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Abstract

The wide availability and low usability barrier of modern image generation mod-1

els has triggered the reasonable fear of criminal misconduct and negative social2

implications. The machine learning community has been engaging this problem3

with an extensive series of publications proposing algorithmic solutions for the4

detection of “fake”, e.g. entirely generated or partially manipulated images. While5

there is undoubtedly some progress towards technical solutions of the problem,6

we argue that current and prior work is focusing too much on generative algo-7

rithms and “fake” data-samples, neglecting a clear definition and data collection8

of “real” images.9

The fundamental question “what is a real image?” might appear to be quite10

philosophical, but our analysis shows that the development and evaluation of11

basically all current “fake”-detection methods is relying on only a few, quite old12

low-resolution datasets of “real” images like ImageNet. However, the technology13

for the acquisition of “real” images, aka taking photos, has drastically evolved14

over the last decade: Today, over 90% of all photographs are produced by smart-15

phones which typically use algorithms to compute an image from multiple inputs16

(over time) from multiple sensors. Based on the fact that these image formation17

algorithms are typically neural network architectures which are closely related to18

“fake”-image generators, we state the position that today, we need to re-think19

the concept of “real” images.20

The purpose of this position paper is to raise the awareness of the current short-21

comings in this active field of research and to trigger an open discussion wether22

the detection of “fake” images is a sound objective at all. At the very least, we23

need a clear technical definition of “real” images and new benchmark datasets.24

“Reality is captured in the categorical nets of language only at the expense of fatal distortion.”

Friedrich Nietzsche

25

Introduction26

The fundamental question “- what is real?- ” has been explored by generations of philosophers and27

has led to key philosophical perspectives like realism, idealism and skepticism, involving prominent28

contributors such as Hegel, Kant or Nietzsche. In context of modern generative models, the slight29

alteration “- is it real? -”, when confronted with images or voice transmissions has led to increasing30

concerns regarding the social and criminal impact of so-called Deepfakes [27, 26]. So far, the31

machine learning community has mostly by-passed the complex philosophical perspectives on32

reality and operated with a very simple technical definition in order to design Deepfake detectors:33

data is “real” when its not “fake”, and data is “fake” when it has been generated or altered by34
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(generative) algorithms instead of being “recorded” from the “real word”... While many philosophers35

probably would have strongly disagreed with this simplification all along, it appeared to be quite36

sufficient for technical approaches towards Deepfake detection. However, we argue that this is37

not true (anymore).38

We focus our main argument on the detection of “fake” images and point out that the above ad-hoc39

definition also fails in a purely technical sense: over 90% [45] of all photographs that are “taken”40

today are produced with smart phone cameras. In contrast to traditional cameras, modern phones41

do not solely capture images as 2D lens projections of the real 3D world. Instead, they typically42

apply complex image enhancement algorithms and fuse multiple (camera) sensor outputs from43

different cameras and capture times [8, 29]. Hence, modern image devices are actually computing44

images, rather than “taking” them. This raises two important questions in the context of Deepfake45

detection:46

♢ The first one is purely technical and simply asks: “do our current fake detection datasets and47

benchmarks appropriately account for this technical development of imaging?” - we will48

show that the clear answer to this is NO.49

♢ The second, the more philosophical question is: “if all images are processed by algorithms,50

how do we actually define real images?” - or in even more skeptic (in the philosophical sens)51

terms: “can we even clearly define what a real image is?”52

In summary, we derive the following position:53

Position: If we want to find a technical solution towards DeepFake
detection, we need to re-think the concept of “real” images.

To support our broader position, we follow a sequence of propositions supported by
empirical and theoretical evidence to form our line of argumentation:

• proposition #1: Current “fake” detection benchmarks and datasets provide
insufficient “real” samples.

• proposition #2: Even the latest publicly available collections of “real”
images contain mostly outdated and pre-processed low-resolution images.

• proposition #3: Modern imaging devices like mobile phones are comput-
ing rather than “taking” photos. “Real” training sets must contain such
samples.

