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ABSTRACT

Instruction-guided image editing methods have demonstrated significant poten-
tial by training diffusion models on automatically synthesized or manually an-
notated image editing pairs. However, these methods remain far from practical,
real-life applications. We identify three primary challenges contributing to this
gap. Firstly, existing models have limited editing skills due to the biased synthesis
process. Secondly, these methods are trained with datasets with a high volume
of noise and artifacts. This is due to the application of simple filtering methods
like CLIP-score. Thirdly, all these datasets are restricted to a single low resolu-
tion and fixed aspect ratio, limiting the versatility to handle real-world use cases.
In this paper, we present OMNI-EDIT, which is an omnipotent editor to handle
seven different image editing tasks with any aspect ratio seamlessly. Our con-
tribution is in four folds: (1) OMNI-EDIT is trained by utilizing the supervision
from seven different specialist models to ensure task coverage. (2) we utilize im-
portance sampling based on the scores provided by large multimodal models (like
GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new
editing architecture called EditNet to greatly boost the editing success rate, (4) we
provide images with different aspect ratios to ensure that our model can handle
any image in the wild. We have curated a test set containing images of different
aspect ratios, accompanied by diverse instructions to cover different tasks. Both
automatic evaluation and human evaluations demonstrate that OMNI-EDIT can
significantly outperform all the existing models.

1 INTRODUCTION

Image editing, particularly when following user instructions to apply semantic transformations to
real-world photos, has seen significant advancements. Recently, text-guided image editing (Brooks
et al., 2023) has gained prominence over traditional methods such as mask-based or region-based
editing (Meng et al., 2022). With the rise of diffusion models (Rombach et al., 2022; Podell et al.,
2024; Chen et al., 2024a; Sauer et al., 2024), numerous diffusion-based image editing techniques
have emerged. Generally, they can be roughly divided into two types: (1) Inversion-based meth-
ods (Parmar et al., 2023; Kawar et al., 2023; Gal et al., 2023; Xu et al., 2023; Tumanyan et al.,
2023; Tsaban & Passos, 2023) propose to perform zero-shot image editing by inverting the diffusion
process and manipulating the attention map in the intermediate diffusion steps to achieve desired
editing goal. (2) End-to-end methods (Brooks et al., 2023; Zhang et al., 2024a; Sheynin et al., 2024;
Zhao et al., 2024; Fu et al., 2024) propose to fine-tune an existing diffusion model on large-scale
image editing pairs to learn the editing operation in an end-to-end fashion. End-to-end methods have
generally achieved better performance than inversion-based methods and gained higher popularity.

Despite their effectiveness, end-to-end methods face a significant limitation: the scarcity of human-
annotated image editing pairs. As a result, all current end-to-end approaches depend on syn-
thetic training data. For instance, existing datasets are synthesized using techniques such as
Prompt2Prompt (Hertz et al., 2023) or mask-based editing models like SD-Inpaint (Rombach et al.,
2022), and DALLE-2/3 (Ramesh et al., 2022; Betker et al., 2023). However, these synthetic data
generation pipelines exhibit significant biases, resulting in the following limitations:

Limited Editing Capabilities: The synthetic data is heavily influenced by the underlying generation
models. For example, Prompt2Prompt struggles with localized edits, such as adding, removing, or
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Table 1: Comparison of OMNI-EDIT with all the existing end-to-end image editing models.
Property InstructP2P MagicBrush UltraEdit MGIE HQEdit CosXL OMNI-EDIT

Training Dataset Properties

Real Image? ✗ ✓ ✓ ✓ ✗ ✗ ✓
Any Res? ✗ ✗ ✗ ✗ ✗ ✗ ✓
High Res? ✗ ✗ ✗ ✗ ✓ ✗ ✓

Fine-grained Image Editing Skills

Obj-Swap ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Obj-Add ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Obj-Remove ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Attribute ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Back-Swap ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Environment ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Style ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆

swapping objects, while SD-Inpaint and DALLE-2 are ineffective at global edits, such as style or
background changes. As a result, models trained on such data inherit these limitations.

Poor Data Quality Control: Most approaches use simplified filtering mechanisms like CLIP-
score (Radford et al., 2021) or DINO-score (Caron et al., 2021) to automatically select training
samples. However, recent studies (Ku et al., 2024) show that these metrics exhibit poor correlation
with actual data quality, leading to suboptimal training data that negatively impacts the model.

Lack of Support for Varying Resolutions: All current models are trained on square image editing
pairs, making their generalization to non-square images poor.

In our preliminary studies, we curate a few prompts for seven different desired tasks to observe their
success rate across the board. We show our findings in Table 1. This show that these models are
truly biased in their skills caused by the underlying synthesis pipeline.

In this paper, we introduce OMNI-EDIT, a novel model designed to address these challenges through
four key innovations:

1. Specialist-to-Generalist Supervision: We propose learning a generalist editing model, OMNI-
EDIT, by leveraging supervision from multiple specialist models. Unlike previous approaches that
rely on a single expert, we conduct an extensive survey and construct (or train) seven experts, each
specializing in a different editing task. These specialists provide supervisory signals to OMNI-EDIT.

2. Importance Sampling: To ensure high-quality training data, we employ large multimodal
models to assign quality scores to synthesized samples. Given the computational cost of GPT-
4o (Achiam et al., 2023), we first distill its scoring ability into InternVL2 (Chen et al., 2024b)
through medium-sized samples. Then we use the InternVL2 model for large-scale scoring.

3. EditNet Architecture: We introduce EditNet, a novel diffusion-transformer-based architec-
ture (Peebles & Xie, 2022) that facilitates interaction between the control branch and the original
branch via intermediate representations. This architecture enhances OMNI-EDIT ’s ability to com-
prehend diverse editing tasks.

4. Support for Any Aspect Ratio: During training, we incorporate a mix of images with varying
aspect ratios as well as high resolution, ensuring that OMNI-EDIT can handle images of any aspect
ratio with any degradation in the output quality.

We curate an image editing benchmark OMNI-EDIT-BENCH, which contains diverse images of dif-
ferent resolutions and diverse prompts that cover all the listed editing skills. We perform comprehen-
sive automatic and human evaluation to show the significant boost of OMNI-EDIT over the existing
baseline models like CosXL-Edit (Boesel & Rombach, 2024), UltraEdit (Zhao et al., 2024), etc.

2 PRELIMINARIES

2.1 TEXT-TO-IMAGE DIFFUSION MODELS

Diffusion models (Song et al., 2021; Ho et al., 2020) are a class of latent variable models parameter-
ized by θ, defined as pθ(x0) :=

∫
pθ(x0:T ) dx1:T , where x0 ∼ q(x0) represents the original data,

and x1, . . . ,xT are progressively noisier latent representations of the input image x0. Through-
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Figure 1: Editing high-resolution multi-aspect images with OMNI-EDIT OMNI-EDIT is an
instruction-based image editing generalist capable of performing diverse editing tasks across dif-
ferent aspect ratios and resolutions. It accurately follows instructions while preserving the original
image’s fidelity. We suggest zooming in for better visualization.

out the process, the dimensionality of x0 and the latent variables x1:T remains consistent, with
x0:T ∈ Rd, where d corresponds to the product of the image’s height, width, and channels. The
forward (diffusion) process, denoted as q(x1:T |x0), is a predefined Markov chain that incrementally
adds Gaussian noise to the data according to a pre-defined schedule {βt}Tt=1. The process of forward
diffusion is defined as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βt xt−1, βtI), (1)

where N denotes a Gaussian distribution, and βt controls the amount of noise added at each step.
The objective of diffusion models is to reverse this diffusion process by learning the distribution
pθ(xt−1|xt), which enables the reconstruction of the original data x0 from a noisy latent xt. This
reduces to a denoising problem where the model ϵθ is trained to denoise the sample xt ∼ q(xt|x0)
back into x0. The maximum log-likelihood training objective breaks down to minimizing the
weighted mean squared error between the model’s prediction x̂θ(xt, c) and the true data x0:

argmax
θ

log pθ(x0|c) = argmin
θ

E(x0,c)∼D
[
Eϵ,t

[
wt · ∥x̂θ(xt, c)− x0∥22

]]
, (2)

where (x0, c) pairs come from the dataset D, with c representing the text prompt. The term wt is
a weighting factor applied to the loss at each timestep t. For simplicity, prior papers (Song et al.,
2021; Ho et al., 2020; Karras et al., 2022) will set wt to be 1.
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2.2 INSTRUCTION-BASED IMAGE EDITING IN SUPERVISED LEARNING

