

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERFACEDIFF: INTERFACE-AWARE SEQUENCE- STRUCTURE CO-DESIGN OF PROTEIN COMPLEXES WITH GRAPH-BASED DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

The rational design of protein–protein complexes remains a fundamental challenge in synthetic biology and therapeutic development. Current generative methods often fall short in performing sequence–structure co-design, particularly in treating the functionally critical protein–protein interface as a first-class target. To bridge this gap, we present InterfaceDiff, a graph-based diffusion framework for interface-aware co-design of protein complexes. The complex is encoded by intra-chain graphs coupled through an explicit bipartite interface graph, concentrating modeling capacity on physically interacting residues. InterfaceDiff learns a joint distribution over discrete amino acid sequences and continuous local rigid frames (rotations and translations) by a simultaneous denoising process. To achieve this efficiently, we develop a novel graph neural network denoiser inspired by Invariant Point Attention, which performs message passing on the sparse graph representation while avoiding the computational overhead of fully SE(3)-equivariant networks. We evaluate InterfaceDiff across multiple design tasks, demonstrating its ability to generate diverse, high-quality, and physically plausible all-atom complexes. Our method achieves strong performance on key biophysical and geometric metrics, offering a scalable and geometrically efficient approach for controllable protein complex engineering. This work establishes a foundation for generative co-design of novel molecular interactions.

1 INTRODUCTION

Protein–protein complexes (PPCs) orchestrate signal transduction, immune recognition, enzymatic regulation, and supramolecular assembly. The ability to rationally design new complexes would unlock powerful capabilities in synthetic biology and therapeutics (Aloy & Russell, 2002; Huang et al., 2016). At the heart of PPC design lies the *protein–protein interface*: a compact, chemically heterogeneous region where cross-chain residues engage through hydrogen bonds, salt bridges, hydrophobic interactions, and so forth (Fig. 1). Treating the interface as a *first-class design target*, rather than a byproduct of global modeling, is essential for controlling binding affinity, specificity, and functional reprogramming (Kortemme & Baker, 2004). Practical design systems must also navigate the dual discreteness and continuity of proteins: amino-acid sequences are discrete, whereas 3D conformations evolve continuously under local stereochemistry and global packing constraints.

Deep learning has transformed protein *folding* and *inverse folding*. Protein folding models (Jumper et al., 2021; Baek et al., 2021; Abramson et al., 2024; Boitreaud et al., 2024) attain high accuracy in predicting the structure of monomers and multi-chain assemblies and provide confidence estimates that have become standard currencies for evaluation. Inverse folding approaches (Dauparas et al., 2022; Yi et al., 2023; Zhu et al., 2024) design novel sequences based on *fixed* backbones of native protein. Concurrently, diffusion models have further advanced researches related to protein (Watson et al., 2023; Yim et al., 2023; Ingraham et al., 2023). These advances supply powerful building blocks for design, yet they typically optimize *either* structure *or* sequence in isolation: sequences are tuned post hoc against a frozen backbone, or structures are predicted for given sequences without exploring sequence–structure co-variation.

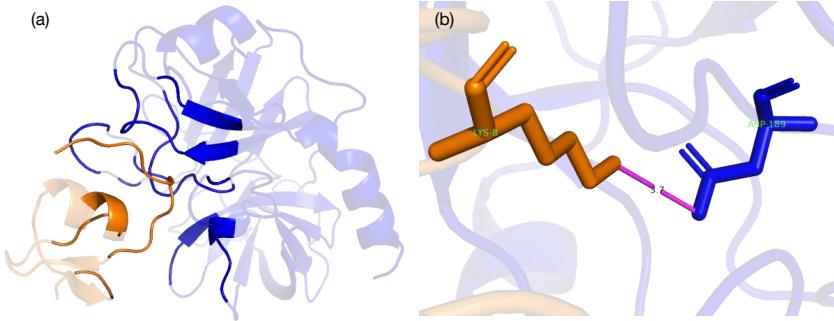


Figure 1: Illustration of protein-protein interface. (a) Crystal structure of a protein-protein complex (PDB ID: 1AN1). The interface region is highlighted in opaque representation (blue and orange), while the remaining non-interface regions are shown in a semi-transparent view. (b) Close-up view of the interface in 1AN1. The figure shows the salt bridge interaction between Lysine (LYS) in chain I (orange) and Aspartic Acid (ASP) in chain E (blue), with a distance of 3.7 Å marked.

Previous studies on protein complex design roughly fall into one of the two categories: (i) focusing only on a specific component of the complex—for instance, binder design targets only the binder, and antibody design focuses exclusively on the CDRs; (ii) generating complexes of random lengths, where the plausibility of the results is difficult to establish without experimental validation, even if they perform well under their chosen evaluation metrics. In contrast to these paradigms, we pursue *sequence-structure co-design* of entire protein complexes grounded in real data, with an explicit emphasis on the *interface*.

Despite rapid progress, a concrete gap remains for *interface-aware co-design*. First, complex *prediction* systems (Abramson et al., 2024; Boitreaud et al., 2024) predominantly infer conformations for *given* sequences, rather than *designing* new sequences and geometries in tandem. Second, many design pipelines assume rigid or near-rigid backbones (e.g., inverse folding on fixed scaffolds or rigid-body docking), leaving interface remodeling largely implicit and providing limited control over contact patterns and energetics (Hsu et al., 2022; Desta et al., 2020; Harmalkar & Gray, 2021). Third, fully SE(3)-equivariant architectures, while expressive, often incur substantial memory and engineering overheads that complicate scaling to large or sparse multi-chain graphs (Satorras et al., 2021; Wang et al., 2024). Together, these limitations hinder *controllable* and *diverse* interface design where mutations, local rearrangements, and cross-chain contacts must co-evolve.

Interfaces are naturally represented as graphs: intra-chain neighborhoods capture local stereochemistry, while cross-chain contacts define the interface topology (Pancino et al., 2024; Xu et al., 2024). However, most generative pipelines either omit an explicit interface representation or fuse it into dense all-to-all attention, blurring the boundary between intra-chain modeling and cross-chain design. An explicit *interface graph* (Si & Yan, 2024) can disentangle these roles. It focuses modeling capacity on the residues that determine binding, exposes controllable knobs, and eases scaling via sparse message passing. Moreover, operating in residue-centered local frames provides geometric robustness to global rigid-body motion while preserving fine-grained orientation cues (Jumper et al., 2021; Randolph & Kuhlman, 2024).

These observations above yield four core design principles for effective interfaces.

- (1) **Interface awareness.** Elevate the cross-chain interface to a primary generative target via an explicit representation (e.g., a bipartite contact graph) rather than relying on it to emerge implicitly (Si & Yan, 2024; Gainza et al., 2020).
- (2) **Joint co-design.** Model sequence and 3D geometry *jointly*, allowing mutations and conformational changes to co-evolve during generation instead of being optimized in disjoint stages (Ingraham et al., 2023; Hayes et al., 2025).
- (3) **Geometric efficiency.** Capture local rigid-body cues with residue-centered frames while avoiding the computational burden of heavy fully equivariant stacks, enabling sparse message passing on large and heterogeneous complexes (Luo et al., 2024; Xie et al., 2024).
- (4) **Full-atom readiness.** Convert backbone-level designs to all-atom structures for physical validation and downstream use (e.g., sterics, packing, and rotameric checks) (McPartlon & Xu, 2023; Lee & Kim, 2025).

We address these needs by introducing *InterfaceDiff*, an interface-aware, graph-based diffusion framework for *joint* sequence–structure design of protein–protein complexes. At a high level, we encode each chain as a residue graph and extract an explicit *interface bipartite graph* by connecting cross-chain residues within a C_α -distance threshold. We then co-generate discrete sequences and local rigid frames defined by residue-centered coordinates (N– C_α –C), using a lightweight denoiser inspired by invariant point attention to perform sparse message passing over intra-chain neighborhoods and the interface graph. Finally, sampled backbones are converted to full-atom models via a packing step to enable standard structural checks. This interface-centric formulation offers controllability and diversity to complex design, while remaining computationally efficient.

In summary, our paper makes the following contributions:

- We propose *InterfaceDiff*, an interface-aware, graph-based diffusion framework for *joint* sequence–structure design of protein–protein complexes. Each chain is encoded as a residue graph, and an explicit *interface bipartite graph* connects cross-chain residues; the model co-generates discrete sequences and local rigid frames.
- Our model employs a geometrically efficient, IPA-inspired sparse denoiser operating in residue-local frames to capture 3D cues without heavy fully $SE(3)$ -equivariant tensors, improving scalability to large and sparse complexes.
- The framework applies to sequence-structure co-design, fixed-backbone inverse folding with structure prediction, binder design, and antibody design, and integrates seamlessly with all-atom packing for practical use. Comprehensive experiments show consistent improvements over baselines while producing diverse, physically plausible interfaces.

2 METHODS

In this section, we present **InterfaceDiff**, an interface-aware diffusion framework for joint sequence–structure design of protein–protein complexes. Section 2.1 defines the residue-level graph representation of each chain together with the bipartite interface graph. Section 2.2 formalizes the design problem and outlines the overall framework. Section 2.3 specifies the coupled diffusion over amino-acid identities and residue-local frames. Section 2.4 details the denoising network parameterization. Finally, Section 2.5 presents the sampling algorithms for generating diverse, physically plausible complexes.

