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ABSTRACT

Following the rise in popularity of data-centric machine learning (ML), various
data valuation methods have been proposed to quantify the contribution of each
datapoint to desired ML model performance metrics (e.g., accuracy). Beyond the
technical applications of data valuation methods (e.g., data cleaning, data acqui-
sition, etc.), it has been suggested that within the context of data markets, data
buyers might utilize such methods to fairly compensate data owners. Here we
demonstrate that data valuation metrics are inherently biased and unstable under
simple algorithmic design choices, resulting in both technical and ethical implica-
tions. By analyzing 9 tabular classification datasets and 6 data valuation methods,
we illustrate how (1) common and inexpensive data pre-processing techniques can
drastically alter estimated data values; (2) subsampling via data valuation metrics
may increase class imbalance; and (3) data valuation metrics may undervalue un-
derrepresented group data. Consequently, we argue in favor of increased trans-
parency associated with data valuation in-the-wild and introduce the novel Data
Valuation Cards (DValCards) framework towards this aim. The proliferation of
DValCards will reduce misuse of data valuation metrics, including in data pricing,
and build trust in responsible ML systems.

1 INTRODUCTION

Recently, focus has shifted away from model-centric machine learning (ML) in favor of data-centric
ML, whereby increased emphasis is placed on the importance of meaningful, high-quality data to a
desired ML output Singh (2023). Within this paradigm, data valuation methods quantify the contri-
bution of each datapoint (i.e. datum) to a given ML model performance metric (e.g., accuracy, loss,
or a fairness measure such as equalized odds) Ghorbani & Zou (2019); Cook & Weisberg (1980);
Arnaiz-Rodriguez & Oliver (2023a); Pang et al. (2024); Wang et al. (2024a). Increasingly, data val-
uation metrics as influence functions are utilized for various technical applications Hammoudeh &
Lowd (2024); Sim et al. (2022); Fleckenstein et al. (2023), including data cleaning and subsampling
Yoon et al. (2020); Ghorbani & Zou (2019); Koh & Liang (2017); Kwon & Zou (2021); Tang et al.
(2021), data acquisition Ghorbani & Zou (2019); Kwon & Zou (2021); Jia et al. (2021), feature
attribution Chen et al. (2023); Zhao et al. (2024), and active learning Ghorbani et al. (2022), with
the specific application scenario influencing the choice of valuation function Sim et al. (2022). Ad-
ditionally, data valuation techniques have been reappropriated to measure or modify the algorithmic
fairness of ML systems Black & Fredrikson (2021); Arnaiz-Rodriguez & Oliver (2023a); Pang et al.
(2024); Wang et al. (2024a). Within the context of data markets, it has been proposed that data
buyers utilize data valuation methods for data pricing estimation in order to fairly compensate data
owners according to their individual impact on model performance Laoutaris (2019); Paraschiv &
Laoutaris (2019); Jia et al. (2019b;a). However, the practical limitations of in-the-wild data valuation
are not yet well exposed.

Here, we highlight inherent properties of data valuation metrics - notably, bias and instability under
simple algorithmic design choices - by examining diverse case studies. These experiments aim to
address pragmatic questions: (1) Do standard data preprocessing techniques predictably alter data
values?; (2) What are the technical side-effects of modifications to an ML system via data valuation?
For instance: can data cleaning augment class imbalance?; and (3) What are the ethical side-effects
of such modifications? Namely: are members of underrepresented groups more likely to yield un-
dervalued data? Taken together, the context-dependent implications of these results underscore the
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need for increased transparency regarding data valuation in-the-wild. Alternatively, the properties
of data valuation metrics may limit their applicability to specific tasks entirely, as we argue in the
case of data market pricing. Ultimately, we address the transparency gap by proposing a framework
that we call DValCards, which accompany applications of data values and report the intended use,
design choices, performance, and other critical information. We hope that the use of DValCards
facilitates communication between creators, users, and affected parties of data valuation metrics,
thereby encouraging appropriate use of the technology.

The code used in our experiments is available at: link.

1.1 RELATED WORK

Data valuation. The data valuation metrics we consider (leave one out (LOO), Truncated monte-
carlo Shapley (TMC-Shapley), gradient Shapley (G-Shapley), etc.) were contextualized into an
influence function taxonomy by Hammoudeh & Lowd (2024) and are introduced here in Section 2.
Prior works have analyzed known limitations of data valuation methods with some proposing novel
variants which attempt to address them. Zhou et al. (2023) find that Shapley estimators do not
necessarily satisfy the fairness properties of true Shapley values. Schoch et al. (2022) develop a
Shapley-based metric which better discriminates between in- and out-of-class contributions; here,
we further analyze their method according to its impact on class imbalance. Ghorbani et al. (2020)
propose a distributional Shapley framework to augment stability of data values under perturbations.
Wang et al. (2024b) show that when applied to data selection, Data Shapley may perform no better
than random selection without specific constraints on utility functions: for instance, when applied
to homogeneous data. Wang & Jia (2023) discuss the instability of data value rankings across
different model runs and propose a more robust data valuation metric; however, we demonstrate
that their method (Banzhaf) still exhibits rank instability across algorithmic design choices. More
generally, we focus specifically on LOO and Shapley-based values due to their popularity in real-
world applications. Modeling choices have been found to result in varied feature attributions, with
the specific task better informing the choice of Shapley-based approach Chen et al. (2020). More
efficient Shapley value estimation methods have been proposed, e.g. Covert & Lee (2021); Chen
et al. (2018); Kwon et al. (2021); Jethani et al. (2021). Yona et al. (2021) propose an extended
Shapley method addressing joint credit assignment, and data valuation metrics have been extended
to the federated learning setting, e.g. Wang et al. (2020); Liu et al. (2022); Song et al. (2019); Jiang
et al. (2023).

AI/ML transparency frameworks. Modern ML transparency documentation frameworks are
largely inspired by early documentation strategies including Data statements for natural language
processing Bender & Friedman (2018), Datasheets for datasets Gebru et al. (2021), and Model cards
for model reporting Mitchell et al. (2019). Existing frameworks are designed to enable users to
comprehensively report essential characteristics of ML data, models, methods, or systems, and of-
ten cite similarities to nutrition labels or engineering datasheets Chmielinski et al. (2022); Krasin
et al. (2017); Arnold et al. (2019). Frameworks may be contextualized for specific domains or
applications, such as Healthsheets for healthcare applications Rostamzadeh et al. (2022), Reward
reports for reinforcement learning Gilbert et al. (2023), or the Foundation Model Transparency In-
dex Bommasani et al. (2023). Human-centric elements may be included for data reporting, such as
the annotator demographic information recommended by Dı́az et al. (2022). Data values are dis-
tinct from prior subjects of transparency documentation for a number of reasons, making existing
frameworks inadequate for data value reporting; this is discussed in more detail in Section 4.

2 METHODOLOGY

Experimental overview. In this paper, we restrict our attention to the task of supervised classifica-
tion. Let D = {zi = (xi, yi)}ni=1 denote the training data, where xi ∈ X ⊆ Rd are the features and
yi ∈ Y is the target class of the datum, zi. Assume the model, A, is trained on a subset of the data,
S ⊆ D, to optimize the selected utility function, V(S,A) : 2n → R, where 2n is the collection of all
subsets of D, including the empty set. To simplify notation, let V(S) denote V(S,A). Throughout
the paper, V(S) denotes the accuracy of the model on the validation (test) set, when trained on S.

We utilize three diverse experiments as illustrative case studies, specifically:
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1) Metric instability: 12 data imputation methods are applied as preprocessing techniques
to 9 tabular datasets which are then used to train supervised classification models. The
corresponding data values for each condition are reported using 4 data valuation metrics.

2) Class imbalance: 4 data valuation metrics are used to subsample data from 9 tabular
datasets. The class imbalance is reported before and after subsampling using the balance
estimates described in Appendix Section D.2.

3) Underrepresented group bias: 4 tabular datasets were analyzed to identify the prevalence
of underrepresented attribute groups and their impact on 4 data valuation methods. Group
and attribute representation is reported before and after subsampling using the balance
estimates described in Appendix Section D.4.

Datasets. We selected 9 real-world, permissively licensed (CC BY), tabular classification datasets
from the OpenML-CC18 benchmark license; Bischl et al. (2019). Dataset selection criteria are
detailed in Appendix Section C.1. The datasets are reported by OpenML-CC18 labels: 18 (Mfeat-
morphological), 23 (Contraceptive method choice), 31 (German credit), 37 (Pima Indians diabetes
database), 54 (Vehicle silhouette), 1063 (KC2 Software defect prediction), 1068 (PC1 Software
defect prediction), 1480 (Indian liver patient) and 40994 (climate-model-simulation-crashes). Ba-
sic dataset characteristics are listed in Appendix Table 1.

Data preprocessing. To test the impact of data imputation methods on data valuation metrics, we
utilize tabular datasets with no missing values and induce missingness according to three percentages
(1%, 10% and 30%) and three patterns (missing completely at random (MCAR), missing at random
(MAR) and missing not at random (MNAR)), as defined in Appendix Section A.1. Then we perform
data imputation using 12 methods: row removal (i.e., discard all rows with any missing data values),
column removal (i.e., remove attribute with missing data values), mean (i.e., replace a missing value
with the mean of that attribute), mode (i.e., replace a missing value with the most frequent values
within the attribute), k-nearest neighbor (KNN) Murti et al. (2019), optimal transport (OT) Muzellec
et al. (2020), random sampling (i.e., randomly select samples from the attribute to fill the missing
value), multivariate imputation by chained equations (MICE) van Buuren & Groothuis-Oudshoorn
(2011), linear interpolation Huang (2021), linear round robin (LRR) Muzellec et al. (2020), MLP
round robin (MLP RR) Muzellec et al. (2020), and random forest (RF) Hong & Lynn (2020). We
include supplemental details in Appendix C.2.

Data valuation. The objective of the data valuation approach is to compute the datum value that
reflects the marginal contribution of the datum to V . Let the value of the datum zi to V be given by:

ϕtech(zi , D , A , V ), (1)

datum
training data

model

utility function

where tech is the datum valuation approach used to compute value of the datum. For simplicity,
we use ϕtech(zi) to denote ϕtech(zi,D,A,V). In general, V(S)− V(S \ {zi}) is defined as the
marginal contribution of a datum to the utility function, V . Different valuation approaches have
different variants of this formulation.