Instruction-based image editing can be formulated as a supervised learning problem. Existing meth-
ods (Brooks et al., 2023; Zhang et al., 2024a) often adopt a paired training dataset of text editing
instructions and images before and after the edit. An image editing diffusion model is then trained
on this dataset. The latent diffusion objective is defined as:

argmax
θ

log pθ(x
′
0|x0, c) = argmin

θ
E(x′

0,x0,c)∼D
[
Eϵ,t∥x̂θ(xt, c)− x′

0∥22
]
, (3)

where (x′
0,x0, c) triples are sampled from the dataset D with x0 denoting the source image, c

denoting the editing instruction and x′
0 denoting the target image.

3 LEARNING WITH SPECIALIST SUPERVISION

In this section, we introduce the entire specialist-to-generalist learning framework to build OMNI-
EDIT. We describe the overall learning objective in subsection 3.1. We then describe how we
learn the specialists in subsection 3.2 and the importance weighting function in subsection 3.3. In
Figure 2, we show the overview of the OMNI-EDIT training pipeline.

Object-Swap
Specialist

Object-Removal
Specialist

Style-Transfer
Specialist

Background-Swap
Specialist

captions

Object-Addition
Specialist

Object-Removal
Specialist

Object-Property
Specialist

Any Resolution

Confidence Scoring 
function

+
Object-Swap
Specialist

Semantic Consistency Score:  10
Perceptual Quality Score: 10
Confidence score: 𝝀𝟏

Semantic Consistency Score:  10
Perceptual Quality Score: 8
Confidence score: 𝝀𝟐

𝝀𝟏

𝝀𝟐

Figure 2: Overview of the OMNI-EDIT training pipeline.

3.1 LEARNING OBJECTIVE

We assume there is a groundtruth editing model p(x′|x, c), which can perform any type of editing
tasks perfectly according to the instruction c. Our goal is to minimize the divergence between
pθ(x

′|x, c) with p(x′|x, c) by updating the parameters θ:

L(θ) :=
∑
x,c

DKL(p(x
′|x, c)∥pθ(x′|x, c)) = −

∑
x,c

∑
x′

p(x′|x, c) log pθ(x′|x, c) + C (4)
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Table 2: Task Definitions and Examples
Editing Tasks Definition Instruction c Example

Object Swap c describes an object to replace by specifying both the object to remove
and the new object to add, along with their properties such as appear-
ance and location.

Replace the black cat with a brown dog in the
image.

Object Removal c describes which object to remove by specifying the object’s properties
such as appearance, location, and size.

Remove the black cat from the image.

Object Addition c describes a new object to add by specifying the object’s properties
such as appearance and location.

Add a red car to the left side of the image.

Attribute Modification c describes how to modify the properties of an object, such as changing
its color, facial expression, material or texture.

Change the blue car to a red car.

Background Swap c describes how to replace the background of the image, specifying
what the new background should be.

Replace the background with a space-ship inte-
rior.

Environment Change c describes a change to the overall environment, such as the weather,
lighting, or season, without altering specific objects.

Change the scene from daytime to nighttime.

Style Transfer c describes how to apply a specific artistic style or visual effect to the
image, altering its overall appearance while keeping the content the
same.

Apply a watercolor painting style to the image.

where C is a constant, which we leave out in the following derivation. However, since we don’t
have access to p(x′|x, c), we adopt importance sampling for approximation:

L(θ) = −
∑
x,c

∑
x′

q(x′|x, c)p(x
′|x, c)

q(x′|x, c)
log pθ(x

′|x, c)

≈ −E(x,c)∼D

[
Ex′∼q(x′|x,c) [λ(x

′,x, c) log pθ(x
′|x, c)]

]
≈ −E(x,c)∼D

[
Ex′∼qs(x′|x,c) [λ(x

′,x, c) log pθ(x
′|x, c)]

] (5)

where q(x′|x, c) is the proposal distribution and λ(·) is the importance function. To better approx-
imate the groundtruth distribution p(x′|x, c), we propose to use an ensemble model q(x′|x, c). In
essence, q(x′|x, c) := qs(x

′|x, c), where qs is a specialist distribution decided by the type of the
instruction c (e.g. object removal, object addition, stylization, etc). Combing with Equation 3, our
objective can be rewritten as:

argmin
θ

L(θ) = argmin
θ

E(x,c)∼DEx′∼qs(x′|x,c)λ(x
′,x, c)

[
Eϵ,t∥x̂θ(xt,x, c)− x′∥22

]
(6)

The whole process can be described as: we first sample a pair from dataset D, and then choose
the corresponding specialist qs to sample demonstrations x′ for our editing model x̂θ(xt,x, c) to
approximate with an importance weight of λ(x′,x, c). We formally provide the algorithm in 1. In
our specialist-to-generalist framework, we need to have a series of specialist models {qs(·)}s and an
importance function λ(·). We describe them separately in subsection 3.2 and subsection 3.3.

3.2 CONSTRUCTING SPECIALIST MODELS

We group the image editing task into 7 categories as summarized in Table 2. For each category,
we train or build a task specialist ps(x′ | x, c) to generate millions of examples. Table 2 provides
detailed information on task groups and example editing instructions c. In this section, we briefly
summarize each specialist, with details available in Appendix A.1.

Object Replacement. We trained an image-inpainting model to serve as the specialist qobj replace
for object replacement. Given a image x and an object caption cobj and a object mask Mobj. The
qobj replace can fill the content indicated by the mask with an object in cobj. We then generate an object
replacement sample by masking out an existing object and fill the image with a new object.
Object Removal. We trained an image inpainting model to serve as the specialist qobj removal for
object removal. We use a similar procedure as in the object replacement but use a predicted back-
ground content caption to inpaint the masked image.
Object Addition. We treat object addition as the inverse task of object removal. Specifically, for
each pair of editing examples generated by the object removal specialist, we reverse the roles of the
source and target images to create a new pair.
Attribute Modification. We adopt the Prompt-to-Prompt (P2P) (Hertz et al., 2023) pipeline to gen-
erate examples. To enable precise modification, we adapt the method from Sheynin et al. (2024)
where we provide a mask Mobj for the object and force P2P to only make edits inside the mask.
Background Swap. We trained an image inpainting model to serve as the specialist
qobj background swap. We use a similar procedure as in the object replacement but use an inverse mask

5
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(a) EditNet (b) ControlNet (c) InstructPix2Pix

Figure 3: Architecture Comparison between EditNet(ours), ControlNet and InstructPix2Pix for DiT
models. Unlike ControlNet’s parallel execution, EditNet allows adaptive adjustment of control sig-
nals by intermediate representations interaction between the control branch and the original branch.
EditNet also updates the text representation, enabling better task understanding.

of the object to indicate the background and guide the inpainting.
Environment Modification. For environment modification, since the edit will happen globally on
the image, we use normal P2P pipeline without applying an additional mask.
Style Transfer. We use CosXL-Edit (Boesel & Rombach, 2024) as the specialist model as its train-
ing data contains a large number of style transfering examples. We provide CosXL-Edit with (x, c),
and let it generates the edited image x′.

