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ABSTRACT

The rational design of protein—protein complexes remains a fundamental chal-
lenge in synthetic biology and therapeutic development. Current generative meth-
ods often fall short in performing sequence—structure co-design, particularly in
treating the functionally critical protein-protein interface as a first-class target. To
bridge this gap, we present InterfaceDiff, a graph-based diffusion framework for
interface-aware co-design of protein complexes. The complex is encoded by intra-
chain graphs coupled through an explicit bipartite interface graph, concentrating
modeling capacity on physically interacting residues. InterfaceDiff learns a joint
distribution over discrete amino acid sequences and continuous local rigid frames
(rotations and translations) by a simultaneous denoising process. To achieve this
efficiently, we develop a novel graph neural network denoiser inspired by Invari-
ant Point Attention, which performs message passing on the sparse graph repre-
sentation while avoiding the computational overhead of fully SE(3)-equivariant
networks. We evaluate InterfaceDiff across multiple design tasks, demonstrat-
ing its ability to generate diverse, high-quality, and physically plausible all-atom
complexes. Our method achieves strong performance on key biophysical and ge-
ometric metrics, offering a scalable and geometrically efficient approach for con-
trollable protein complex engineering. This work establishes a foundation for
generative co-design of novel molecular interactions.

1 INTRODUCTION

Protein—protein complexes (PPCs) orchestrate signal transduction, immune recognition, enzymatic
regulation, and supramolecular assembly. The ability to rationally design new complexes would
unlock powerful capabilities in synthetic biology and therapeutics (Aloy & Russell, 2002; Huang
et al., 2016). At the heart of PPC design lies the protein—protein interface: a compact, chemically
heterogeneous region where cross-chain residues engage through hydrogen bonds, salt bridges, hy-
drophobic interactions, and so forth (Fig. [I). Treating the interface as a first-class design target,
rather than a byproduct of global modeling, is essential for controlling binding affinity, specificity,
and functional reprogramming (Kortemme & Baker, [2004). Practical design systems must also nav-
igate the dual discreteness and continuity of proteins: amino-acid sequences are discrete, whereas
3D conformations evolve continuously under local stereochemistry and global packing constraints.

Deep learning has transformed protein folding and inverse folding. Protein folding models (Jumper,
et al.| [2021; Baek et al.} 2021;/Abramson et al., 2024} [Boitreaud et al.}2024) attain high accuracy in
predicting the structure of monomers and multi-chain assemblies and provide confidence estimates
that have become standard currencies for evaluation. Inverse folding approaches (Dauparas et al.,
2022; Y1 et al., 2023; [Zhu et al., [2024) design novel sequences based on fixed backbones of native
protein. Concurrently, diffusion models have further advanced researches related to protein (Watson
et al.l 2023} |Yim et al.l 2023} |Ingraham et al., [2023). These advances supply powerful building
blocks for design, yet they typically optimize either structure or sequence in isolation: sequences
are tuned post hoc against a frozen backbone, or structures are predicted for given sequences without
exploring sequence—structure co-variation.
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Figure 1: Illustraion of protein-protein interface. (a) Crystal structure of a protein-protein complex
(PDB ID: 1AN1). The interface region is highlighted in opaque representation (blue and orange),
while the remaining non-interface regions are shown in a semi-transparent view. (b) Close-up view
of the interface in 1AN1. The figure shows the salt bridge interaction between Lysine (LYS) in chain
I (orange) and Aspartic Acid (ASP) in chain E (blue), with a distance of 3.7 A marked.

Previous studies on protein complex design roughly fall into one of the two categories: (i) focusing
only on a specific component of the complex—for instance, binder design targets only the binder,
and antibody design focuses exclusively on the CDRs; (ii) generating complexes of random lengths,
where the plausibility of the results is difficult to establish without experimental validation, even if
they perform well under their chosen evaluation metrics. In contrast to these paradigms, we pursue
sequence—structure co-design of entire protein complexes grounded in real data, with an explicit
emphasis on the interface.

Despite rapid progress, a concrete gap remains for interface-aware co-design. First, complex pre-
diction systems (Abramson et al., |2024; Boitreaud et al.| |2024) predominantly infer conformations
for given sequences, rather than designing new sequences and geometries in tandem. Second, many
design pipelines assume rigid or near-rigid backbones (e.g., inverse folding on fixed scaffolds or
rigid-body docking), leaving interface remodeling largely implicit and providing limited control
over contact patterns and energetics (Hsu et al., 2022; Desta et al., 2020; [Harmalkar & Gray, [2021]).
Third, fully SE(3)-equivariant architectures, while expressive, often incur substantial memory and
engineering overheads that complicate scaling to large or sparse multi-chain graphs (Satorras et al.,
2021;Wang et al.,[2024)). Together, these limitations hinder controllable and diverse interface design
where mutations, local rearrangements, and cross-chain contacts must co-evolve.

Interfaces are naturally represented as graphs: intra-chain neighborhoods capture local stereochem-
istry, while cross-chain contacts define the interface topology (Pancino et al.,2024; Xu et al.| [2024)).
However, most generative pipelines either omit an explicit interface representation or fuse it into
dense all-to-all attention, blurring the boundary between intra-chain modeling and cross-chain de-
sign. An explicit interface graph (S1 & Yan,|[2024) can disentangle these roles. It focuses modeling
capacity on the residues that determine binding, exposes controllable knobs, and eases scaling via
sparse message passing. Moreover, operating in residue-centered local frames provides geometric
robustness to global rigid-body motion while preserving fine-grained orientation cues (Jumper et al.|
2021;|Randolph & Kuhlman, [2024).

These observations above yield four core design principles for effective interfaces.

(1) Interface awareness. Elevate the cross-chain interface to a primary generative target via
an explicit representation (e.g., a bipartite contact graph) rather than relying on it to emerge
implicitly (S1 & Yanl 2024; Gainza et al.| 2020).

