table 3. It is observed that H2O+ beats H2O in all different
dynamics discrepancy levels, despite using a simpler approach to handle dynamics gaps. In
addition, H2O+ consistently demonstrates a lower variance across all tasks, underscoring
its heightened stability compared to H2O. Furthermore, H2O+ performs much better in
tasks with low dynamics gaps and still maintains competitive performance in high dynamics
scenarios. This alignment with the underlying design philosophy of leveraging the full
potential of online learning with less conservatism further accentuates the superiority of
H2O+.
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Table 2: Ablations on choices in dynamics-aware mixed value update designings (λ and
dynamics ratio)

Trade-off λ 0.0 0.1 0.2 0.5 1.0 0.1
Dynamics ratio ✓ ✓ ✓ ✓ ✓ ✗

Average return 6738±444 6861±268 6677±252 6563±752 6242±68 5579±530

Table 3: Ablations on different levels of dynamics gap

Gravity @1.25 @1.5 @2.0 @3.0

H2O 6846±572 6483±529 6813±289 6171±1209
H2O+ 7165±134 6948±258 6861±268 6135±811

Appendix D. Experimental Details

Simulation experiments setups. We create nine simulation environments upon the
MuJoCo physics simulator with deliberately introduced dynamics gaps. These imperfect
simulators are derived from the original MuJoCo-HalfCheetah task environments, which act
as our real-world scenarios. These alterations are achieved by adjusting either the dynamics
parameters of the robot or the environmental physical properties, as detailed below: (1)
Gravity: we apply 2 times the gravitational acceleration in the simulation dynamics; (2)
Friction: we use 0.3 times the friction coefficient to make the agent harder to maintain
balance; (3) Joint Noise: we use a random noise, drawn from a standard normal distribution
N (0, 1), to disturb each action dimension, which mimics systems with control noise; (4)
Thigh: we construct four variants corresponding to both the back and front thighs, including
“Big Thigh” (doubling the thigh size), “Small Thigh” (halving the thigh size), “Broken Thigh”
(halving the motion range of the joint connections of thighs) and “Flexible Thigh” (doubling
the motion range of the joint connections of thighs); (5) Torso: we construct a half-cheetah
with a longer torso with four times length; (6) Feet: we reduce the stiffness of both feet to 0
to make them soft-body feet.

In terms of the real-world offline dataset (original HalfCheetah environment), we utilize the
corresponding task datasets from the widely-used offline RL benchmark D4RL (Fu et al.,
2020). Specifically, the Medium and Medium Replay datasets are considered since they
reflect typical real-world settings where it is considerably impractical to acquire datasets of
both high quality and broad coverage. Online training with offline data takes place in our
created simulation environments, while the evaluation of the learned policy performance is
conducted in the original untouched HalfCheetah environment. We visualize some of our
constructed simulators and the corresponding real environment in Figure 1.

Real-robot transfer experiment setups. To estimate the performance of H2O+ in
real-life application scenarios, we use a real wheel-legged robot as a validation. During the
control process, the pitch angle θ and angular velocity θ̇ are measured by the on-board IMU
and Gyroscope, while the linear velocity v and displacement x are measured by the wheel
motor encoders. For the actuator, we lock the four joints on its legs and simply control
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Figure 5: State, action and reward distribution of the standing still dataset

the robot by regulating the wheels’ torque, which is limited to the range of (−3, 3). The
real-world control frequency is 200Hz. In each process of deployment, we place the robot to
the origin and initialize it to an equilibrium position as shown in Figure 2a. In the following,
we further describe the task details.

Standing still: In this task, we want the robot to keep the balance at all times and to
maintain a stable state, which means that the displacement, linear velocity, pitch angle and
angular velocity of the robot should be close to zero. Specifically, the state space of the robot
is represented by s = (θ, θ̇, x, v), where θ denotes the forward pitch angle of the body, x is
the displacement of the robot, θ̇ is the angular velocity and v is the linear velocity. The
reward r is calculated by the following formulation:

r = 30.0− x2 − v2 − θ2 − θ̇2 − τ2 (13)

Ideally, when the robot standing at the original space without any swinging, the penalty
item x2 + v2 + θ2 + θ̇2 will be minimized. To further avoid shaking and to protect the wheel
motor, we limit the wheel torque by adding a penalty τ2 into the reward.

As for the offline dataset of the task, we collect 16588 transitions of data (about 90s of
real-time control) based on the real robot and filter out the data with torque greater than
3N ·m. The visualized results of the state, action and reward distribution of the dataset are
illustrated in Figure 5.

Moving forward: In this task, our target is to control the robot to move forward at a
constant speed. While it is moving, we want its speed to be close to 0.2m/s and maintain
stability. The state space of the task s = (v, θ, θ̇), where the state x is no longer included as
we hope that the robot could move forward in any displacement. The reward is calculated
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Figure 6: State, action and reward distribution of the moving forward dataset

according to the following formula:

r = 15.0− (v − 0.2)2 − τ2 (14)

in which we use the penalty item (v − 0.2)2 to regulate the moving speed of the robot while
adding 15 to encourage it to keep balance and −τ2 to avoid shaking. For the offline dataset
of moving forward, we collect 16588 transitions of data from the moving process of the real
robot and also exclude the data with torque over 3N · m. The state, action and reward
distribution of the dataset is shown in Figure 6.