3.3 IMPORTANCE WEIGHTING

The importance weighting function λ takes as input a tuple of source image, edited image, and edit-
ing prompt. Its purpose is to assign higher weights to data points that are more likely to be sampled
from the ground truth distribution, and lower weights to the unlikely ones. This is essentially a qual-
ity measure to up-weight high-quality samples. Unlike previous work, we do not use CLIP score
because prior work (Jiang et al., 2024) has shown its low correlation with human judges. Instead,
we propose to use large multimodal models (LMMs) to approximate the weighting function, as they
demonstrate strong image understanding. Following VIEScore (Ku et al., 2024), we designed a
prompting template for GPT-4o (Achiam et al., 2023) to evaluate the image editing pairs and output
a score on a scale from 0 to 10. We then filter out data with a score greater than or equal to 9, so the
LMM essentially serves as a binary weighting function:

λ(x′,x, c) =

{
1, if LMM(prompt,x′,x, c) ≥ 9

0, otherwise

Details of the prompt template are provided in the Appendix.

While the GPT-4o is an effective choice for this task, scoring large-scale datasets with millions of
examples is extremely costly and time-consuming. Therefore, we employ knowledge distillation
from GPT-4o to a smaller 8B model, InternVL2 (Chen et al., 2024b). For each task, we sample 50K
data points and instruct GPT-4o to output both a score and a score rationale. We fine-tune internVL2
on these GPT-4o-generated examples. After fine-tuning, InternVL2 performs as an ideal scoring
function due to its smaller size and efficiency. A comparison of the model’s performance before and
after fine-tuning is presented in the Appendix. Finally, we apply the fine-tuned InternVL2 model to
filter data across a dataset with millions of samples, retaining only those with a score ≥ 9.

4 EDITNET

We found that directly fine-tuning a pre-trained high-quality diffusion model like SD3 using im-
age concatenation methods(Brooks et al., 2023) compromises the model’s original representational
capabilities (see Figure 6 and Section 5.2 for details comparison).

To enable a diffusion transformer to perform instruction-based image editing while preserving its
original capabilities, we introduce EditNet to build OMNI-EDIT. EditNet can effectively transform
common DIT models like SD3 into editing models.As illustrated in Figure 3, we replicate each layer
of the original DIT block as a control branch. The control branch DIT blocks allow interaction be-
tween the original DIT tokens, conditional image tokens, and the editing prompts. The output of
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the control branch tokens is then added to the original DIT tokens and editing prompts. Since the
original DIT blocks are trained for generation tasks and are not aware of the editing instructions
specifying which contents to modify and how to modify them, this design allows the control branch
DIT to adjust the representations of DIT tokens and editing prompts according to the editing instruc-
tion, while still leveraging the strong generation ability of the DIT blocks. Compared to ControlNet
(Zhang et al., 2023), our approach offers two key advantages that make it more suitable for image
editing tasks: First, ControlNet does not update text representations, making it challenging to exe-
cute editing tasks based on instruction, particularly object removal, as it fails to understand removal
intent(see Figure 5). Secondly, ControlNet’s control branch operates in parallel without access to the
original branch’s intermediate representations. This fixed precomputation of control signals restricts
the overall representation power of the network. We provide an ablation study on the OMNI-EDIT
architecture design in Section5.2.

Original Image OmniEdit (Ours) CosXL-Edit UltraEdit InstructPix2Pix MagicBrush

“Replace the Green Lantern
shirt with a NASA logo T-shirt.”

“Remove his watch.”

“Add a red bird on 
the branch above.”

“Change the color of the 
green bandana to red.”

Figure 4: Qualitative comparison between baselines and OMNI-EDIT on a subset of the test set.

5 EXPERIMENTS

In this section, we first provide statistics of the OMNI-EDIT training set and test set. Then we
introduce the human evaluation protocol and comparative baseline system. We present the main
results in Section 5.1, highlighting the advantages of OMNI-EDIT in tacking multi-aspect ratio,
multi-resolution, and multi-task image editing. In Section 5.2, we study the advantages of impor-
tance sampling for synthetic data. In Section 5.2, we perform an analysis to study the design of
OMNI-EDIT.

OMNI-EDIT Training Dataset. We constructed the training dataset D by sampling high-resolution
images with a minimum resolution of 1 megapixel from the LAION-5B (Schuhmann et al., 2022)
and OpenImageV6 (Kuznetsova et al., 2020) databases. The images cover a range of aspect ratios
including 1:1, 2:3, 3:2, 3:4, 4:3, 9:16, and 16:9. For the task of object swap, we employed a spe-
cialist model to generate 1.5 million entries. We then applied InternVL2 for importance weighting,
retaining samples with scores of 9 or higher, resulting in a dataset of 150K entries for this task. Sim-
ilarly, we generate around 1M samples for each task, then keep the top 10% as the final dataset. The
final training dataset comprises 505K entries, with detailed information provided in Appendix 5.
OMNI-EDIT-Bench. To create a high-resolution, multi-aspect ratio, multi-task benchmark for
instruction-based image editing, we manually collected 62 images from pexels (2024) and LAION-
5B (Schuhmann et al., 2022). These images cover a variety of aspect ratios, including 1:1, 2:3, 3:2,
3:4, 4:3, 9:16, and 16:9. We ensured that the images feature a diverse range of scenes and object
counts, from single to complex compositions. Additionally, we selected images with a relatively
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Table 3: Main evaluation results on Omni-Edit-Bench. In each column, the highest score is bolded,
and the second-highest is underlined.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit 5.88 2.73 2.79 6.09 2.01 2.39 - - - -
SDEdit 6.71 2.18 2.78 6.31 2.06 2.48 - - - -

End-to-End Methods

InstructPix2Pix 7.05 3.04 3.45 6.46 1.88 2.31 - - - -
MagicBrush 6.11 3.53 3.60 6.36 2.27 2.61 - - - -
UltraEdit(SD-3) 6.44 4.66 4.86 6.49 4.33 4.45 0.72 0.52 0.57 0.20
HQ-Edit 5.42 2.15 2.25 6.18 1.71 1.96 0.80 0.27 0.29 0.10
CosXL-Edit 8.34 5.81 6.00 7.01 4.90 4.81 0.82 0.56 0.59 0.35
HIVE 5.35 3.65 3.57 5.84 2.84 3.05 - - - -

OMNI-EDIT 8.38 6.66 6.98 7.06 5.82 5.78 0.83 0.71 0.69 0.55
∆ - Best baseline +0.04 +0.85 +0.98 +0.05 +0.92 +0.97 +0.01 +0.15 +0.10 +0.20

high aesthetic score to better align with the practical use cases of image editing. For each image, we
tasked the model with performing 7 tasks as outlined in Table 2. This results in a total of 434 edits.
OMNI-EDIT implementation details. The OMNI-EDIT model is built upon Stable diffusion 3
(Esser et al., 2024) with EditNet architecture. The stable diffusion 3 has 24 DiT layers. Each layer
has a corresponding EditNet layer. We train OMNI-EDIT on the 505K OMNI-EDIT training dataset
for 2 epochs on a single node with 8 H100 GPUs.
Baseline models. We compare OMNI-EDIT with 8 other text-guided image editing baselines: Mag-
icBrush (Zhang et al., 2024a), InstructPix2Pix (Brooks et al., 2023), UltraEdit(SD3) (Zhao et al.,
2024), DiffEdit (Couairon et al., 2022), SDEdit (Meng et al., 2022), CosXL-Edit (Boesel & Rom-
bach, 2024), HIVE (Zhang et al., 2024b) and HQ-Edit (Hui et al., 2024).
Evaluations Protocol We conduct both human evaluation and automatic evaluation. For the human
evaluation, we follow the procedure from Ku et al. (2023) to rate in two criteria: Semantic Consis-
tency (SC) and Perceptual Quality (PQ). Both scores are in {0, 0.5, 1}. For SC, the human subject
is asked to rate the consistency between 1) the edited image and the editing instruction (whether the
editing instruction is reflected on the edited image) and between 2) the source image and the edited
image (whether the model makes the edit that is beyond the editing instruction). For PQ, the subject
is asked to rate on the quality of edited image). We then calculate a overall score O =

√
SC × PQ

that measures the overall quality of the edit. We also calculate the accuracy of the edit, which is
defined by the percentage of SC = 1 among all examples. We recruit four human raters and require
them to evaluate all the editing examples. For LMMs’ evaluation, we follow the procedure from Ku
et al. (2024) where models (in particular, we chose GPT4o and Gemini) are also asked to give SC
and PQ scores but on a scale of 0-10. We then normalize the scale to 0-1.