(2) Joint co-design. Model sequence and 3D geometry jointly, allowing mutations and con-
formational changes to co-evolve during generation instead of being optimized in disjoint
stages (Ingraham et al.|, 2023 |Hayes et al.l 2025).

(3) Geometric efficiency. Capture local rigid-body cues with residue-centered frames while
avoiding the computational burden of heavy fully equivariant stacks, enabling sparse mes-
sage passing on large and heterogeneous complexes (Luo et al., 2024} [Xie et al., 2024)).

(4) Full-atom readiness. Convert backbone-level designs to all-atom structures for physical
validation and downstream use (e.g., sterics, packing, and rotameric checks) (McPartlon &
Xu, 2023} |[Lee & Kim), 2025)).

[\
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We address these needs by introducing InferfaceDiff, an interface-aware, graph-based diffusion
framework for joint sequence—structure design of protein-protein complexes. At a high level, we
encode each chain as a residue graph and extract an explicit interface bipartite graph by connecting
cross-chain residues within a Ca-distance threshold. We then co-generate discrete sequences and
local rigid frames defined by residue-centered coordinates (N-Ca—C), using a lightweight denoiser
inspired by invariant point attention to perform sparse message passing over intra-chain neighbor-
hoods and the interface graph. Finally, sampled backbones are converted to full-atom models via a
packing step to enable standard structural checks. This interface-centric formulation offers control-
lability and diversity to complex design, while remaining computationally efficient.

In summary, our paper makes the following contributions:

* We propose InterfaceDiff, an interface-aware, graph-based diffusion framework for joint
sequence—structure design of protein—protein complexes. Each chain is encoded as a
residue graph, and an explicit interface bipartite graph connects cross-chain residues; the
model co-generates discrete sequences and local rigid frames.

* Our model employs a geometrically efficient, IPA-inspired sparse denoiser operating in
residue-local frames to capture 3D cues without heavy fully SE(3)-equivariant tensors, im-
proving scalability to large and sparse complexes.

* The framework applies to sequence-structure co-design, fixed-backbone inverse folding
with structure prediction, binder design, and antibody design, and integrates seamlessly
with all-atom packing for practical use. Comprehensive experiments show consistent im-
provements over baselines while producing diverse, physically plausible interfaces.

2 METHODS

In this section, we present InterfaceDiff, an interface-aware diffusion framework for joint se-
quence-structure design of protein—protein complexes. Section 2.1 defines the residue-level graph
representation of each chain together with the bipartite interface graph. Section 2.2 formalizes the
design problem and outlines the overall framework. Section 2.3 specifies the coupled diffusion over
amino-acid identities and residue-local frames. Section 2.4 details the denoising network parame-
terization. Finally, Section 2.5 presents the sampling algorithms for generating diverse, physically
plausible complexes.

2.1 RESIDUE- AND INTERFACE-LEVEL GRAPHS.

A protein—protein complex contains multiple chains; chain ¢ comprises an ordered set of amino-acid
(AA) residues V, with N. = |V,.|. For each chain we construct a residue-level graph

gzhain _ ()((C:hain7 14(;hain7 Eghain).
Every node i € V, represents one residue with attributes

vo= [, Ry, 2™, a?™],
where 72 € R?" is a one-hot AA type, R; € SO(3) is the local coordinate frame constructed from
backbone atoms (N, C,,, C), 25 € R? is the local-frame origin given by the global coordinate
of Cy, and 2™ are physicochemical features. Edges in A" are built by a k-nearest-neighbour
(kNN) rule in C,, space, with k chosen as a function of chain length; ES"" encodes sequence-aware
and geometric features (details in Appendix [A.2). Working in residue-level local frames (R;, zi")
preserves geometry while avoiding heavy global SE(3)-equivariant denoisers.

To capture cross-chain contacts, we build a bipartite interface graph
ginter _ (Xinler’ Aimer7 ‘Einter)7

whose nodes are residues belonging to different chains and whose attributes mirror those above. An
interface edge is added between residues from distinct chains if their minimum inter-atomic distance
is below a threshold 7. E™™°" aggregates geometry and interaction semantics (hydrogen bonds, salt
bridges, hydrophobics, and chemical complementarity indicators), yielding a fine-grained interface
representation.
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Figure 2: Overview of InterfaceDiff. Top: diffusion process; bottom: denoising process. (a)
Extract sequence, structure, and chemical features. (b) Build intra-chain graphs with kNN (solid
edges) and inter-chain graphs via distance thresholds (dashed edges), with rich edge features. (c)
Add noise to sequence, rotation, and translation to obtain a noised graph. (d) Pass the noised graph
and time embeddings into the denoising network, updating node features, which MLP decoders
map to sequence, rotation, and translation. (e) Post-processing with side-chain packing reconstructs
complete complexes, enabling diverse sequences and structures via multiple samples.

2.2 PROBLEM FORMULATION
Let the complex-level graph be A A
g = ({ggham}c7 glmer).
Denote X* = {z®}N X = {R}N with R; € SO(3), and X" = {gans}N - where
N =3"_.N.. We aim to model the conditional density
pG(Xaa Xrol Xtrans | g)
and sample diverse yet physically consistent complexes.

We instantiate a discrete—continuous diffusion over X = {(z%, R;, 2™)} | A forward process
corrupts Xy — X7, while a reverse kernel

po(Xi—1| X1, G)
is parameterized by an IPA-based graph neural network attending jointly to (ES""), and E™er, At
inference time, ancestral sampling from pg produces (X, X™t, X"5) (Fig_|2)).