2.1 RESIDUE- AND INTERFACE-LEVEL GRAPHS.

A protein–protein complex contains multiple chains; chain c comprises an ordered set of amino-acid (AA) residues \mathcal{V}_c with $N_c = |\mathcal{V}_c|$. For each chain we construct a residue-level graph

$$\mathcal{G}_c^{\text{chain}} = (X_c^{\text{chain}}, A_c^{\text{chain}}, E_c^{\text{chain}}).$$

Every node $i \in \mathcal{V}_c$ represents one residue with attributes

$$x_i = [x_i^{\text{aa}}, R_i, x_i^{\text{trans}}, x_i^{\text{prop}}],$$

where $x_i^{\text{aa}} \in \mathbb{R}^{20}$ is a one-hot AA type, $R_i \in SO(3)$ is the local coordinate frame constructed from backbone atoms (N, C_α , C), $x_i^{\text{trans}} \in \mathbb{R}^3$ is the local-frame origin given by the global coordinate of C_α , and x_i^{prop} are physicochemical features. Edges in A_c^{chain} are built by a k -nearest-neighbour (kNN) rule in C_α space, with k chosen as a function of chain length; E_c^{chain} encodes sequence-aware and geometric features (details in Appendix A.2). Working in residue-level local frames (R_i, x_i^{trans}) preserves geometry while avoiding heavy global $SE(3)$ -equivariant denoisers.

To capture cross-chain contacts, we build a bipartite interface graph

$$\mathcal{G}^{\text{inter}} = (X^{\text{inter}}, A^{\text{inter}}, E^{\text{inter}}),$$

whose nodes are residues belonging to different chains and whose attributes mirror those above. An interface edge is added between residues from distinct chains if their minimum inter-atomic distance is below a threshold τ . E^{inter} aggregates geometry and interaction semantics (hydrogen bonds, salt bridges, hydrophobics, and chemical complementarity indicators), yielding a fine-grained interface representation.

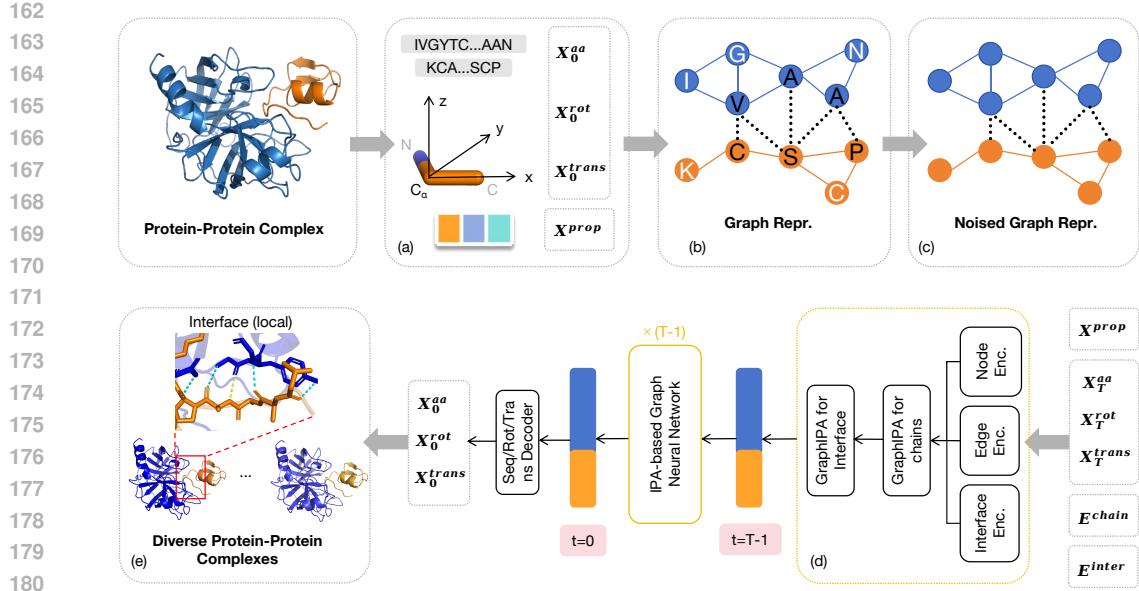


Figure 2: **Overview of *InterfaceDiff*.** Top: diffusion process; bottom: denoising process. (a) Extract sequence, structure, and chemical features. (b) Build intra-chain graphs with kNN (solid edges) and inter-chain graphs via distance thresholds (dashed edges), with rich edge features. (c) Add noise to sequence, rotation, and translation to obtain a noised graph. (d) Pass the noised graph and time embeddings into the denoising network, updating node features, which MLP decoders map to sequence, rotation, and translation. (e) Post-processing with side-chain packing reconstructs complete complexes, enabling diverse sequences and structures via multiple samples.

2.2 PROBLEM FORMULATION

Let the complex-level graph be

$$\mathcal{G} := (\{\mathcal{G}_c^{\text{chain}}\}_c, \mathcal{G}^{\text{inter}}).$$

Denote $X^{\text{aa}} = \{x_i^{\text{aa}}\}_{i=1}^N$, $X^{\text{rot}} = \{R_i\}_{i=1}^N$ with $R_i \in \text{SO}(3)$, and $X^{\text{trans}} = \{x_i^{\text{trans}}\}_{i=1}^N$ where $N = \sum_c N_c$. We aim to model the conditional density

$$p_\theta(X^{\text{aa}}, X^{\text{rot}}, X^{\text{trans}} \mid \mathcal{G}),$$

and sample diverse yet physically consistent complexes.

We instantiate a discrete-continuous diffusion over $X = \{(x_i^{\text{aa}}, R_i, x_i^{\text{trans}})\}_{i=1}^N$. A forward process corrupts $X_0 \rightarrow X_T$, while a reverse kernel

$$p_\theta(X_{t-1} \mid X_t, \mathcal{G})$$

is parameterized by an IPA-based graph neural network attending jointly to $(E_c^{\text{chain}})_c$ and E^{inter} . At inference time, ancestral sampling from p_θ produces $(\hat{X}^{\text{aa}}, \hat{X}^{\text{rot}}, \hat{X}^{\text{trans}})$ (Fig. 2).

2.3 DIFFUSION PROCESSES

We employ the cosine variance schedule (Nichol & Dhariwal, 2021) with offset $s = 0.008$:

$$\bar{\alpha}_t = \frac{\cos^2\left(\frac{\pi}{2} \frac{t/T+s}{1+s}\right)}{\cos^2\left(\frac{\pi}{2} \frac{s}{1+s}\right)}, \quad \alpha_t = 1 - \beta_t, \quad \beta_t = 1 - \frac{\bar{\alpha}_t}{\bar{\alpha}_{t-1}}. \quad (1)$$

Rotations on $\text{SO}(3)$ via axis-angle with noise prediction. Let $[\cdot]_\times : \mathbb{R}^3 \rightarrow \mathfrak{so}(3)$ be the skew-symmetric operator and $\exp : \mathfrak{so}(3) \rightarrow \text{SO}(3)$ the matrix exponential.¹ For residue i , define the

¹We use a numerically stable Rodrigues formulation for $\exp([\cdot]_\times)$ with small-angle series.

216 clean axis-angle vector $\mathbf{v}_{0,i} \in \mathbb{R}^3$ from its clean frame $R_{0,i}$ by $R_{0,i} = \exp([\mathbf{v}_{0,i}]_\times)$. The forward
217 process adds Gaussian noise in axis-angle space:
218

$$219 \quad \mathbf{v}_{t,i} = \sqrt{\bar{\alpha}_t} \mathbf{v}_{0,i} + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_{t,i}^{\text{so3}}, \quad \boldsymbol{\epsilon}_{t,i}^{\text{so3}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_3), \quad R_{t,i} = \exp([\mathbf{v}_{t,i}]_\times). \quad (2)$$

220 Given the noised $R_{t,i}$, the denoiser predicts the $so(3)$ noise $\hat{\boldsymbol{\delta}}_{t,i} \in \mathbb{R}^3$ from which we form an
221 incremental rotation $U_{t,i} = \exp([\hat{\boldsymbol{\delta}}_{t,i}]_\times)$. We update by right-multiplication²:
222

$$223 \quad \hat{R}_{0|t,i} = R_{t,i} U_{t,i}. \quad (3)$$

225 The rotation loss compares the updated frame to the clean frame using a trace form
226

$$227 \quad \ell_{\text{rot}}(i) = 3 - \text{tr}(\hat{R}_{0|t,i}^\top R_{0,i}). \quad (4)$$

229 **Translations in \mathbb{R}^3 .** Let $\tilde{x}_{0,i}^{\text{trans}}$ be standardized coordinates in the local frame. The forward diffu-
230 sion is the standard DDPM:
231

$$232 \quad \tilde{x}_{t,i}^{\text{trans}} = \sqrt{\bar{\alpha}_t} \tilde{x}_{0,i}^{\text{trans}} + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_{t,i}^{\text{trans}}, \quad \boldsymbol{\epsilon}_{t,i}^{\text{trans}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_3). \quad (5)$$