5.1 MAIN RESULTS

We provide a qualitative comparison with baseline models in Figure 4. We show the top 4 baselines
with OMNI-EDIT on a subset of the OMNI-EDIT-Bench. We provide more results in Fig 12 and 13.
Our main results are detailed in Table 7, where we provide the VIEScore and conduct human eval-
uation on the Top2 baselines and OMNI-EDIT. In Figure 1, OMNI-EDIT demonstrates its capability
to handle diverse editing tasks across various aspect ratios and resolutions. The results are notably
sharp and clear, especially in the addition/swap task, where new content is seamlessly integrated.
This underscores the effectiveness of the Edit-Net design in preserving the original image generation
capabilities of the base text-image generative model. Similarly, in Figure 4, OMNI-EDIT uniquely
adds a clean and distinct NASA logo onto a T-shirt. Table 7 corroborates this with OMNI-EDIT
achieving the highest Perceptual Quality (PQ) score among the models evaluated.

We highlight the efficacy of our proposed specialist-to-generalist learning framework. Unlike base-
line models that utilize a single method for generating synthetic data—often the prompt-to-prompt
method—This method typically alters the entire image, obscuring task-specific data. In contrast,
OMNI-EDIT leverages task-specific data curated by experts, resulting in a clearer task distribution
and improved adherence to editing instructions. Both the VIEScore and human evaluations in Ta-
ble 7 demonstrate that our method significantly outperforms the best baseline in following editing
instructions accurately and minimizing over-editing. For instance, baseline models frequently mis-
understand the task intent as illustrated in Figure 4, where the CosXL-Edit model fails to recognize
the removal task and incorrectly interprets a bird addition as a swap between a panda and a bird.
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Lastly, baseline models often produce blurry images on the OMNI-EDIT-Bench, as they are trained
at resolutions limited to 512x512 or even 256x256, and they perform poorly on non-square aspect
ratios. For example, with a 3:4 aspect ratio, the baselines struggle to perform editing. OMNI-EDIT,
trained on data with multiple aspect ratios, maintains robust editing capabilities across the diverse
aspect ratios encountered on the Omni-Bench, as evidenced in Figure 4.

5.2 ABLATION STUDY

In this section, We provide an ablation study w.r.t importance weighting and EditNet.

Ablation study on the importance sampling. We study a baseline that utilizes the same archi-
tecture as OMNI-EDIT, but instead of applying importance scoring and filtering, we sample 505K
examples directly from the 5M pre-filtering dataset 5 and compare it with OMNI-EDIT. As shown
in Table 4, we observe a significant decrease in VIEScores for both PQ and SC metrics.

Ablation Study on OMNI-EDIT Architecture Design. We conducted an analysis of OMNI-EDIT
’s architectural design in comparison with two baseline models: OMNI-EDIT-controlnet and OMNI-
EDIT-controlnet+textcontrol. OMNI-EDIT-controlnet is an adaptation of SD3-ControlNet trained
on the OMNI-EDIT training dataset, while OMNI-EDIT-controlnet+textcontrol is a variant of SD3-
ControlNet that, at each layer, not only integrates the image tokens from the ControlNet branch with
the image tokens in the generative branch but also incorporates text tokens from the ControlNet
branch alongside those in the generative text branch.

Table 4: Ablation on importance sampling and OMNI-EDIT architecture design.
Models VIEScore (GPT4o) VIEScore (Gemini)

PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑

OMNI-EDIT 8.38 6.66 6.98 7.06 5.82 5.78
OMNI-EDIT- controlnet + textcontrol 6.45 4.70 4.89 6.50 4.35 4.48
OMNI-EDIT- controlnet 6.35 4.60 4.75 6.40 4.25 4.35
OMNI-EDIT w/o importance sampling 6.20 2.95 3.30 6.40 1.80 2.25

Our analysis, as shown in Figure 5, reveals that OMNI-EDIT-controlnet struggled to accurately
capture task intent. This is primarily because the ControlNet branch does not update the text rep-
resentation. For instance, in object removal tasks, prompts like ”Remove ObjA” are common, yet
the original DIT block remains unchanged, causing it to mistakenly generate an image of ”ObjA.”
On the other hand, although OMNI-EDIT-controlnet+textcontrol successfully updates the text repre-
sentation, it still encounters difficulties in content removal. The substantial VIEScores gap between
OMNI-EDIT-controlnet+textcontrol and OMNI-EDIT in Table 4 underscores the importance of the
intermediate representation interaction design in EditNet. We also compared OMNI-EDIT with the
token concatenation method used in InstructPix2Pix. Token concatenation requires fine-tuning the
entire network, which can distort the network’s original representations. As illustrated in Figure 6,
after fine-tuning on OMNI-EDIT training set, the representation of Batman is altered. In contrast,
EditNet preserves the original representation of Batman while still learning the object swap task.

(a) Original Image (b) Edited by OmniEdit-controlnet (c) Edited by Omni-Edit(c) Edited by OmniEdit-controlnet+textcontrol 

Figure 5: OMNI-EDIT-controlnet fails to grasp the task intent, while OMNI-EDIT-
controlnet+textcontrol—a variant with a text-updating branch—recognizes the intent but struggles
with content removal. In contrast, OMNI-EDIT accurately removes content.

6 RELATED WORK

Image Editing via Generation Editing real images according to specific user requirements has been
a longstanding research challenge (Crowson et al., 2022; Liu et al., 2020; Zhang et al., 2023; Shi
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(a) Original Image (b) Edited Image by SD3-Concat (c) Edited Image by Omni-Edit (d) Image Generated by SD3

Figure 6: (a) shows the source image. (d) presents images generated by SD3 in response to prompts
for ’an upper body picture of Batman’ and ’a shiny red vintage Chevrolet Bel Air car.’ We use
the prompts ’Replace the man with Batman’ and ’Add a shiny red vintage Chevrolet Bel Air car to
the right” to OMNI-EDIT and SD3-Concatenation, which was trained on OMNI-EDIT training data.
From (b) and (c), one can observe that OMNI-EDIT preserves the generation capabilities of SD3,
while SD3-Concatenation exhibits a notable degradation in generation capability.

et al., 2022; Ling et al., 2021). Since the introduction of large-scale diffusion models, such as Stable
Diffusion (Rombach et al., 2022; Podell et al., 2024), significant progress has been made in tackling
image editing tasks. SDEdit (Meng et al., 2022) introduced an approach that adds noise to the input
image at an intermediate diffusion step, followed by denoising guided by the target text description
to generate the edited image. Subsequent methods, such as Prompt-to-Prompt (Hertz et al., 2023)
and Null-Text Inversion (Mokady et al., 2023), have focused on manipulating attention maps during
intermediate diffusion steps for image editing. Other techniques like Blended Diffusion (Avrahami
et al., 2022) and DiffEdit (Couairon et al., 2022) utilize masks to blend regions of the original image
into the edited output. More recently, the field has seen a shift towards supervised methods, such
as InstructP2P (Brooks et al., 2023), HIVE (Zhang et al., 2024b), and MagicBrush (Zhang et al.,
2024a), which incorporate user-written instructions in an end-to-end framework. Our work follows
this direction to develop end-to-end editing models without inversion.