2.3 DIFFUSION PROCESSES

We employ the cosine variance schedule (Nichol & Dhariwall [202T) with offset s = 0.008:

2fx t/T+s
cos (5 Tts ) Qy
at:2—a at:]-*ﬁta ﬁtzl*
™ S
COS (5 1+s)

Rotations on SO(3) via axis-angle with noise prediction. Let [-]x : R3 — 50(3) be the skew-
symmetric operator and exp : s50(3) — SO(3) the matrix exponential{'| For residue ¢, define the

(D

Qi1

"We use a numerically stable Rodrigues formulation for exp([-]» ) with small-angle series.
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clean axis—angle vector vo ; € R3 from its clean frame Ry.; by Ro,; = exp([vo.i]x). The forward
process adds Gaussian noise in axis—angle space:

vii=Vaivoi+Vi—a €y, €% ~N(0,I3), Ry;=exp([vix)- 2

Given the noised R, ;, the denoiser predicts the so(3) noise 3“ € R3 from which we form an
incremental rotation Uy ; = exp([d;,;]x ). We update by right—multiplicatio

Ropii = Ry Ugg. 3)
The rotation loss compares the updated frame to the clean frame using a trace form

Erot(i) = 3 - tr(ﬁ(—)l]t,iRovi)' (4)

Translations in R3. Let T4 be standardized coordinates in the local frame. The forward diffu-
sion is the standard DDPM:

IS = Var 25" + V1 — o €, €4 ~ N(0,13). ©))
The network predicts local-frame noise ?gjga‘, which is rotated to the global frame by the current
orientation: €;; = R;; €. We use the per-residue noise MSE £p,05(i) = ||€;,; — €|, and the

standard reverse mean update:

~tran 1 ~tran 1-a ~
Ty, = \/7017 (33;2; t— \/17_70; 6t,i> +orz, z~N(0,I3). (6)

Amino-acid types (discrete channel). Let K = 20 and c¢;; € AX~! be type probabilities with
r¥; ~ Cat(cy,;). Two diffusion channels can be applied:

(i) Uniform multinomial.
qlcei | coi) = arcoi+ (1 —ar) 41, af ~ Cat(cy,), @)
with the exact posterior at ¢ — 1 (given the denoiser’s €g ;)
O x (overi+(1—ay)%1)© (@-1Co, + (1 — a-1)%1), ®)
and KL loss lseq (i) = KL(q|| g0)-

(ii) BLOSUM-guided Markov kernel. Let Q; € RE*K be a temperature-annealed transition from
BLOSUMG62 and Q; = ['_, Q. (Yi et al] 2023). Then

ci = Qrcos, oy ~ Cat(cy;), 9

with exact posterior

9, — e, Q) ®7(60,iQt71)
" (€0.:Q¢) e/, ’

and the same KL objective.

e;,; = onehot(z}?;), (10)

Training objective (per-residue). All channels share the schedule coefficients {&:, ay, 8:} and
are denoised jointly by the shared IPA-based network conditioned on G. We compute per-residue
losses and sum over all residues:

N
L = Z (Arotgrot (Z) + )\posgpos (Z) + )\squseq(i)>a (11)

i=1

where Ajot, Apos, Aseq are hyperparameters.

Right-multiplication is consistent with treating 5 as a local-frame update. Left-multiplication is equivalent
under a different convention.
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Table 1: Performance comparison of in Sequence-Structure Co-Design tasks.

Sequence Structure Interface

Model Recovery Rate%1 Perplexity| Diversity?T TM-scoret RMSD] IDDT7 Success Ratet E | AG
AlphaDesign 39.92 7.85 0.19 0.74 17.75  0.79 0.16 33.85 20.38
ESM-IF1 42.83 6.95 0.23 0.81 8.82 0.84 0.37 -10.87 -12.58
ProteinMPNN 48.37 5.46 0.28 0.87 6.81 0.88 0.46 -23.54 -18.49
PiFold 47.28 5.62 0.21 0.78 1473 0.85 0.24 10.34 8.26
GraDe-IF 49.57 5.04 0.31 0.76 16.942 0.86 0.22 23.52 20.83
Bridge-IF 51.14 4.63 0.30 0.87 9.98 0.87 0.25 0.34 -3.73
InterfaceDiff 53.08 4.87 0.32 0.88 3.47 0.89 0.56 -53.92 -47.33
InterfaceDiff;, 52.87 4.95 0.29 0.86 2.95 0.85 0.49 -21.64 -19.53

2.4 TPA-BASED GRAPH DENOISER NETWORK

The reverse kernel pg(X;—1 | Xt,G) is parameterized by a shared graph neural network that pro-
cesses both structural and chemical information. We first encode each chain graph Gehain inde-
pendently, then initialize and process the interface graph G™' to model cross-chain interactions.
The core block is a geometric attention module (inspired by Invariant Point Attention from Jumper
et al[(2021)) that updates residue features using edge relations (E<h"), Einr and SE(3)-invariant
functions of the noisy frames (Ry ;, z}}). After a series of these blocks, the final node represen-

tations are concatenated with a time embeddlng tembea and fed into three distinct decoders @) a
sequence decoder producing €y ;, (ii) a rotation decoder producing so(3) noise (St ;; used in (3)), and
(iii) a translation decoder producing local-frame noise ’e\i"fal used in . @ Further detalls are in

Appendix [A.5]
2.5 SAMPLING ALGORITHMS

Att = T we initialize each residue ¢ independently:
Rp,; ~ Unif (SO(3)), #P ~N(0,13), =, ~ Unif{l,...,20}.

Following this initialization, the model then runs a reverse process, iteratively updating
(8%, Rei, o) — (2 45 Ri—14, 74 ;) using the decoders as above until ¢ = 0. Finally, we re-
construct a full-atom structure in two steps. First, the backbone atoms (N, Cy,, C, O) are assembled
for each residue by applying idealized local geometries relative to their final predicted frames Ry ;
and C,, positions (Engh & Huber, 2006). Second, given the designed sequence and backbone, side
chain atoms are placed with FlowPacker (Lee & Kim| 2025) to obtain the optimized all-atom 3D
complex.