233 The network predicts local-frame noise $\hat{\boldsymbol{\epsilon}}_{t,i}^{\text{local}}$, which is rotated to the global frame by the current
234 orientation: $\hat{\boldsymbol{\epsilon}}_{t,i} = R_{t,i} \hat{\boldsymbol{\epsilon}}_{t,i}^{\text{local}}$. We use the per-residue noise MSE $\ell_{\text{pos}}(i) = \|\hat{\boldsymbol{\epsilon}}_{t,i} - \boldsymbol{\epsilon}_{t,i}^{\text{trans}}\|_2^2$, and the
235 standard reverse mean update:
236

$$237 \quad \tilde{x}_{t-1,i}^{\text{trans}} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\tilde{x}_{t,i}^{\text{trans}} - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \hat{\boldsymbol{\epsilon}}_{t,i} \right) + \sigma_t \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_3). \quad (6)$$

240 **Amino-acid types (discrete channel).** Let $K = 20$ and $\mathbf{c}_{t,i} \in \Delta^{K-1}$ be type probabilities with
241 $x_{t,i}^{\text{aa}} \sim \text{Cat}(\mathbf{c}_{t,i})$. Two diffusion channels can be applied:
242

(i) *Uniform multinomial.*

$$244 \quad q(\mathbf{c}_{t,i} \mid \mathbf{c}_{0,i}) = \bar{\alpha}_t \mathbf{c}_{0,i} + (1 - \bar{\alpha}_t) \frac{1}{K} \mathbf{1}, \quad x_{t,i}^{\text{aa}} \sim \text{Cat}(\mathbf{c}_{t,i}), \quad (7)$$

245 with the exact posterior at $t - 1$ (given the denoiser's $\hat{\mathbf{c}}_{0,i}$)
246

$$247 \quad \boldsymbol{\theta}_{t,i} \propto (\alpha_t \mathbf{c}_{t,i} + (1 - \alpha_t) \frac{1}{K} \mathbf{1}) \odot (\bar{\alpha}_{t-1} \hat{\mathbf{c}}_{0,i} + (1 - \bar{\alpha}_{t-1}) \frac{1}{K} \mathbf{1}), \quad (8)$$

248 and KL loss $\ell_{\text{seq}}(i) = \text{KL}(q \parallel q_{\boldsymbol{\theta}})$.
249

(ii) *BLOSUM-guided Markov kernel.* Let $\mathbf{Q}_t \in \mathbb{R}^{K \times K}$ be a temperature-annealed transition from
250 BLOSUM62 and $\bar{\mathbf{Q}}_t = \prod_{\tau=1}^t \mathbf{Q}_\tau$ (Yi et al., 2023). Then
251

$$253 \quad \mathbf{c}_{t,i} = \bar{\mathbf{Q}}_t \mathbf{c}_{0,i}, \quad x_{t,i}^{\text{aa}} \sim \text{Cat}(\mathbf{c}_{t,i}), \quad (9)$$

254 with exact posterior
255

$$256 \quad \boldsymbol{\theta}_{t,i} = \frac{\mathbf{e}_{t,i} \mathbf{Q}_t^\top \odot (\hat{\mathbf{c}}_{0,i} \bar{\mathbf{Q}}_{t-1})}{(\hat{\mathbf{c}}_{0,i} \bar{\mathbf{Q}}_t) \mathbf{e}_{t,i}^\top}, \quad \mathbf{e}_{t,i} = \text{onehot}(x_{t,i}^{\text{aa}}), \quad (10)$$

259 and the same KL objective.
260

261 **Training objective (per-residue).** All channels share the schedule coefficients $\{\bar{\alpha}_t, \alpha_t, \beta_t\}$ and
262 are denoised jointly by the shared IPA-based network conditioned on \mathcal{G} . We compute *per-residue*
263 losses and sum over *all* residues:
264

$$265 \quad \mathcal{L} = \sum_{i=1}^N \left(\lambda_{\text{rot}} \ell_{\text{rot}}(i) + \lambda_{\text{pos}} \ell_{\text{pos}}(i) + \lambda_{\text{seq}} \ell_{\text{seq}}(i) \right), \quad (11)$$

267 where $\lambda_{\text{rot}}, \lambda_{\text{pos}}, \lambda_{\text{seq}}$ are hyperparameters.
268

269 ²Right-multiplication is consistent with treating $\hat{\boldsymbol{\delta}}$ as a local-frame update. Left-multiplication is equivalent
under a different convention.

270

271

Table 1: Performance comparison of in Sequence-Structure Co-Design tasks.

Model	Sequence			Structure			Interface		
	Recovery Rate%↑	Perplexity↓	Diversity↑	TM-score↑	RMSD↓	IDDT↑	Success Rate↑	$E \downarrow$	$\Delta G \downarrow$
AlphaDesign	39.92	7.85	0.19	0.74	17.75	0.79	0.16	33.85	20.38
ESM-IF1	42.83	6.95	0.23	0.81	8.82	0.84	0.37	-10.87	-12.58
ProteinMPNN	48.37	5.46	0.28	0.87	6.81	0.88	0.46	-23.54	-18.49
PiFold	47.28	5.62	0.21	0.78	14.73	0.85	0.24	10.34	8.26
GraDe-IF	49.57	5.04	0.31	0.76	16.942	0.86	0.22	23.52	20.83
Bridge-IF	51.14	4.63	0.30	0.87	9.98	0.87	0.25	0.34	-3.73
InterfaceDiff	53.08	4.87	0.32	0.88	3.47	0.89	0.56	-53.92	-47.33
InterfaceDiff _{bb}	52.87	4.95	0.29	0.86	2.95	0.85	0.49	-21.64	-19.53

282

283

2.4 IPA-BASED GRAPH DENOISER NETWORK

284

The reverse kernel $p_\theta(X_{t-1} \mid X_t, \mathcal{G})$ is parameterized by a shared graph neural network that processes both structural and chemical information. We first encode each chain graph $\mathcal{G}_c^{\text{chain}}$ independently, then initialize and process the interface graph $\mathcal{G}_{\text{inter}}$ to model cross-chain interactions. The core block is a geometric attention module (inspired by Invariant Point Attention from Jumper et al. (2021)) that updates residue features using edge relations $(E_c^{\text{chain}})_c, E_{\text{inter}}$ and SE(3)-invariant functions of the noisy frames $(R_{t,i}, x_{t,i}^{\text{trans}})$. After a series of these blocks, the final node representations are concatenated with a time embedding t_{embed} and fed into three distinct decoders: (i) a sequence decoder producing $\hat{\mathbf{c}}_{0,i}$, (ii) a rotation decoder producing $so(3)$ noise $\hat{\delta}_{t,i}$ used in (3), and (iii) a translation decoder producing local-frame noise $\hat{\epsilon}_{t,i}^{\text{local}}$ used in (5)–(6). Further details are in Appendix A.5.

294

295

2.5 SAMPLING ALGORITHMS

296

At $t = T$ we initialize each residue i independently:

299

$$R_{T,i} \sim \text{Unif}(\text{SO}(3)), \quad \tilde{x}_{T,i}^{\text{trans}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_3), \quad x_{T,i}^{\text{aa}} \sim \text{Unif}\{1, \dots, 20\}.$$

300

Following this initialization, the model then runs a reverse process, iteratively updating $(x_{t,i}^{\text{aa}}, R_{t,i}, x_{t,i}^{\text{trans}}) \rightarrow (x_{t-1,i}^{\text{aa}}, R_{t-1,i}, x_{t-1,i}^{\text{trans}})$ using the decoders as above until $t = 0$. Finally, we reconstruct a full-atom structure in two steps. First, the backbone atoms (N, C_α, C, O) are assembled for each residue by applying idealized local geometries relative to their final predicted frames $R_{0,i}$ and C_α positions (Engh & Huber, 2006). Second, given the designed sequence and backbone, side chain atoms are placed with FlowPacker (Lee & Kim, 2025) to obtain the optimized all-atom 3D complex.

307

308

3 EXPERIMENTS

309

In this section, we evaluate the proposed method through extensive experiments to demonstrate its effectiveness. The experiments were conducted on datasets derived from PDB(Burley et al., 2025), PDBbind v2020, and PINDER(Kovtun et al., 2024) via multi-stage filtering. We evaluate designed complexes from three dimensions—sequence, structure, and interface. Details of the filtering procedure and evaluation metrics are provided in Appendix A.6 and A.7.

315

316

3.1 SEQUENCE-STRUCTURE CO-DESIGN

317

We selected one of the most powerful inverse folding approaches developed in recent years and performed multiple rounds of sampling to obtain diverse sequence designs. These designed sequences were then used as input to Chai-1, a state-of-the-art model for biomolecular structure prediction, to generate structural predictions. Since most inverse folding models are designed for single-chain proteins, we concatenate single chains to design the full sequence of a protein complex.