• proposition #4: The omnipresence of (automatic) image enhancing algo-
rithms in modern imaging devices requires a redefinition of “real” images.

For the sake of clarity and simplicity, we focus our argumentation on the sub-field of
generated image detection [25], but our positions can be transferred to other sub-fields
of Deepfake image detection without loss of generalization.

54

Detecting generated images - a brief review.55

While the actual Deepfake detection algorithms are not the main subject of our position, for the sake56

of completeness we start with a brief, hence incomplete, overview of current detection approaches.57

Works on the detection of generated images have begun wright after the introduction of Generative58

Adversarial Networks (GAM) [15]. Early attempts tried to locate image inconsistencies like wrong59

shadows or reflections [31], but most approaches have been utilizing established image feature60

extractors. For example, Wang et.al [42] use a simple supervised classification approach with61

a standard ResNet-50 [17] CNN as feature extractor, which provides surprisingly good detection62

performance for known generators (but rather poor generalization to unseen generators). Other63

approaches based on spatial features include the use of co-occurrence matrices [30], classification64

on pre-trained VLM feature spaces [32, 40] and Student-Teacher setups [50].65

A complementary approach is to explore the frequency space representation of images: [11]66

showed that the band-limited up-convolution in CNN based GANs induces easy detectable frequency67

artifacts. In a similar approach, [13] used a Discrete Cosine Transformation (DCT) instead of Discrete68

Fourier Transformation (DFT) features. Further approaches include the detection of diffusion69

reconstruction errors [43], patch based analysis [3, 2, 49] and online methods [12].70
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Despite the very high detection rates which are typically reported for detection algorithms, many71

approaches are known to suffer from poor generalization to unknown models [37, 32, 50] and72

insufficient robustness against image augmentation/pre-processing [47]. Grommelt et. al [16]73

showed strong biases in existing benchmarks toward JPEG compression (real: compressed, fake74

uncompressed) and image shapes (real arbitrary sizes, fake: fixed square).75

Propositions76

Proposition #1

Current “fake” detection benchmarks and datasets provide insufficient “real”
samples:

• Dataset mostly contain older images which were taken way before modern image
enhancement algorithms have become standard practice on imaging devices.

• Datasets mostly contain only low-resolution images.
• Datasets are widely biased in terms od image shapes and compression.

77

Table 1 gives an overview of current generated image detection datasets used in benchmarks78

evaluating state-of-the-art (SOTA) “fake-detection” algorithms. While the creators of all listed79

datasets spend a lot of effort to provide new and diverse “fake” image samples, typically generated80

by large numbers of different generation algorithms, they are surprisingly relying on a very limited81

number of the very same, rather old datasets to cover the “real” samples.82
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Cifar 10 [22] ✓ 1
ImageNet [9] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
MS-Coco [23] ✓ ✓ ✓ ✓ 3
Flickr30k [34] ✓ 1
CelebA [24] ✓ 1
LSUN [48] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
CelebA-HQ [20] ✓ ✓ ✓ ✓ 3
FFHQ [21] ✓ ✓ ✓ 3
AFHQ [4] ✓ ✓ 2
LHQ [41] ✓ 1
LAION 400-M [39] ✓ ✓ ✓ 3
Re-LAION 5B [38] 0
unsplash.com ✓∗ 1

Table 1: Generated image detection datasets and benchmarks. See table 2 for details on the data
sources. Notes: ∗20k random samples, ∗∗dataset does not contain "real" images.

