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ABSTRACT

Direct Preference Optimization (DPO) has emerged as a popular algorithm for
aligning pretrained large language models with human preferences, owing to
its simplicity and training stability. However, DPO suffers from the recently
identified squeezing effect (also known as likelihood displacement), where the
probability of preferred responses decreases unintentionally during training. To
understand and mitigate this phenomenon, we develop a theoretical framework
that models the coordinate-wise dynamics in the logit space. Our analysis re-
veals that gradient descent with a negative learning rate causes residuals to ex-
pand rapidly along high-curvature directions, which underlies the squeezing ef-
fect, whereas Sharpness-Aware Minimization (SAM) can suppress this behavior
through its curvature-regularization effect. Building on this insight, we investigate
logits-SAM, a computationally efficient variant that perturbs only the output layer
with negligible overhead. Extensive experiments on Pythia-2.8B and Mistral-7B
across multiple datasets demonstrate that logits-SAM consistently improves the
effectiveness of DPO.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) (Christiano et al.,[2017;|Stiennon et al.|,[2020;
Ouyang et al.| 2022)) is a crucial technique for aligning pretrained large language models (LLMs)
with human preferences to ensure helpfulness, harmlessness and safety (Bai et al.,|2022; Dai et al.}
2023). Its pipeline typically comprises three stages: supervised fine-tuning (SFT), reward modeling,
and policy optimization. Classical policy optimization methods such as Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), while widely used for their effectiveness, depend heavily on the
quality of the learned reward model, rendering training complex and often unstable. Direct Pref-
erence Optimization (DPO) (Rafailov et al., [2024b) is a recently proposed and promising offline
alternative that, by reparameterizing the implicit reward and optimizing a closed-form objective on
preference data, trains the policy directly without explicitly fitting a reward model. DPO has gained
traction due to its algorithmic simplicity and training stability.

Despite DPO and its many variants demonstrating state-of-the-art performance across a range of
tasks, several potential issues remain. A particularly important one is the recently identified squeez-
ing effect (Ren & Sutherland, [2024)) (also known as likelihood displacement (Razin et al., [2024)),
which describes an unintended decrease in the generation probability of preferred responses during
DPO training, contrary to the intended goal of increasing it embodied in the DPO objective. This
phenomenon can lead to performance degradation, reduced safety, and even alignment failure (Pal
et al.,[2024; |Yuan et al.| 2024; Rafailov et al., 2024a}; [Tajwar et al., 2024; [Pang et al., [2024)).

To understand the mechanism behind the squeezing effect and to identify an effective remedy, we
develop a theoretical framework that elucidates the learning dynamics in both the parameter space
and the logit space. Our analysis shows that gradient descent (GD) with a negative learning rate
causes the residual vector to expand rapidly along high-curvature directions, i.e., along the eigen-
vectors associated with large eigenvalues of the Hessian, which is the source of the squeezing effect.
This raises a natural question: can curvature-aware training mitigate this unintended drift?
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We investigate Sharpness-Aware Minimization (SAM) (Foret et al.| 2021)), a bilevel optimization
method widely used in supervised learning, and establish its dynamics in both the parameter and
logit spaces. Our theory demonstrates that SAM effectively alleviates the squeezing effect through
its intrinsic curvature regularization. Guided by these insights, we advocate using logits-SAM for
DPO training, a computationally efficient variant of SAM that perturbs only the output-layer pa-
rameters. Although logits-SAM has been mentioned merely as a byproduct in prior work (Baek
et al., 2024} Singh et al., 2025)) and often overlooked, our study turns this neglected variant into a
practically useful and effective technique by integrating it into DPO, where it efficiently mitigates
the squeezing effect and consistently improves performance. To the best of our knowledge, this is
the first work to analyze and apply SAM in the context of DPO.

Contributions. Our contributions are summarized as follows:

* We develop a theoretical framework that connects the parameter space and the logit space through
geometric properties, enabling a unified analysis of learning dynamics in both domains. This
framework yields unified dynamical equations for GD and SAM that precisely track coordinate-
wise evolution with controlled error terms.

* Qur analysis identifies the root cause of the squeezing effect: under a negative learning rate,
residuals expand rapidly along high-curvature directions. We rigorously show that SAM, through
its intrinsic curvature regularization, effectively alleviates this phenomenon.

* Bridging theory and practice, we implement an efficient variant, logits-SAM, which perturbs only
the output-layer parameters. Unlike vanilla SAM, it incurs virtually no additional overhead. Ex-
periments on Pythia-2.8B and Mistral-7B across multiple datasets and benchmarks validate its
effectiveness, demonstrating consistent performance gains for DPO and its variants.

2 PRELIMINARIES

2.1 PREFERENCE OPTIMIZATION

SFT-RLHF pipeline. Classical RLHF alignment proceeds in three phases: (i) supervised fine-
tuning of a base policy on instruction-following data; (ii) reward modeling by fitting a scalar reward
function on pairwise human preferences; and (iii) policy optimization to maximize the learned re-
ward under a KL regularizer toward a reference policy.

DPO reparameterization. DPO (Rafailov et al.|[2024b) bypasses training an explicit reward model
by expressing an implicit reward for a policy mg as a log-likelihood ratio to a fixed reference policy
Tref (typically the SFT model):

ro(x,y) = 5logm + Blog Z(x), (1)

where 8 > 0 is a temperature and Z () is a partition term independent of 8. Combining equation
with the Bradley-Terry preference model (Bradley & Terry,[1952) p(y™ -y~ | @) = o(rg(z, y*)—
ro(x,y~)) yields the standard DPO objective, optimized over a dataset D = {(z,y",y~)} of
preferred/dispreferred pairs:

To(y™ | x) To(y~ | @)
iMrer) = ~ Eqayryvp |logo | Blog =0t — Blog =05 ) |, @
EDPO(ﬂ-OﬂT f) (x,y*T,y~)~D |:Og0-</8 08 7Tref(y+| 212) B 8 Wref(yi ‘ w) ( )

where o (+) is the logistic function.
2.2  SHARPNESS-AWARE MINIMIZATION
SAM regularizes training by explicitly penalizing parameter-space sharpness: it chooses parameters

that minimize the worst-case loss within an ¢, ball of radius p around 8. Concretely, for supervised
learning with examples (x, y) ~ D and per-example loss f(0;x,y), the SAM objective is

min E )~p| max f(0+e; w,y) . 3)
Z ' llell2<p
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This formulation can be interpreted as a form of curvature regularization: by seeking minimizers
whose neighborhoods exhibit consistently low loss, SAM favors flatter minima that often correlate
with improved generalization. In practice, the inner maximization is approximated to first order by
the perturbation €*(8) = p Vo f(6;x,y)/||Vof(0;,y)|, and one takes a descent step using the
gradient at the perturbed point, Vo (0 + €*; 2, y).