For all experiments, we evaluate the data valuation approaches: truncated Monte Carlo Shapley
(TMC-Shapley) Ghorbani & Zou (2019), gradient Shapley (G-Shapley) Ghorbani & Zou (2019), and
leave one out (LOO) Cook & Weisberg (1980). See Appendix Sections A.2 for method descriptions
and C.3 for learning algorithm and additional details. Additionally, we analyze Banzhaf Wang & Jia
(2023) with respect to metric instability, class-wise Shapley (CS-Shapley) Schoch et al. (2022) for
class imbalance analysis, and FairShap Arnaiz-Rodriguez & Oliver (2023a) fairness-based metrics
exclusively for the fairness experiment, beyond the standard metrics.
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3 RESULTS

3.1 METRIC INSTABILITY CASE STUDY: DATA IMPUTATION

We find that varying the applied data imputation method results in appreciable variation of data val-
ues, with all other experimental conditions held constant (see Figure 1). Notably, the data rank order
change is statistically significant when cross-comparing data values corresponding to any two differ-
ing imputation methods, according to Kendall’s τ coefficient: τ < 1 and p < 0.05 Kendall (1938).
This trend holds across all the data valuation methods considered (TMC-Shapley, G-Shapley, LOO
and Banzhaf); see Appendix Figure 5.
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(a) Variation in data values for fixed data points by imputation method
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(b) Cross-comparison of datum rank values by imputa-
tion method
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(c) Variations in value-selected data subsets by im-
putation method

Figure 1: Data values are unstable to choice of data preprocessing method. (a) Leave-one-out (LOO)
value estimates vary as a function of imputation method; data points are selected to span 5 quintiles
of data value scores from the row removal results (grouped by color). By cross-comparing value
estimates by imputation method, it is clear that value rank order varies in addition to raw values.
(b) TMC-Shapley value-based data ranks are compared across two different imputation methods
(column removal and MICE) to assess agreement. The Kendall τ = 0.3214, p-value < 0.05,
indicating a statistically significant positive correlation but not agreement, as can be observed by
the scattering of points away from the diagonal (grey dashed line). Point size indicates scale of
rank change; see also Appendix Figure 7 for changes in value and rank across all points. (c) The
percentage of shared points between high data value sets as a function of various imputation methods
and row removal as the baseline method. Analogous plots including low data value selection are
provided in Appendix Figure 9.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Variance in data values. Figure 1a shows a snapshot of 15 fixed data points in dataset 1063 (KC2
Software defect prediction, with MNAR-1) and the variance of leave-one-out (LOO) data values
after various imputation methods were performed. The points were selected as non-imputed values
spanning the quartiles of the initial data value set condition (MNAR, row removal), with three points
per bin. This snapshot demonstrates a crucial point: that data values can vary significantly according
to imputation method applied; not only in an absolute sense (which may be meaningless to compare
cross-system), but even causing drastic relative changes in score for non-imputed data points. For
completeness, mean data values are reported systematically across all imputation methods and data
valuation metrics considered in Appendix Figure 6. In general, utilizing data imputation methods
tends to increase the average data value (see Appendix Table 2a and Figure 8) and, in some cases,
the maximum data value (see Appendix Table 2b).

Variance in data rank. To illustrate datum rank changes across all data points for a single dataset,
we select two imputation methods (column removal and MICE) and cross-compare how datum rank
is impacted for all data values in dataset 23 (Contraceptive method choice, with TMC and MAR-
30). These results are shown in Figure 1b; we would expect a stable valuation metric to reasonably
maintain consistent rank scores, and display a trend along the diagonal (shown as the grey dotted
line). The wide variability of rank scores in this case study suggests that data value instability may
not uniquely impact high or low data values. To better systematically assess rank order changes, we
report the Kendall’s τ coefficient across each pair of imputation methods acting on dataset 37 (Pima
Indians Diabetes Database, with MNAR-10) for all data valuation metrics considered in Figure 5.
We find that the imputation method of row removal and the data valuation metric LOO are associated
with significant rank changes in comparative analyses across imputation strategy.

Implications to data subsampling. Indeed, for many practical applications of data valuation met-
rics, the data values are used to select a subset of the initial dataset according to highest or lowest
data values, such as in data cleaning. Thus, we ask: are data valuation metrics capturing the same
points as the sub-selected data fraction varies, if only the imputation method is modified? We show
that the same points are not necessarily captured in Figure 1c; in this, we present the percentage of
data points captured by TMC values following applications of different imputation methods when
compared to the baseline method, row removal (dataset 23, MCAR-30). Analogous plots with both
the highest- and lowest-valued data fractions are shown for each of the metrics considered in Ap-
pendix Figure 9. Moreover, data values assessed prior to imputation could lead to the premature
disposal of otherwise high-valued data as assessed post-imputation. In the following section, we
explore class-based implications of value-based data subsampling.

3.2 TECHNICAL IMPACT CASE STUDY: CLASS IMBALANCE

We find that the distribution of data values can vary greatly as a function of class membership and
data valuation metric. As a result, data value-based subsampling may increase class imbalance.

Data value distributions may be class-dependent. We observe that most standard data valuation
metrics exhibit class-based bias, with sample results shown in Figures 2a-2b for TMC-Shapley and
G-Shapley. All results in Figure 2 are shown for dataset 40994 (climate-model-simulation-crashes)
under MCAR-10 and random imputation. Notably, the associated binary classes are imbalanced,
with the larger class (“simulation success”) comprising 91.3% of the data. In Figures 2a-2b, the
Shapley-based data valuation metrics can be seen to produce lower data values for the less frequent
class (“simulation failure”, blue) than the more frequent class (“simulation success”, orange). By
contrast, the application of the class-wise Shapley (CS-Shapley) metric reduces the class-based bias
on the same data: see Figure 2c, in which the distinct classes correspond to similar data value dis-
tributions. This trend is unsurprising, as CS-Shapley was developed to better discriminate between
training instances’ in-class and out-of-class contributions to a classifier. However, the differences
observed across data valuation metrics indicate the utility of clear transparency documentation, es-
pecially given the impact of the choice of data valuation method on other performance metrics.
Additional class-based value distribution plots are shown in Appendix Figure 10 for diverse datasets
and metrics.
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Figure 2: Data values and class imbalance. (a, b, and c) Data value distributions according to three
valuation metrics (TMC-Shapley, G-Shapley, and CS-Shapley, respectively), for a binary classifier
with 91.3% simulation-outcome success (dataset 40994, MCAR-10). We observe marked class-
based differences in data value distributions for TMC-Shapley and G-Shapley; by contrast, class-
wise Shapley (CS-Shapley) improves consistency between classes. (d, e) Class balance (as defined
in Appendix D as b) versus percentage of data removed, as a function of four data valuation metrics
(TMC-Shapley, G-Shapley, LOO and CS-Shapley). Value-based data subsampling may impact class
imbalance. In this example, TMC-Shapley and G-Shapley increase class balance with removal of
high-value data and decrease balance with removal of low-valued data.

Value-based subsampling may impact class balance. To illustrate how class imbalance can
change as a function of value-based data subsampling, we show class balancedness as a function
of percentage removed data for each metric, e.g. in Figures 2d-2e. Given the same initial dataset
with imbalanced classes, we observe that TMC-Shapley and G-Shapley result in reduced class bal-
ance as low-valued data is removed; this is indicative of data removal from the lower-valued, smaller
class (“simulation failure”) corresponding to the value distributions shown in Figures 2a-2b. The op-
posite trend holds as high-valued data is removed, indicative of data pulled from the majority class,
until an inflection point is reached. By contrast, CS-Shapley results in a relatively consistent class
balance when either high- or low-valued data is removed. LOO results in reduced class balance
as high-valued data is removed and increased class balance as low-valued data is removed. Analo-
gous plots for diverse datasets and imputation methods may be found in Appendix Figure 11. We
systematically review all datasets, imputation methods, missingness conditions and value metrics
according to their impact on class balance following subsampling in Appendix Table 3 and Table 4,
corresponding to removal of low- or high-valued data, respectively. Results are reported according
to absolute class balance scores (i.e., balancedness ¡ 0.25) and to relative class balance with respect
to the original dataset. We find that when 20% of low-valued data is removed, the absolute and
relative class balance worsens for most datasets; the removal of high-valued data does not generally
reduce class balance. Finally, the choice of metric may have diverse effects on downstream perfor-
mance metrics, such as accuracy (see Appendix Figure 20) or attribute balance (see Section 3.3).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 >=13
#Children

0.003

0.002

0.001

0.000

0.001

0.002

D
at

a 
Va

lu
e 

E
st

im
at

es

(a) TMC-Shapley

0 1 2 3 4 5 6 7 8 9 10 11 12 >=13
#Children

0.010

0.005

0.000

0.005

0.010

D
at

a 
Va

lu
e 

E
st

im
at

es

(b) G-Shapley

0 20 40 60 80
Fraction of training data removed (%)

0.45

0.50

0.55

0.60

0.65

S
ex

 re
pr

es
en

ta
tio

n 
(%

)

TMC-Shapley LOO G-Shapley

(c) 31 LRR (sex) remove high value data

0 20 40 60 80
Fraction of training data removed (%)

0.20

0.25

0.30

0.35

0.40

0.45

S
ex

 re
pr

es
en

ta
tio

n 
(%

)

TMC-Shapley LOO G-Shapley

(d) 31 LRR (sex) remove low value data

Figure 3: Data values and attribute group. (a, b) Data value distributions according to two valu-
ation metrics (TMC-Shapley and G-Shapley, respectively), by attribute group “number of children
ever born” (dataset 23, MAR-10). We observe marked attribute-based differences in data value
distributions with variance across valuation metric. In (a), removal of low-valued data may dispro-
portionately remove data from underrepresented attribute groups (i.e, greater “number of children
ever born”). (c, d) Percentage binary sex representation (as defined in Appendix D as g) versus
percentage of data removed, as a function of three data valuation metrics (TMC-Shapley, LOO, and
G-Shapley). Value-based data subsampling may impact attribute imbalance. In this example, TMC-
Shapley and G-Shapley tend to increase percentage sex representation with removal of high-value
data and decrease representation with removal of low-valued data.