3 EXPERIMENTS

In this section, we evaluate the proposed method through extensive experiments to demonstrate its
effectiveness. The experiments were conducted on datasets derived from PDB(Burley et al., |2025)),
PDBbind v2020, and PINDER(Kovtun et al.,[2024) via multi-stage filtering. We evaluate designed
complexes from three dimensions—sequence, structure, and interface. Details of the filtering pro-
cedure and evaluation metrics are provided in Appendix [A.6|and

3.1 SEQUENCE-STRUCTURE CO-DESIGN

We selected one of the most powerful inverse folding approaches developed in recent years and per-
formed multiple rounds of sampling to obtain diverse sequence designs. These designed sequences
were then used as input to Chai-1, a state-of-the-art model for biomolecular structure prediction,
to generate structural predictions. Since most inverse folding models are designed for single-chain
proteins, we concatenate single chains to design the full sequence of a protein complex.

We tuned prior inverse-folding baselines to their best sequence-recovery settings. As shown in
Table |1} our method achieves higher recovery and intra-target diversity at competitive perplexity,
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Figure 3: Visualization of sequence—structure co-design results. In each subpanel, green marks the
native complex’s long chain and cyan the native short chain. (a—c) GraDe-IF designs(red: designed
long chain; yellow: designed short chain). (d—f) Our method (magenta: designed long chain; orange:
designed short chain). The first column aligns the long chain, the second aligns the short chain, and
the third aligns the entire complex. RMSD values are reported for the aligned components. (g)
Ramachandran plot of the designed complexes. (h) Distribution of MolProbity Score.

and yields the most plausible backbones and side chains. Interface metrics further show the largest
gains in cross-chain interactions. Notably, the low RMSDs reported for inverse-folding methods
largely reflect single-chain cases; for complexes—where binding orientation and inter-chain contacts
matter—their lack of explicit interface modeling degrades performance. On 2R17 (Fig. [3), GraDe-
IF folds individual chains but misplaces the binding site and fails to assemble the complex, whereas
our method correctly folds the entire complex.

3.2 FIXED BACKBONE SEQUENCE DESIGN AND STRUCTURE PREDICTION

Here we fix the backbone and sample sequences with our diffusion model, reusing the inverse-
folding baselines from Table [T for a controlled comparison. Unlike baselines that design sequences
then fold, our pipeline co-designs sequences and structures: each denoising step predicts residue
types conditioned on the backbone and cross-chain context, yielding a self-consistent complex. As
shown in the last row of Table [T} our method matches or exceeds baselines in sequence recovery
while maintaining higher diversity and competitive perplexity, and remains strong on structure-level
metrics. Notably, fixing the backbone reduces RMSD yet does not uniformly improve interface-
level quality. A rigid backbone restricts side-chain rotamers at the interface, often leaving buried
unsatisfied polar atoms, minor steric clashes, or torsional strain. In contrast, when the backbone
is allowed to move, coordinated packing can simultaneously adjust backbone and side chains thus
reducing clashes, which explains improvements in complex-level metrics under flexible-backbone
settings. Qualitatively(Fig. [3), baselines fold monomers correctly yet mis-register the interface,
whereas our co-designed complex attains the intended docking pose with well-packed contacts.

3.3 TARGET-PROTEIN BINDER COMPLEX DESIGN

In this setting, we apply INTERFACEDIFF to directly design binders for a given target protein. As
summarized in Table [2] recovery rate increases while perplexity decreases, and diversity is main-
tained or slightly improved, indicating that the model sharpens interface-specific preferences without
collapsing to a single mode. The predicted conformations exhibit higher TM-score and lower back-
bone RMSD, suggesting closer agreement with target backbones. Besides, interface quality and
energetics improve in tandem: 1DDT rises, the total energy F is lower, and the binding energy AG
becomes more favorable. The case study(PDB ID:2R17) in Fig. ]illustrates that although fixing one
chain improves the inverse-folding model’s sequence-level metrics and the designed binder attains
a lower structural RMSD, the model still struggles to identify the correct interface and to produce
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Table 2: Performance comparison of in Target-Protein Binder Complex Design tasks.

Sequence Structure Interface

Model Recovery Rate%1 Perplexity| Diversity? TM-scoret RMSD/| IDDT1 Success Ratef E | AG |
AlphaDesign 40.68 7.43 0.21 0.78 1645  0.85 0.22 23.85 19.47
ESM-IF1 4493 5.78 0.27 0.84 6.48 0.86 0.49 -22.36 -18.32
ProteinMPNN 51.37 4.76 0.32 0.87 5.98 0.90 0.52 -30.59 -24.16
PiFold 49.15 5.23 0.22 0.83 11.36  0.86 0.30 -8.34 -2.28
GraDe-IF 52.57 4.89 0.31 0.81 12.04 0.88 0.32 -6.10 -9.35
Bridge-IF 53.64 4.24 0.29 0.88 7.51 0.87 0.45 -19.72 -14.26
InterfaceDiff 55.26 425 0.34 0.91 323 090 0.56 -53.92 -47.33

RMSD,=0.278 RMSDg=0.574 RMSD=17.034 RMSD,=0.286 RMSDg=0.535 RMSD=0.904

@ (h)

achandran(native) MolProbityScore Quality Distribution
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Figure 4: Visualization of Target-Protein Binder Design results. In each subpanel, green marks the
native complex’s long chain and cyan the native short chain. (a—c) ESM-IF1 designs (pink: Fixed
long chain; purple: designed short chain). (d—f) Our method (magenta: Fixed long chain; blue:
designed short chain). The first column aligns the long chain, the second aligns the short chain,
and the third aligns the entire complex. RMSD values are reported for the aligned components. (g)
Ramachandran plot of the designed complexes. (h) Distribution of MolProbity Score.

a structurally plausible complex, while our designed binder achieves smaller alignment error, and
displays a consistent energetic funnel toward a physically plausible binding pose. INTERFACEDIFF
jointly improves designability, foldability, and bindability without sacrificing sequence diversity,
demonstrating effective absorption of interface constraints and cross-level consistency.