3 LEARNING DYNAMICS IN LOGIT SPACE

3.1 SETTING

We adopt the same theoretical setting as in [Ren & Sutherland| (2024)), namely multiclass logistic
classification, where the features of the samples are fixed (also referred to as the kernel regime), and
the learning rate can be either positive or negative, corresponding respectively to the objectives of
y* and y~ in DPO. Let x be a training example with one-hot label y € {0,1}V, 1Ty = 1. In the
fixed-feature (kernel) regime, ¢(x) € R? are fixed and

v
2t = Wip(x) e RY, p' = softmax(z"), f(zhy) =— Zyk log pt.,
k=1

where Wt € RY % are trainable parameters, 2! are the logits. For notational convenience, we write
¢(x) as ¢. We use || - || to denote the ¢5 norm for vectors and the Frobenius norm for matrices. We
use ® to denote the Kronecker product.

We denote the parameter Hessian by Hiy, = Vi, f(2!,y) € RV¥*V4 and p == [|¢||%. In logit

space, we denote the logit gradient by g* := V. f(z!,y) = p' —y € RY, and denote the logit
Hessian by H! := V2 f(2!,y) € RV*V.

3.2 THEORY

The theoretical results of Ren & Sutherland| (2024) demonstrate that the squeezing effect arises
from the objective with a negative learning rate. Specifically, they prove that the probability of
the ground-truth label necessarily decreases, while the probability of the model’s most confident
incorrect class necessarily increases. In this work, we provide a finer-grained analysis of the learning
dynamics under this setting. We establish a unified modeling framework for the residuals of all
classes and derive the linear convergence rate up to higher-order remainders. Furthermore, we apply
our framework to prior analyses and further establish a rigorous conclusion that SAM can effectively
mitigate the squeeze effect.

For GD, first-order derivatives are sufficient to characterize its dynamics. However, the intrinsic
curvature regularization effect of SAM motivates us to further investigate the geometric structure of
the parameter space through the Hessian matrix. To this end, we develop a theoretical framework
that connects the geometry of the parameter space and the logit space, via the link between the
parameter Hessian and the logit Hessian.

Proposition 3.1 (Geometry of the logit space; simplified version of Proposition [A.T). In coordi-
nates, Hw = H, @ (¢¢"). Thus, if ¢ # O, then rank(Hw ) = rank(H,). Moreover; the
second-order effect of any parameter perturbation depends only on the induced logits perturbation
Ty (AW) == AW ¢.

This proposition establishes that all second-order effects in the parameter space, whose Hessian
Hyy lies in RV4*V4_ can be equivalently studied through the logit Hessian H, in RV <V, thereby
greatly simplifying the analysis of second-order dynamics. Next, we establish a unified framework
to track the SAM dynamics in both the parameter space and the logit space, thanks to their favorable
geometric structures. Unlike prior work, our framework can simultaneously trace the evolution of
all coordinates of the parameters, logits, and residuals, while providing precise control over the error
terms.

Theorem 3.2 (SAM dynamics in parameter and logit space; informal version of Theorem [A.2).
Assume that we conduct the SAM update for W. Under mild assumptions, there exists a constant
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C > 0 such that the following expansions hold with O(n?) remainders:

(parameters) W''' = W' — n(gt ¢' +p' Hlg' ¢>T) + Ry, [Rwl| <C7?
—_—

SAM’s correction

(logits) 2"t =z"— nu(gt + p'Hlg' ) +rl,  rill < o0’

SAM’s correction

(residuals) g =p'*! —y = (I —nuH, —npp' (Hi)z)(pt —y)+ry, gl <O,
—_———

SAM'’s correction

where p* := p\/1i/||g"|| is the equivalent perturbation coefficient.

It is worth noting that when p = 0, the dynamics reduce to the GD dynamics. This theorem,
viewed through the lens of the logit Hessian, provides a precise theory for characterizing GD and
SAM dynamics across spaces. In both parameter and logit space, GD amounts to scaling by the
logit gradient, whereas SAM introduces an additional H, correction term that can be regarded as a
preconditioning matrix. Moreover, the updates of the residual vector under GD and SAM are both
preconditioned by H, (and, for SAM, by (H)?). This implies that if we choose the eigenvectors
of the logit Hessian as a basis, the curvature coupling effects of both the first-order and second-
order terms can be unified. To formalize this intuition, we show that g lies precisely in the column
space of H ,, thus we can select the nonzero eigenvectors of H, as a basis to obtain the coordinate
representation of g.

Proposition 3.3. H, is symmetric positive semidefinite with ker(H,) = span{l} and
rank(H,) = V — 1. Moreover, for the residual g we have 1T g = 0, hence g € 1+ = range(H.,);
in particular, given any eigenbasis of H , restricted to 1+, g admits a unique coordinate represen-
tation in that basis.

Corollary 3.4 (Modal dynamics in the eigenbasis of H!). Under the same assumptions as Theo-
rem[3.2] For each t, let the spectral decomposition of the symmetric positive—semidefinite matrix

H! be
V-1
HL =) Nowi(v)',
k=1

where A, > 0, (vt)Tv! = dxp are the non-zero eigenvalues and eigenvectors. Define the modal
coefficients of the residual g = pt — y by

el = (vh)Tg", ettt = (vl) g, k=1,...,V —1. 4)

Then there exists a constant C' > 0 such that for all nonzero modes k > 1,

et = (1 =i+ PO el + ok Ikl < O (5)

SAM'’s correction

Proofs are deferred to Appendix [A] The corollary diagonalizes the vector dynamics into coordinate-
wise scalars in the eigenbasis of H ., making SAM’s effect transparent. We now characterize the
additional SAM correction in two regimes.

Case 1: Positive 7, corresponding to the y™ objective in DPO. In this case, GD induces a stronger
contraction of the residual g along the high-curvature directions, i.e., those associated with large
eigenvalues of H . The additional correction term introduced by SAM has the same sign as that of
GD, thereby amplifying this effect. Case 2: Negative 7, corresponding to the y~ objective in DPO.
Here, GD causes the residual g to expand more rapidly along high-curvature directions. Further-
more, standard SAM with positive p exacerbates this phenomenon, causing the residual to expand
even faster along high-curvature directions compared to GD. By contrast, choosing a negative p
counteracts this expansion.