3.3 ETHICAL IMPACT CASE STUDY: POTENTIAL UNDERVALUATION OF MARGINALIZED
GROUPS

We find that data valuation metrics may exhibit attribute-based bias as a function of dataset and
preprocessing conditions. As a result, the choice of metric in the context of specific downstream ap-
plications, like data subsampling, may impact attribute balance in an unpredictable manner. When
an attribute (e.g. skin tone, gender) denotes a sensitive characteristic associated with protected or
marginalized groups of people, the potential for selective removal of these infrequent data sam-
ples is ethically (and possibly legally) problematic. Similar implications apply to other value-based
applications including pricing in data markets.

Data values by attribute group. Our experiments show that data valuation metrics manifest dis-
tinct and potentially biased distributions across attribute groups. Two examples are provided in
Figures 3a - 3b, which display the variance in TMC-Shapley and G-Shapley values according to
attribute for dataset 23 (Contraceptive method choice, with MAR-10); here, the attribute of interest
is “number of children ever born”. In these, we observe distinct distributions for data value across
the various attribute classes. Lower data values in TMC-Shapley were often associated with under-
represented groups (Figure 3a), i.e. with greater “number of children ever born”; thus downstream
subsampling based on low-value data removal may pull relatively more data from these underrepre-
sented groups. Heterogeneity of distributions according to attribute group may be observed under a
multitude of experimental conditions: additional analogous plots to 3a - 3b are shown in Appendix
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Figure 13. These show that CS-Shapley may also produce distinct distribution clusters for specific
attributes, and thus a method chosen to protect class balance may still result in the selective removal
of data from underrepresented attribute groups, or other issues caused by data undervaluation.

Subsampling and attribute balance. Sample plots in Figures 3c - 3d illustrate how attribute
balance may be impacted by value-based subsampling. For dataset 31 (German credit, LRR, MCAR-
30), we see that as an increasing fraction of low-valued data is removed, TMC- and G-Shapley
tend to result in worsening female-to-male binary sex representation, with generally smaller effects
resulting from LOO. Analogous plots to Figures 3c - 3d for diverse imputation methods can be
found in Appendix Figure 15, and imputation method is systematically assessed for its impact on
attribute balance and equalized-odds difference (EOD, a fairness metric) for age and sex in Appendix
Figure 16 and Figure 17, respectively. We cross-compare model accuracy with EOD for both binary
sex and age in Appendix Figure 20 for dataset 31 (German credit, mean, MAR-30), as increasing
fractions of data are removed, demonstrating that EOD is not necessarily correlated with changes in
predictive accuracy.

For all missingness conditions, imputation methods and standard value metrics we present results in
which subsampling improves EOD fairness for sex (see Appendix Table 5) and age (see Appendix
Table 6) on dataset 31 (German credit, mean, MAR-30). From this systematic analysis we find that
across all conditions, subsampling typically does not improve EOD fairness. Similarly, we assess
the impact on attribute representation balance for all conditions, for sex (see Appendix Table 7) and
age (see Appendix Table 8). The results are found to vary more widely for attribute representation
balance, and this may be impacted by the initial attribute representation balance from the original
dataset.

For comparison, we additionally show the distribution of data values by attribute group and class
according to accuracy and three fairness metrics (equalized odds “Odds”, average absolute equalized
odds “Odds2”, and equal opportunity “EOp”) using the protocol described in Arnaiz-Rodriguez &
Oliver (2023b) on select datasets (see Appendix Figure 14 and Equation (7)). As expected, the
distribution of accuracy- and fairness-based values display distinct characteristics, as the removal
of points of low influence to accuracy may negatively impact fairness outcomes; this is assessed
systematically in Appendix Figures 18d and 19 across binary sex and age.

3.4 FAIR COMPENSATION

We briefly comment on the oft-cited recommendation that data valuation metrics be utilized as, or a
major constituent of, a data pricing scheme. Our results indicate that a naı̈ve utilization of the LOO
and Shapley-based metrics is unsuitable for establishing equitable compensation. In Section 3.1, we
illustrate the instability of LOO, TMC-Shapley and G-Shapley to 12 common data preprocessing
(imputation) methods. Such instability induces no confidence in data metrics as a pricing scheme;
that is, it is unclear to data market participants how minor algorithmic design choices may impact
data costs. Likewise, control over algorithmic design may provide data buyers with a mechanism by
which to artificially adjust data prices to the detriment of data owners. In Section 3.3, we demon-
strate the potential for attribute group bias in data values; as a data pricing scheme, this puts data
buyers at risk of explicitly undervaluing data offered by members of marginalized groups or other
“outlier” types. (Interestingly, such an effect could make homogeneous data more expensive from
a buy-side perspective.) Notably, data valuation metrics are unfair by design, as evidenced by their
utility for data outlier removal and cleaning. Furthermore, we argue that data valuation metrics lack
properties of an effective economic pricing strategy: for instance, an inherent asymmetry is given
to the seller, as data owners must submit their data in order to receive an assigned price. Prior
works have highlighted this and a number of other practical challenges with the use of data val-
uation metrics as a pricing scheme, which include computational expense (Hammoudeh & Lowd
(2024)), the handling of replicated data Xu et al. (2021); Agarwal et al. (2019); Wang & Jia (2023);
Ohrimenko et al. (2019), the translation to a monetary value Coyle & Manley (2023), asymmetry
in data marketplace design Azcoitia & Laoutaris (2022); Agarwal et al. (2019); Han et al. (2023),
privacy leakage Tian et al. (2022); Wang et al. (2023); Kang et al. (2024) and protections against
strategic sellers Castro Fernandez (2022); Agarwal et al. (2019). In many practical contexts, fair
and consistent compensation may more readily be obtained by assigning data values a priori and
decoupling values from learning algorithms and performance metrics.
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4 DVALCARDS FOR DATA VALUATION TRANSPARENCY

(a) DValCard Example

(b) System Flowchart

Figure 4: Illustration of the DValCard example (4a), and a system flowchart that contextualizes
the use of data valuation for increased transparency in the DValCard (4b). Processes most closely
associated with data in green; data valuation in red; and the ML model in yellow. Evaluation
data was used in both analysis processes (omitted arrows indicating this for clarity) to assess the
contribution of DVal Candidate data to the trained model and to evaluate ML models trained on
subsampled datasets.
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Given the limitations of data valuation metrics explored in previous sections, we propose a trans-
parency framework to promote confidence in, and appropriate use of, such metrics. There exist key
differences between data valuation methods and the subjects of existing transparency documents: in
particular, data values can (1) form part of the data life cycle; (2) form part of the model life cycle;
or (3) be utilized as standalone measures. Within a data life cycle, data values may be used for
dataset curation, e.g. in explanations of data diversity, density or association (Mitchell et al., 2023)
or instance removal (Gebru et al., 2021). Within a model or system life cycle, data values are used
for model training, e.g. for data weighting, selection, cleaning and preprocessing Arnaiz-Rodriguez
& Oliver (2023b); Yoon et al. (2020); Koh & Liang (2017); Kwon & Zou (2021); Tang et al. (2021);
Ghorbani & Zou (2019); Kwon & Zou (2021). Furthermore, data values may be independently used
for tasks including data pricing. Consequently, existing transparency documents do not well capture
the flexibility required for data valuation reporting: system cards Alsallakh et al. (2022) assume the
existence of ML models contained within a broader pipeline, while datasheets Gebru et al. (2021)
exclude models entirely, as examples. Another key feature of data values is that accurate reporting
of when values are computed is essential, with respect to other ML system components; in Sec-
tion 3.1 we illustrate the impact of simple preprocessing choices on data values. This motivates our
recommendation that DValCard authors include ML system flowcharts to clearly detail the order of
operations. Correspondingly, certain performance measures, such as attribute balance, may change
as the result of data value-based processes, such as value-based subsampling (see Section 3.3). Thus,
we encourage reporting performance before and after the data value application. Figure 4 illustrates
an example DValCard, with the main sections highlighted in blue, and Appendix H includes details
of the proposed general sections of the DValCard, intended to flexibly integrate the “ingredients” of
data valuation methods and better elucidate system performance in the context of intended use.

5 CONCLUSIONS

We introduce the DValCards framework to support decision-making and promote the appropriate
use of data valuation methods. Through three case studies, we demonstrate notable disparities of
data valuation in practice: the variability in data values caused by common data preprocessing tech-
niques (Section 3.1), the influence of data values on class imbalances (Section 3.2), and the dis-
parate valuation of underrepresented attribute groups (Section 3.3). We argue that comprehensive
and transparent documentation—covering appropriate data valuation methods use, implementation
specifics, performance metrics, and fairness considerations—will significantly improve usage.

Limitations Our experiments primarily centered on a small set of data valuation metrics: TMC-
Shapley, G-Shapley, and LOO. We selected these methods based on three criteria: they are the most
frequently cited in the literature, serve as a foundation for many modern methods that often refine or
address the limitations of these fundamental approaches (e.g., CS-Shapley), and are widely applied
in data pricing and data markets, with Shapley values being particularly prominent. While alternative
metrics may exist that better address some of the technical and ethical challenges we examine,
transparency remains essential to foster clear communication between stakeholders in practice.

Moreover, our choice to highlight practical case studies is inherently restrictive; for example, we do
not extend beyond the tabular supervised classification domain nor explore preprocessing methods
beyond imputation. Additionally, the OpenML-CC18 benchmarking datasets we utilize do not have
comprehensive associated transparency documentation (e.g., datasheets). Thus, in some settings,
the exact provenance of the original data and the use of ethical curation practices remain unclear.
To the best of our knowledge, we are the first to empirically study the practical limitations of data
valuation in real-world use cases and propose a specific framework for data valuation transparency.
We hope that future researchers can test the framework in practical applications.

Lastly, challenges may arise in enforcing the DValCards standard and incentivizing researchers and
practitioners to adopt and implement the documentation effectively. The current proposed DValCard
template aims to initiate a discussion and encourage practitioners and researchers to modify it to en-
sure accurate and comprehensive documentation of the data valuation process. With agreement on
the standard, practitioners and researchers can integrate the DValCard into their documentation. We
believe we can successfully follow a similar route taken by other documentation and transparency
methods to incentivize researchers and practitioners to incorporate DvalCards into existing docu-
mentation frameworks.
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A PROBLEM DEFINITIONS

A.1 DATA MISSINGNESS DEFINITIONS.

Assume data is partitioned into observed and missing data: Xinit = (X obs
init,Xmiss

init ). Let R ∈
{0, 1}n×d be a random variable that denotes a missingness pattern where Rij = 1 if Xinit,ij is
observed and 0 otherwise. The probability distribution of R is denoted by PR and parameterized by
ϵ. Then, the probability of the missingness patterns are given below.