A closer investigation of these “real” datasets in table 2 reveals that most of these have been83

created and published ten to fifteen years ago. Even for the latest collections from 2022 one84

has to note that the majority of images actually has been taken way before the date of the dataset85

publication (see proposition #2). We argue that this reliance on older data samples is very likely to86

cause significant problems towards the generalization of these benchmark results to fake detection87
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applications “in the wild”:88

89

I) The default usage of image enhancement and fusion algorithms in modern imaging devices90

is not represented in this data, which likely leads to weak generalization (aka false positives).91

We show evidence for this concern in the discussion of proposition #3.92

II) Low image resolution with limited size ratios can also induce unintended biases into the93

detector training. [16] showed that size-biases are exploited by detectors, leading to weak94

generalization.95

III) All investigated datasets exclusively contain JPEG compressed images, which also has96

been shown [16] to heavily bias detectors.97

Dataset Name Year of Creation # Images
Cifar 10 [22] 2009 60,000
ImageNet [9] 2009 1,281,167
MS-Coco [23] 2014 328,000
Flickr30k [34] 2015 30,000
RAISE [7] 2015 8,156
CelebA [24] 2015 202,599
LSUN [48] 2015 120,000,000
CelebA-HQ [20] 2018 30,000
FFHQ [21] 2019 70,000
AFHQ [4] 2020 15,000
LHQ (landscape) [41] 2021 (2015∗) 90,000
LAION 400-M [39] 2021 400,000,000
Re-LAION 5B [38] 8/2024 (2022∗∗) 5,526,641,167

Table 2: Data sources for "real" images used by the benchmarks listed in table 1 by year of creation
and number of contained images. Notes: ∗LHQ is created from a subset of Flickr30k. ∗∗Re-LAION
5B is a sanitized re-publication of the 2022 LAION 5B dataset.

Proposition #2

Even the latest publicly available collections of “real” images contain mostly
outdated and pre-processed low-resolution images.

98

A logical consequence of our argumentation in proposition #1 would be to rely on “real” images99

from the latest available datasets for detector training and evaluation. Unfortunately, our following100

analysis of the most recent and most comprehensive public LAION-5B [38] image dataset shows101

that there is currently no sufficient “real” data available at scale. We focus our analysis of Re-LAION102

5B on images taken by mobile phones, more specifically Apple iPhones. This is motivated by the fact103

that over 90% [45] of all images have been taken with mobile phones in recent years. We consider104

iPhones to be a good proxy for modern imaging devices in general because of their dominant market105

share2, technology leadership and easy identifiability in the LAION metadata. Figure 1 shows the106

phone model and image creation statistics of the full LAION-5B data-set, while figure 2 displays the107

2d histogram of image resolutions. Given this analysis, we draw the following concussions:108

IV) The mean age of images in this very latest dataset is about 7 to 8 years, with only a few109

samples taken after 2020 and even fewer by modern iPhone models. This excludes most110

modern image enhancement and fusion algorithms from the dataset.111

V) While the diversity of image shapes is much higher than in previous datasets, LAION 5B still112

provides mostly low-resolution images with strong biases to certain aspect rations. Given113

1The low counts for iPhones-9 and iPhones-10 models are most likely due to a changes in exif -tag IDs by
iOS for these models and does not generally affect the core findings of our analysis.

2around 20% over the last 10 years [36]
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the imaging resolutions available in the iPhones at the image creation time, we can only114

conclude that most of the image have been down-sampled or otherwise post-processed.115

Taking a glance at current image enhancement and fusion algorithms.116

Since the main argument of our next proposition is based on the recent advancement of image117

enhancement and fusion algorithms, which are now commonly applied on mobile imaging devices,118

we shell give a brief overview here. Please note that due to size limitations and based on the goal119

not to interrupt the flow of arguments, we neither aim for completeness nor technical depth in the120

following interlude. The interested reader may be referred to [8] or [29] for comprehensive reviews121

of image enhancement methods on mobile devices.122

In a nutshell, the main objective of mobile image enhancement is to try to algorithmically123

compensate the strong physical limitations of the rather small cameras phones. Due to the strong124

size constraints, mobile cameras have low apertures and small imaging planes (chip sizes) which125

both strongly limit their light efficiency. The accompanying low focal ranges also contradict the126

wide range of intended use cases, which typically last from taking panorama pictures to near field127

QR-code scanning [5].128

129

Figure 3: Camera Array of a recent
iPhone 15Pro.