Next, we extend our theoretical framework to the result of Ren & Sutherland| (2024), which intro-
duced the squeezing effect. For consistency with their notation, we let y denote the ground—truth
class index (with one-hot label y = e,)).
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Figure 1: Training dynamics under different settings. (a—b) 1000-dimensional toy example with
three classes, trained with a negative learning rate under GD, SAM (p > 0), and SAM (p < 0).
Panel (a) shows the modal coefficients, and panel (b) shows the class residuals. (c) Real-data ex-
periment on webgpt_comparisons with GPT-2, comparing GD and SAM: the panel reports the
log-probabilities of the chosen and rejected responses.

Lemma 3.5 (One-step confidence ratios under GD, Lemma 1 of Ren & Sutherland (2024))). For
each class i € [V], define the one—step confidence ratio «; = pﬁ“ /pt. Consider the objective with
a negative learning rate 1 < 0, and denote its ground—truth label by y~. Let y* = arg max s, - p?
be the most confident incorrect class. Then

GD GD
Qg > 1, a,~ < L
Lemma [3.5] formalizes the squeezing effect under GD with a negative learning rate: the probability
of the most confident incorrect class increases, while that of the ground—truth class decreases. Within

our framework, we next analyze the ratio of these two probabilities after a one—step SAM update.

Corollary 3.6 (One—step confidence ratios under SAM, informal version of Corollary[A.5). Under
the same assumptions as Theorem assume that np > 0. Then, for sufficiently small step size |n)
the following inequalities hold:

>

SAM GD SAM cD
aye <o, ay > a, . (6)
Herey € {y™,y~ } denotes the ground—truth label corresponding to the positive or negative learn-

ing rate, respectively. Moreover, the inequalities in equation@are strict whenever pf/* € (0,1) and
1

Py < 3
The proof is deferred to Appendix[A] Corollary[3.6]and Lemma 3.5]together imply that, when ) < 0,
using SAM with a negative p < 0 moderates the growth of the most confident incorrect class and
slows the decay of the ground-truth class, thereby preventing excessive expansion and premature
collapse. Our analysis thus reveals a key, albeit somewhat counterintuitive, fact: for negative 7,
one should choose a negative p (interpreted as a perturbation along the gradient descent direction),
which effectively alleviates the squeezing effect.

We empirically validate our theoretical findings using a 1000-dimensional toy example with three
classes. Specifically, we first train for 10 epochs using class O as the label for initialization, mimick-
ing the SFT process, and then switch to class 1 as the label while continuing training with a negative
learning rate. As shown in Figure[l] this setup faithfully reproduces the squeezing effect observed
in prior work (Ren & Sutherland, |2024)): both modal coefficients expand rapidly, the probabilities of
class 1 and class 2 decrease, and only the probability of class 0, the model’s most confident incorrect
prediction, increases. Moreover, SAM with positive p exacerbates this effect, whereas SAM with
negative p hinders this trend, exactly as predicted by our theory.

Additionally, Corollary shows that for n > 0, SAM with p > 0 likewise mitigates the effect:
the contraction of y* is accelerated, while the growth of the ground-truth ™ is enhanced. Taken
together, these results establish a simple rule: during training, choosing p with the same sign as
the learning rate alleviates the squeezing effect—specifically, it restrains the growth of y* and pro-
motes (or reduces the suppression of) y* and y~. To validate this idea, we train a GPT-2 (Radford
et al.; [2019) on a subset of the WebGPT comparisons dataset (Nakano et al., [2022)) using both GD
and SAM. The probability dynamics of the chosen and rejected responses are shown in Figure
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We observe that SAM increases the probability of the chosen responses, whereas GD decreases it
due to the squeezing effect; meanwhile, SAM slows down the decrease of the rejected responses’
probability. These results are consistent with our theoretical predictions.

3.3 FROM THEORY TO PRACTICE

An important challenge in applying SAM to DPO is that it requires an additional forward and back-
ward pass, thereby nearly doubling the computational cost. However, our dynamical analysis shows
that curvature regularization can still be achieved even when the perturbation is applied solely in
the logit space (with an appropriate choice of the sign of p), which also alleviates the squeezing
effect. Motivated by this observation, we suggest to use a computationally efficient SAM variant
that perturbs only in the last layer, called logits-SAM, to improve the effectiveness and robustness of
DPO. Its objective can be formulated as follows:

VwLppo(W,0;z,y",y~)
|Vw Lopo (W, 0z, y*,y~)

EB%gSAM(W’B;m’y-‘r’y—) — Lopo <W+p i 0;w,y+,y_> .

where W denotes the parameters in the output layer, and 6 denote the parameters except W.

Implementation. Unlike our theoretical setting, common DPO implementation{ﬂ typically en-
code the y~ objective as negative while using a single positive learning rate, rather than assigning
positive and negative rates to y© and y~, respectively. Accordingly, we adopt this convention in
our SAM implementation. Our dynamical analysis further indicates that p should share the sign of
the learning rate; hence we consistently use a positive p. We summarize the differences between the
theoretical and practical settings in Table ] of Appendix

Remark. This choice does not render our analysis of the negative learning rate redundant. For first-
order methods such as GD, using a negative objective with a positive learning rate is equivalent (in
dynamics) to using a positive objective with a negative learning rate. Therefore, our analysis applies
fully to the case of negative objectives.

The implementation pseudocode can be found in Algorithm [T] of Appendix [B] We compute the
perturbation manually using the hidden states from the penultimate layer and the parameters of the
final layer, requiring only a single full forward—backward pass instead of the two full passes required
in standard SAM. Since the parameters of the final layer typically constitute only a small fraction
of all trainable parameters (e.g., 4.64% in Pythia-2.8B and 1.81% in Mistral-7B), the additional
training overhead introduced by logits-SAM is negligible. A detailed comparison of wall-clock time
and peak memory usage is provided in Section[4.3]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct DPO training on three widely used datasets to evaluate our algorithm:
Anthropic-HH (Bai et al., |2022), the Reddit TL;DR summarization dataset (Stiennon et al., |2020),
and the UltraFeedback Binarized dataset (Cui et al., [2023)).