3.4 ABLATION STUDY

We conduct three ablations under the same training and evaluation protocol as the full model: (i)
removing interaction-aware descriptors from node and edge features; (ii) disabling explicit interface
modeling (thus no direct encouragement or constraint on forming cross-chain contacts); and (iii)
replacing the IPA-based module with a simple multi-layer perceptron (MLP). We present ablation
results, as before, across three dimensions—sequence, structure, and interface. Results are summa-
rized in Table[3] Across all three ablations we observe a consistent, across-the-board degradation
relative to the full model: lower recovery and diversity with higher perplexity, indicating a drift from
the target sequence distribution and sampling collapse, reduced TM-score with increased RMSD
(larger structural deviations and weakened inter-chain conformational coupling), lower IDDT, and
higher F and AG (less favorable folding and binding energetics). The success rate also drops
markedly, showing that designs are less able to create or strengthen interfacial contacts.

These trends support our design hypotheses: (a) interaction-aware node/edge features provide criti-
cal observables that anchor interface constraints; (b) explicit interface modeling is necessary to align
the generative objective with cross-chain contact patterns; and (c) the IPA-based module supplies
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Table 3: Ablation Study on InterfaceDiff.

Sequence Structure Interface
Model Recovery Rate %1 Perplexity| Diversity? TM-scoret RMSD| IDDT1 Success Ratet £ | AG |
w/o interaction-related features 51.46 4.92 0.31 0.85 6.36 0.87 0.58 -36.57 -28.98
w/o interface graph 46.24 5.87 0.26 0.80 1036 0.84 0.37 23.65 21.71
replaced IPA-based network 20.32 10.56 0.11 0.52 1485 0.73 0.12 136.54 125.38
InterfaceDiff (Full) 53.08 4.87 0.32 0.88 347 089 0.69 -53.92 -47.33

equivariant geometry and effective cross-chain information routing, coupling sequence, structure,
and interface optimization. Taken together, the components are complementary and jointly enable
the superior performance of the full model across all reported metrics in Table[3]

4 RELATED WORK

Structure Prediction and Complex Modeling. Deep learning has transformed protein structure
prediction for monomers and complexes: AlphaFold2 and RoseTTAFold delivered high-accuracy
predictions on monomers, while AlphaFold3 and Chai-1 expand this to multimeric complexes (Baek
et al.,2021; Abramson et al.,|2024; Boitreaud et al., 2024). However, such models primarily predict
conformations for given sequences rather than designing novel sequences and structures in tandem.

Generative Models for Sequence and Structure. Inverse folding is a fixed-backbone generative
problem for sequences: ProteinMPNN(Dauparas et al., 2022) handles both single- and multi-chain
sequence design, PiFold (Gao et al., 2022) improves one-shot efficiency, and GraDe-IF (Yi et al.
2023)) introduces diffusion for sequence diversity. As for structure generation, RFdiffusion (Watson
et al., [2023) enables backbone and motif scaffolding; FoldingDiff (Wu et al., [2024) uses angular
representations to generate plausible backbones; Chroma (Ingraham et al., [2023) provides a pro-
grammable generator for protein complexes. Nevertheless, protein—protein interface is typically
handled implicitly as a byproduct of global modeling, offering limited control over contact patterns
or interfacial energetics.

Interface-aware Representations and Graph Methods for PPI Prediction. Graph representa-
tions effectively model residue-residue spatial and interaction relations and are widely employed
for PPI prediction. Recent graph-based PPI models include MGPPI, SE3Graph-PPI, and SpatialP-
PIv2 (Zhao et al.| 2024; |Fang et al.,2024; Hu & Ohuel 2025). These works underscore the utility of
graphs for prediction tasks, yet they do not generate new sequences or structures and usually treat
the interface as emergent rather than an explicit, controllable object for design.

Complex-related Design Tasks. Both binder design and antibody design are tasks related to
protein—protein complex design. The former designs a protein that binds to a specified protein
chain(Luo et al., [2022} |Watson et al.| 2023; [Vazquez Torres et al., |2024), whereas the latter de-
signs the CDRs given a specified counterpart(Cutting et al., [2025; |[Kenlay et al., 2024). However,
most current pipelines do not explicitly model the interface during generation, so mutation—interface
coupling remains indirect.

5 CONCLUSION

We present InterfaceDiff, a generative model for interface-aware joint sequence—structure co-design
of protein—protein complexes that couples intra-chain kNN graphs with an explicit bipartite interface
graph and uses a lightweight IPA-inspired denoiser to sample amino-acid identities and residue-local
rigid frames. INTERFACEDIFF produces diverse, high-quality, all-atom complexes; supports flexible
co-design, fixed-backbone inverse folding with structure prediction, and target-conditioned binder
design; and scales via sparse message passing while remaining compatible with standard packing
for full-atom validation.
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A APPENDIX

A.1 USE oF LLMs

We used ChatGPT (OpenAl) strictly for language editing of this manuscript. In particular, it was
used to polish sentence wording and to check spelling and grammar. All suggestions were manually
reviewed and integrated by the authors. The model did not generate new technical content, analyses,
figures, tables, or references, and it was not used to design experiments or interpret results. No
confidential data beyond the manuscript text was provided to the model. The authors take full
responsibility for the paper’s content.