323

We tuned prior inverse-folding baselines to their best sequence-recovery settings. As shown in Table 1, our method achieves higher recovery and intra-target diversity at competitive perplexity,



Figure 3: Visualization of sequence–structure co-design results. In each subpanel, green marks the native complex’s long chain and cyan the native short chain. (a–c) GraDe-IF designs(red: designed long chain; yellow: designed short chain). (d–f) Our method (magenta: designed long chain; orange: designed short chain). The first column aligns the long chain, the second aligns the short chain, and the third aligns the entire complex. RMSD values are reported for the aligned components. (g) Ramachandran plot of the designed complexes. (h) Distribution of MolProbity Score.

and yields the most plausible backbones and side chains. Interface metrics further show the largest gains in cross-chain interactions. Notably, the low RMSDs reported for inverse-folding methods largely reflect single-chain cases; for complexes—where binding orientation and inter-chain contacts matter—their lack of explicit interface modeling degrades performance. On 2R17 (Fig. 3), GraDe-IF folds individual chains but misplaces the binding site and fails to assemble the complex, whereas our method correctly folds the entire complex.

3.2 FIXED BACKBONE SEQUENCE DESIGN AND STRUCTURE PREDICTION

Here we fix the backbone and sample sequences with our diffusion model, reusing the inverse-folding baselines from Table 1 for a controlled comparison. Unlike baselines that design sequences then fold, our pipeline *co-designs* sequences and structures: each denoising step predicts residue types conditioned on the backbone and cross-chain context, yielding a self-consistent complex. As shown in the last row of Table 1, our method matches or exceeds baselines in sequence recovery while maintaining higher diversity and competitive perplexity, and remains strong on structure-level metrics. Notably, fixing the backbone reduces RMSD yet does not uniformly improve interface-level quality. A rigid backbone restricts side-chain rotamers at the interface, often leaving buried unsatisfied polar atoms, minor steric clashes, or torsional strain. In contrast, when the backbone is allowed to move, coordinated packing can simultaneously adjust backbone and side chains thus reducing clashes, which explains improvements in complex-level metrics under flexible-backbone settings. Qualitatively(Fig. 3), baselines fold monomers correctly yet mis-register the interface, whereas our co-designed complex attains the intended docking pose with well-packed contacts.

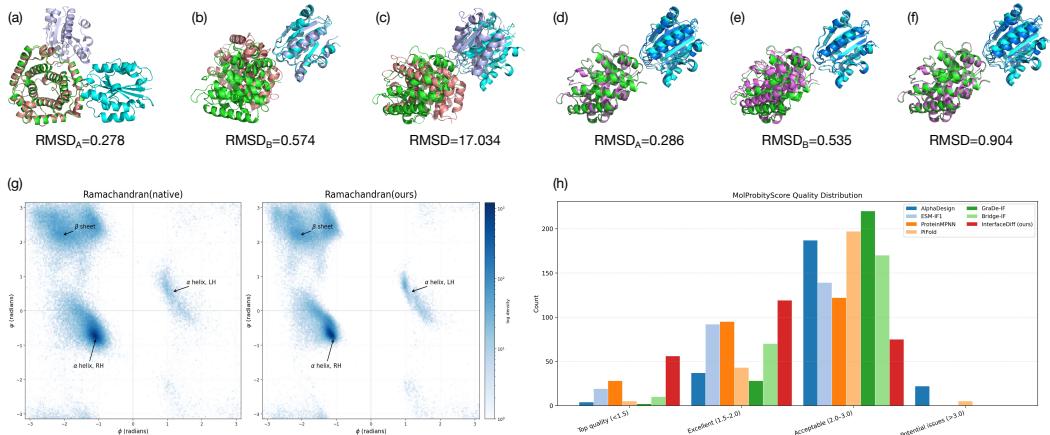
3.3 TARGET-PROTEIN BINDER COMPLEX DESIGN

In this setting, we apply INTERFACEIFF to directly design binders for a given target protein. As summarized in Table 2, recovery rate increases while perplexity decreases, and diversity is maintained or slightly improved, indicating that the model sharpens interface-specific preferences without collapsing to a single mode. The predicted conformations exhibit higher TM-score and lower backbone RMSD, suggesting closer agreement with target backbones. Besides, interface quality and energetics improve in tandem: IDDT rises, the total energy E is lower, and the binding energy ΔG becomes more favorable. The case study(PDB ID:2R17) in Fig. 4 illustrates that although fixing one chain improves the inverse-folding model’s sequence-level metrics and the designed binder attains a lower structural RMSD, the model still struggles to identify the correct interface and to produce

378

379 Table 2: Performance comparison of in Target-Protein Binder Complex Design tasks.

380 Model	381 Sequence			382 Structure			383 Interface		
	384 Recovery Rate %↑	385 Perplexity ↓	386 Diversity ↑	387 TM-score ↑	388 RMSD ↓	389 IDDT ↑	390 Success Rate ↑	391 $E \downarrow$	392 $\Delta G \downarrow$
AlphaDesign	40.68	7.43	0.21	0.78	16.45	0.85	0.22	23.85	19.47
ESM-IF1	44.93	5.78	0.27	0.84	6.48	0.86	0.49	-22.36	-18.32
ProteinMPNN	51.37	4.76	0.32	0.87	5.98	0.90	0.52	-30.59	-24.16
PiFold	49.15	5.23	0.22	0.83	11.36	0.86	0.30	-8.34	-2.28
GraDe-IF	52.57	4.89	0.31	0.81	12.04	0.88	0.32	-6.10	-9.35
Bridge-IF	53.64	4.24	0.29	0.88	7.51	0.87	0.45	-19.72	-14.26
InterfaceDiff	55.26	4.25	0.34	0.91	3.23	0.90	0.56	-53.92	-47.33



405 Figure 4: Visualization of Target-Protein Binder Design results. In each subpanel, green marks the
406 native complex’s long chain and cyan the native short chain. (a–c) ESM-IF1 designs (pink: Fixed
407 long chain; purple: designed short chain). (d–f) Our method (magenta: Fixed long chain; blue:
408 designed short chain). The first column aligns the long chain, the second aligns the short chain,
409 and the third aligns the entire complex. RMSD values are reported for the aligned components. (g)
410 Ramachandran plot of the designed complexes. (h) Distribution of MolProbity Score.

411
412 a structurally plausible complex, while our designed binder achieves smaller alignment error, and
413 displays a consistent energetic funnel toward a physically plausible binding pose. INTERFACEIFF
414 jointly improves designability, foldability, and bindability without sacrificing sequence diversity,
415 demonstrating effective absorption of interface constraints and cross-level consistency.

417 3.4 ABLATION STUDY

418
419 We conduct three ablations under the same training and evaluation protocol as the full model: (i)
420 removing interaction-aware descriptors from node and edge features; (ii) disabling explicit interface
421 modeling (thus no direct encouragement or constraint on forming cross-chain contacts); and (iii)
422 replacing the IPA-based module with a simple multi-layer perceptron (MLP). We present ablation
423 results, as before, across three dimensions—sequence, structure, and interface. Results are summa-
424 rized in Table 3. Across all three ablations we observe a consistent, across-the-board degradation
425 relative to the full model: lower recovery and diversity with higher perplexity, indicating a drift from
426 the target sequence distribution and sampling collapse, reduced TM-score with increased RMSD
427 (larger structural deviations and weakened inter-chain conformational coupling), lower IDDT, and
428 higher E and ΔG (less favorable folding and binding energetics). The success rate also drops
429 markedly, showing that designs are less able to create or strengthen interfacial contacts.

430
431 These trends support our design hypotheses: (a) interaction-aware node/edge features provide criti-
432 cal observables that anchor interface constraints; (b) explicit interface modeling is necessary to align
433 the generative objective with cross-chain contact patterns; and (c) the IPA-based module supplies

432

433

Table 3: Ablation Study on InterfaceDiff.

434

435

Model	Sequence			Structure			Interface		
	Recovery Rate %↑	Perplexity↓	Diversity↑	TM-score↑	RMSD↓	IDDT↑	Success Rate↑	$E \downarrow$	$\Delta G \downarrow$
w/o interaction-related features	51.46	4.92	0.31	0.85	6.36	0.87	0.58	-36.57	-28.98
w/o interface graph	46.24	5.87	0.26	0.80	10.36	0.84	0.37	23.65	21.71
replaced IPA-based network	20.32	10.56	0.11	0.52	14.85	0.73	0.12	136.54	125.38
InterfaceDiff (Full)	53.08	4.87	0.32	0.88	3.47	0.89	0.69	-53.92	-47.33

436

437

438

439

440

441

equivariant geometry and effective cross-chain information routing, coupling sequence, structure, and interface optimization. Taken together, the components are complementary and jointly enable the superior performance of the full model across all reported metrics in Table 3.

442

443

444

4 RELATED WORK

445

446

Structure Prediction and Complex Modeling. Deep learning has transformed protein *structure prediction* for monomers and complexes: AlphaFold2 and RoseTTAFold delivered high-accuracy predictions on monomers, while AlphaFold3 and Chai-1 expand this to multimeric complexes (Baek et al., 2021; Abramson et al., 2024; Boitreaud et al., 2024). However, such models primarily *predict* conformations for *given* sequences rather than *designing* novel sequences and structures in tandem.

447

448

Generative Models for Sequence and Structure. Inverse folding is a fixed-backbone generative problem for sequences: ProteinMPNN(Dauparas et al., 2022) handles both single- and multi-chain sequence design, PiFold (Gao et al., 2022) improves one-shot efficiency, and GraDe-IF (Yi et al., 2023) introduces diffusion for sequence diversity. As for structure generation, RFdiffusion (Watson et al., 2023) enables backbone and motif scaffolding; FoldingDiff (Wu et al., 2024) uses angular representations to generate plausible backbones; Chroma (Ingraham et al., 2023) provides a programmable generator for protein complexes. Nevertheless, protein–protein interface is typically handled *implicitly* as a byproduct of global modeling, offering limited control over contact patterns or interfacial energetics.