Models. Following common practice, we adopt SFT models as our base models. We use Pythia-
2.8B (Biderman et al., [2023) for experiments on Anthropic-HH and Reddit TL;DR, and Mistral-
7B-v0.1 (Jiang et al.l 2023) for UltraFeedback. For Pythia-2.8B, we initialize from the Hugging
Face open-source Checkpoin which was SFT for one epoch on Anthropic-HH. For the TL;DR
experiments, we use the checkpoinﬂ which was SFT for one epoch on Reddit TL;DR. For Mistral-
7B-v0.1, we use the Alignment Handbook (Tunstall et al., 2023a) checkpoint Zephyr—7tﬂ (Tunstall
et al.| 2023b)), which was SFT for one epoch on UltraChat-200k.

"nttps://github.com/eric-mitchell/direct-preference—optimization
Thttps://github.com/huggingface/trl
*https://huggingface.co/lomahony/eleuther-pythia2.8b-hh-sft
Ynttps://huggingface.co/trl-1lib/pythia-2.8b—deduped-tldr-sft
Shttps://huggingface.co/alignment-handbook/zephyr—-7b-sft—-full


https://github.com/eric-mitchell/direct-preference-optimization
https://github.com/huggingface/trl
https://huggingface.co/lomahony/eleuther-pythia2.8b-hh-sft
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-sft
https://huggingface.co/alignment-handbook/zephyr-7b-sft-full
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Table 1: Evaluation results (WR %) on HH and TL;DR datasets using Pythia-2.8B. The judge is
GPT-5-mini. The highest value within each method group (baseline vs. logits-SAM) is bolded.

HH TL;DR
Method vs SFT  vschosen vs SFT vschosen
DPO 70.52 56.35 84.21 34,78
DPO+logits-SAM 72.28 60.51 89.58 36.57
SLiC-HF 65.27 54.72 91.88 31.36
SLiC-HF+logits-SAM  71.87 62.21 94.40 32.80
CPO 66.60 58.19 90.99 39.38
CPO+logits-SAM 70.24 59.90 93.29 45.41

Evaluation. For Pythia-2.8B, we evaluate model performance on Anthropic-HH and Reddit
TL;DR by measuring win rates (WR) against both the SFT baseline and the human-preferred re-
sponses, using GPT-5-mini (version 2025-08-07) as the automatic judge. Following the DPO paper,
we set the decoding temperature to 0 for HH and 1 for TL;DR. For Mistral-7B-v0.1, we conduct
evaluation on three popular open-ended instruction-following benchmarks: AlpacaEval 2 (Dubois
et al., 2024), Arena-Hard v0.1 (L1 et al.| 2024), and MT-Bench (Zheng et al., 2023). Details of
each benchmark can be found in Appendix |C| We adopt the default generation parameters provided
by each benchmark. Specifically, we report both length-controlled win rates (LC) and raw WR for
AlpacaEval 2, model WR for Arena-Hard v0.1, and averaged judge scores (1-10) for MT-Bench, all
following the standard evaluation protocols, with default decoding configurations.

Baselines. We apply logits-SAM to DPO and two SOTA variants, SLiC-HF (Zhao et al.,|2023)) and
CPO (Xu et al.,|[2024). We use AdamW optimizer (Loshchilov & Hutter, 2019) in all experiments.
For Pythia-2.8B, we set batch size 64 and learning rate 1 x 10~°, following the DPO paper; for
Mistral-7B, we use batch size 128 and learning rate 5 x 10~7, following the Alignment Handbook’s
recommended settings.

Hyperparameters. For DPO, we adopt the recommended S values from the DPO paper and the
Alignment Handbook, which are widely used and well tuned. For SLiC-HF and CPO, we select
hyperparameters following the tuning protocol from Meng et al.|(2024b). For logits-SAM, we keep
all hyperparameters identical to each corresponding baseline to ensure fairness; the only additional
hyperparameter is p, which we tune over {1 x 107°,1 x 107#,1 x 10~3}. Full hyperparameter
settings are provided in Table [5|and Table [6]of Appendix [C]

4.2 EXPERIMENTAL RESULTS

Performance of summarization and dialogue generation tasks. We present the results in Ta-
ble [l We find that logits-SAM consistently improves performance across both HH and TL;DR
datasets. All three baselines (DPO, SLiC-HF, and CPO) achieve higher win rates against both SFT
and chosen responses when augmented with logits-SAM. Notably, SLiC-HF shows the largest gains
on HH (+6.60 pp vs SFT, +7.49 pp vs chosen), while CPO achieves strong improvements on TL;DR
(+2.30 pp vs SFT, +6.03 pp vs chosen), demonstrating that logits-SAM provides stable and general-
izable benefits across different optimization methods.

Performance on open-ended instruction-following benchmarks. We present the results in Ta-
ble 2] The results demonstrate that combining logits-SAM with different DPO variants consistently
yields performance gains across all benchmarks. On open-ended instruction-following evaluations,
logits-SAM improves both length-controlled and original win rates on AlpacaEval 2 (e.g., with CPO:
+4.35 pp LC, +3.65 pp WR), increases head-to-head win rate on Arena-Hard vO0.1 (e.g., with DPO:
+4.1 pp WR), and provides steady gains on MT-Bench (e.g., DPO: +0.30, SLiC-HF: +0.17, CPO:
+0.27). These findings indicate that logits-SAM is a generally effective and robust enhancement
across diverse evaluation settings.
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Table 2: Evaluation results on AlpacaEval 2 (LC and WR), Arena-Hard v0.1 (WR), and MT-Bench
using Mistral-7B-v0.1. Judges are GPT-4 Turbo for AlpacaEval 2, and GPT-4.1 for Arena-Hard v0.1
and MT-Bench. The highest value within each method group (baseline vs. logits-SAM) is bolded.

Method AlpacaEval 2 Arena-Hard v0.1 MT-Bench
LC (%) WR (%) WR (%) (score)
DPO 13.08 10.96 19.0 5.49
DPO+logits-SAM 13.90 11.62 23.1 5.79
SLiC-HF 8.92 8.97 19.1 5.05
SLiC-HF+logits-SAM  10.63 9.23 21.1 5.22
CPO 8.97 8.13 19.2 5.22
CPO+logits-SAM 13.32 11.78 214 5.49
Training Loss Evaluation Loss Evaluation Accuracy
0-70f —— Adamw

o6sk \ Logits-SAM

Accuracy

6 160 260 360 460 160 260 360 460 160 260 360 460

Training Steps Training Steps Training Steps
Figure 2: Learning dynamics of Mistral-7B on UltraFeedback. We compare AdamW and logits-
SAM in terms of training loss, evaluation loss, and evaluation accuracy.