On the hardware side, these challenges are usually130

countered by building multiple cameras with different131

lenses into a single phone. While selecting a single,132

most suitable camera for each task solves some of the133

focal problems, algorithmic combination of multiple134

images form multiple time steps and cameras allows135

computational solutions for a wider range of prob-136

lems:137

♢ Low light image enhancement approaches like [14]138

already use neural networks to provide real-time high139

resolution images on mobile phones140

♢ Burst denoising [28, 10] approaches use sequences141

of multiple images taken over time to compute a singe142

output image with increased overall exposure time.143

Apple’s “Deep Fusion” [33] feature is a prominent144

example for this technique.145

♢ Multi lens zoom [46] is another example where146

images from multiple cameras are algorithmically147

combined to allow better image magnifications and color148

consistency.149
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Figure 1: Novelty of photos and used imaging devices in the latest Re-LAION 5B dataset. For our
exif -analysis we focus on images taken by iPhones, which make up about 20% of the images in the
dataset. Left: distribution of iPhones models1. Right: distribution of the image generation dates.
Note that even in this latest large scale image dataset, hardly any image is newer than 2021.
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Figure 2: Size distribution in x (width) and y (height) of all LAION 5B images taken with iPhones.
The cut of image resolutions at 400px of the smaller image dimension is a design choice of the
dataset [38].

Overall, even so most phone manufactures provide very limited technical details beyond marketing151

claims, there are sufficient indications that many of these approaches are already in operation in152

modern consumer phones.153

Proposition #3

Modern imaging devices like mobile phones are computing rather than “taking”
photos. “Real” training sets must contain such samples in order to generalize to
real world scenarios.

• Per default, modern mobile phones use a wide range of image enhancement and
fusion of multiples images taken from multiple cameras to compute photos.

• The usage of these algorithms can only partially be controlled by the user, espe-
cially under poor lighting conditions.

• Current fake-detection algorithms do not generalize to such images.
154

Proof of concept I: Some detectors fail on images from modern phones.155

We back the key points of our proposition #3 with a series of experimental evaluations. First, we156

reproduce results of current SOTA detectors to establish a baseline. To this end we replicate the157

benchmark from [49], which provides a large collection of pre-trained detectors, datasets and a158

global evaluation script. The left plot in fig. 4 shows the aggregated results with the typical, well159

known generalization problems of some detectors [37, 32, 50]. The full detailed detector by dataset160

results are shown in tab. 3.161

We extended these baseline experiments by two new evaluations: first we test the same models162

with 1000 random iPhone images taken from the Re-LAION-5B dataset, and second, with a few163

dozens RAW images manually taken with iPhone 13mini and 15Pro models (both using iOS 18.4.1).164
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The right plot in fig. 4 shows the combined results: the mostly down-sampled and compressed165

LAION-5B images appear to be well within the training distributions of most detectors (with an166

exception to DIRE) and are on par with the baseline or even outperform it. However, the RAW167

iPhone images cause a significant drop in accuracy for most detectors which indicates that modern168

imaging devices indeed produce out of distribution samples.169
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Figure 4: Overview of the results of the experimental evaluation of generated image detection
algorithms. Details are shown in tab. 3. Left: Reproduction of the detection accuracy (ACC) of “fake”
images using several detection algorithms the benchmark in [49]. Note: due to the long runtime,
the results for DIRE are taken form [49]. Right: Evaluation of the detection ACC of the same
algorithms for “real” images on three different benchmarks: blue reports the original benchmark
used in [49], orange shows the same algorithms on iPhone images obtained from LAION 5B, green
displays the detection ACC for raw images taken by iPhone 13 and 15pro models.