• With MCAR, the missingness is independent of the variables and observations. The prob-
ability of MCAR is defined as PR(R|ϵ).

• The likelihood of a missing value in MAR is dependant on only the observable data. The
probability for MAR can be defined as PR(R|X obs

init, ϵ).

• MNAR is when missing data is neither MCAR nor MAR. The missing data depends
equally on the missing and observed data. The MNAR probability is defined as
PR(R|X obs

init,Xmiss
init , ϵ).

A.2 DATA VALUATION METRIC DEFINITIONS.

Leave One Out (LOO) is an algorithm which is more commonly used in model training for cross
validation or model selection. In this setting, the model is trained on n − k data points and then
evaluated and fine-tuned on k (here, k = 1) data points. Similarly, to compute the LOO value of
a datum, the datum is excluded from the training dataset Cook & Weisberg (1980). Valuation of a
datum with LOO is computed as:

ϕloo(zi) = V(S)− V(S \ {zi}), (2)

where here, the training subset S is the entire training dataset, D.

The Shapley value is a solution concept in cooperative game theory for semi-values. Due to
several of its axiomatic properties, Ghorbani & Zou (2019) suggested the use of Shapley values to
compute the value of a datum to machine learning. The Shapley value of a datum is defined as

ϕshapley(zi) =
1

n

∑
S⊆D\{zi}

1(
n−1
|S|

)[V(S ∪ {zi})− V(S)
]
. (3)

The axiomatic properties of Shapley values that make it favourable for data valuation include the
following:

1) Null player: If for all S ⊆ D,V(S) = V(S ∪ {zi}), then ϕshapley(zi) = 0.

2) Efficiency:
∑
zi∈D

ϕshapley(zi) = V(D).

3) Symmetry: If i and j are such that V(S ∪ {zi}) = V(S ∪ {zj}), then ϕshapley(zi) =
ϕshapley(zj).

4) Linearity: For any 2 utility functions V1 and V2, and α1, α2 ∈ R,
ϕshapley(zi, α1V1 + α2V2) = α1ϕshapley(zi,V1) + α2ϕshapley(zi,V2).
Additionally, ϕshapley(zi,V1 + V2) = ϕshapley(zi,V1) + ϕshapley(zi,V2).

Despite these properties, the true Shapley value is computationally complex; it is exponential in
the number of data points. TMC-Shapley and G-Shapley are approximations of the Shapley value
designed to counter this complexity, among others Ghorbani & Zou (2019); Jia et al. (2019b; 2020).

TMC-Shapley was proposed by Ghorbani & Zou (2019) as a truncated Monte Carlo approxima-
tion of the Shapley value. In this, a scan through sampled permutations is performed to compute
truncated marginal contributions to V(S) within a performance tolerance of V(D) and assign 0
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marginal contribution to other data points within the permutation. If there are n! permutations of
data points and Π is the uniform distribution over all of them, and Si

π is the set of data points coming
before datum zi in permutation π ∈ Π, then:

ϕtmc-shapley(zi) = Eπ∼Π

[
V(Si

π ∪ {zi})− V(Si
π)
]
. (4)

G-Shapley was proposed in the same work as a related, gradient-based Monte Carlo approxima-
tion of Shapley. The algorithm approximates the marginal contribution of the datum zi by taking
gradient descent step using zi and computing the difference in V . We refer the reader to Ghorbani
& Zou (2019) for a more detailed description of the algorithms.

CS-Shapley is a Shapley value estimation variant that differentiates between the contribution of
a zi to its own class and to other classes (Schoch et al., 2022). We refer the reader to Schoch et al.
(2022) for a detailed description of the method.

ϕcs-shapley(zi) =
1

2|D−yi|

∑
Syi

⊆Dyi
\{zi}

1(
n−1
|Syi

|
)[Vyi

(Syi
∪ {zi}|S−yi

)− Vyi
(Syi

|S−yi
)
]
. (5)

Banzhaf as proposed by Wang & Jia (2023), is a semivalue-based data valuation scheme with
increased robustness across model runs compared to TMC-Shapley. We refer the reader to Wang &
Jia (2023) for a detailed description of the method.

ϕbanzhaf(zi) =
1

2|D|−1

∑
S⊆D\{zi}

[
V(S ∪ {zi})− V(S)

]
. (6)

FairShap as proposed by Arnaiz-Rodriguez & Oliver (2023b) is a variant of Shapley value es-
timation building on the work of Jia et al. (2019a) to compute the marginal contribution of zi by
means of k-NN approximation and the validation dataset T . FairShap considers the family of data
valuation methods centering error rate fairness metrics. With Φi,j defined as the marginal contri-
bution of zi to the probability of correct classification of the test point xj ∈ T , the definition of
fairshap-SVAcc(zi) is:

ϕfairshap-SVAcc(zi) =
1

m

m∑
j=1

Φi,j . (7)

We refer the reader to Arnaiz-Rodriguez & Oliver (2023b) for thorough details on computation of the
ϕfairshap-SVAcc(zi)’s fairness derivative data values: ϕfairshap-SVEOp(zi) (marginal contribution
of zi to equal opportunity), ϕfairshap-SVOdds(zi) (marginal contribution of zi to average equalized
odds), and ϕfairshap-SVOdds2(zi) (marginal contribution of zi to average absolute equalized odds).
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B DATASET CHARACTERISTICS

Name (ID) Source #Classes #Features Train Test

Mfeat-morphological
(18)

https://www.openml.org/
search?type=data&sort=
runs&status=active&id=
18

10 7 1600 400

Contraceptive method
choice (23)

https://www.openml.org/
search?type=
data&status=active&id=
23

3 10 1178 295

German credit (31)

https://www.openml.org/
search?type=
data&status=active&id=
31

2 20 800 200

Pima Indians diabetes
database (37)

https://www.openml.org/
search?type=
data&status=any&id=37

2 7 614 154

Vehicle silhouette (54)
https://www.openml.org/
search?type=
data&status=any&id=54

4 18 676 170

KC2 Software defect
prediction (1063)

https://www.openml.org/
search?type=
data&status=active&id=
1063

2 22 417 105

PC1 software defect
prediction (1068)

https://www.openml.org/
search?type=
data&status=
active&sort=runs&id=
1068

2 22 887 222

Indian liver patient
(1480)

https://www.openml.org/
search?type=
data&status=any&sort=
runs&id=1480

2 10 466 117

climate-model-
simulation-crashes
(40994)

https://www.openml.org/
search?type=
data&status=any&sort=
runs&id=40994

2 21 432 108

Table 1: Basic characteristics of the OpenML-CC18 tabular datasets used in the experiments.

C METHODOLOGY: SUPPLEMENTAL DETAILS

C.1 DATASET SELECTION CRITERIA

9 datasets were sub-selected from 69 OpenML-CC18 datasets according to the following criteria:
(1) the data contains no missing values; (2) the existence of at most 10 classes; and (3) the existence
of a number of data features within the range (5, 25].

C.2 DATA PREPROCESSING

Missingness. Missingness patterns were selected among three patterns defined by Rubin (1976),
in which data is: missing completely at random (MCAR), missing at random (MAR) and missing
not at random (MNAR). We define them here in section A.1. To vary data missingness, we first select
one or more fixed features: specifically, feature 3 for datasets with ≤ 8 features, and features 2 and
7 for datasets with ≥ 9 features. For each missingness pattern (MCAR, MAR, and MNAR), data
missingness is induced according to three percentages: 1%, 10% and 30% for the selected features.
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As a result, a total of 81 initial datasets, Xinit from the original 9 datasets are produced by varying
missingness pattern and percentage.

Data imputation. For each of the initial datasets Xinit with induced missingness, we perform
data imputation according to 12 methods (imp) and produce a preprocessed dataset for each, Ximp.
Assume the data is stored such that a row represents an entire datapoint and each column represents
a data feature or attribute. The imputation methods are: row removal (i.e., discard all rows with
any missing data values), column removal (i.e., remove attribute with missing data values), mean
(i.e., replace a missing value with the mean of that attribute), mode (i.e., replace a missing value
with the most frequent values within the attribute), k-nearest neighbor (KNN) Murti et al. (2019),
optimal transport (OT) Muzellec et al. (2020), random sampling (i.e., randomly select samples from
the attribute to fill the missing value), multivariate imputation by chained equations (MICE) van Bu-
uren & Groothuis-Oudshoorn (2011), linear interpolation Huang (2021), linear round robin (LRR)
Muzellec et al. (2020), MLP round robin Muzellec et al. (2020), and random forest (RF) Hong &
Lynn (2020).

C.3 DATA VALUATION

For each dataset, we encode categorical features into numerical features, and create fixed 80%/20%
train/validation splits. Data splits are maintained across experimental conditions. For TMC-Shapley,
G-Shapley, Banzhaf, CS-Shapley and LOO, we use logistic regression model as the learning algo-
rithm A, with D equal to each dataset’s train set; the same applies to fairness computations such as
equalized odds difference (EOD). FairShap is computed with kNN as the learning algorithm A. The
hyperparameters solver and max iter were varied for the logistic regression model and value k was
varied for the kNN neighbor classification model.

Computing TMC-Shapley, G-Shapley, and CS-Shapley data values each required [4 − 12] hours,
and Banzhaf and FairShap data values each required ≤ 4 hours for each dataset Ximp. Dataset
18, required 24 hours, due to the larger number of classes (10 classes). TMC-Shapley, G-Shapley,
and LOO data values were computed for all datasets. Banzhaf was computed for datasets 23, and
37. CS-Shapley was computed for datasets 18, 23, 31, and 1680, each under missingness condition
MNAR:30 and on dataset 40994 for all kinds of missingness. FairShap data values were computed
for datasets 31 and 1480 for all kinds of missingness. Experiments were conducted using a CPU
on a laptop computer with the following hardware specifications: 2.6 GHz 6-Core Intel Core i7
processor; 16 GB 2400 MHz DDR4 RAM; and Intel UHD Graphics 630 1536 MB graphics card.

D METRICS FOR LARGE-SCALE DATA VALUES ANALYSIS

In this section we develop concise notation (called “conditions”) to efficiently report results across
a wide range of initial datasets, induced missingness patterns and percentages, imputation methods,
and data valuation methods. Conditions are derived as approximate measures of success for data
cleaning, class balance, fairness, and group/attribute representation balance, below.