Image Editing Datasets Due to the difficulty of collecting expert-annotated editing pairs, existing
approaches rely heavily on synthetic data to train editing models. InstructP2P (Brooks et al., 2023)
was the first to curate large-scale editing datasets using prompt-to-prompt filtering with CLIP scores.
MagicBrush (Zhang et al., 2024a) subsequently improved data quality by incorporating a human-
in-the-loop annotation pipeline based on DALLE-2. However, DALLE-2, primarily an inpainting-
based method, struggles with global editing tasks such as style transfer and attribute modification.
More recently, HQ-Edit (Hui et al., 2024) utilized DALLE-3 to curate editing pairs, although the
source and target images lack pixel-to-pixel alignment, which is critical for preserving fine-grained
details. Emu Edit (Sheynin et al., 2024) scaled up the training dataset to 10 million proprietary pairs,
resulting in strong performance, but the lack of public access to their model checkpoints or API
makes direct comparison difficult. UltraEdit (Zhao et al., 2024) proposed another inpainting-based
approach, avoiding the use of DALLE-2 or DALLE-3 for data curation. However, like MagicBrush,
it still faces limitations in handling complex global edits. Our work is the first to leverage multiple
specialists to significantly expand the range of editing capabilities. Additionally, we are the first to
use more reliable large multimodal models, for quality control in the editing process.

7 DISCUSSION

In this paper, we identify the imbalanced skills in the existing end-to-end image editing methods and
propose a new framework to build more omnipotent image editing models. We surveyed the field
and chose several approaches as our specialists to synthesize candidate pairs and adopt weighted loss
to supervise the single generalist model. Our approach has shown significant quality boost across
the broad editing skills. Throughout the experiments, we found that the output quality is highly
influenced by the underlying base model. Due to the weakness of SD3, our approach is still not
achieving its highest potential. In the future, we plan to use Flux or other more capable base models
to see how much further we can reach with the current framework.
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A APPENDIX

Task Pre-Filtering
Number

After-Filtering
Number

Object Swap 1,500,000 150,000

Object Removal 1,000,000 100,000

Object Addition 1,000,000 100,000

Background Swap 500,000 50,000

Environment
Change

500,000 50,000

Style Transfer 250,000 25,000

Object Property
Modification

300,000 30,000

Total 5,050,000 505,000

Table 5: Omni-Edit training dataset statistics reflecting the number of samples before and after
importance scoring and filtering with o-score ≥ 9.

Algorithm 1 Specialist-to-Generalist Learning Framework

Require: Dataset D = {(xi, ci)}Ni=1 of image-text instruction pairs
Require: K task specialist model qk
Ensure: Generalist diffusion model parameterized by θ

1: Initialize a buffer G ← ∅
2: for each pair of {(xs, cs)} in D do
3: qs = f(cs), where f : C → S maps from the instruction space to the set of specialists.
4: x′

s ∼ qs(x
′
s|xs, cs).

5: Compute importance weight λ(x′
s,xs, cs)

6: G ← G ∪ {(x′
s,xs, cs), λ(x

′
s,xs, cs)}

7: end for
8: Train generalist model θ on dataset G using Eq. 6

A.1 TRAINING DATA GENERATION DETAILS

A.1.1 OBJECT REPLACEMENT

We trained a dedicated image-inpainting model to serve as an expert for object replacement. How-
ever, in the object replacement task, the new object often differs in shape from the original.
As illustrated in Figure 7, existing inpainting models heavily rely on accurate masks to generate the
new object. In practice, producing exact masks for the new object is not feasible. Consequently,
these models struggle to handle shape differences when filling the region.

To enhance the robustness of the inpainter, we introduce four mask augmentation strategies during
training:

1. Random Strokes: Employ randomly generated brush-like patterns as masks to introduce
diverse masking shapes.

2. Connected Random Strokes: Draw random brush-like patterns connected to the original
object mask, simulating more complex and irregular mask shapes.

3. Dilated Masking: Expand the object mask using a randomly sized elliptical dilation kernel,
capped at image width÷ 10, to simulate variability in mask size and shape.

4. Bounding Box Masking: Use the object’s bounding box region as the mask.

These augmentations improve the model’s adaptability to variations in object shapes, enabling it to
handle diverse replacement scenarios effectively.
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OmniEdit-Swap Expert-BrushNet(ours) BrushNetOriginal Image

Figure 7: Comparison between the state-of-the-art (SOTA) inpainter and our proposed Object-Swap
Expert using content prompts “submarine” and “tiger”. The results demonstrate the effectiveness
of our approach in handling object replacement with varying shapes.

Our inpainting model utilizes the BrushNet architecture (Ju et al., 2024), initialized with the
Juggernaut-XL backbone for enhanced performance. The model is trained on the LAION-Aesthetic
dataset (Schuhmann et al., 2022) for 800,000 steps using 8 A100 GPUs.

During training, given a source image xsrc and an object caption Cobj, we employ GroundingDINO
and SAM to generate an object mask Mobj. We then apply the four augmentation strategies men-
tioned above. The masked image is created by removing the object from the source image:

xmasked = xsrc ⊙ (1−Mobj) (7)

Here, ⊙ denotes element-wise multiplication, effectively masking out the object in xsrc. Both the
mask Mobj and the object caption Cobj are provided as inputs to the expert model qobj replace. The
expert qobj replace is trained to reconstruct (inpaint) the original source image xsrc from the masked
image.

During inference, we sample 200K images from the LAION and OpenImages datasets, ensuring a
diverse range of resolutions close to 1 megapixel. To generate diverse and creative data for ob-
ject replacement, for each image, we utilize GPT-4o to propose five object replacement scenarios.
Specifically, GPT-4o identifies five interesting source objects Csrc obj within the image and suggests
corresponding target objects Ctrg obj for replacement.

For each proposed replacement, we perform the following steps:

1. Mask Generation: Use GroundingDINO and SAM to generate the object mask Msrc obj for
the source object Csrc obj.

2. Mask Dilation: Apply a dilation operation to Msrc obj to expand the mask boundaries.

3. Image Editing: Apply the expert model to generate the edited image xedit by replacing the
source object with the target object Ctrg obj:

xedit = qobj replace (xsrc ⊙ (1−Msrc obj), Msrc obj, Ctrg obj) (8)

In this equation:

• xsrc ⊙ (1−Msrc obj) represents the source image with the target object masked out.

• Msrc obj is the mask of the source object to be replaced.

• Ctrg obj is the caption of the target object for replacement.
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Then a pair of instruction-based image editing examples will be: ⟨xsrc,xedit, T ⟩. The instruction T
initially just be “Replace Csrc obj with Ctrg obj ”. We then employ large multimodal models (LMMs)
to generate more detailed natural language instructions.

A.1.2 OBJECT REMOVAL

Existing object removal models present two main challenges: Generative model-based object re-
movers excel at generating natural fillings but often introduce new content, even when provided
with an empty prompt. In contrast, non-generative models like LaMa do not generate new content
but struggle with removal quality.

OmniEdit-Removal Expert-BrushNet(ours) BrushNet with Empty PromptOriginal Image Lama Remover

Figure 8: Comparison between state-of-the-art (SOTA) object removers and our proposed Object-
Removal Expert. Generative model-based object removers excel at generating natural fillings but
often introduce new content, even when provided with an empty prompt. In contrast, non-generative
models like LaMa do not generate new content but struggle with removal quality. Our proposed
Object-Removal Expert strikes a balance between these approaches.

To address these limitations, we trained a dedicated image-inpainting model to serve as an expert for
object removal. The inpainter is designed to fill arbitrary-shaped masks with plausible background
content during inference. To achieve this, we introduce two new approaches:

1. Unique Training Process Tailored to Object Removal: During training, the inpainter is specif-
ically trained to reconstruct random strokes. This encourages the model to generate realistic back-
ground textures rather than introducing new content during inference.

2. Guessing Background Content Using LMMs: Instead of feeding an empty prompt, we uti-
lize LMMs to predict the likely background content after object removal. This further reduces the
likelihood of generating new content.