A.2 GRAPH CONSTRUCTION DETAILS

Local frames and node features. For residue ¢, we place the origin at t; = C,, ; and construct a
right-handed orthonormal basis from backbone bonds by Gram—Schmidt:

o1 — C,—Cq, o (N; —Cq;) — (N; —Cq,€1)€1
"TIC = Cailll TP (NG = Cai) — (N; — Coy, 108

ég :él Xég,
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and set R; = [é1,6q,€;3]. Each node concatenates: a one-hot sequence identity,
an eight-state secondary-structure code from a standard assignment on the complex, four
coarse chemical descriptors (hydropathy, signed charge, normalized volume, polarity), trigono-
metric encodings of (¢;,;,w;) computed from (C;_1,N;,C,;,C;), (N;,Cq,Ci,Nit1),
(Ca.i, Ci,Niy1,Cq it1), and a multiscale exposure descriptor p; formed by softly aggregating
neighbor displacement vectors over a geometric ladder of length scales:

w1 Zenve wi? (6 = t)]] o) [t — t;]?
i = e _ el 5 ocexp( - ) )
ZjeN(i) w1t — t5 ]
For downstream all-atom reconstruction, we store per-residue heavy-atom coordinates in a fixed-size
tensor with a companion mask.

Intra-chain neighborhoods and edge attributes. Within each chain, we build a kNN graph on
Ca coordinates with an adaptive k that scales sublinearly with chain length and is lower bounded
to ensure local connectivity. For a directed edge (i — j), we encode: (i) the clipped sequence
separation |¢ — j| via one-hot bins; (ii) a binary contact flag based on a Ca—Ca cutoff; (iii) a radial
distance embedding using Gaussian kernels with geometrically spaced bandwidths applied to the
Euclidean distance; and (iv) a rigid-motion-aware orientation block

T T
pi; = R; (t;: — t)), Ri; =R, R;,

where p;; is the relative displacement expressed in the destination frame and R;; is the relative

rotation, which we vectorize for learning.

Interface bipartite graph and cross-chain features. To extract the interaction surface, we select
the two longest polypeptide chains and identify cross-chain residue pairs by a heavy-atom radius
search; for each residue in the longer chain, all residues in the partner chain that contain any non-
hydrogen atom within a short A-scale radius are considered interfacial partners, and we instantiate
a directed edge for each detected pair. Interface edges reuse the geometric core above (distance em-
bedding plus p;; and R;; computed with the joint (R, t) of both chains) and append residue-residue
compatibility features derived from node-chemistry (polarity match, opposite-charge indicator, ab-
solute differences in normalized volume and hydropathy), together with four canonical motif detec-
tors based on explicit distance tests over residue-specific atom sets: hydrogen bonds (donor—acceptor
within a short cutoff including backbone N/O), salt bridges (acidic—basic side-chain atoms within a
slightly larger cutoff), aromatic—aromatic interactions (ring-centroid proximity for PHE/TYR/TRP),
and cation—7 interactions (charged nitrogens to aromatic centroids). If no cross-chain neighbor is
found the complex is treated as non-interacting and skipped in training; on curated heterodimers this
condition is rare. The per-chain graphs and the interface bipartite graph are finally packaged with
(R, t) and heavy-atom tensors to support sparse message passing both within chains and across the
interface, aligning with interface-aware co-design objectives.

A.3 EXPONENTIAL MAP ON SO(3)

We parametrize 3D rotations by a rotation vector v; € R3 and map it to a rotation matrix R; €
SO(3) via the matrix exponential

0 -V, Uy
R, = eXp([Vz'}x% Vlx = l Uz 0 _Uﬂvl ) (12)
—Vy Uy 0
where [v]y is the skew-symmetric (“hat”) operator satisfying [v]x w = v x w for any w € R3.
Geometrically, letting § = ||v|| and u = v/0 (if @ # 0), R = exp([v]« ) represents a right-handed
rotation by angle 6 about axis u.

Closed form (Rodrigues). The exponential admits the Rodrigues formula

R =1+ A®0)[v]«x + B(0) V], A@:“?,B@:l%gﬂ, (13)

with I the 3 x 3 identity. For small 6, we use the series

2 4
AO)~1-%+ 55, B~

which yields numerically stable evaluations of equation [I3]

1 62 i
2~ 21t 7300 (14)
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Differentials and backpropagation. The differential of the exponential map can be written using
the left Jacobian J;(v) € R3*3:
1 —cos6 0 —sinf
dR = R[J(v)dv] ,  Ji(v) =1- —g WV + T[v]i.
Equation equationis convenient for computing gradients of losses defined on SO(3) with respect
to the vector parameter v.

5)

Log map and invertibility. The inverse map (up to the usual 7-angle axis sign ambiguity) is

D - o meRTy (16)

2sind
where (-)V is the inverse of the hat operator. In practice we clamp the argument of arccos to [—1, 1],
use the series in equation [14| for 6 ~ 0, and handle § ~ 7 with care due to axis ambiguity. These
choices make equation [I2}-equation [T robust in training and inference.

0 = arccos(

A.4 BACKGROUND ON DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Nichol & Dhariwall [2021])
are a class of latent variable models designed for high-fidelity data generation. They conceptualize
generation as the reversal of a fixed data corruption process. This is accomplished through two
complementary Markov processes: a forward (diffusion) process that gradually adds noise to data,
and a learned reverse (generative) process that systematically removes it.

A.4.1 FORWARD PROCESS

The forward process, denoted by ¢, incrementally perturbs a clean data sample xg ~ ¢(zg) over
T discrete time steps by adding Gaussian noise. The process is governed by a predefined variance
schedule {3;}_,, where 3; € (0,1). The distribution of the noisy sample z; at step ¢ given the
sample from the previous step x;_1 is defined as:

q(z¢|ze—1) = N(2e5 /1 = Brai—1, BiI) (17)
where N (+; u, 021) is a Gaussian distribution with mean y and covariance 1.

A significant property of this process is the ability to sample x; at any arbitrary timestep ¢ directly

from the original data zy. By setting oy = 1 — B; and & = szl o, the conditional distribution
g(z¢|xo) can be expressed in a closed form:

q(ze|zo) = N(ze; vVawao, (1 — a)I) (18)

This allows for efficient training, as we can reformulate x; using the reparameterization trick with a
standard Gaussian noise variable € ~ A/(0,I):

Ty = Vouxe + V1 — age (19)
As t — T, the distribution ¢(xr|zg) converges to an isotropic Gaussian distribution, p(xr) =

N(0,1), effectively erasing all information from the original sample z.