D.1 DATA CLEANING DEFINITIONS

Condition-1Atech
j measures the fraction of datasets for which the data cleaning protocol in-

creases the data value average.

Condition-1Atech
j =

∑9
i=1 1[avgtechij > avgtechir ]

9
(8)

Condition-2Atech
j measures the fraction of datasets for which the data cleaning protocol in-

creases the maximum data value.

Condition-1Btech
j =

∑9
i=1 1[maxtech

ij > maxtech
ir ]

9
(9)

Here, the term tech denotes the data valuation scheme, avg denotes the average data value, max
denotes the maximum data value, and r refers to the baseline dataset condition: the same initial
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dataset under row removal imputation. Specifically, the value of Condition-1Atech
j denotes the

fraction of datasets for which the average data value after imputing data with algorithm j and val-
uating with method tech is greater than the average data value after discarding missing data (rows)
and valuating with method tech. Similarly, the value of Condition-2Atech

j denotes the fraction
of datasets for which the maximum data value after imputing data with algorithm j and valuating
with method tech is greater than the maximum data value after discarding missing data (rows) and
valuating with method tech.

D.2 CLASS BALANCE DEFINITIONS

The class balance b is defined as:

b =

{
#minority class
#majority class , if train-set classes ≥ test-set classes
0, otherwise

(10)

Condition-2Atech
j measures the fraction of datasets for which the data subsampling protocol

results in a class balance value less than 0.25.

Condition-2Atech
j =

∑9
i=1 1[btechij < 0.25]

9
(11)

Condition-2Btech
j measures the fraction of datasets for which the data subsampling protocol

results in a class balance value less than the original class balance of the unsampled dataset.

Condition-2Btech
j =

∑9
i=1 1[btechij < bij ]

9
(12)

Here, the term tech denotes the data valuation scheme and j denotes the imputation algorithm. The
term b denotes the class balance of the dataset, as computed above. Class balance (b) is in the
range [0, 1] with zero indicating that at least one class is completely unrepresented in train set, and
one indicating that the classes are fully balanced. Specifically, the value of Condition-2Atech

j
denotes the fraction of datasets for which the class balance of the dataset subsampled by ranked data
value according to data valuation method tech is lower than 0.25. The value of Condition-2Btech

j
denotes the fraction of datasets for which the class balance of the dataset subsampled by ranked data
value according to data valuation method tech is lower than the class balance of the full “unsampled”
dataset.

D.3 FAIRNESS EQUAL OPPORTUNITY DIFFERENCE (EOD) DEFINITIONS

The fairness measure “equal opportunity difference” (EOD) is defined as:

EOD = max(TPRdiff , FPRdiff ) (13)

where TPRdiff = |P (Ŷ = 1|Y = 1, G = 1) − P (Ŷ = 1|Y = 1, G = 0)|, and FPRdiff =

|P (Ŷ = 1|Y = 0, G = 1) − P (Ŷ = 1|Y = 0, G = 0)|, and G is the sensitive group, and Ŷ is the
classifier prediction.

Condition-3tech
j measures whether or not the data subsampling protocol results in an EOD value

less than the original EOD of the unsampled dataset; i.e., is 1 if it is “more fair”.

Condition-3tech
j = 1[EODtech

j < EODj ] (14)

Here, the term tech denotes the data valuation technique, j denotes the imputation algorithm
and EOD denotes the equalized odds difference (EOD) as defined above. When the value of
Condition-3tech

j is 1, it implies that the EOD of the dataset subsampled by ranked data value
according to data valuation method tech is lower than the EOD of the full “unsampled” dataset.
Value 0 implies the reverse. Since lower EOD implies better model fairness, a value of 1 is more
desirable in this scenario.
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D.4 GROUP AND ATTRIBUTE REPRESENTATION BALANCE DEFINITIONS

The group (or attribute) representation balance g is defined as:

g =
#minority subgroup

#majority subgroup
(15)

Condition-4tech
j measures whether or not the data subsampling protocol results in a group (or

attribute) representation balance value less than the original balance value of the unsampled dataset;
i.e., is 1 if it is “less balanced”.

Condition-4tech
j = 1[gtechj < gj ] (16)

Here, the term tech denotes the data valuation technique, j denotes the imputation algorithm used
and g denotes the group representation balance described above. For example, if the group is “binary
sex”, then the subgroups could be “male” and “female”. When the value of Condition-4tech

j is
1, it implies that the group (or attribute) representation balance of the dataset subsampled by ranked
data value according to data valuation method tech is lower than the balance of the full “unsampled”
dataset. Value 0 implies the reverse. A value of 1 is more desirable in this scenario.
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Figure 5: The Kendall tau values when cross-comparing the data ranks resulting from imputation
algorithms on dataset 37 (Pima Indians Diabetes Database, with MNAR-10). The observed tau
values for (a) TMC-Shapley, (b) Banzhaf, and (c) G-Shapley are typically > 0 and < 1 indicating a
positive correlation between the compared ranks. However, for (d) LOO the tau values are usually
< 0 indicating a negative correlation and high disagreement between rank orders.
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Figure 6: Average LOO data values for dataset 1063 (KC2 Software defect prediction), varied by
missingness pattern/percentage and imputation method.
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Figure 7: Changes in (a) TMC-Shapley rank order and (b) data values, and (c) Banzhaf rank order
and (d) data values for individual data points across applications of column removal and MICE
imputation methods on dataset 37 (Pima Indians Diabetes Database, with MNAR-10).
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Figure 8: Condition-1Atech
j on three data valuation methods, which measures the fraction of

datasets for which the data cleaning protocol increases the data value average compared to a baseline
method (see Appendix Section D). Fractions are shown for (a) Condition-1ATMC−Shapley

j ,
(b) Condition-1AG−Shapley

j and (c) Condition-1ALOO
j across all datasets and missingness

MAR:1, MNAR:1 and MNAR:1 applied. For TMC-Shapley and LOO, most imputation algorithms
resulted in a lower average data value than the baseline method; the opposite was true for G-Shapley.
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Figure 9: The percentage of shared points between high- and low- data value sets as a function
of various imputation methods and the baseline method (row removal). Across all data valuation
methods ((a,d) TMC-Shapley, (b,e) G-Shapley, and (c,f) LOO), higher variance is observed in in-
tersectional points when excluding low-valued data (a-c) than excluding high-valued data (d-f).
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Random (5/9,1/9,4/9) (0/9,4/9,2/9) (0/9,2/9,1/3) (2/3,4/9,2/9) (2/9,1/3,2/3) (1/9,0/9,5/9) (2/9,1/3,2/9) (4/9,2/9,5/9) (2/9,1/3,2/9)
MICE (2/3,2/9,1/9) (0/9,1/3,2/9) (0/9,2/9,4/9) (2/3,4/9,2/9) (0/9,2/9,1/3) (1/9,1/9,4/9) (2/9,1/3,0/9) (1/3,2/9,1/3) (1/9,1/3,1/3)
Interpolation (5/9,2/9,1/9) (1/9,4/9,1/3) (0/9,1/3,2/9) (4/9,4/9,1/9) (1/9,2/9,5/9) (1/9,0/9,4/9) (2/9,1/3,1/3) (5/9,1/9,1/3) (2/9,2/9,2/9)
Random Forest (5/9,2/9,2/9) (0/9,1/3,1/3) (0/9,1/3,2/9) (4/9,4/9,2/9) (0/9,2/9,4/9) (1/9,2/9,4/9) (2/9,2/9,1/9) (2/9,1/3,4/9) (2/9,1/3,1/9)
LRR (2/3,2/9,1/3) (1/9,1/3,4/9) (2/9,1/3,5/9) (2/3,4/9,4/9) (0/9,2/9,4/9) (1/9,1/9,5/9) (1/3,1/3,2/9) (1/9,2/9,2/9) (2/9,1/3,2/9)
MLP RR (8/9,2/9,5/9) (1/9,4/9,4/9) (2/9,1/3,2/9) (5/9,4/9,1/3) (1/9,2/9,1/3) (0/9,1/9,4/9) (1/9,1/9,1/9) (2/9,2/9,1/3) (2/9,1/3,4/9)

(b) Condition-1Btech
j across 3 data valuation methods, 11 imputation methods, and 9 miss-

ingness conditions; this measures the fraction of datasets for which the data cleaning pro-
tocol increases the data value maximum compared to a baseline method (see Appendix Sec-
tion D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-1BTMC−Shapley

j , Condition-1BG−Shapley
j , Condition-1BLOO

j ), where j is the im-
putation algorithm. The highlighted values in blue denote cases in which handling missing data improves the
maximum data value for majority of the datasets.

Table 2: Condition-1Atech
j and Condition-1Btech

j . Handling missing values generally im-
proves the (a) average data value, and in some cases, the (b) maximum data value.
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F DATA VALUE BASED SUBSAMPLING CAN INCREASE CLASS IMBALANCE
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Figure 10: The distribution of TMC-Shapley, G-Shapley and LOO data values according to target
class. Distributions are shown for: (a-c) dataset 23 (Contraceptive method choice, MNAR-30), (d-f )
18 (Mfeat-morphological, MNAR-30) and (g-i) 40994 (climate-model-simulation-crashes, MCAR-
10). Under certain conditions, e.g. (b) and (h), strong class bias exists in data values, as evidenced
by disparate distributions by class. In these cases, data sampling according to data value would
likely result in greater amounts of data excluded from specific classes.
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Figure 11: Class balance (as defined in Appendix D as b) versus percentage of data removed, as
a function of four data valuation metrics (TMC-Shapley, G-Shapley, LOO and CS-Shapley). Sub-
figure captions indicate the dataset, imputation method, and missingness pattern/percentage. These
factors have varied effects on the class balance.
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Figure 12: (a-d) Class balance and (e-h) model prediction accuracy as a function of subsampling for
four experimental conditions. Subfigure captions list dataset and missingness pattern/percentage;
imputation method is column removal for each case. We observe a relationship between the unsam-
pled dataset class imlabance and the effects on class balance following value-based subsampling and
accuracy. In datasets with low initial class balance, e.g. dataset 40994 (climate-model-simulation-
crashes, (a,b,e,f)), the removal of high-value data via TMC- and G-Shapley initially (a) increases
class balance, while removal of low-value data via TMC- and G-Shapley initially (b) decreases class
balance. Correspondingly, the accuracy of the model trained on these subsampled datasets initially
(e) increases and (f) decreases, respectively. Datasets with higher initial class balance, e.g. dataset
31 (German credit, (c,d,g,h)) tend to exhibit more drastic changes to prediction accuracy as a func-
tion of subsampling.
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MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (2/3,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,2/3,4/9) (2/3,7/9,5/9) (5/9,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3)
Col Removal (2/3,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3)
Mean (2/3,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,2/9) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,1/3)
Mode (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,4/9) (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,4/9) (5/9,7/9,1/3)
KNN (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,4/9) (2/3,7/9,2/9) (2/3,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3)
OT (5/9,7/9,1/3) (5/9,7/9,4/9) (2/3,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,4/9)
random (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,4/9) (2/3,7/9,4/9)
MICE (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3)
Interpolation (5/9,7/9,1/3) (5/9,7/9,4/9) (2/3,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (5/9,7/9,2/9) (5/9,7/9,4/9) (2/3,7/9,1/3) (2/3,7/9,4/9)
Random Forest (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,2/9) (5/9,7/9,4/9) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3)
LRR (5/9,7/9,1/3) (2/3,7/9,4/9) (2/3,7/9,4/9) (5/9,7/9,1/3) (5/9,7/9,1/3) (5/9,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,2/9) (2/3,7/9,4/9)
MLP RR (5/9,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,4/9) (5/9,7/9,2/9) (5/9,7/9,1/3) (2/3,7/9,4/9) (5/9,7/9,1/3) (2/3,7/9,1/3) (2/3,7/9,4/9)