DataSet
CNNSpot

real
CNNSpot

fake
DIRE
real*

DIRE
fake*

DCT
real

DCT
fake

Fusing
real

Fusing
fake

GRAM
real

GRAM
fake

LGRAD
real

LGRAD
fake

progan 1.00 1.00 0.95 0.95 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
stylegan 1.00 0.74 0.83 0.83 0.88 0.68 1.00 0.70 1.00 0.67 0.98 0.82
biggan 0.94 0.47 0.70 0.70 0.69 0.95 0.94 0.61 0.46 0.89 0.78 0.86
cyclegan 0.92 0.79 0.74 0.74 0.77 0.80 0.95 0.79 0.63 0.85 0.89 0.83
stargan 0.97 0.86 0.95 0.95 0.90 1.00 1.00 0.94 1.00 1.00 1.00 0.96
gaugan 0.93 0.65 0.67 0.67 0.68 0.93 0.92 0.62 0.20 0.96 0.64 0.97
stylegan2 1.00 0.69 0.75 0.75 0.92 0.40 1.00 0.67 1.00 0.72 0.99 0.73
whichfaceisreal 0.93 0.81 0.58 0.58 0.89 0.04 0.99 0.48 0.67 1.00 0.58 0.43
ADM 0.95 0.25 0.98 0.98 0.70 0.60 0.98 0.15 0.63 0.81 0.64 0.59
Glide 0.95 0.19 0.92 0.92 0.69 0.42 0.98 0.16 0.63 0.82 0.65 0.76
Midjourney 0.95 0.07 0.89 0.89 0.69 0.25 0.98 0.06 0.62 0.28 0.64 0.70
stable_diffusion_v_1_4 0.95 0.07 0.91 0.91 0.69 0.11 0.98 0.04 0.63 0.95 0.63 0.63
stable_diffusion_v_1_5 0.95 0.07 0.91 0.91 0.70 0.11 0.98 0.04 0.63 0.95 0.64 0.63
VQDM 0.95 0.15 0.91 0.91 0.69 0.89 0.98 0.12 0.63 0.80 0.64 0.73
wukong 0.95 0.07 0.90 0.90 0.69 0.14 0.98 0.06 0.62 0.87 0.63 0.53
DALLE2 0.95 0.06 0.92 0.92 0.38 0.31 0.99 0.07 0.44 0.97 0.45 0.93
AVG ACC 0.96 0.43 0.84 0.84 0.75 0.54 0.98 0.41 0.67 0.85 0.74 0.76
LAION 5B IPhone Images from 2010 0.99 0.00 0.88 1.00 0.84 0.73
LAION 5B IPhone Images from 2021 0.99 0.00 0.89 1.00 0.97 0.78
LAION 5B Images from iPhone4 0.99 0.00 0.85 1.00 0.91 0.62
LAION 5B Images from iPhone12Pro 0.99 0.00 0.89 1.00 0.98 0.83
AVG LAION iPhone 0.99 0.00 0.88 1.00 0.92 0.74
IPhone 13mini good (iOS 18.4.1) 0.89 0.00 1.00 1.00 1.00 0.22
IPhone 13mini poor (iOS 18.4.1) 1.00 0.00 0.50 1.00 1.00 0.40
iPhone 15Pro (iOS 18.4.1) 1.00 0.00 0.00 0.00 0.60 0.20
AVG iPhone RAW 0.96 0.00 0.50 0.67 0.87 0.27

Table 3: Detailed results of the experimental evaluation. Notes: ∗Due to the long runtime of a the
DIRE approach we do not reproduce this experiment on the full dataset but report the original
results from X which does only gives combined ACC values for fake and real.
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Proof of concept II: poor light conditions trigger enhancement and fusion, leading to170

dropping detection rates.171

For further analysis, we conduct a 4th experiment where we acquired RAW iPhone 13mini images172

of identical scenes under different illumination conditions to show the effect of automatic image173

fusion and enhancement algorithms. Fig. 5 shows an example scene and the 50% drop in accuracy174

for the evaluation of the DCT detector [13]. The full detailed detector by dataset results are shown175

in tab. 3.176
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Figure 5: Effects of automatic image enhancements. Left: Example image taken with an iPhone

13mini (iOS 18.4.1) under good illumination conditions. Center: same scene taken by the same
phone under poor illumination. Right: Impact of the the detection rate of the DCT detector [13],
which utilizes low level image features in frequency space.