449

Interface-aware Representations and Graph Methods for PPI Prediction. Graph representations effectively model residue–residue spatial and interaction relations and are widely employed for PPI prediction. Recent graph-based PPI models include MGPPPI, SE3Graph-PPI, and SpatialPPIv2 (Zhao et al., 2024; Fang et al., 2024; Hu & Ohue, 2025). These works underscore the utility of graphs for *prediction* tasks, yet they do not *generate* new sequences or structures and usually treat the interface as emergent rather than an explicit, controllable object for design.

450

451

452

453

454

Complex-related Design Tasks. Both binder design and antibody design are tasks related to protein–protein complex design. The former designs a protein that binds to a specified protein chain(Luo et al., 2022; Watson et al., 2023; Vázquez Torres et al., 2024), whereas the latter designs the CDRs given a specified counterpart(Cutting et al., 2025; Kenlay et al., 2024). However, most current pipelines do not explicitly model the *interface* during generation, so mutation–interface coupling remains indirect.

455

456

457

5 CONCLUSION

458

459

460

461

462

463

464

465

466

467

468

469

We present InterfaceDiff, a generative model for *interface-aware* joint sequence–structure co-design of protein–protein complexes that couples intra-chain kNN graphs with an explicit bipartite interface graph and uses a lightweight IPA-inspired denoiser to sample amino-acid identities and residue-local rigid frames. INTERFACEDIFF produces diverse, high-quality, all-atom complexes; supports flexible co-design, fixed-backbone inverse folding with structure prediction, and target-conditioned binder design; and scales via sparse message passing while remaining compatible with standard packing for full-atom validation.

486 REFERENCES
487

488 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
489 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambbrick, et al. Accurate structure
490 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

491 Patrick Aloy and Robert B Russell. Interrogating protein interaction networks through structural
492 biology. *Proceedings of the National Academy of Sciences*, 99(9):5896–5901, 2002.

493 Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
494 Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of
495 protein structures and interactions using a three-track neural network. *Science*, 373(6557):871–
496 876, 2021.

497 Jacques Boitreaud, Jack Dent, Matthew McPartlon, Joshua Meier, Vinicius Reis, Alex Rogozhnikov,
498 and Kevin Wu. Chai-1: Decoding the molecular interactions of life. *BioRxiv*, 2024.

499 Stephen K Burley, Rusham Bhatt, Charmi Bhikadiya, Chunxiao Bi, Alison Biester, Pratyoy Biswas,
500 Sebastian Bittrich, Santiago Blaumann, Ronald Brown, Henry Chao, et al. Updated resources for
501 exploring experimentally-determined pdb structures and computed structure models at the rcsb
502 protein data bank. *Nucleic acids research*, 53(D1):D564–D574, 2025.

503 Sidhartha Chaudhury, Sergey Lyskov, and Jeffrey J Gray. Pyrosetta: a script-based interface for im-
504 plementing molecular modeling algorithms using rosetta. *Bioinformatics*, 26(5):689–691, 2010.

505 Vincent B Chen, W Bryan Arendall, Jeffrey J Headd, Daniel A Keedy, Robert M Immormino,
506 Gary J Kapral, Laura W Murray, Jane S Richardson, and David C Richardson. Molprobity: all-
507 atom structure validation for macromolecular crystallography. *Biological crystallography*, 66(1):
508 12–21, 2010.

509 Daniel Cutting, Frédéric A Dreyer, David Errington, Constantin Schneider, and Charlotte M Deane.
510 De novo antibody design with se (3) diffusion. *Journal of Computational Biology*, 32(4):351–361,
511 2025.

512 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
513 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-
514 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.

515 Israel T Desta, Kathryn A Porter, Bing Xia, Dima Kozakov, and Sandor Vajda. Performance and its
516 limits in rigid body protein-protein docking. *Structure*, 28(9):1071–1081, 2020.

517 RA Engh and R Huber. Structure quality and target parameters. In *International tables for crystal-
518 lography volume F: crystallography of biological macromolecules*, pp. 382–392. Springer, 2006.

519 Yangyue Fang, Yinzuo Zhou, and Jianping Huang. Se3graph-ppi: Multiscale protein-protein interac-
520 tion prediction model based on graph neural networks. In *2024 43rd Chinese Control Conference
521 (CCC)*, pp. 1024–1029. IEEE, 2024.

522 Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, Davide Boscaini, Michael M
523 Bronstein, and Bruno E Correia. Deciphering interaction fingerprints from protein molecular
524 surfaces using geometric deep learning. *Nature methods*, 17(2):184–192, 2020.

525 Zhangyang Gao, Cheng Tan, Pablo Chacón, and Stan Z Li. Pifold: Toward effective and efficient
526 protein inverse folding. *arXiv preprint arXiv:2209.12643*, 2022.

527 Ameya Harmalkar and Jeffrey J Gray. Advances to tackle backbone flexibility in protein docking.
528 *Current opinion in structural biology*, 67:178–186, 2021.

529 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
530 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
531 of evolution with a language model. *Science*, 387(6736):850–858, 2025.

532 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
533 neural information processing systems*, 33:6840–6851, 2020.

540 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander Rives. Learning inverse folding from millions of predicted structures. In *International conference on machine learning*, pp. 8946–8970. PMLR, 2022.

541

542

543 Wenxing Hu and Masahito Ohue. Spatialppiv2: Enhancing protein–protein interaction prediction through graph neural networks with protein language models. *Computational and Structural Biotechnology Journal*, 27:508–518, 2025.

544

545

546 Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design. *Nature*, 537(7620):320–327, 2016.

547

548

549 John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein space with a programmable generative model. *Nature*, 623(7989):1070–1078, 2023.

550

551

552

553 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

554

555

556

557 Henry Kenlay, Frédéric A Dreyer, Daniel Cutting, Daniel Nissley, and Charlotte M Deane. Abobody-builder3: improved and scalable antibody structure predictions. *Bioinformatics*, 40(10):btae576, 2024.

558

559

560 Tanja Kortemme and David Baker. Computational design of protein–protein interactions. *Current opinion in chemical biology*, 8(1):91–97, 2004.

561

562

563 Daniel Kovtun, Mehmet Akdel, Alexander Goncearenco, Guoqing Zhou, Graham Holt, David Baugher, Dejun Lin, Yusuf Adeshina, Thomas Castiglione, Xiaoyun Wang, et al. Pinder: The protein interaction dataset and evaluation resource. *bioRxiv*, pp. 2024–07, 2024.

564

565

566 Jin Sub Lee and Philip M Kim. Flowpacker: protein side-chain packing with torsional flow matching. *Bioinformatics*, 41(3):btaf010, 2025.

567

568

569 Shengjie Luo, Tianlang Chen, and Aditi S Krishnapriyan. Enabling efficient equivariant operations in the fourier basis via gaunt tensor products. *arXiv preprint arXiv:2401.10216*, 2024.

570

571 Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures. *Advances in Neural Information Processing Systems*, 35:9754–9767, 2022.

572

573

574

575 Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. lddt: a local superposition-free score for comparing protein structures and models using distance difference tests. *Bioinformatics*, 29(21):2722–2728, 2013.

576

577

578 Matthew McPartlon and Jinbo Xu. An end-to-end deep learning method for protein side-chain packing and inverse folding. *Proceedings of the National Academy of Sciences*, 120(23):e2216438120, 2023.

579

580

581

582 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

583

584 Niccolò Pancino, Caterina Gallegati, Fiamma Romagnoli, Pietro Bongini, and Monica Bianchini.

585 Protein–protein interfaces: A graph neural network approach. *International Journal of Molecular Sciences*, 25(11):5870, 2024.

586

587

588 Nicholas Z Randolph and Brian Kuhlman. Invariant point message passing for protein side chain packing. *Proteins: Structure, Function, and Bioinformatics*, 92(10):1220–1233, 2024.

589

590 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021.

591

592

593 Yunda Si and Chengfei Yan. Protein language model-embedded geometric graphs power inter-protein contact prediction. *Elife*, 12:RP92184, 2024.

594 Susana Vázquez Torres, Philip JY Leung, Preetham Venkatesh, Isaac D Lutz, Fabian Hink, Huu-
 595 Hien Huynh, Jessica Becker, Andy Hsien-Wei Yeh, David Juergens, Nathaniel R Bennett, et al.
 596 De novo design of high-affinity binders of bioactive helical peptides. *Nature*, 626(7998):435–442,
 597 2024.

598 Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng,
 599 Bin Shao, and Tie-Yan Liu. Enhancing geometric representations for molecules with equivariant
 600 vector-scalar interactive message passing. *Nature Communications*, 15(1):313, 2024.

601

602 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
 603 nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
 604 protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

605 Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu, and
 606 Ava P Amini. Protein structure generation via folding diffusion. *Nature communications*, 15(1):
 607 1059, 2024.

608

609 YuQing Xie, Ameya Daigavane, Mit Kotak, and Tess Smidt. The price of freedom: Exploring trade-
 610 offs between expressivity and computational efficiency in equivariant tensor products. In *ICML
 2024 Workshop on Geometry-grounded Representation Learning and Generative Modeling*, 2024.