Given a source image xsrc and its corresponding caption Csrc, we randomly apply strokes to create a
mask Msrc. The masked image is then generated as follows:

xmasked = xsrc ⊙ (1−Msrc)

Here, ⊙ denotes element-wise multiplication, effectively masking out the object in xsrc. Both the
mask Msrc and the image caption Csrc are provided as inputs to the expert model qobj removal. The
expert qobj removal is trained to reconstruct (inpaint) the original source image xsrc from the masked
image.

Our inpainting model adopts the BrushNet architecture (Ju et al., 2024), initialized with the
Juggernaut-XL backbone for enhanced performance. The model is trained on the LAION-Aesthetic
dataset (Schuhmann et al., 2022) for 600,000 steps using 8 A100 GPUs.

To generate training data for object removal, we sample 200K images from the LAION and Open-
Images datasets, ensuring a diverse range of resolutions close to 1 megapixel. This dataset diversity
enhances the robustness and generalizability of the model.

Although our trained inpainter does not tend to generate new content, we observed that directly
using an empty prompt during inference leads to suboptimal results, sometimes producing uniform
textures that do not naturally blend with the surrounding content. To address this, we propose
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leveraging GPT-4 to predict the likely background content after object removal. This predicted
background content is then used as a prompt for the inpainter. This approach avoids generating
new content and ensures the synthesis of natural and seamless background textures.

For each image, we utilize GPT-4 to propose five objects to remove and predict the content of the
space after removal. Specifically, GPT-4 identifies five interesting source objects Csrc obj within the
image and predicts the new content after removing the object Ctrg background.

For each proposed removal, we perform the following steps:

1. Mask Generation: Use GroundingDINO and SAM to generate the object mask Msrc obj
for the source object Csrc obj.

2. Image Editing: Apply the expert model to generate the edited image xedit by infilling the
masked region with the predicted background content Ctrg background:

xedit = qobj removal (xsrc ⊙ (1−Msrc obj), Msrc obj, Ctrg background) (9)

In this equation:

• xsrc ⊙ (1−Msrc obj) represents the source image with the target object masked out.

• Msrc obj is the mask of the source object to be removed.

• Ctrg background is the predicted content for the background after object removal.

Each instruction-based image editing example is represented as: ⟨xsrc,xedit, T ⟩. Initially, the in-
struction T is set to “Remove Csrc obj from the image”. We then employ large multimodal models
(LMMs) to generate more detailed natural language instructions.

A.1.3 OBJECT ADDITION

We conceptualize the object addition task as the inverse of the object removal process. Specifically,
for each pair of editing examples generated by the object removal expert, we swap the roles of the
source and target images to create a new pair tailored for object addition. This approach leverages the
naturalness and artifact-free quality of the original source images, ensuring high-quality additions.
Given a pair of editing examples ⟨xsrc removal,xedit removal, cremoval⟩ generated for object removal and
Csrc obj removal represents the object to remove. We transform this pair into an object addition example
by swapping xsrc and xedit, and modifying the instruction accordingly. The resulting pair for object
addition is ⟨xsrc = xedit removal,xedit = xsrc removal, c⟩, where c is the new instruction defined as “Add
Csrc obj removal to the image.”

A.1.4 ATTRIBUTE MODIFICATION

We adapt the Prompt-to-Prompt (P2P) (Hertz et al., 2023; Sheynin et al., 2024) where pipeline where
a text-guided image generation model is provided with a pair of captions ⟨Csrc, Cedit⟩ and injects
cross-attention maps from the input image generation to that during edited image generation. For
example, a pair could be ⟨“a blue backpack”, “a purple backpack”⟩ with the corresponding editing
instruction “make the backpack purple”.

However, as shown in the figure 9, the P2P pipeline often alters the texture of the object and
significantly changes the entire image, resulting in a very low success rate. To address this
issue, we propose an approach that incorporates a mask during the P2P process. This mask
helps preserve the general shape and texture of the object while maintaining the background intact.

Specifically, to enable precise attribute modification of the desired object (e.g., the “backpack” in
our example), we introduce an additional mask Mobj that isolates the object of interest. To create
a pair of captions, we first obtain the source captions Csrc from Zhang (2024). We then use GPT-4
to identify an object Cobj in the original caption Csrc, propose an editing instruction to modify an
attribute of Cobj, and output the edited caption Cedit with the object’s updated attribute reflected.

We first let the image generation model PlaygroundV2.5 or Juggernaut-XL to generate a source
image xsrc using Csrc. We then use GroundingDINO to extract mask Mobj that masks the object
from the source image. We then apply P2P generation using PlaygroundV2.5 or Juggernaut-XL
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OmniEdit-Attr-Modi-Expert(ours) Prompt2PromptOriginal Image Lama Remover

Change the balloon's
color to black.

Make the boy
look frightened

Figure 9: Comparison between the P2P pipeline and our proposed Expert model for attribute editing
tasks. The P2P pipeline often alters the texture of the object and significantly changes the overall
image, whereas our Expert model achieves precise editing while preserving the original image’s
integrity.

with caption pair ⟨Csrc, Cedit⟩. During the generation, we use the mask to control precise image
editing control. In particular, let xsrc,t denote the noisy source image at step t and xedit,t denote the
noisy edited image at step t, we apply the mask and force the new noisy edited image at time t be
Mobj ⊙ xedited,t + (1−Mobj)⊙ xinput,t. In other words, we keep background the same and only edit
the object selected.

A.1.5 ENVIRONMENT MODIFICATION

For environment modification, we use P2P pipeline to generate original and edited image. To en-
sure structural consistency between two images, we apply a mask of the foreground to main-
tain details in the foreground while changing the background. In particular, given a source image
caption Csrc, we use GPT4 to identify the foreground (e.g., an object or a human) and apply Ground-
ingDINO to extract mask Mforeground. During the generation, let xsrc,t denote the noisy source image
at step t and xedit,t denote the noisy edited image at t. We apply the mask so that the new noisy
edited image at time t is Mforeground ⊙ xsrc,t + (1 −Mforeground) ⊙ xedit,t. We also set τenv = 0.7 so
that this mask operation on noisy image is only applied at the first τenv of all timesteps.

A.1.6 BACKGROUND SWAP

We trained an image inpainting model to serve as the specialist qobj background swap. Similar to the ob-
ject removal expert, the inpainter is specifically trained to reconstruct random strokes, encouraging
the model to generate realistic background textures rather than new content during inference. The
same inpainter model as in the object removal task is used as the expert for the background swap
task.

To generate data for background swapping, we follow a procedure similar to that of object replace-
ment but use an inverse mask of the object to indicate the background area to guide the inpainting.
Specifically, we sample 200K images from the LAION and OpenImages datasets. For each image,
we employ GPT-4 to propose five background replacement scenarios. GPT-4 identifies the main
objects Csrc obj in the image and suggests five interesting backgrounds Ctrg back for replacement.
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Human: You are a professional digital artist. You will have to evaluate the effectiveness of
the AI-generated image(s) based on the given rules. You will have to give your output in
this way (Keep your reasoning concise and short.):
{
”score” : [...],
”reasoning” : ”...”
}
and don’t output anything else.

Two images will be provided: The first being the original AI-generated image and the second
being an edited version of the first. The objective is to evaluate how successfully the editing
instruction has been executed in the second image. Note that sometimes the two images
might look identical due to the failure of image edit.
From a scale 0 to 10:
A score from 0 to 10 will be given based on the success of the editing.
- 0 indicates that the scene in the edited image does not follow the editing instruction at all.
- 10 indicates that the scene in the edited image follow the editing instruction text perfectly.
- If the object in the instruction is not present in the original image at all, the score will be 0.

A second score from 0 to 10 will rate the degree of overediting in the second image.
- 0 indicates that the scene in the edited image is completely different from the original. - 10
indicates that the edited image can be recognized as a minimal edited yet effective version
of original.
Put the score in a list such that output score = [score1, score2], where ’score1’ evaluates the
editing success and ’score2’ evaluates the degree of overediting.