4.3 ADDITIONAL ANALYSIS

Learning dynamics. In Figure 2] we present a comparison of the learning dynamics between
AdamW and SAM when training Mistral-7B on the UltraFeedback dataset. The figure reports train-
ing loss, evaluation loss, and evaluation accuracy across training steps. We observe that both opti-
mizers achieve similar reductions in training loss, but SAM yields consistently lower evaluation loss
and higher evaluation accuracy throughout training. These results suggest that SAM provides better
generalization ability compared to AdamW.

Sharpness. To further probe the reasons underlying the generalization gains of logits-SAM, we
measure the traces of the parameter Hessian and the logit Hessian at the final checkpoint of
Mistral-7B. For AdamW, the traces are 1.337 x 10* / 2.732 x 102 (parameter / logit Hessian),
while for logits-SAM they are reduced to 1.186 x 10% / 2.586 x 102. This reduction indicates that
logits-SAM converges to a flatter solution, which is widely believed to be beneficial for generaliza-
tion.

Computational overhead. Compared to vanilla SAM,

logits-SAM minimizes additional computational over- 100 e 92 ——
head. We report wall-clock training time and peak mem- ool

ory on Pythia-2.8B trained on the Reddit TL;DR dataset

(Figure [3), using data-parallel training (DDP) across two sol 70 el

mins

NVIDIA A100 GPUs with a per-device batch size of 4.
The results show that logits-SAM adds only ~ 2-3%
extra time, with negligible peak-memory overhead. By

contrast, vanilla SAM is practically infeasible for Pythia- 50" Run time _ Peak GPU memory
2.8B on A100s with DDP: it nearly doubles the step time Figure 3: Efficiency comparison.
(due to an extra full forward—backward pass) and requires

a perturbation buffer comparable to the model size (for billion-parameter models, this entails more
than 10 GB of additional GPU memory), which leads to out-of-memory even with batch size 1.
These observations highlight the clear compute-cost advantage of logits-SAM.

Percentage (%)

701




Under review as a conference paper at ICLR 2026

Sensitivity analysis. We present a sensitivity analysis of the additional hyperparameter p for
logits-SAM in Table (3| The results indicate that, within a reasonable range of p, performance is
typically improved consistently, whereas further enlarging p leads to a marked degradation. No-
tably, unlike original SAM, logits-SAM perturbs only the output layer, so the appropriate scale of p
is much smaller than the range (0.01-0.5) recommended in the SAM paper. We recommend starting
the search for logits-SAM’s p at 10~° or 10~* and, if resources permit, performing a finer sweep in
this neighborhood.

Table 3: Performance on HH and TL;DR datasets under different p values. Each entry reports win
rate vs SFT (left) and vs chosen (right).
Dataset p =0 (AdamW) p=10""° p=10"1% p=10"3 p=10"2
HH 70.52/56.35 69.47/58.27 7228/60.51 68.49/59.52 65.49/56.31
TL;DR 84.21/34.78 87.79/33.97 89.58/36.57 84.25/29.93 81.56/29.31

5 RELATED WORK

Reinforcement learning from human feedback. RLHF has emerged as the de facto post-training
recipe for aligning large language models (Christiano et al., 2017} Ziegler et al.,2019;/Ouyang et al.,
2022; Bai et al., [2022)), typically combining supervised fine-tuning (Zhou et al., 2023} |Taori et al.,
2023}, (Conover et al., 2023; [Wang et al.l [2023b), reward modeling (Gao et al., |2023; [Luo et al.,
2023; |[Lambert et al., [2024])), and policy optimization (Schulman et al.,[2017} |Anthony et al.,[2017).
To reduce the complexity and instability of online preference optimization, offline methods such as
SLiC-HF (Zhao et al.,[2023)) and RRHF (Yuan et al., 2023)) learn policies from comparisons using
closed-form objectives. DPO (Rafailov et al.| [2024b) is a central example that maximizes the log-
probability margin between preferred and rejected responses relative to a reference policy. Thanks
to its simplicity and training stability, DPO has rapidly gained popularity, spurring a line of variants
aimed at improving performance. For example, Azar et al.|(2024) propose IPO, a more theoretically
grounded variant; CPO (Xu et al.,|2024) approximates the reference policy as uniform to eliminate
the reference term; f-DPO (Wang et al., [2023a)) generalizes DPO via a family of f-divergences;
SimPO (Meng et al., [2024a)) uses length-normalized scores that better reflect generation-time pref-
erences; and Cal-DPO (Xiao et al.| 2024)) aligns the implicit reward scale with likelihoods.

Sharpness-aware minimization. A widely held belief in the deep learning community is that
flatter solutions typically generalize better (Hochreiter & Schmidhuber; [1997; Keskar et al., 2016
Dinh et al., 2017;|Jiang et al.,[2019} [Xie et al.| 2020;|Liu et al.,[2023)). Motivated by this view, SAM
(Foret et al.| |2021)) is a bilevel optimization method that explicitly seeks flatter minima, and it has
gained popularity for delivering consistent improvements across a wide range of supervised learning
tasks (Foret et al.| 2021} [Kwon et al., 2021; |[Kaddour et al.l 2022} |Liu et al.| 2022} [Kim et al., {2022}
L1 & Giannakis| |2023). Most relevant to our work are its recent applications in LLMs. |Singh et al.
(2025) propose Functional-SAM for LLM pretraining and demonstrate strong performance, while
Lee & Yoon|(2025) apply SAM to Proximal Policy Optimization to improve robustness in both the
reward and action spaces. Logits-SAM is a byproduct mentioned in recent studies, yet it is often
overlooked. Baek et al.| (2024)) analyze the effect of label noise on SAM in linear regression and
argue that Jacobian-SAM, the counterpart of logits-SAM, plays the dominant role. Similarly, Singh
et al.| (2025) identify Jacobian-SAM, also referred to as Functional-SAM, as more important and
show that it can effectively improve the generalization performance of LLM pretraining.