611

612 Mingda Xu, Peisheng Qian, Ziyuan Zhao, Zeng Zeng, Jianguo Chen, Weide Liu, and Xulei
 613 Yang. Graph neural networks for protein-protein interactions—a short survey. *arXiv preprint
 614 arXiv:2404.10450*, 2024.

615 Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising diffusion for
 616 inverse protein folding. *Advances in Neural Information Processing Systems*, 36:10238–10257,
 617 2023.

618

619 Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
 620 Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
 621 protein backbone generation with se (3) flow matching. *arXiv preprint arXiv:2310.05297*, 2023.

622 Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
 623 template quality. *Proteins: Structure, Function, and Bioinformatics*, 57(4):702–710, 2004.

624

625 Shiwei Zhao, Zhenyu Cui, Gonglei Zhang, Yanlong Gong, and Lingtao Su. Mgppi: multiscale graph
 626 neural networks for explainable protein–protein interaction prediction. *Frontiers in Genetics*, 15:
 627 1440448, 2024.

628

629 Yiheng Zhu, Jialu Wu, Qiuyi Li, Jiahuan Yan, Mingze Yin, Wei Wu, Mingyang Li, Jieping Ye,
 630 Zheng Wang, and Jian Wu. Bridge-if: Learning inverse protein folding with markov bridges.
 631 *Advances in Neural Information Processing Systems*, 37:39901–39922, 2024.

632

A APPENDIX

A.1 USE OF LLMs

636 We used ChatGPT (OpenAI) strictly for language editing of this manuscript. In particular, it was
 637 used to polish sentence wording and to check spelling and grammar. All suggestions were manually
 638 reviewed and integrated by the authors. The model did not generate new technical content, analyses,
 639 figures, tables, or references, and it was not used to design experiments or interpret results. No
 640 confidential data beyond the manuscript text was provided to the model. The authors take full
 641 responsibility for the paper’s content.

A.2 GRAPH CONSTRUCTION DETAILS

644 **Local frames and node features.** For residue i , we place the origin at $\mathbf{t}_i = \mathbf{C}_{\alpha,i}$ and construct a
 645 right-handed orthonormal basis from backbone bonds by Gram–Schmidt:

$$647 \hat{\mathbf{e}}_1 = \frac{\mathbf{C}_i - \mathbf{C}_{\alpha,i}}{\|\mathbf{C}_i - \mathbf{C}_{\alpha,i}\|}, \quad \hat{\mathbf{e}}_2 = \frac{(\mathbf{N}_i - \mathbf{C}_{\alpha,i}) - \langle \mathbf{N}_i - \mathbf{C}_{\alpha,i}, \hat{\mathbf{e}}_1 \rangle \hat{\mathbf{e}}_1}{\|(\mathbf{N}_i - \mathbf{C}_{\alpha,i}) - \langle \mathbf{N}_i - \mathbf{C}_{\alpha,i}, \hat{\mathbf{e}}_1 \rangle \hat{\mathbf{e}}_1\|}, \quad \hat{\mathbf{e}}_3 = \hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2,$$

and set $\mathbf{R}_i = [\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3]$. Each node concatenates: a one-hot sequence identity, an eight-state secondary-structure code from a standard assignment on the complex, four coarse chemical descriptors (hydropathy, signed charge, normalized volume, polarity), trigonometric encodings of $(\phi_i, \psi_i, \omega_i)$ computed from $(\mathbf{C}_{i-1}, \mathbf{N}_i, \mathbf{C}_{\alpha,i}, \mathbf{C}_i)$, $(\mathbf{N}_i, \mathbf{C}_{\alpha,i}, \mathbf{C}_i, \mathbf{N}_{i+1})$, $(\mathbf{C}_{\alpha,i}, \mathbf{C}_i, \mathbf{N}_{i+1}, \mathbf{C}_{\alpha,i+1})$, and a multiscale exposure descriptor ρ_i formed by softly aggregating neighbor displacement vectors over a geometric ladder of length scales:

$$\rho_i^{(\lambda)} = \frac{\left\| \sum_{j \in \mathcal{N}(i)} w_{ij}^{(\lambda)} (\mathbf{t}_i - \mathbf{t}_j) \right\|}{\sum_{j \in \mathcal{N}(i)} w_{ij}^{(\lambda)} \|\mathbf{t}_i - \mathbf{t}_j\|}, \quad w_{ij}^{(\lambda)} \propto \exp\left(-\frac{\|\mathbf{t}_i - \mathbf{t}_j\|^2}{\lambda}\right).$$

For downstream all-atom reconstruction, we store per-residue heavy-atom coordinates in a fixed-size tensor with a companion mask.

Intra-chain neighborhoods and edge attributes. Within each chain, we build a k NN graph on $\text{C}\alpha$ coordinates with an adaptive k that scales sublinearly with chain length and is lower bounded to ensure local connectivity. For a directed edge $(i \rightarrow j)$, we encode: (i) the clipped sequence separation $|i - j|$ via one-hot bins; (ii) a binary contact flag based on a $\text{C}\alpha$ - $\text{C}\alpha$ cutoff; (iii) a radial distance embedding using Gaussian kernels with geometrically spaced bandwidths applied to the Euclidean distance; and (iv) a rigid-motion-aware orientation block

$$\mathbf{p}_{ij} = \mathbf{R}_j^\top (\mathbf{t}_i - \mathbf{t}_j), \quad \mathbf{R}_{ij} = \mathbf{R}_j^\top \mathbf{R}_i,$$

where \mathbf{p}_{ij} is the relative displacement expressed in the destination frame and \mathbf{R}_{ij} is the relative rotation, which we vectorize for learning.

Interface bipartite graph and cross-chain features. To extract the interaction surface, we select the two longest polypeptide chains and identify cross-chain residue pairs by a heavy-atom radius search; for each residue in the longer chain, all residues in the partner chain that contain any non-hydrogen atom within a short Å-scale radius are considered interfacial partners, and we instantiate a directed edge for each detected pair. Interface edges reuse the geometric core above (distance embedding plus \mathbf{p}_{ij} and \mathbf{R}_{ij} computed with the joint (\mathbf{R}, \mathbf{t}) of both chains) and append residue-residue compatibility features derived from node-chemistry (polarity match, opposite-charge indicator, absolute differences in normalized volume and hydropathy), together with four canonical motif detectors based on explicit distance tests over residue-specific atom sets: hydrogen bonds (donor–acceptor within a short cutoff including backbone N/O), salt bridges (acidic–basic side-chain atoms within a slightly larger cutoff), aromatic–aromatic interactions (ring-centroid proximity for PHE/TYR/TRP), and cation–π interactions (charged nitrogens to aromatic centroids). If no cross-chain neighbor is found the complex is treated as non-interacting and skipped in training; on curated heterodimers this condition is rare. The per-chain graphs and the interface bipartite graph are finally packaged with (\mathbf{R}, \mathbf{t}) and heavy-atom tensors to support sparse message passing both within chains and across the interface, aligning with interface-aware co-design objectives.

A.3 EXPONENTIAL MAP ON $\text{SO}(3)$

We parametrize 3D rotations by a *rotation vector* $\mathbf{v}_i \in \mathbb{R}^3$ and map it to a rotation matrix $\mathbf{R}_i \in \text{SO}(3)$ via the matrix exponential

$$\mathbf{R}_i = \exp([\mathbf{v}_i]_\times), \quad [\mathbf{v}]_\times = \begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix}, \quad (12)$$

where $[\mathbf{v}]_\times$ is the skew-symmetric (“hat”) operator satisfying $[\mathbf{v}]_\times \mathbf{w} = \mathbf{v} \times \mathbf{w}$ for any $\mathbf{w} \in \mathbb{R}^3$. Geometrically, letting $\theta = \|\mathbf{v}\|$ and $\mathbf{u} = \mathbf{v}/\theta$ (if $\theta \neq 0$), $\mathbf{R} = \exp([\mathbf{v}]_\times)$ represents a right-handed rotation by angle θ about axis \mathbf{u} .

Closed form (Rodrigues). The exponential admits the Rodrigues formula

$$\mathbf{R} = \mathbf{I} + A(\theta) [\mathbf{v}]_\times + B(\theta) [\mathbf{v}]_\times^2, \quad A(\theta) = \frac{\sin \theta}{\theta}, \quad B(\theta) = \frac{1 - \cos \theta}{\theta^2}, \quad (13)$$

with \mathbf{I} the 3×3 identity. For small θ , we use the series

$$A(\theta) \approx 1 - \frac{\theta^2}{6} + \frac{\theta^4}{120}, \quad B(\theta) \approx \frac{1}{2} - \frac{\theta^2}{24} + \frac{\theta^4}{720}, \quad (14)$$

which yields numerically stable evaluations of equation 13.

702 **Differentials and backpropagation.** The differential of the exponential map can be written using
 703 the *left Jacobian* $\mathbf{J}_l(\mathbf{v}) \in \mathbb{R}^{3 \times 3}$:

$$705 \quad d\mathbf{R} = \mathbf{R} [\mathbf{J}_l(\mathbf{v}) d\mathbf{v}]_{\times}, \quad \mathbf{J}_l(\mathbf{v}) = \mathbf{I} - \frac{1 - \cos \theta}{\theta^2} [\mathbf{v}]_{\times} + \frac{\theta - \sin \theta}{\theta^3} [\mathbf{v}]_{\times}^2. \quad (15)$$

707 Equation equation 15 is convenient for computing gradients of losses defined on $\text{SO}(3)$ with respect
 708 to the vector parameter \mathbf{v} .