Through the training process, we run all the algorithms for 100 epochs based on the same
environment and offline dataset and also make sure all the policies are derived from convergent
models.

Baselines. There are few works under the hybrid offline-and-online setting, thus our
comparative analysis includes a mix of purely online or offline RL algorithms, along with some
representative methods that incorporate offline data into online or offline policy learning, albeit
in a less integrated manner. These methods include: (1) SAC : We train the SAC (Haarnoja
et al., 2018) agent in the imperfect simulator and evaluate its zero-shot transfer performance
in real environments. (2) CQL (Kumar et al., 2020): an representative offline RL algorithm
that uses value regularization. (3) IQL: the SOTA offline RL algorithm, which uses in-sample
learning to tackle the OOD problem. We train CQL and IQL on the D4RL datasets or the
datasets collected during actual robot control, which remain unaffected by dynamics gaps, yet
are hindered by the limited state-action coverage or poor performance of the offline data. (4)
DARC (Eysenbach et al., 2020): adds a correction term on the original reward to compensate
for dynamics discrepancy in simulation trajectories. To allow fair comparison with H2O+,
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Figure 7: Additional real-robot experiment results on the “standing still” task.
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Figure 8: Additional real-robot experiment results on the “moving forward” task.

we re-implement it in our setting that restricts any further interactions in reality beyond the
offline data. (5) H2O (Niu et al., 2022): the first RL paradigm to address dynamics mismatch
under the hybrid offline-and-online setting, which might introduce over-conservatism and
restrict the use of simulation in principle.

Appendix E. Additional Experiment Results

E.1 Additional Real-World Experiment

To further corroborate the efficacy of H2O+, we intentionally amplify the dynamics gap
within this task. Specifically, we undertake modifications by adjusting both the mass of the
robot model and the mass distribution within the simulation scenario. The initial robot
model bears a total weight of 12.1 kilograms (kg), which closely approximates the actual
robot mass of 12.0kg. Conversely, the adapted new simulation model we experiment with
features a total weight of 4.6kg. This revised simulation model stands at approximately
one-third of the magnitude of the original one, thereby intensifying the challenges associated
with controlling the robot within a setting characterized by significantly flawed simulation
dynamics.

Building on this foundation, we adopt an identical setup as we describe in Appendix D and
train the control policies for standing still and moving forward tasks using SAC, DARC,
H2O and H2O+ and deploy the control models to the real robot to compare the control
performance.
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Standing Still: As shown in Figure 7, only IQL and H2O+ successfully avoid the robot
from falling to the ground and maintain steady, while SAC, DARC and H2O fail at the
beginning. Furthermore, it is noteworthy that H2O+ exhibits a distinct advantage over IQL
in terms of the robot’s capacity to maintain a stationary stance. H2O+ effectively confines
the robot’s displacement within approximately -1 meter, whereas IQL leads the robot to
oscillate between its original position and a broader range of approximately -1.5 meters.

Moving Forward: In this task, H2O+ still exhibits the best performance among all the
methods. As shown in Figure 8, none of the methods except H2O+ are able to control the
robot to move forward, and only IQL maintains equilibrium for a long period of time. H2O+,
despite its moving backward at first, moves forward at a steady speed close to 0.2 m/s for a
long period of time, being the only one of all the methods that achieves the goal of moving
forward.

Overall, our results show that H2O+ consistently emerges as the most effective approach
among the various baselines, reaffirming its superior performance across a range of challenging
real-world contexts.

E.2 Further Investigation on Data Quality

We further investigate on the quality of online interactions explored by H2O+ compared
to H2O, from the data coverage and the value. In Figure 9 and Figure 10, we visualize
the coverage and the normalized value of displacement, velocity, angle, angular velocity,
and action in the real-world robot task, “standing still” and “moving forward” respectively.
Specifically, we also visualize the real data (collected offline in the real environment) with
gray points in these two figures, and the colorful points reveal the data collected in the
simulator.

Comparison of data quality on “standing still” task. In the “standing still” task, we
observe that H2O explores a more focused high-value area, whereas H2O+ spans a broader
high-value area, thus demonstrating superior diversity characteristics in simulated data,
which would benefit the overall performance.

Comparison of data quality on “moving forward” task. For the task of “moving
forward”, a clear distinction can be observed between the quality of the simulated data
gathered by H2O and H2O+. Notably, the H2O+ approach excels in terms of data coverage,
meaning it successfully spans a broader region of the state-action space. Additionally, the data
collected by H2O+ exhibits better dispersion compared to H2O’s data, indicating a higher
degree of diversity. This superior diversity, in turn, contributes to a more comprehensive
exploration of the state-action space and enhances the robustness of the learned policy.

19



(a) displacement (b) velocity

(c) angle (d) angular velocity

(e) action

Figure 9: Comparison of H2O+ and H2O simulated data quality on the real-world robot
“standing still” task. We visualize the coverage and the normalized value of displacement,
velocity, angle, angular velocity, and action.
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(a) displacement (b) velocity

(c) angle (d) angular velocity

(e) action

Figure 10: Comparison of H2O+ and H2O simulated data quality on the real-world robot
“moving forward” task. We visualize the coverage and the normalized value of displacement,
velocity, angle, angular velocity, and action.
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