A.4.2 REVERSE PROCESS

The generative part of the model is the reverse process, py, which aims to reverse the forward
diffusion. It starts with a sample z drawn from the prior, p(z1) = N (0,I), and learns to iteratively
denoise it to produce a sample x that resembles the true data distribution. Each transition in this
chain is defined as a conditional Gaussian parameterized by a neural network:

po(ze—1|ze) = N(@—1; po(ze,t), Xo (2, 1)) (20)

While the exact posterior q(x:—1 |2+, xg) is tractable, it requires knowledge of ¢, which is unavail-
able during generation. Therefore, the model approximates this posterior. Instead of predicting the
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mean g directly, it is common practice to train a neural network, eg(z¢,t), to predict the noise
component € from Equation The mean of the reverse transition is then parameterized as:

1 B
— | 2y — ——=co(xy,t 21
7 (o~ o) @
The variance Xg(x¢,t) is typically set to a non-learned, time-dependent constant, such as
Ze(xt,t) = BtI

The model is trained by optimizing a simplified objective function that minimizes the mean squared
error between the true and predicted noise at each step:

— — 2
Lsimple(e) = Etw[l,T],zo,e |:||6 - 69(\/07tz0 + v 1-— ateat)|| :| (22)

This objective directly trains the network to predict and remove the noise added during the forward
process, enabling the reverse process to generate realistic data samples.

ﬂ9(xtv t) =

A.5 DETAILED ARCHITECTURE OF THE IPA-BASED DENOISER NETWORK

This appendix provides the technical details for the graph denoiser network described in the main
text. The network updates node hidden representations h; for each residue ¢ by aggregating infor-
mation from its neighbors j € N (i) using a geometric attention mechanism.

Geometric Attention. The attention weight «;; between two nodes is computed from a combina-
tion of three distinct signals:

1
ay; = Softmax | —= (logits 4. + logits .. + logits ...
J N (1) (\/5( 1S hod giLs), 1S gpat 1)>

The components are defined as follows:

* logits,4.: A standard attention score based on feature similarity. It is the dot product

between query and key vectors that are linearly projected from the node features h; and h;.
* logits,,;,: A bias term derived directly from the graph structure. It is computed by a linear
projection of the edge attributes F;; connecting the two residues.

* logits,,;a: An SE(3)-invariant geometric score based on the distances between sets of
virtual “attention points” attached to each residue’s local frame. It is formulated as:

P’I
: 2 2 ¢ i trans (1.7 trans\ |2
1085 iy = — 21 55 O I(@iiat, + 2f) — (@] + )|
q 5=
p=1
where (z}', z/*") are the residue’s noisy frame coordinates at timestep ¢. The local co-
ordinates for the query points q;, € R? and key points ki € R? are learned via linear
projections from the node features h; and h;, respectively. P, is the number of query/key
points, and -y is a learnable scaling parameter.

Information Aggregation and Update. Using the computed attention weights v, the block ag-
gregates information along three pathways: (1) a weighted sum of value features projected from
neighboring node representations h;; (2) a weighted sum of the edge features F;;; and (3) a geomet-
ric pathway where a set of “value points”, learned similarly to query/key points, are aggregated. The
resulting local coordinates, directions, and norms of these aggregated value points serve as geomet-
ric features. These three streams of information are concatenated, passed through a feed-forward
network, and used to update the node representation h; via a residual connection.

Decoder Input. After the final attention block, the resulting node representations A" are con-
ditioned on the diffusion timestep ¢. A time embedding is created from the corresponding noise
schedule parameter 5; and concatenated with the node features to form the input for the final de-
coders: ‘

in; = Concat(hi™ [3;,sin(f;), cos(B:)])

This combined vector in; is then processed by three separate MLP decoders to predict Cg ;, ﬁo,i

(via its axis-angle vector), and €5,
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A.6 DATASET PREPARATION

To construct a high-quality dataset of protein-protein complexes, we employed a multi-step filtering
process. To ensure the reliability and completeness of the data, we curated authentic protein com-
plexes from the latest release of the PDBBurley et al.|(2025), PDBbind v2020, and PINDERKovtun
et al. (2024) for model training and evaluation. First, we selected protein-protein complexes with
structural resolution better than 3.5 A, and exclude complexes containing RNA or DNA structures.

Specifically, we focused exclusively on heterodimers for two key reasons. First, heterodimers typi-
cally exhibit more complex interaction interfaces characterized by asymmetric geometric, sequence,
and physicochemical features, making them ideal for studying diverse and intricate cross-chain in-
teractions. Second, homodimers often involve symmetric chains with repetitive features, which can
lead to overfitting in machine learning models and hinder their ability to generalize to more nuanced
heterodimeric interactions.

To ensure the suitability of the dataset for downstream modeling tasks, we filtered out proteins
with chain lengths shorter than 30 residues. Chains shorter than this threshold may lack suffi-
cient structural complexity and functional relevance to contribute meaningfully to the analysis of
protein-protein interactions. Additionally, proteins with chain lengths exceeding 512 residues were
excluded to maintain computational efficiency. Finally, to guarantee data quality, the PDBfixer tool
was used to repair protein structures, ensuring that all atomic coordinates for amino acid residues
were complete. This comprehensive filtering process resulted in a curated dataset of protein-protein
complexes suitable for downstream analysis and modeling.