(a) Condition-2Atech
j across 3 data valuation methods, 12 imputation methods, and 9 missingness condi-

tions; this measures the fraction of datasets for which the data subsampling protocol results in a class balance
value less than 0.25 (see Appendix Section D). Each cell value denotes a triplet of results for the three data val-
uation techniques: (Condition-2ATMC−Shapley

j , Condition-2AG−Shapley
j , Condition-2ALOO

j ),
where j denotes the imputation algorithm used on the data. Results are specific to when the subsampled data
is 80% of highest value data. The highlighted values in teal color denote experimental conditions for which
subsampled data has a class balance greater than 0.25 for the majority of the datasets. Subsampling with TMC-
Shapley and G-Shapley generally results in class balance worse than 0.25.

MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (9/9,9/9,5/9) (8/9,9/9,4/9) (7/9,9/9,2/9) (9/9,9/9,5/9) (8/9,9/9,7/9) (7/9,9/9,8/9) (9/9,9/9,1/3) (8/9,9/9,4/9) (9/9,9/9,2/3)
Col Removal (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9)
Mean (9/9,9/9,2/3) (9/9,9/9,5/9) (9/9,9/9,2/3) (9/9,9/9,1/3) (9/9,9/9,2/3) (9/9,9/9,4/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,7/9)
Mode (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,2/3) (9/9,9/9,7/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,4/9) (9/9,9/9,8/9)
KNN (9/9,9/9,5/9) (9/9,9/9,7/9) (9/9,9/9,2/3) (9/9,9/9,5/9) (9/9,9/9,1/3) (9/9,9/9,2/3) (9/9,9/9,4/9) (9/9,9/9,7/9) (9/9,9/9,5/9)
OT (9/9,9/9,5/9) (9/9,9/9,1/3) (9/9,9/9,2/3) (9/9,9/9,4/9) (9/9,9/9,5/9) (9/9,9/9,2/3) (9/9,9/9,5/9) (9/9,9/9,2/3) (9/9,9/9,8/9)
random (9/9,9/9,2/3) (9/9,9/9,5/9) (9/9,9/9,4/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,4/9) (9/9,9/9,2/3)
MICE (9/9,9/9,1/3) (9/9,9/9,2/3) (9/9,9/9,2/3) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,7/9)
Interpolation (9/9,9/9,2/3) (9/9,9/9,5/9) (9/9,9/9,4/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,1/3) (9/9,9/9,5/9) (9/9,9/9,2/3) (9/9,9/9,2/3)
Random Forest (9/9,9/9,4/9) (9/9,9/9,7/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,4/9) (9/9,9/9,2/3) (9/9,9/9,1/3) (9/9,9/9,5/9) (9/9,9/9,2/3)
LRR (9/9,9/9,1/3) (9/9,9/9,2/3) (8/9,9/9,4/9) (9/9,9/9,1/3) (9/9,9/9,5/9) (9/9,9/9,2/3) (9/9,9/9,2/3) (9/9,9/9,1/3) (9/9,9/9,2/3)
MLP RR (9/9,9/9,5/9) (9/9,9/9,7/9) (9/9,9/9,5/9) (9/9,9/9,4/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,5/9) (9/9,9/9,7/9) (9/9,9/9,2/3)

(b) Condition-2Btech
j across 3 data valuation methods, 12 imputation methods, and 9 missing-

ness conditions; this measures the fraction of datasets for which the data subsampling protocol re-
sults in a class balance value less than the original class balance of the unsampled dataset (see Ap-
pendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-2BTMC−Shapley

j , Condition-2BG−Shapley
j , Condition-2BLOO

j ), where j denotes the
imputation algorithm used on the data. Results are specific to experimental conditions in which the subsampled
data is 80% of highest value data. The highlighted values in teal color denote settings where subsampled
data has a class balance greater than the full “unsampled” data, for the majority of the datasets. Across all
conditions, subsampling generally via any data valuation method generally results in worse class balance than
the unsampled set.

Table 3: Condition-2Atech
j and Condition-2Btech

j on datasets subsampled by selecting the
highest value data (80%). Generally, class balance worsens due to subsampling, both (a) in overall
class balance scores (b less than 0.25), and (b) relatively with respect to the unsampled dataset.
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MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (1/3,4/9,1/3) (4/9,4/9,1/3) (4/9,1/3,1/3) (1/3,4/9,1/3) (4/9,1/3,1/3) (4/9,5/9,4/9) (1/3,4/9,2/9) (4/9,4/9,2/9) (1/3,4/9,1/3)
Col Removal (4/9,4/9,1/3) (4/9,4/9,1/3) (4/9,4/9,1/3) (4/9,4/9,1/3) (4/9,4/9,1/3) (4/9,4/9,1/3) (4/9,4/9,1/3) (4/9,4/9,1/3) (4/9,4/9,1/3)
Mean (1/3,1/3,1/3) (1/3,1/3,1/3) (4/9,1/3,2/9) (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,2/9) (1/3,1/3,4/9) (1/3,1/3,1/3)
Mode (1/3,1/3,1/3) (4/9,1/3,1/3) (4/9,4/9,4/9) (1/3,1/3,4/9) (4/9,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,2/9) (4/9,1/3,1/3) (1/3,1/3,4/9)
KNN (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,2/9) (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,1/3)
OT (1/3,1/3,1/3) (1/3,1/3,1/3) (4/9,1/3,2/9) (1/3,1/3,2/9) (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,4/9) (1/3,1/3,4/9)
random (1/3,1/3,1/3) (4/9,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,4/9,1/3) (1/3,4/9,1/3) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,4/9)
MICE (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,2/9) (1/3,1/3,4/9) (1/3,1/3,2/9) (1/3,1/3,2/9)
Interpolation (1/3,1/3,2/9) (4/9,1/3,1/3) (4/9,1/3,1/3) (1/3,1/3,4/9) (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,2/9)
Random Forest (1/3,1/3,1/3) (1/3,1/3,4/9) (1/3,1/3,4/9) (1/3,1/3,5/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,4/9) (1/3,1/3,2/9) (1/3,1/3,1/3)
LRR (1/3,1/3,2/9) (4/9,1/3,2/9) (1/3,1/3,2/9) (1/3,1/3,1/3) (4/9,1/3,4/9) (1/3,1/3,1/3) (4/9,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,1/3)
MLP RR (1/3,1/3,1/3) (1/3,1/3,2/9) (4/9,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,2/9) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,1/3) (1/3,1/3,2/9)

(a) Condition-2Atech
j across 3 data valuation methods, 12 imputation methods, and 9 missingness condi-

tions; this measures the fraction of datasets for which the data subsampling protocol results in a class balance
value less than 0.25 (see Appendix Section D). Each cell value denotes a triplet of results for the three data val-
uation techniques: (Condition-2ATMC−Shapley

j , Condition-2AG−Shapley
j , Condition-2ALOO

j ),
where j denotes the imputation algorithm used on the data. Results are specific to when the subsampled data
is 80% of lowest value data. The highlighted values in teal color denote experimental conditions for which
subsampled data has a class balance greater than 0.25 for the majority of the datasets. Excluding high-value
data using any data valuation metric generally results in class balance greater than 0.25.

MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (4/9,2/9,2/3) (1/3,2/9,9/9) (4/9,2/9,8/9) (4/9,2/9,5/9) (4/9,2/9,4/9) (4/9,2/9,2/3) (4/9,2/9,5/9) (4/9,2/9,2/3) (4/9,2/9,1/3)
Col Removal (4/9,2/9,7/9) (4/9,2/9,7/9) (4/9,2/9,7/9) (4/9,2/9,7/9) (4/9,2/9,7/9) (4/9,2/9,7/9) (4/9,2/9,7/9) (4/9,2/9,7/9) (4/9,2/9,7/9)
Mean (4/9,2/9,4/9) (4/9,2/9,7/9) (4/9,2/9,4/9) (4/9,2/9,4/9) (4/9,2/9,5/9) (4/9,2/9,4/9) (4/9,2/9,5/9) (4/9,2/9,7/9) (4/9,2/9,1/3)
Mode (4/9,2/9,5/9) (4/9,2/9,7/9) (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,2/3) (4/9,2/9,4/9) (4/9,2/9,5/9) (4/9,2/9,1/3)
KNN (4/9,2/9,5/9) (4/9,2/9,1/3) (4/9,2/9,4/9) (4/9,2/9,5/9) (4/9,2/9,2/3) (4/9,2/9,1/3) (4/9,2/9,5/9) (4/9,2/9,4/9) (4/9,2/9,7/9)
OT (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,2/3) (4/9,2/9,1/3) (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,7/9) (4/9,2/9,5/9) (4/9,2/9,4/9)
random (4/9,2/9,2/3) (4/9,2/9,7/9) (4/9,2/9,2/3) (4/9,2/9,4/9) (4/9,2/9,7/9) (4/9,2/9,2/3) (4/9,2/9,2/3) (4/9,2/9,7/9) (4/9,2/9,2/3)
MICE (4/9,2/9,5/9) (4/9,2/9,7/9) (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,1/3) (4/9,2/9,4/9) (4/9,2/9,2/3) (4/9,2/9,1/3) (4/9,2/9,5/9)
Interpolation (4/9,2/9,5/9) (5/9,2/9,1/3) (4/9,2/9,2/3) (4/9,2/9,4/9) (4/9,2/9,4/9) (4/9,2/9,2/3) (4/9,2/9,5/9) (4/9,2/9,2/3) (4/9,2/9,2/3)
Random Forest (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,2/3) (4/9,2/9,2/3) (4/9,2/9,2/3) (4/9,2/9,2/3) (4/9,2/9,2/3) (4/9,2/9,4/9) (4/9,2/9,7/9)
LRR (4/9,2/9,2/3) (4/9,2/9,4/9) (4/9,2/9,4/9) (4/9,2/9,7/9) (4/9,2/9,5/9) (4/9,2/9,1/3) (4/9,2/9,2/3) (4/9,2/9,4/9) (4/9,2/9,5/9)
MLP RR (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,5/9) (4/9,2/9,2/3) (4/9,2/9,2/3) (4/9,2/9,2/3) (4/9,2/9,5/9) (4/9,2/9,4/9)