Of cause, our small proof of concept experiments can not provide a detailed and definite analysis177

of the described problems. For that purpose we would need a full-scale study on a large dataset178

containing modern phone images of various brands and models - which apparently does not (yet)179

exist. However, we argue that our small tests provide enough evidence to back our proposition.180

Proposition #4

The omnipresence of (automatic) image enhancing and fusion algorithms in
modern imaging devices requires a redefinition of “real” images.

• All images are potentially subject to algorithmic processing which might even be
in-transparent for the users.

• With increasing computational power available in mobile imaging devices, these
algorithms will further shift towards (generative) neural networks.

• If essentially the same algorithms are applied to “real” and “fake” images, most
feature and spectrum based low level detectors are prune to fail.

• If all images are “manipulated”, we need to redefine “fake” in a semantic rather
than a technical manner.

181

Following the line of argumentation built in the previous propositions, we are facing the situation182

that the vast majority of images “taken” today, are processed by image enhancement and fusion183

algorithms. With increasing computational power [19] available in mobile imaging devices, these184

algorithms will further shift towards (generative) neural networks, while we can expect that their185

technical details and application will become more in-transparent for the user.186

A direct consequence of this development is that we need to adapt the definition of “fake” images187

away from the simple technical “has this image has been altered at all?” towards a semantic “has188

this image has been altered with a harmful intend?”. Obviously, this change will make DeepFake189

detection a much harder problem. Most of the existing feature based approaches are not very likely190

to succeed in such a semantic settings and we need to discuss which alterations actually should be191

“allowed”. The later is not going to turn out to be a trivial task, if it is possible at all: As the intentions192
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of image fakes are hard to infer from an image alone and the semantic impact of alteration heavily193

depends on the context, the same algorithmic image alteration might be uncritical in one image194

and producing a fake in another.195

Conclusions196

Given our previous arguments, we derive the following conclusions:197

Conclusion #1

We need new datasets for “real” images!
The discussion of propositions #1-3 showed that current datasets are obviously not covering
the distribution of images produced by modern imaging devises. If we further intend to
engage the Deepfake problem by means of fake-detection algorithms, we at least need to
be able to generalize them to the correct distribution.
While the collection of a new dataset appears to be manageable at first glance, we would
like to point out several challenges that would need to be solved:

• The need for dynamic datasets which adopt to new imaging and image enhance-
ment technologies over time.

• The difficult tradeoff between privacy and data protection on one side and the
completeness of the of the “real” distribution on the other. For example, blurring
all faces and license plates would be necessary to protect individual rights in a
public dataset, but would fail to produce a correct estimate of the distribution of
“real” images.

In our opinion, it would not be impossible, but take a large and long lasting effort to curate
a sufficient “real” image dataset.

198

Conclusion #2

We need to agree which algorithmic enhancements are not altering reality...
Following the argumentation in proposition #4, we need a new semantic definition of
“real” images - otherwise all images are prune to become “fake” sooner or later. Hence, we
need to somehow agree on which algorithmic enhancements are not altering the semantic
meaning of images. Obviously such a definition will have to be context dependent and
are thus very hard to agree upon. Unfortunately we are currently not able to even make a
vague suggestion towards a solution. However, we strongly believe that the need for this
discussion can not be ignored by the machine learning community.

199

Conclusion #3

We need to consider the possibility that DeepFake detectors are not a suitable
solution.
Following philosophical skepticism, we need to take the possibility into account that it
actually might be impossible to give a consistent definition of “real” images (as proposed
in Conclusion #2) and to correctly sample from its underlying distribution (as proposed
in Conclusion #1). If this would be the case, then any further research towards
Deepfake detectors would be obsolete.
This conclusion would not necessarily mean that no technical solutions are possible: there
are already other approaches like watermarking and block-chain based image signatures
which could allow implementations of alternative solutions of verifying “reality” and
making image changes transparent.

200
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