6 CONCLUSION

We analyzed the squeezing effect in DPO via coordinate-wise dynamics in parameter and logit
spaces. Our framework shows that GD with negative n drives residuals to expand along high-
curvature directions, and that SAM suppresses this behavior via curvature regularization; in par-
ticular, negative 7 calls for negative p. Motivated by this, we adopt logits-SAM, which perturbs
only the output layer and adds negligible overhead, and demonstrate consistent gains in effective-
ness and robustness across models and datasets. We expect these insights to inform curvature-aware
preference optimization going forward.
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REPRODUCIBILITY STATEMENT

All theoretical results presented in this paper are accompanied by complete proofs, which can be
found in Appendix [A] To further facilitate reproducibility, we will release the source code upon
publication, allowing the community to verify and build upon our results.
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A FORMAL THEOREMS AND PROOFS

Proposition A.1 (Geometry of the logit space and the parameter—logit correspondence). Let ¢ :

RY — R be C2. Fix an input x and a feature map ¢(x) € R For W € RV >4 set
z=W¢pecRY, F(W) = ((2).

Denote H, := Vi{(z) € RV*Y and Hyy = Vi F(W) € RV>V,

Equip RV > with the Frobenius inner product (A, B)rp = t{ AT B) and R with the Euclidean
inner product. Let
Ty: RV S RY, Ty (AW) =AW ¢
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be the differential of the map W — W ¢, and let T : RY — RV pe its adjoint with respect to
these inner products, i.e., (Ts(AW), v) = (AW, T;(v))F for all AW ,v. Then Tj;(v) = v BT
The following statements hold.

(1) Pullback identity (operator form).
Hw =T; H, T,
as linear operators on RV *?. Equivalently, in coordinates,
VwEF(W) = (V.L(2)) ¢7, Hw =H,® (¢¢").
Consequently, if ¢ # 0, then
rank(Hywy ) = rank(H ).

(2) Pullback of the bilinear form. For every AW, AW' € RV >4,
(AW, Hyw [AW'))p = <T¢(AW), H, T¢(AW’)>
and,
Hw [AW] =T;(H. Ty(AW)) = H, AW (¢¢").
Thus the second—order effect of any parameter perturbation depends only on the induced

logits perturbation Ty(AW) = AW ¢.

(3) Surjectivity, kernel, and quotient-space view. If ¢ # 0, then Ty is surjective. For any
Az € RY, a minimum-Frobenius-norm preimage is
Azol

AW, =
[l

with T4(AW,) = Az.

The kernel is

ker(Ty) = { AW € RV*?: AW $ =0},

of dimension V (d — 1). Consequently, Hyy descends to the quotient RV >4/ ker(T},) =

RVY.
Proof. A direct computation gives

(TH(AW),v) = ti( (AW ) v) =t AW T v ") = (AW, v )p,
hence
Ti(v)=vo'.
(1) Pullback identity and coordinate forms. Let F'(W') = /(W ¢). The first differential of F is
AF[AW] = (V.l(z), Ts(AW)) = (T5(V:L(2)), AW)

SO
VwF(W) =Tj(V.l(z)) = (Val(2)) ¢

Differentiating once more and using d(V.¢)(2)[Az] = H, Az with Az = T,(AW) yields, for
all AW, AW,
PFAW ,AW'] = (T,(AW), H, Ts(AW')).

By the Riesz representation on (RV*9 (. .) ), this means
Hw = T;H,T,.

Using T} (v) = vo | and T,(AW) = AW ¢,

Hw[AW] =T} (H: (AW¢)) = (H: (AW¢)) 67 = H. AW (¢¢"),
which is the coordinate (Kronecker) form used in the main text.
For the rank statement, assume ¢ # 0. Then T} is surjective and 77} is injective. Hence

rank(Hw ) = rank (T} H, T,) = rank(H T) = rank(H.),

because range(Ty) = RY.
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(2) Pullback of the bilinear form. By the operator identity above,

(AW, Hw [AW'))p = (AW, T; H, T¢(AW’)>F = <T¢(AW), H, T¢,(AW’)>.
Equivalently, Hw [AW] = Tj(H.T,(AW)) = H, AW (¢ "). Thus the bilinear form on
parameter space is the pullback of the bilinear form induced by H , on logit space.

(3) Surjectivity, kernel and quotient view. If ¢ # 0, then for any Az € RV
Azol

AW, = T satisfies Ty (AW,) = Az,

so Ty is surjective. The same choice minimizes the Frobenius norm among all preimages (row-
wise Cauchy—Schwarz). The kernel is ker(Ty) = {AW : AW ¢ = 0}, and rank-nullity gives
dimker(Ty) = V(d — 1). Finally, if AW, — AW, € ker(Ty), then Ty, (AW;) = Ty (AW>) and

(AWL, Hy [AWL) » = (To(AWY), H, Ty(AWL)) = (Ty(AWS), H. Ty(AWS))
= (AW,, Hw [AW,])F,

so the bilinear form descends to the quotient RY *?/ ker(T},) = RY.
If $ = 0 then Ty = 0 and Hyy = 0, the degenerate case. O

Theorem A.2 (Dynamics of SAM). Fix a SAMple x and set i = ||¢||* < oo. Assume:
(1) f(z,y)is C®in z and there exists L < co such that sup,, ||V3 f(z,y)| < L.
(2) The step size |n| € (0, 1] and the SAM radius satisfies |p| < r+/|n| with a constant r > 0.
(3) If ||g"|| = 0, set the inner perturbation to 0 and define p* = 0; otherwise p* == p \/1/||g" |-

Consider standard SAM:
Vw f(W?) = =
AW;V:p—, Wt:Wt—i—AW;v, Wt+1:Wt—nV FWh.
=P [ W d wiW?)

Then, there exists a constant C' > 0 (depending only on L, u, k) such that the following expansions
hold with O(n?*) remainders:

(parameters) W' = W' —n(g' 6" + 5" Hig' 6T ) + Riy, | Riyllr < C,
(logits) 2™ =z' — nu(gt +p! Higt) +ry, el <O,
(logit gradient) g'™' = (I —nuH. —nupt (Hi)Q)gt +ry, [rll < Cn?.