710 **Log map and invertibility.** The inverse map (up to the usual π -angle axis sign ambiguity) is

$$712 \quad \theta = \arccos\left(\frac{\text{tr}(\mathbf{R}) - 1}{2}\right), \quad \mathbf{v} = \frac{\theta}{2 \sin \theta} (\mathbf{R} - \mathbf{R}^{\top})^{\vee}, \quad (16)$$

714 where $(\cdot)^{\vee}$ is the inverse of the hat operator. In practice we clamp the argument of \arccos to $[-1, 1]$,
 715 use the series in equation 14 for $\theta \approx 0$, and handle $\theta \approx \pi$ with care due to axis ambiguity. These
 716 choices make equation 12–equation 16 robust in training and inference.

718 A.4 BACKGROUND ON DENOISING DIFFUSION PROBABILISTIC MODELS

720 Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021)
 721 are a class of latent variable models designed for high-fidelity data generation. They conceptualize
 722 generation as the reversal of a fixed data corruption process. This is accomplished through two
 723 complementary Markov processes: a **forward (diffusion) process** that gradually adds noise to data,
 724 and a learned **reverse (generative) process** that systematically removes it.

726 A.4.1 FORWARD PROCESS

727 The forward process, denoted by q , incrementally perturbs a clean data sample $x_0 \sim q(x_0)$ over
 728 T discrete time steps by adding Gaussian noise. The process is governed by a predefined variance
 729 schedule $\{\beta_t\}_{t=1}^T$, where $\beta_t \in (0, 1)$. The distribution of the noisy sample x_t at step t given the
 730 sample from the previous step x_{t-1} is defined as:

$$731 \quad q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}) \quad (17)$$

733 where $\mathcal{N}(\cdot; \mu, \sigma^2 \mathbf{I})$ is a Gaussian distribution with mean μ and covariance $\sigma^2 \mathbf{I}$.

735 A significant property of this process is the ability to sample x_t at any arbitrary timestep t directly
 736 from the original data x_0 . By setting $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$, the conditional distribution
 737 $q(x_t | x_0)$ can be expressed in a closed form:

$$738 \quad q(x_t | x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t) \mathbf{I}) \quad (18)$$

740 This allows for efficient training, as we can reformulate x_t using the reparameterization trick with a
 741 standard Gaussian noise variable $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$:

$$742 \quad x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \quad (19)$$

744 As $t \rightarrow T$, the distribution $q(x_T | x_0)$ converges to an isotropic Gaussian distribution, $p(x_T) \approx$
 745 $\mathcal{N}(\mathbf{0}, \mathbf{I})$, effectively erasing all information from the original sample x_0 .

747 A.4.2 REVERSE PROCESS

749 The generative part of the model is the reverse process, p_{θ} , which aims to reverse the forward
 750 diffusion. It starts with a sample x_T drawn from the prior, $p(x_T) = \mathcal{N}(\mathbf{0}, \mathbf{I})$, and learns to iteratively
 751 denoise it to produce a sample x_0 that resembles the true data distribution. Each transition in this
 752 chain is defined as a conditional Gaussian parameterized by a neural network:

$$753 \quad p_{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t)) \quad (20)$$

755 While the exact posterior $q(x_{t-1} | x_t, x_0)$ is tractable, it requires knowledge of x_0 , which is unavailable
 during generation. Therefore, the model approximates this posterior. Instead of predicting the

mean μ_θ directly, it is common practice to train a neural network, $\epsilon_\theta(x_t, t)$, to predict the noise component ϵ from Equation 19. The mean of the reverse transition is then parameterized as:

$$\mu_\theta(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right) \quad (21)$$

The variance $\Sigma_\theta(x_t, t)$ is typically set to a non-learned, time-dependent constant, such as $\Sigma_\theta(x_t, t) = \beta_t \mathbf{I}$.

The model is trained by optimizing a simplified objective function that minimizes the mean squared error between the true and predicted noise at each step:

$$L_{\text{simple}}(\theta) = \mathbb{E}_{t \sim [1, T], x_0, \epsilon} \left[\left\| \epsilon - \epsilon_\theta(\sqrt{\alpha_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\|^2 \right] \quad (22)$$

This objective directly trains the network to predict and remove the noise added during the forward process, enabling the reverse process to generate realistic data samples.

A.5 DETAILED ARCHITECTURE OF THE IPA-BASED DENOISER NETWORK

This appendix provides the technical details for the graph denoiser network described in the main text. The network updates node hidden representations h_i for each residue i by aggregating information from its neighbors $j \in \mathcal{N}(i)$ using a geometric attention mechanism.

Geometric Attention. The attention weight α_{ij} between two nodes is computed from a combination of three distinct signals:

$$\alpha_{ij} = \text{Softmax}_{j \in \mathcal{N}(i)} \left(\frac{1}{\sqrt{3}} (\text{logits}_{\text{node}} + \text{logits}_{\text{pair}} + \text{logits}_{\text{spatial}}) \right)$$

The components are defined as follows:

- **logits_{node}**: A standard attention score based on feature similarity. It is the dot product between query and key vectors that are linearly projected from the node features h_i and h_j .
- **logits_{pair}**: A bias term derived directly from the graph structure. It is computed by a linear projection of the edge attributes E_{ij} connecting the two residues.
- **logits_{spatial}**: An SE(3)-invariant geometric score based on the distances between sets of virtual "attention points" attached to each residue's local frame. It is formulated as:

$$\text{logits}_{\text{spatial},ij} = -\frac{\gamma}{2} \sqrt{\frac{2}{9P_q}} \sum_{p=1}^{P_q} \left\| (x_{t,i}^{\text{rot}} \mathbf{q}_p^i + x_{t,i}^{\text{trans}}) - (x_{t,j}^{\text{rot}} \mathbf{k}_p^j + x_{t,j}^{\text{trans}}) \right\|^2$$

where $(x_t^{\text{rot}}, x_t^{\text{trans}})$ are the residue's noisy frame coordinates at timestep t . The local coordinates for the query points $\mathbf{q}_p^i \in \mathbb{R}^3$ and key points $\mathbf{k}_p^j \in \mathbb{R}^3$ are learned via linear projections from the node features h_i and h_j , respectively. P_q is the number of query/key points, and γ is a learnable scaling parameter.

Information Aggregation and Update. Using the computed attention weights α_{ij} , the block aggregates information along three pathways: (1) a weighted sum of value features projected from neighboring node representations h_j ; (2) a weighted sum of the edge features E_{ij} ; and (3) a geometric pathway where a set of "value points", learned similarly to query/key points, are aggregated. The resulting local coordinates, directions, and norms of these aggregated value points serve as geometric features. These three streams of information are concatenated, passed through a feed-forward network, and used to update the node representation h_i via a residual connection.

Decoder Input. After the final attention block, the resulting node representations h_i^{final} are conditioned on the diffusion timestep t . A time embedding is created from the corresponding noise schedule parameter β_t and concatenated with the node features to form the input for the final decoders:

$$\mathbf{in}_i = \text{Concat}(h_i^{\text{final}}, [\beta_t, \sin(\beta_t), \cos(\beta_t)])$$

This combined vector \mathbf{in}_i is then processed by three separate MLP decoders to predict $\hat{\mathbf{c}}_{0,i}$, $\hat{\mathbf{R}}_{0,i}$ (via its axis-angle vector), and $\hat{\epsilon}_{t,i}^{\text{local}}$.

810 A.6 DATASET PREPARATION
811

812 To construct a high-quality dataset of protein-protein complexes, we employed a multi-step filtering
813 process. To ensure the reliability and completeness of the data, we curated authentic protein com-
814 plexes from the latest release of the PDBBurley et al. (2025), PDBbind v2020, and PINDERKovtun
815 et al. (2024) for model training and evaluation. First, we selected protein-protein complexes with
816 structural resolution better than 3.5 Å, and exclude complexes containing RNA or DNA structures.

817 Specifically, we focused exclusively on heterodimers for two key reasons. First, heterodimers typi-
818 cally exhibit more complex interaction interfaces characterized by asymmetric geometric, sequence,
819 and physicochemical features, making them ideal for studying diverse and intricate cross-chain in-
820 teractions. Second, homodimers often involve symmetric chains with repetitive features, which can
821 lead to overfitting in machine learning models and hinder their ability to generalize to more nuanced
822 heterodimeric interactions.

823 To ensure the suitability of the dataset for downstream modeling tasks, we filtered out proteins
824 with chain lengths shorter than 30 residues. Chains shorter than this threshold may lack suffi-
825 cient structural complexity and functional relevance to contribute meaningfully to the analysis of
826 protein-protein interactions. Additionally, proteins with chain lengths exceeding 512 residues were
827 excluded to maintain computational efficiency. Finally, to guarantee data quality, the PDBfixer tool
828 was used to repair protein structures, ensuring that all atomic coordinates for amino acid residues
829 were complete. This comprehensive filtering process resulted in a curated dataset of protein-protein
830 complexes suitable for downstream analysis and modeling.