Editing instruction: <instruction>
<Image> Image embed</Image>
<Image> Image embed</Image>

Assistant:

Figure 10: Prompt for evaluating SC score.

A.1.7 STYLE TRANSFER

We use CosXL-Edit (Boesel & Rombach, 2024) as the expert style transfer model. We provide
CosXL-Edit with ⟨xsrc, c⟩ and let it generates the edited image xedited.

A.1.8 IMPORTANCE SAMPLING

We apply the importance sampling as described in Section 3.3. Example prompts that are provided
to LMMs are shown in Figure 10 and 11. We compute the Overall score following (Ku et al., 2024)
as the importance weight. After importance sampling, we obtain our training dataset described in
Table 5.

A.2 ADDITIONAL EVALUATION RESULT

We present additional evaluation results. In Table 6, we compare OMNI-EDIT with specialist models
of three tasks on Omni-Edit-Bench (other specialist models cannot take in input image). As is shown
in the Table, OMNI-EDIT shows comparable performance as the specialist models on tasks that
specialist models specialize.

Figure 12 shows additional comparisons between OMNI-EDIT other baseline models. We observe
that OMNI-EDIT consistently outperforms other baselines.
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Human: You are a professional digital artist. You will have to evaluate the effectiveness of
the AI-generated image.
All the images and humans in the images are AI-generated. So you may not worry about
privacy or confidentiality.
You must focus solely on the technical quality and artifacts in the image, and **do not
consider whether the context is natural or not**.
Your evaluation should focus on:
- Distortions
- Unusual body parts or proportions
- Unnatural Object Shapes
Rate the image on a scale from 0 to 10, where:
- 0 indicates significant AI-artifacts.
- 10 indicates an artifact-free image.
You will have to give your output in this way (Keep your reasoning concise and short.):
{
”score”: ...,
”reasoning”: ”...”
}
and don’t output anything else.

<Image> Image embed</Image>
<Image> Image embed</Image>

Assistant:

Figure 11: Prompt for evaluating PQ score.

Table 6: Comparison between OMNI-EDIT and our specialist models.

VIEScore (GPT4o) VIEScore (Gemini)

PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑
Obj-Remove-Specialist 9.10 7.76 7.82 7.46 5.39 4.84

OMNI-EDIT 8.45 7.16 7.23 7.37 5.45 5.09

Obj-Replacement-Specialist 8.48 6.92 7.02 7.06 5.68 5.36
OMNI-EDIT 8.95 7.74 8.14 7.00 7.77 7.09

Style-Transfer-Specialist 8.08 7.47 7.37 7.97 6.61 6.76
OMNI-EDIT 7.98 5.77 6.16 8.24 5.24 6.08

A.3 OMNI-EDIT-BENCH EVALUATION BREAKDOWN
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Original Image OmniEdit (Ours) CosXL-Edit UltraEdit InstructPix2Pix MagicBrushHQ-Edit

“Replace the field with 
a snowy mountain landscape.”

“Replace the puppy 
with a kitten.”

“Remove the tower 
in the background.”

“Add a pair of 
reading glasses.”

“Change the color of the wetsuit to
bright yellow.”

“Change the style to a watercolor
painting.”

“Transform the setting to a snowy
winter evening.”

“Remove the plant”

“Replace the lantern with a sword”

Figure 12: Additional qualitative comparisons between OMNI-EDIT and the baseline methods on
OMNI-EDIT-BENCH
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Original Image OmniEdit (Ours) CosXL-Edit UltraEdit InstructPix2Pix MagicBrushHQ-Edit

“Change the style to an
 oil painting”

“Change the color of the person's dress
to bright red”

“Add a butterfly”

“Change the color of the
teacup to light blue”

“Replace the bubble wand
with fire”

“Change the style to a watercolor
painting”

“Replace the panda
with a sloth”

“Replace the tower with
a lighthouse”

“Add a cute white kitten on the lap of
the person on the left”

Figure 13: Additional qualitative comparisons between OMNI-EDIT and the baseline methods on
OMNI-EDIT-BENCH
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Original Image OmniEdit (Ours) Emu Edit

Add a duck taking a bath
in the sink. 

Add a surfboard to the
roof of the black SUV. 

Let there be a firepit 
in front of the tent.

Let there be a green
blanket on top of the 

dog.

Add Bigfoot in the
background along-side 

one of the cows.

Add a fork next to the
slice.

Add a grey dog next to
the boys.

Figure 14: Qualitative comparisons between OMNI-EDIT and Emu Edit on Emu Edit test set.
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Table 7: Main evaluation results on Omni-Edit-Bench. In each column, the highest score is bolded,
and the second-highest is underlined.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit 5.88 2.73 2.79 6.09 2.01 2.39 - - - -
SDEdit 6.71 2.18 2.78 6.31 2.06 2.48 - - - -

End-to-End Methods

InstructPix2Pix 7.05 3.04 3.45 6.46 1.88 2.31 - - - -
MagicBrush 6.11 3.53 3.60 6.36 2.27 2.61 - - - -
UltraEdit(SD-3) 6.44 4.66 4.86 6.49 4.33 4.45 0.72 0.52 0.57 0.20
HQ-Edit 5.42 2.15 2.25 6.18 1.71 1.96 0.80 0.27 0.29 0.10
CosXL-Edit 8.34 5.81 6.00 7.01 4.90 4.81 0.82 0.56 0.59 0.35
HIVE 5.35 3.65 3.57 5.84 2.84 3.05 - - - -
InstructDiffusion 5.18 4.89 4.11 6.57 4.68 4.56 - - - -

OMNI-EDIT 8.38 6.66 6.98 7.06 5.82 5.78 0.83 0.71 0.69 0.55
∆ - Best baseline +0.04 +0.85 +0.98 +0.05 +0.92 +0.97 +0.01 +0.15 +0.10 +0.20
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Table 8: Evaluation results on Omni-Edit-Bench on object replacement task. In each column, the
highest score is bolded, and the second-highest is underlined.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit (SD-2.1) 5.65 3.87 3.77 5.82 3.05 3.40 - - - -
SDEdit (SD-1.5) 6.66 3.03 3.56 6.10 2.45 2.91 - - - -

End-to-End Methods

InstructPix2Pix 6.15 2.21 2.34 6.24 1.24 1.62 - - - -
MagicBrush 5.10 4.03 4.02 5.94 2.68 3.29 - - - -
UltraEdit 6.35 4.48 4.81 6.21 4.35 4.60 0.71 0.50 0.56 0.14
HQ-Edit 5.34 2.16 2.45 6.32 1.81 2.27 0.93 0.29 0.32 0.14
CosXL-Edit 8.29 5.79 5.86 6.89 5.34 5.09 0.93 0.79 0.85 0.57
HIVE 4.92 3.98 3.82 5.45 3.15 3.09 - - - -
InstructDiff 5.06 5.15 4.12 6.89 4.65 4.73 - - - -

Omni-Edit 8.95 7.74 8.13 7.00 6.77 6.09 0.93 0.86 0.87 0.71
∆ - Best baseline +0.66 +1.95 +2.27 +0.11 +1.43 +1.00 +0.00 +0.07 +0.02 +0.14

Table 9: Evaluation results on Omni-Edit-Bench on object removal task. In each column, the highest
score is bolded, and the second-highest is underlined. CoXL-Edit shows better PQ as it often doesn’t
remove any object, resulting in the output image being identical to the input, as indicated by the low
SC score.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit (SD-2.1) 6.44 3.66 3.85 6.31 1.69 1.86 - - - -
SDEdit (SD-1.5) 6.61 1.00 1.67 6.42 0.79 1.16 - - - -