In particular, for softmax cross-entropy where gt = p* — y and

(residual) p'*' —y = (I —nuH, —npp’ (Hi)Q)(pt —y)+ry, el <O

Proof. Write F(W) := f(W¢,y) and z = W ¢. By Proposition [A.1] (Pullback/Kronecker and
operator forms),

VwF(W)=g¢', Hw[AW]=H.AW (¢¢'),

and Ty(AW) = AW ¢ with || Ty|| < [|¢|| = /- Moreover, by the multilinear chain rule applied
o F(W) = f(W¢,y),

Vi F(W)[A1, Az, As] = V3 f(2,9)[T5(A1), Te(A2), Ty(As)], ©)

hence the operator norm satisfies

S‘I}I‘PHV%F(W)H < (Sup”Vif(z,y)H) ITE < L2, ®)
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(i) Parameter update. Let

VWF(Wt)
AW = p ot
v =PI F(W)

If lg*[| > 0, then Vi F(W*) = g'¢" and [|g"¢" ||r = [lg" || [#]| = llg"[l\/z. so

|| adv”p |P| <K\/|;

= 0.) A second-order Taylor expansion of Vyy F at W

and W'=W'+ AW},

tyT
g'¢
AWy =p :
¢ lg*llv/m
(If [|g*|| = 0, our convention sets AW}, =
gives, for some 6 € (0,1),

Vw F(W) = Vw F(W') + Hiy [AW, ] + § Vig F(W! +0AW,5, ) [AW o, AW, |
By equatlonland 1AW lF < &Nl

H% V%VF( : ) [AW dv> AVVatdv]

| < 1Lu AW < Coll,

for a constant Cy = Cy(L, i1, k). Using the operator identity from Proposition

LIAWA] = HE AW, (667) = PP HigheT — 5t H'g' o7

lg"l
Therefore
Wt+1 Wt (gtqs—r +p~tH§gt¢T) 777R%3
where | RS ||F < Co |n). Setting RYy, = —n RY yields || Ry, || < Cn? with C = C(L, u, k),

proving the parameter expansion.
(ii) Logit update. Right-multiplying by ¢ and using 1 = ||¢]|?,
22 = (W - We = *W(gt +p' Higt) +r,
with [|rL]| < | R || 7 ||¢]] < C'n?* (absorbing /fz into C). This proves the logits expansion.

(iii) logit gradient update. Since g = V f(z,y), a first-order Taylor expansion at z* gives
g =g' + HI(z"" = 2") + 5 V(' + ¢ y)[Az) Az'], Azl=2" -2t

By assumption ||[V2f|| < L and ||Az?|| = O(n) from the previous step, hence the remainder has
norm < C; n?. Substituting the logits expansion from step (ii) yields

gt = (I—WHE —nupt (Hi)E)gt +ry, gl <Cn?,

after absorbing constants into C'. This proves the logit gradient statement.

Combining (i)—(iii) completes the proof, with a constant C' depending only on (L, i, k), and the
bounds holding for all || € (0,1] In|.

For softmax cross-entropy,

Vef(zy) =p(z) —y,  H.(2) =Vif(z,y)=Diag(p(z)) — p(2)p(2)".

Since p(z) € AV~! C [0,1]V for all z, every entry of the third derivative tensor V2 f(z,y) is
a bounded polynomial in p(z) (hence in [0, 1]). Therefore there exists a finite constant Lgy, (V)
depending only on V" such that

sup||V2 f(z,y)|| < Lem(V).

In particular, f is C'*° and Assumption (1) of the theorem holds with L = Lg, (V). O
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Proposition A.3. H, is symmetric positive semidefinite with ker(H,) = span{l} and
rank(H_.) = V — 1. Moreover, for the residual g we have 1T g = 0, hence g € 1+ = range(H.,);
in particular, given any eigenbasis of H . restricted to 1+, g admits a unique coordinate represen-
tation in that basis.

Proof. Let p = softmax(z) € (0,1)V sothat 1"p = 1, and recall
H_. = Diag(p) —pp .

For any v € RV,

1% 1% 9

v Hyv= Zpivf — (Zpﬂ)z) = Varp(v) >0,

i=1 i=1
hence H , is symmetric positive semidefinite. Moreover, v H,v = 0iff Varp(v) =0, ie., v; is
constant across ¢. Since p; > 0 for all ¢, this means v = ¢ 1, thus

ker(H,) =span{1} = rank(H.)=V —dimker(H,)=V —1.

Then1'g=1"p— 1Ty =0,s0g € 1+. For any symmetric matrix, range(H,) = (ker(H.))";
using ker(H ) = span{1} yields 1+ = range(H.), hence g € range(H.).

Restrict H, to the invariant subspace 1. Being symmetric, H, |;. admits an orthonormal eigen-
basis {vk}kvz—11 associated with its positive eigenvalues. Since g € 1%, it has the unique expansion

V= .
g= Zk:f ex v, with ey, = (vg) T g. O

Corollary A.4 (Modal dynamics in the eigenbasis of H'). Under the same assumptions as The-
orem[A.2] For each t, let the spectral decomposition of the symmetric positive—semidefinite matrix
H! be

V-1

t to b, iN\T

H, = E M o) s
k=1

where \j, > 0, (v};)—r'vlf = Oy are the non-zero eigenvalues and eigenvectors. Define the modal
coefficients of the residual g = pt — y by

et = (vh)Tg, k=1,...,V -1
Then there exists a constant C' > O such that for all nonzero modes k > 1,
(vi) gttt = (1 - nu [)\}; +,5t()\§€)2}) el + ri, Irt| < Cn? 9)
Proof. By Theorem[A.2](residual expansion), we have
gt = (I—WH,ﬁ—nuﬁt(Hi)Q)gtH“Z, Irt] < Cn?. (10)

Fix ¢ and let the eigendecomposition of H! be H! = ;' AL vl (vi)T with \i > 0 and
{v}, },‘;;11 orthonormal. (The zero mode corresponding to A = 0 is orthogonal to g* in the softmax—
CE case and is therefore omitted.)

Project equation|10|onto the eigenvector v} :

(v0) 79" = Wh)T (I —nuHL = yup' (HY?)g' + (vf) 7.

Using the eigen-relations H v}, = \j v} and (H!)*vt = (A\})?v! and the definition el, = (v}) T g,
we obtain

(00) gt = (1= nudt = nup ()2 )eh + rhe k= (0]) T
Finally, since [|v || = 1 we have |r},| < [|r}[| < C'n?, which is exactly equation@ This completes
the proof. [

17



Under review as a conference paper at ICLR 2026

Corollary A.5 (One-step confidence ratios under SAM). Under the assumptions of Theorem
Fix an iteration t and write p* = softmax(zt), g' = p' — e,, and H! = diag(p*) — p'(p') . For
each class i € [V, define the one—step confidence ratio

i ()

ap = B2 4 c{aD,sAM].
b;
Then o admits the representation
v t
N D€
of = —A———.  BYP = exp{—n[(0} —y;) — (0} —wi)] },

1% t
2= B3 €%

and the SAM correction appears multiplicatively as
pIAM = gEb eXp{ —'p'[(HLg"); — (Hig")] }
where nf' = 1 v and, when ||g*|| > 0, p* = p/1r/||g"|| (otherwise p* = 0 by convention).