831 A.7 EVALUATION METRICS — DEFINITIONS AND FORMULAS
832833 A.7.1 SEQUENCE-LEVEL METRICS
834

835 **Sequence Recovery** Let the sequence length be N . Denote the one-hot encoding of the native
836 amino acid at position i by $\mathbf{y}_i \in \{0, 1\}^{20}$ and the model prediction (probability or one-hot) by
837 $\hat{\mathbf{y}}_i \in [0, 1]^{20}$. With arg max mapping to a discrete residue identity, the recovery is

$$838 \text{Rec} = \frac{1}{N} \sum_{i=1}^N \mathbf{1}(\arg \max \mathbf{y}_i = \arg \max \hat{\mathbf{y}}_i). \quad (23)$$

842 **Perplexity** Let $\mathbf{p}_i \in [0, 1]^{20}$ be the predicted categorical distribution at position i , and \mathbf{y}_i the
843 one-hot ground truth. The mean cross-entropy is

$$844 \text{CE} = -\frac{1}{N} \sum_{i=1}^N \sum_{a=1}^{20} y_{i,a} \log p_{i,a} = -\frac{1}{N} \sum_{i=1}^N \log p_{i,a^*(i)}, \quad (24)$$

848 where $a^*(i)$ is the native residue index at position i . Perplexity is

$$849 \text{PPL} = \exp(\text{CE}). \quad (25)$$

851 **Sequence Diversity** For the same target, suppose M sampled sequences are generated, each with
852 discrete residues $s_i^{(m)}$ at position i for sample m . The average pairwise similarity across all un-
853 ordered pairs (m, n) , $m < n$, is

$$855 \text{Sim} = \frac{2}{M(M-1)} \sum_{1 \leq m < n \leq M} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{1}(s_i^{(m)} = s_i^{(n)}) \right). \quad (26)$$

858 Diversity is then defined as

$$859 \text{Div} = 1 - \text{Sim}. \quad (27)$$

861 A.7.2 STRUCTURE-LEVEL METRICS
862

863 **Ramachandran plot** report the percentages of residues whose (ϕ, ψ) dihedrals fall in favored re-
864 gions. **Backbone RMSD** is computed after optimal superposition (e.g., Kabsch) using main-chain

864 atoms (N, C_α, C):

$$866 \quad 867 \quad 868 \quad 869 \quad \text{bbRMSD} = \sqrt{\frac{1}{N_{\text{bb}}} \sum_{i=1}^{N_{\text{bb}}} \|\tilde{\mathbf{r}}_i - \tilde{\mathbf{r}}'_i\|^2}, \quad (28)$$

where $\tilde{\mathbf{r}}_i$ and $\tilde{\mathbf{r}}'_i$ denote optimally superposed backbone atom coordinates.

The **TM-score** (Template Modeling score) Zhang & Skolnick (2004) is a length-independent metric for measuring the structural similarity between two protein structures. Unlike RMSD, which can be dominated by local deviations, TM-score normalizes by protein length and applies a distance-dependent weighting function. The score ranges from 0 (no similarity) to 1 (perfect match), with values above 0.5 generally indicating the same fold and values below 0.2 corresponding to random similarity.

$$876 \quad 877 \quad 878 \quad 879 \quad 880 \quad \text{TM-score} = \max \left[\frac{1}{L_{\text{target}}} \sum_{i=1}^{L_{\text{ali}}} \frac{1}{1 + \left(\frac{d_i}{d_0(L_{\text{target}})} \right)^2} \right] \quad (29)$$

881 where:

- L_{target} : length of the target protein.
- L_{ali} : number of aligned residue pairs.
- d_i : distance between the i -th pair of aligned C_α atoms.
- $d_0(L_{\text{target}})$: scale parameter depending on protein length, defined as

$$888 \quad d_0(L_{\text{target}}) = 1.24 \sqrt[3]{L_{\text{target}}} - 15 - 1.8$$

889 This formulation makes TM-score less sensitive to local structural variations and more reliable for
890 assessing overall fold similarity. Scores above **0.5** typically indicate the same fold, while scores
891 below **0.2** correspond to random structural similarity.

893 **IDDT** The Local Distance Difference Test (IDDT) is a *superposition-free* local structural similarity
894 metric that evaluates how well a predicted structure preserves *pairwise distances* relative to a reference
895 (Mariani et al., 2013). Unlike global metrics such as RMSD, IDDT is insensitive to rigid-body
896 motions and domain reorientations, focusing instead on the geometric consistency of each residue
897 (or atom) within its local environment. This yields robustness on multi-domain proteins, flexible
898 loops, and protein–protein interfaces.

899 Let the reference and predicted structures be $\{\mathbf{x}_i^*\}_{i=1}^M$ and $\{\mathbf{x}_i\}_{i=1}^M$ (\mathbf{x} refers to atoms or residues).
900 For each center i , define the reference neighborhood $\mathcal{N}_i = \{j \neq i : \|\mathbf{x}_i^* - \mathbf{x}_j^*\| \leq R_0\}$, with
901 neighborhood radius R_0 (commonly $R_0 \in [10, 15]$ Å). Given distance tolerances $\mathcal{T} = \{\tau_1, \dots, \tau_K\}$
902 (commonly $\{0.5, 1, 2, 4\}$ Å), define

$$904 \quad 905 \quad 906 \quad s_{ij} = \frac{1}{K} \sum_{k=1}^K \mathbb{1}(\|\mathbf{x}_i - \mathbf{x}_j\| - \|\mathbf{x}_i^* - \mathbf{x}_j^*\| < \tau_k).$$

907 The per-center score and global IDDT are

$$909 \quad 910 \quad 911 \quad \text{IDDT}_i = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} s_{ij}, \quad \text{IDDT} = \frac{1}{M} \sum_{i=1}^M \text{IDDT}_i,$$

912 taking values in [0, 1] (often reported on [0, 100]). Neighborhoods are defined on the *reference*
913 structure and empty neighborhoods are typically excluded in practice.

914 There are some variants of IDDT: (i) *IDDT-C_α*: builds neighborhoods and distances on C_α only;
915 fast and sensitive to backbone geometry. (ii) *All-atom IDDT*: captures side-chain fidelity but requires
916 consistent handling of missing atoms and altLocs. (iii) *Region-/interface-restricted IDDT*: computed
917 on subsets such as binding sites or PPI interfaces (e.g., residues with any heavy atom within 8 Å
across chains), reported as IDDT-BS / interface-IDDT.

918 RMSD is affected by alignment and outliers; TM-score emphasizes global topology. IDDT offers a
 919 *local* perspective on geometric fidelity, making it particularly informative for multi-domain motion,
 920 flexible loops, active sites, and interfaces. In reporting, we recommend combining global metrics
 921 (TM-score/RMSD) with IDDT or region-restricted IDDT.

922 The **MolProbity score** Chen et al. (2010) is a widely used structural quality metric for macromolecular
 923 models. It combines several geometric validation measures—particularly *clashscore*, *rotamer*
 924 *outliers*, and *Ramachandran outliers*—into a single number that is on the same scale as crystal-
 925 lographic resolution (Å). A lower score indicates a model of higher quality. **Clashscore** is num-
 926 ber of all-atom steric overlaps greater than 0.4 Å per 1000 atoms, rotamer outliers is percentage
 927 of residues with side-chain conformations outside favored rotamers, and **Ramachandran outliers**
 928 is the percentage of residues falling outside the favored/allowed regions of the Ramachandran plot.
 929 This composite scoring system allows for intuitive interpretation: structures with **MolProbity scores**
 930 **close to their experimental resolution** (e.g., ~ 2.0 for a 2 Å structure) are considered very good,
 931 while higher scores suggest poorer stereochemical quality.

932 **A.7.3 INTERFACE-LEVEL METRICS**

934 **Success Rate** Let C_{nat} be the native interface contact count, computed with the same atom selec-
 935 tion and distance threshold as used for designed structures (heavy-atom pairs within $\tau = 6$ Å). For
 936 the k -th design of the same target, let $C^{(k)}$ be its contact count. Over K designs,

$$938 \quad \text{SR} = \frac{1}{K} \sum_{k=1}^K \mathbf{1}(C^{(k)} > C_{\text{nat}}), \quad (30)$$

941 and we aggregate across targets by averaging target-level SRs (we report the chosen aggregation in
 942 the main text).

943 **Total Energy E** We compute the total energy $E(x)$ of a given conformation x using PyRosetta’s
 944 scoring function (Chaudhury et al., 2010).

945 **Binding energy ΔG .** Given a complex conformation x_{AB} , we approximate the binding free en-
 946 ergy as

$$947 \quad \Delta G = E(x_{AB}) - (E(x_A^*) + E(x_B^*)),$$

948 where x_A^* and x_B^* denote monomer states obtained by spatially separating the partners (retaining
 949 their internal conformations) and then repacking side chains and locally minimizing around the
 950 interface under the same scoring function. This is equivalent to Rosetta’s standard *interface ΔG*
 951 protocol: evaluate the complex energy, then evaluate the separated partners in an “environment-
 952 matched” setting, and take the difference. Negative ΔG indicates favorable binding under this
 953 energy function.

954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971