End-to-End Methods

InstructPix2Pix 6.42 1.37 1.41 6.21 0.16 0.21 - - - -
MagicBrush 8.08 4.35 4.36 6.84 2.16 2.19 - - - -
UltraEdit 6.63 4.11 4.39 6.53 2.92 2.93 0.79 0.50 0.59 0.15
HQ-Edit 5.02 0.79 1.01 5.81 0.69 0.79 0.86 0.21 0.24 0.00
CosXL-Edit 9.13 2.39 2.58 7.42 0.16 0.13 0.93 0.29 0.29 0.29
HIVE 5.15 1.55 1.85 5.56 1.16 1.21 - - - -
InstructDiff 5.69 5.74 4.92 7.14 5.05 4.19 - - - -

Omni-Edit 8.45 6.16 6.24 7.37 5.45 5.10 0.86 0.69 0.74 0.56
∆ - Best baseline −(0.68) +0.42 +1.32 −(0.05) +0.40 +0.91 −(0.07) +0.19 +0.15 +0.27

Table 10: Results of object addition on Omni-Edit-Bench. In each column, the highest score is
bolded, and the second-highest is underlined. CoXL-Edit shows better PQ as it often doesn’t add
any object, resulting in the output image being identical to the input, as indicated by the low SC
score.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit 5.53 2.87 2.93 5.84 2.03 2.41 - - - -
SDEdit 6.50 1.21 1.91 5.85 1.34 1.60 - - - -

End-to-End Methods

InstructPix2Pix 7.19 2.65 2.88 6.84 1.50 1.87 - - - -
MagicBrush 7.13 5.10 5.54 6.42 2.89 3.65 - - - -
UltraEdit 6.85 4.77 5.17 6.37 4.21 4.29 0.79 0.50 0.56 0.14
HQ-Edit 5.08 1.77 1.82 6.27 1.63 1.83 0.64 0.29 0.32 0.00
CosXL-Edit 7.77 5.11 5.44 6.90 3.94 4.17 0.57 0.36 0.39 0.00
HIVE 4.84 3.10 3.30 5.44 1.97 2.26 - - - -
InstructDiffusion 5.77 4.89 4.24 6.16 4.11 4.31 - - - -

Omni-Edit 7.35 6.03 6.40 6.66 5.79 5.45 0.71 0.64 0.67 0.43
∆ - Best baseline −(0.42) +0.92 +0.86 −(0.24) +1.58 +1.14 −(0.08) +0.14 +0.11 +0.29
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Table 11: Results for object property modification on Omni-Edit-Bench. In each column, the highest
score is bolded, and the second-highest is underlined.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit SD 2 1 5.95 2.39 2.72 6.29 2.52 2.74 - - - -
SDEdit SD 1 5 6.66 1.26 1.77 6.00 1.18 1.38 - - - -

End-to-End Methods

InstructPix2Pix 7.73 2.69 3.76 6.48 2.81 3.31 - - - -
MagicBrush 6.13 3.98 4.18 5.85 3.05 3.10 - - - -
UltraEdit 6.58 3.94 4.56 6.47 4.27 4.40 0.64 0.36 0.42 0.00
HQ-Edit 5.18 2.13 2.27 5.84 1.79 1.82 0.79 0.21 0.24 0.10
CosXL-Edit 7.90 5.32 5.73 6.66 6.00 5.69 0.63 0.43 0.42 0.00
HIVE 5.53 3.18 3.40 5.66 2.71 2.99 - - - -
InstructDiff 6.18 4.82 5.02 6.18 5.21 4.69 - - - -

Omni-Edit 8.56 5.74 6.23 6.63 5.08 4.93 0.64 0.43 0.43 0.14
∆ - Best baseline +0.66 +0.42 +0.50 −(0.03) −(0.92) −(0.76) −0.15 +0.00 +0.01 +0.04

Table 12: Evaluation results for background replacement on Omni-Edit-Bench. In each column, the
highest score is bolded, and the second-highest is underlined.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit 6.35 1.19 1.53 6.16 0.82 1.23 - - - -
SDEdit 7.05 2.34 3.05 6.19 2.42 2.80 - - - -

End-to-End Methods

InstructPix2Pix 5.92 2.52 2.73 6.24 1.74 2.21 - - - -
MagicBrush 5.35 3.69 3.38 6.27 2.74 2.99 - - - -
UltraEdit 6.19 4.76 4.60 6.52 4.81 4.72 0.64 0.57 0.60 0.29
HQ-Edit 6.10 2.16 2.34 6.34 1.60 1.76 0.79 0.36 0.42 0.14
CosXL-Edit 8.32 7.11 7.21 6.81 6.03 5.82 0.79 0.57 0.63 0.29
HIVE 5.34 3.06 2.95 5.84 2.16 2.60 - - - -
InstructDiffusion 4.27 4.32 3.61 6.40 5.03 4.86 - - - -

Omni-Edit 8.53 7.45 7.76 7.05 6.03 6.18 0.67 0.86 0.69 0.71
∆ - Best baseline +0.21 +0.34 +0.55 +0.24 0.00 +0.36 -(0.12) +0.29 +0.06 +0.42

Table 13: Evaluation results on global environment modification subcategory. In each column, the
highest score is bolded, and the second-highest is underlined.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit SD 2 1 6.26 1.68 2.00 6.13 1.58 2.10 - - - -
SDEdit SD 1 5 7.66 3.47 4.24 6.73 3.89 4.39 - - - -

End-to-End Methods

InstructPix2Pix 8.02 3.65 4.49 6.73 1.90 2.75 - - - -
MagicBrush 5.05 2.53 2.41 5.74 1.79 2.00 - - - -
UltraEdit 6.82 5.73 5.73 6.19 5.81 5.60 0.57 0.57 0.56 0.29
HQ-Edit 5.97 2.58 2.66 6.19 2.15 2.47 0.79 0.43 0.42 0.29
CosXL-Edit 8.65 7.21 7.56 6.68 6.32 6.04 0.93 0.86 0.89 0.71
HIVE 6.24 4.89 4.67 6.29 4.26 4.49 - - - -
InstructDiff 5.05 3.19 2.79 6.04 3.97 4.19 - - - -

Omni-Edit 8.85 7.73 7.95 6.70 6.40 6.09 0.86 0.81 0.86 0.67
∆ - Best baseline +0.20 + (0.52) + (0.39) - (0.03) + 0.08 + 0.05 - (0.07) - (0.05) - (0.03) - (0.04)
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Table 14: Results on global style transfer in Omni-Edit-Bench. In each column, the highest score
is bolded, and the second-highest is underlined. CoXL-Edit is the expert model to generate training
data for OmniEdit in this task, and OmniEdit’s performance is comparable to that of CoXL-Edit.

Models VIEScore (GPT4o) VIEScore (Gemini) Human Evaluation
PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ PQavg ↑ SCavg ↑ Oavg ↑ Accavg ↑

Inversion-based Methods

DiffEdit SD 2 1 5.00 3.45 2.73 6.44 2.40 3.08 - - - -
SDEdit SD 1 5 5.81 2.97 3.23 6.89 2.39 3.13 - - - -

End-to-End Methods

InstructPix2Pix 7.92 6.19 6.52 6.63 3.79 4.21 - - - -
MagicBrush 5.95 1.03 1.33 7.58 0.61 1.09 - - - -
UltraEdit 5.65 4.85 4.78 7.13 3.97 4.65 0.79 0.64 0.64 0.43
HQ-Edit 5.26 3.47 3.23 6.45 2.34 2.76 0.79 0.07 0.10 0.00
CosXL-Edit 8.10 7.73 7.60 7.74 6.50 6.70 0.93 0.64 0.67 0.57
HIVE 5.44 5.79 5.00 6.65 4.48 4.74 - - - -
InstructDiff 4.23 5.11 3.98 7.18 4.77 4.77 - - - -

Omni-Edit 8.18 6.19 6.53 8.24 5.24 6.08 0.93 0.64 0.64 0.57
∆ - Best baseline +(0.08) −(1.96) −(1.44) +0.50 −(1.26) −(0.62) 0.00 0.00 −(0.03) 0.00
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