Let y be the ground—truth label and y* = argmax;z, pé— the most confident incorrect class.

Assume the sign condition n'pt > 0 and the radius scaling |p| < k+/|n|. Then there exists
no = no(p', HL, |lg*|l, , k, L) > 0 such that, for all step sizes 0 < |n| < no, the following
one—step inequalities hold without remainder terms:

aS

y* (07

AM GD SAM GD
< Qe a, > g -

Herey € {y™,y~ } denotes the ground—truth label corresponding to the positive or negative learn-
ing rate, respectively. Moreover, the inequalities are strict whenever p;* € (0,1) and p; < % In
particular, when pt = 0 (no SAM), the two equalities hold.

Proof. Fixtandaclassi € [V]. Setny’ = npu. By Theorem (logits line),
Az o= 2 2= (g5 E) bl e < O,

where C; depends only on (L, u1, ) and the hypothesis |p| < k+/|n| is in force.

For any increment Az,

t t
pi(z' + Az) 2, 2,
o = = = .
' pi(z') >_jexp{Az; — Az}e > @ezf
With the above Az,
BIM = exp{—n'(g! — g!)} exp{ —n'p' AL} exp{rl —ri}, Al :=(H!g"); — (Hlg"):.
5]@13 curvature factor remainder factor

From ||7L ||oc < C1n2 we have e=2C17° < exp{rt —r{} < 201 for all i, j.

With H! = diag(p') — p'(p') " and g' = p' — e,,
(Hg")i=pi (i —v: = C"),  C":=> (0})> 7l
k
Let y* = arg max;, p§. Then C* < p!. and one checks: (i) for i = y*, A% . < 0 for all j, and
Al . < 0 for some j whenever pi. € (0,1); (ii) for i = y, AL > 0 for all j whenever p; < %
and A% > 0 for some j if pf, € (0, 3].

%)
Define

t ~ t - t
DEP =3 BiPes,  Dii=) fiPemexp{—ip'Al;},  DPMi= gAMen.

J J J
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By the remainder bounds, e~2C17"° D; < DSAM < e201m° D, Next, by e® > 1 + z and the sign
structure of Aft i

DGD Zw ) - ptAL . > 1+77ptzw At ) > 1+Cy*77/ﬁt»

for some ¢~ > 0 whenever pi. € (0, 1); here wé = 6J»GDeZi /DSP are positive weights. Simi-
larly, for plt/ < l,

DGD Zw(y) —n'ptAl, <1-— n/ptzw(y)Aty < 1-c,npt
J
for some ¢, > 0 (strict in the stated nondegenerate case).

Now use the scaling [p| < x+/[7]: then /5! = O(n3/2), whereas eX217" = 1 + O(n?). Hence
there exists 79 > 0 (depending only on (p*, H',||g"||, 1, &, L)) such that for 0 < |n| < no,

SAM —2017% GD 1 ~t SAM 2C11° 1 GD 1 ~t
Dyt > e 2 Dy > DEP (145c,-0'p"), DA < 27 D, < DyP (1—4eyn'p?).

. t .
Since a; = (3= €%7)/D;, we obtain for 0 < [n| < no:
SAM GD SAM GD
Qe < ay, a, > o,
with strict inequalities under the stated nondegeneracy conditions (because then cy«,c, > 0). If
llg'|l = 0 (so p* = 0 by convention), both become equalities. This completes the proof. 0

B IMPLEMENTATION

Algorithm 1 Logits-SAM pseudocode

Requ1re model, batch, p

: Let W < 1m_head.weight

Run forward to get 1oss_pre and hidden states H
g < grad(loss_pre, W)

e pg/lgll

logits._perturbed < linear(H, W + ¢)
Compute loss_post with logits_perturbed
Backward 1oss_post

A A R S

Table 4: Comparison between theoretical and practical settings of DPO with SAM. Although the
signs differ for yy~, the resulting dynamics are equivalent. For 3™, the settings coincide.

Class Objective Learning rate p Setting
yt Positive objective f = —logp  Positive (n > 0)  Positive  Theory = Practice
y~ (Theory)  Positive objective f = —logp Negative (n < 0) Negative Theory
y~ (Practice)  Negative objective f = logp  Positive (n > 0)  Positive Practice

C ADDITIONAL EXPERIMENTAL DETAILS

Benchmark details. AlpacaEval 2 (Dubois et al.l |2024) is a large-scale preference benchmark
for open-ended instruction following that uses LLM-as-a-judge calibrated to human preferences; its
evaluation set contains 805 single-turn instructions, and models are typically compared in pairwise
settings against a baseline. Arena-Hard v0.1 (Li et al.}[2024) is a challenging subset of difficult user
instructions mined from Chatbot Arena; it enables fine-grained, head-to-head comparisons between
models via pairwise judging and comprises 500 hard prompts. MT-Bench (Zheng et al., 2023) is
a multi-turn dialogue benchmark that tests a model’s ability to handle diverse conversational tasks
across several categories; the standard evaluation set consists of 80 multi-turn questions.
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Method Objective Hyperparameter
SLiC-HF  max(0, § — logmg(yuw | ) +logmg(y | ©)) — A €
Mog o (yw | ) {0.1, 0.5, 1.0, 10.0};
) €
{0.5, 1.0, 2.0, 10.0}
CPO floga(ﬂlogm;(yw | ) — Blogmy(y | JS‘)) - A = 10, g €

Mog mg (Yo | )

{0.01, 0.05, 0.1}

Table 5: Objectives and hyperparameters for SLiC-HF and CPO.

Method Pythia-2.8B Mistral-7B
DPO 1x1074 1x10°°
SLiC-HF 1x10°3 1x1074
CPO 1x10~* 1x 1073

Table 6: Choice of p for logits-SAM.

Training details.

For experiments on Pythia-2.8B, we use two NVIDIA A100 GPUs with data-

parallel training under DDP; for Mistral-7B, we use four NVIDIA A100 GPUs with parallel training

via DeepSpeed ZeRO-3 (Rasley et al., [2020).

D LLM USAGE STATEMENT

In preparing this manuscript, we employed a large language model (LLM) as an auxiliary tool.
Specifically, the LLM was used to assist with proofreading, formatting, and grammar checking of

the text.
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