A.7 EVALUATION METRICS — DEFINITIONS AND FORMULAS

A.7.1 SEQUENCE-LEVEL METRICS

Sequence Recovery Let the sequence length be V. Denote the one-hot encoding of the native
amino acid at position i by y; € {0,1}?° and the model prediction (probability or one-hot) by
¥: € [0,1]2°. With arg max mapping to a discrete residue identity, the recovery is

N
1
Rec = N ; 1( argmaxy; = argmax yz) (23)

Perplexity Let p; € [0,1]?° be the predicted categorical distribution at position i, and y; the
one-hot ground truth. The mean cross-entropy is

|20 1 X
CE = _szyi,a logpia = _N;bgpi’“*(i)v (24)

i=1a=1
where a*(4) is the native residue index at position 4. Perplexity is

PPL = exp(CE). (25)

Sequence Diversity For the same target, suppose M sampled sequences are generated, each with

discrete residues 51(7") at position ¢ for sample m. The average pairwise similarity across all un-

ordered pairs (m, n), m < n, is

N
o 2 1 (m) _ (n)
1<m<n<M i=1
Diversity is then defined as
Div = 1 — Sim. 27
A.7.2 STRUCTURE-LEVEL METRICS

Ramachandran plot report the percentages of residues whose (¢, ¢) dihedrals fall in favored re-
gions. Backbone RMSD is computed after optimal superposition (e.g., Kabsch) using main-chain
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atoms (N, C,, C):

Ny

1 - 2
bbRMSD = m;”r"_r” , (28)

where T; and T/ denote optimally superposed backbone atom coordinates.

The TM-score (Template Modeling score)Zhang & Skolnick! (2004) is a length-independent metric
for measuring the structural similarity between two protein structures. Unlike RMSD, which can
be dominated by local deviations, TM-score normalizes by protein length and applies a distance-
dependent weighting function. The score ranges from O (no similarity) to 1 (perfect match), with
values above 0.5 generally indicating the same fold and values below 0.2 corresponding to random
similarity.

1 Lai 1
TM-score = max 29)

Ltargel -1 1+ (do(gi“ ))2

where:

* Liager: length of the target protein.
e L, number of aligned residue pairs.
* d;: distance between the ¢-th pair of aligned Ca atoms.

e dy (nget): scale parameter depending on protein length, defined as

dO(Ltargel) = 124 \3/ Ltarget - ].5 - 18

This formulation makes TM-score less sensitive to local structural variations and more reliable for
assessing overall fold similarity. Scores above 0.5 typically indicate the same fold, while scores
below 0.2 correspond to random structural similarity.

IDDT The Local Distance Difference Test (IDDT) is a superposition-free local structural similarity
metric that evaluates how well a predicted structure preserves pairwise distances relative to a refer-
ence (Mariani et al.||2013). Unlike global metrics such as RMSD, IDDT is insensitive to rigid-body
motions and domain reorientations, focusing instead on the geometric consistency of each residue
(or atom) within its local environment. This yields robustness on multi-domain proteins, flexible
loops, and protein—protein interfaces.

Let the reference and predicted structures be {x}}, and {x;}, (x refers to atoms or residues).

For each center i, define the reference neighbofrhéod No={j#i: |x— x| < Ro}, with
neighborhood radius Ry (commonly Ry € [10, 15] A). Given distance tolerances 7 = {7y,..., Tk }

(commonly {0.5,1,2,4} A), define

K
1
sip = 2 D (b = xill = Ikt = x5l < 7).
k=1

The per-center score and global IDDT are

M
1 1
IDDT; = — ., IDDT = — S IDDT;,
2 >

taking values in [0, 1] (often reported on [0,100]). Neighborhoods are defined on the reference
structure and empty neighborhoods are typically excluded in practice.

There are some variants of IDDT: (i) IDDT-Cca: builds neighborhoods and distances on Ca only;
fast and sensitive to backbone geometry. (ii) All-atom IDDT: captures side-chain fidelity but requires
consistent handling of missing atoms and altLocs. (iii) Region-/interface-restricted IDDT: computed
on subsets such as binding sites or PPI interfaces (e.g., residues with any heavy atom within 8 A
across chains), reported as IDDT-BS / interface-IDDT.
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RMSD is affected by alignment and outliers; TM-score emphasizes global topology. IDDT offers a
local perspective on geometric fidelity, making it particularly informative for multi-domain motion,
flexible loops, active sites, and interfaces. In reporting, we recommend combining global metrics
(TM-score/RMSD) with IDDT or region-restricted IDDT.

The MolProbity scoreChen et al.|(2010) is a widely used structural quality metric for macromolec-
ular models. It combines several geometric validation measures—particularly clashscore, rotamer
outliers, and Ramachandran outliers—into a single number that is on the same scale as crystal-
lographic resolution (A). A lower score indicates a model of higher quality. Clashscore is num-
ber of all-atom steric overlaps greater than 0.4 A per 1000 atoms, rotamer outliers is percentage
of residues with side-chain conformations outside favored rotamers, and Ramachandran outliers
is the percentage of residues falling outside the favored/allowed regions of the Ramachandran plot.
This composite scoring system allows for intuitive interpretation: structures with MolProbity scores
close to their experimental resolution (e.g., ~ 2.0 for a 2 A structure) are considered very good,
while higher scores suggest poorer stereochemical quality.

A.7.3 INTERFACE-LEVEL METRICS

Success Rate Let Cy, be the native interface contact count, computed with the same atom selec-
tion and distance threshold as used for designed structures (heavy-atom pairs within 7 = 6 A). For
the k-th design of the same target, let C'%) be its contact count. Over K designs,

1 K

SR = - ; 1(C® > Cha), (30)

and we aggregate across targets by averaging target-level SRs (we report the chosen aggregation in
the main text).

Total Energy £ We compute the total energy F(z) of a given conformation x using PyRosetta’s
scoring function(Chaudhury et al., 2010).

Binding energy AG. Given a complex conformation = 45, we approximate the binding free en-
ergy as
AG = E(zap) — (E(z%) + E(z})),

where % and z7; denote monomer states obtained by spatially separating the partners (retaining
their internal conformations) and then repacking side chains and locally minimizing around the
interface under the same scoring function. This is equivalent to Rosetta’s standard interface AG
protocol: evaluate the complex energy, then evaluate the separated partners in an “environment-
matched” setting, and take the difference. Negative AG indicates favorable binding under this
energy function.
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