(b) Condition-2Btech
j across 3 data valuation methods, 12 imputation methods, and 9 missing-

ness conditions; this measures the fraction of datasets for which the data subsampling protocol re-
sults in a class balance value less than the original class balance of the unsampled dataset (see Ap-
pendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-2BTMC−Shapley

j , Condition-2BG−Shapley
j , Condition-2BLOO

j ), where j denotes the
imputation algorithm used on the data. Results are specific to experimental conditions in which the subsampled
data is 80% of lowest value data. The highlighted values in teal color denote settings where subsampled data
has a class balance greater than the full “unsampled” data, for the majority of the datasets. Excluding high-
value data via TMC-Shapley and G-Shapley generally results in class balance greater than the unsampled set.

Table 4: Condition-2Atech
j and Condition-2Btech

j on datasets subsampled by selecting the
lowest value data (80%). Generally, class balance improves as the result of subsampling, both (a) in
overall class balance scores (b greater than 0.25), and (b) relatively with respect to the unsampled
dataset.
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G POTENTIAL ADVERSE EFFECTS OF FAIRNESS AND GROUP
REPRESENTATION
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(a) TMC-Shapley
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(b) G-Shapley

0 1 2 4 5 6
0.015

0.010

0.005

0.000

0.005

0.010

0.015

D
at

a 
Va

lu
e 

E
st

im
at

es

(c) CS-Shapley
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(d) LOO

Figure 13: Data value distributions for dataset 1063 (KC2 Software defect prediction, random,
MNAR-30) according to attribute group (“locodeandcomment”).
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Figure 14: Distributions of accuracy and fairness Shapley values computed with FairShap on
datasets 31 (German credit) and 1480 (Indian liver patient) with row removal and MCAR:30.
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(a) 31, MLP RR, age
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(b) 31 MLP, MLP RR, age
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(c) 31, MLP RR, sex
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(d) 31, MLP RR, sex
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(e) 31, Col removal, age
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(f) 31, Col removal, age
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(g) 31, Col removal, sex

0 20 40 60 80
Fraction of training data removed (%)

0.2

0.3

0.4

0.5

S
ex

 re
pr

es
en

ta
tio

n 
(%

)

TMC-Shapley
LOO

G-Shapley
CS-Shapley

(h) 31, Col removal, sex
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(i) 31, Mode, age
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(j) 31, Mode, age
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(k) 31, Mode, sex
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(l) 31, Mode, sex
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(m) 31, Random, age
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(o) 31, Random, sex
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Figure 15: Percentage attribute representation (as defined in Appendix D as g, for binary sex and
age) versus percentage of data removed, as a function of four data valuation metrics (TMC-Shapley,
G-Shapley, LOO and CS-Shapley). Subfigure captions report the dataset label, imputation method,
and (sensitive) attribute. All examples shown here have missingness pattern/percentage MNAR-30.
The impact on group representation varies as a function of imputation method, valuation scheme,
and removal of high- or low-valued data.
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Figure 16: Representation balance (as defined in Appendix D as g) and equalized-odds difference
(EOD) as a function of imputation algorithm and data valuation method (TMC-Shapley, LOO, and
G-Shapley). Results are shown for dataset 1480 (Indian liver patient) and the attribute “age range”.
Abbreviations in the x-axis correspond to the imputation algorithm: [‘Row Removal’, ‘Column
Removal’, ‘Mean’, ‘Mode’, ‘KNN’, ‘OT’, ‘random’, ‘MICE’, ‘Interpolation’, ‘Random Forest’,
‘LRR’, ‘MLP RR’]. The grey dotted line denotes the representation value when all the data (no sub-
sampling) is used. Regardless of which data imputation algorithm used, the representation balance
is higher than the unsampled data score when data is sampled via TMC-Shapley. G-Shapley results
in a similar effect when low-value data is excluded. EOD tends to increase when low-valued data is
excluded.
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Figure 17: Representation balance (as defined in Appendix D as g) and equalized-odds difference
(EOD) as a function of imputation algorithm and data valuation method (TMC-Shapley, LOO, and
G-Shapley). Results are shown for dataset 31 (German credit) and the attribute “sex”. Abbrevia-
tions in the x-axis correspond to the imputation algorithm: [‘Row Removal’, ‘Column Removal’,
‘Mean’, ‘Mode’, ‘KNN’, ‘OT’, ‘random’, ‘MICE’, ‘Interpolation’, ‘Random Forest’, ‘LRR’, ‘MLP
RR’]. The grey dotted line denotes the representation value when all the data (no subsampling) is
used. Regardless of which data imputation algorithm used, the representation balance is lower than
the unsampled data score when data is sampled via TMC-Shapley and low-value data is excluded.
G-Shapley results in lower or higher balance depending on whether high- or low-valued data is ex-
cluded, respectively. Most subsampling conditions result in increased EOD.
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Figure 18: Representation balance (as defined in Appendix D as g) and equalized-odds difference
(EOD) as a function of imputation algorithm and accuracy-/fairness-based data valuation method
from FairShap (SVAcc, SVOdd, SVOdd2, SVEOP). Results are shown for dataset 31 (German
credit) and the attribute “sex”. Abbreviations in the x-axis correspond to the imputation algorithm:
[‘Row Removal’, ‘Column Removal’, ‘Mean’, ‘Mode’, ‘KNN’, ‘OT’, ‘random’, ‘MICE’, ‘Interpo-
lation’, ‘Random Forest’, ‘LRR’, ‘MLP RR’]. The grey dotted line denotes the representation value
when all the data (no subsampling) is used. For most data imputation algorithms used, the repre-
sentation balance is lower than the unsampled data score when data is sampled via SVAcc. Greater
variance is observed in EOD.
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Figure 19: Representation balance (as defined in Appendix D as g) and equalized-odds difference
(EOD) as a function of imputation algorithm and accuracy-/fairness-based data valuation method
from FairShap (SVAcc, SVOdd, SVOdd2, SVEOP). Results are shown for dataset 1480 (Indian liver
patient) and the attribute “sex”. Abbreviations in the x-axis correspond to the imputation algorithm:
[‘Row Removal’, ‘Column Removal’, ‘Mean’, ‘Mode’, ‘KNN’, ‘OT’, ‘random’, ‘MICE’, ‘Interpo-
lation’, ‘Random Forest’, ‘LRR’, ‘MLP RR’]. The grey dotted line denotes the representation value
when all the data (no subsampling) is used. For all data imputation algorithms used, the representa-
tion balance is lower than the unsampled data score when data is sampled via SVAcc, SVOdd, and
SVEop and low-valued data is excluded. Likewise, the representation balance is typically lower than
the unsampled data score when data is sampled via SVOdd, SVOdd2 and SVEop and high-valued
data is excluded. Greater variance is observed in EOD; when low-value data is excluded, SVOdd2
tracks similarly to the unsampled data results, with other valuation methods resulting in lower EOD.
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Figure 20: (a) Prediction accuracy and equalized-odds difference for (b) binary sex and (c) age
range as a function of subsampling fraction for dataset 31 (German credit, MAR-30) and three data
valuation methods (TMC-Shapley, LOO and G-Shapley). Generally, the removal of high-valued
data decreases accuracy, with TMC-Shapley resulting in the greatest decrease. Removal of low-
valued data shows the opposite trend. EOD tends to increase in both cases.
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MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (0,0,0) (0,0,0) (1,1,1) (0,0,0) (1,1,1) (0,1,0) (0,0,1) (0,0,0) (1,0,0)
Col Removal (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
Mean (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,0)
Mode (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0)
KNN (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,1) (1,0,0) (0,0,1) (0,0,0) (0,0,0)
OT (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (1,0,1) (0,0,0) (0,0,1) (0,0,0)
random (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,1)
MICE (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1)
Interpolation (0,0,1) (0,0,0) (0,0,0) (0,0,0) (1,0,1) (1,0,0) (0,0,0) (0,1,0) (0,0,0)
Random Forest (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,1) (0,0,1) (0,0,1)
LRR (0,0,0) (0,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1)
MLP RR (0,0,0) (0,0,1) (0,0,1) (0,0,0) (1,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,0)

(a) Condition-3tech
j across 3 data valuation methods, 12 imputation methods, and 9 missing-

ness conditions; this measures whether or not the data subsampling protocol results in an EOD
value less than the original EOD of the unsampled dataset; i.e., is 1 if it is “more fair” (see Ap-
pendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-3TMC−Shapley

j , Condition-3G−Shapley
j , Condition-3LOO

j ), where j is the imputa-
tion algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of highest
value data and the sensitive group is sex. The highlighted triplets denote cases where subsampling improves
fairness via all three data valuation techniques.

MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (0,0,1) (0,1,1) (0,1,1) (0,0,0) (1,1,0) (1,0,1) (0,0,0) (0,0,0) (0,0,0)
Col Removal (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
Mean (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,1) (0,0,0)
Mode (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (1,0,0) (0,0,0) (0,0,1) (0,1,0)
KNN (0,0,0) (0,0,0) (0,1,0) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,1,0) (0,0,0)
OT (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (1,0,0) (0,0,1) (0,0,0) (0,0,0)
random (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,1,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0)
MICE (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0)
Interpolation (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,0,1) (0,0,1) (0,1,0) (0,0,1)
Random Forest (0,0,1) (0,0,0) (0,1,0) (0,0,0) (1,1,0) (1,1,0) (0,0,0) (0,0,0) (0,1,1)
LRR (0,0,0) (0,0,0) (0,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0)
MLP RR (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

(b) Condition-3tech
j across 3 data valuation methods, 12 imputation methods, and 9 missing-

ness conditions; this measures whether or not the data subsampling protocol results in an EOD
value less than the original EOD of the unsampled dataset; i.e., is 1 if it is “more fair” (see Ap-
pendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-3TMC−Shapley

j , Condition-3G−Shapley
j , Condition-3LOO

j ), where j is the imputa-
tion algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of lowest
value data and the sensitive group is sex. The highlighted triplets denote cases where subsampling improves
fairness via all three data valuation techniques.

Table 5: Condition-3tech
j with attribute sex on datasets subsampled by selecting the (a) highest

and (b) lowest value data (80%). In both cases, fairness generally worsens as the result of subsam-
pling.
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MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (1,0,0) (0,0,1) (1,1,1) (1,0,0) (1,1,1) (0,0,0) (1,0,0) (0,1,0) (0,0,0)
Col Removal (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0)
Mean (1,0,1) (0,0,0) (1,0,1) (1,0,1) (1,0,0) (0,0,0) (1,0,0) (0,0,0) (1,0,1)
Mode (1,0,0) (1,0,0) (0,0,0) (1,0,1) (1,0,1) (0,0,0) (1,0,0) (1,0,0) (0,0,0)
KNN (1,0,1) (0,0,0) (1,0,0) (1,0,1) (1,0,0) (1,0,0) (1,0,1) (0,0,0) (0,0,0)
OT (1,0,0) (0,0,0) (1,0,0) (1,0,1) (1,0,0) (1,0,0) (1,0,0) (0,0,0) (0,0,0)
random (1,0,0) (1,0,0) (0,0,0) (1,0,1) (1,0,0) (1,0,0) (1,0,1) (1,1,1) (0,0,0)
MICE (1,0,1) (1,0,0) (0,0,0) (1,0,1) (1,0,0) (1,0,1) (1,0,0) (0,0,0) (1,0,0)
Interpolation (1,0,0) (0,0,0) (1,0,0) (1,0,1) (1,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0)
Random Forest (1,0,1) (1,0,0) (1,0,0) (1,0,1) (1,0,0) (1,0,1) (1,0,0) (0,0,0) (1,0,0)
LRR (0,0,0) (1,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0) (1,0,1) (1,0,0) (1,0,0)
MLP RR (0,0,0) (0,0,0) (1,0,0) (1,0,1) (0,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0)

(a) Condition-3tech
j across 3 data valuation methods, 12 imputation methods, and 9 missing-

ness conditions; this measures whether or not the data subsampling protocol results in an EOD
value less than the original EOD of the unsampled dataset; i.e., is 1 if it is “more fair” (see Ap-
pendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-3TMC−Shapley

j , Condition-3G−Shapley
j , Condition-3LOO

j ), where j is the imputa-
tion algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of highest
value data and the sensitive group is age range. The highlighted triplets denote cases where subsampling im-
proves fairness via all three data valuation techniques.

MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (0,0,0) (0,0,0) (0,1,1) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (1,0,1) (0,0,0)
Col Removal (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
Mean (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
Mode (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
KNN (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
OT (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,0)
random (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0)
MICE (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0)
Interpolation (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0)
Random Forest (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1)
LRR (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
MLP RR (0,0,0) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

(b) Condition-3tech
j across 3 data valuation methods, 12 imputation methods, and 9 missing-

ness conditions; this measures whether or not the data subsampling protocol results in an EOD
value less than the original EOD of the unsampled dataset; i.e., is 1 if it is “more fair” (see Ap-
pendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-3TMC−Shapley

j , Condition-3G−Shapley
j , Condition-3LOO

j ), where j is the imputa-
tion algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of lowest
value data and the sensitive group is age range. The highlighted triplets denote cases where subsampling im-
proves fairness via all three data valuation techniques.

Table 6: Condition-3tech
j with attribute age range on datasets subsampled by selecting the (a)

highest and (b) lowest value data (80%). In both cases, fairness generally worsens as the result of
subsampling.
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MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (1,1,1) (1,1,0) (1,1,1) (1,1,0) (1,1,1) (1,1,0) (1,1,0) (1,1,1) (1,1,0)
Col Removal (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0)
Mean (1,1,0) (1,1,0) (1,1,0) (1,1,1) (1,1,1) (1,1,0) (1,1,0) (1,1,1) (1,1,0)
Mode (1,1,1) (1,1,1) (1,1,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,1) (1,1,0)
KNN (1,1,1) (1,1,0) (1,1,1) (1,1,0) (1,1,1) (1,1,1) (1,1,0) (1,1,1) (1,1,1)
OT (1,1,0) (1,1,0) (1,1,1) (1,1,0) (1,1,1) (1,1,1) (1,1,0) (1,1,0) (1,1,0)
random (1,1,0) (1,1,1) (1,1,1) (1,1,0) (1,1,1) (1,1,0) (1,1,0) (1,1,1) (1,1,0)
MICE (1,1,1) (1,1,0) (1,1,1) (1,1,0) (1,1,1) (1,1,1) (1,1,0) (1,1,1) (1,1,1)
Interpolation (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0)
Random Forest (1,1,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0)
LRR (1,1,1) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,1) (1,1,1) (1,1,0)
MLP RR (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,0) (1,1,1) (1,1,0) (1,1,0) (1,1,0)

(a) Condition-4tech
j across 3 data valuation methods, 12 imputation methods, and 9 missingness conditions;

this measures whether or not the data subsampling protocol results in a group (or attribute) representation
balance value less than the original balance value of the unsampled dataset; i.e., is 1 if it is “less balanced”
(see Appendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-4TMC−Shapley

j , Condition-4G−Shapley
j , Condition-4LOO

j ), where j is the imputation
algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of highest
value data and the sensitive group is sex. The highlighted triplets are cases where subsampling improves the
balance of the sensitive group regardless of the data valuation technique used for subsampling.

MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (0,0,1) (0,0,0) (1,0,1) (1,0,1) (1,0,0) (0,0,0) (0,0,1) (1,0,0) (0,0,0)
Col Removal (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)
Mean (0,0,1) (1,0,0) (0,0,0) (0,0,1) (1,0,0) (0,0,0) (0,0,0) (0,0,0) (1,0,0)
Mode (0,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,1) (0,0,0) (0,0,0) (1,0,0) (0,0,0)
KNN (0,0,1) (1,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (1,0,1) (1,0,0) (1,0,0)
OT (1,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (1,0,0) (0,0,1) (1,0,0)
random (1,0,1) (1,0,0) (1,0,0) (1,0,1) (0,0,1) (0,0,0) (0,0,1) (1,0,0) (0,0,0)
MICE (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,0,1) (0,0,1) (1,0,1) (1,0,0)
Interpolation (0,0,1) (1,0,0) (0,0,1) (1,0,1) (0,0,0) (0,0,1) (1,0,1) (1,0,0) (0,0,0)
Random Forest (0,0,1) (0,0,1) (0,0,1) (0,0,1) (1,0,1) (0,0,1) (0,0,1) (1,0,1) (0,0,1)
LRR (0,0,0) (1,0,1) (0,0,1) (1,0,0) (0,0,1) (0,0,0) (1,0,0) (0,0,1) (0,0,0)
MLP RR (0,0,0) (0,0,0) (0,0,0) (1,0,1) (0,0,1) (0,0,0) (1,0,0) (0,0,1) (1,0,0)

(b) Condition-4tech
j across 3 data valuation methods, 12 imputation methods, and 9 missingness conditions;

this measures whether or not the data subsampling protocol results in a group (or attribute) representation
balance value less than the original balance value of the unsampled dataset; i.e., is 1 if it is “less balanced”
(see Appendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-4TMC−Shapley

j , Condition-4G−Shapley
j , Condition-4LOO

j ), where j is the imputation
algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of lowest value
data and the sensitive group is sex. The highlighted triplets are cases where subsampling improves the balance
of the sensitive group regardless of the data valuation technique used for subsampling.

Table 7: Condition-4tech
j with attribute sex on datasets subsampled by selecting the (a) highest

and (b) lowest value data (80%). Representation balance generally worsens as the result of excluding
low-valued data, whereas exclusion of high-valued data has more varied effects.
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MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,1)
Col Removal (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
Mean (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0)
Mode (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0)
KNN (0,0,0) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
OT (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,1)
random (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1)
MICE (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
Interpolation (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0)
Random Forest (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1)
LRR (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,0)
MLP RR (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,1)

(a) Condition-4tech
j across 3 data valuation methods, 12 imputation methods, and 9 missingness conditions;

this measures whether or not the data subsampling protocol results in a group (or attribute) representation
balance value less than the original balance value of the unsampled dataset; i.e., is 1 if it is “less balanced”
(see Appendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-4TMC−Shapley

j , Condition-4G−Shapley
j , Condition-4LOO

j ), where j is the imputation
algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of highest
value data and the sensitive group is age range. The highlighted triplets are cases where subsampling improves
the balance of the sensitive group regardless of the data valuation technique used for subsampling.

MAR:1 MAR:10 MAR:30 MNAR:1 MNAR:10 MNAR:30 MCAR:1 MCAR:10 MCAR:30

Row Removal (0,0,1) (0,1,1) (0,1,1) (0,1,1) (0,1,0) (0,0,1) (0,1,1) (0,1,0) (0,1,1)
Col Removal (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)
Mean (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,0)
Mode (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,1)
KNN (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,0)
OT (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0)
random (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,1)
MICE (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0)
Interpolation (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0)
Random Forest (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,0)
LRR (0,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
MLP RR (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0)

(b) Condition-4tech
j across 3 data valuation methods, 12 imputation methods, and 9 missingness conditions;

this measures whether or not the data subsampling protocol results in a group (or attribute) representation
balance value less than the original balance value of the unsampled dataset; i.e., is 1 if it is “less balanced”
(see Appendix Section D). Each cell value denotes a triplet of results for the three data valuation techniques:
(Condition-4TMC−Shapley

j , Condition-4G−Shapley
j , Condition-4LOO

j ), where j is the imputation
algorithm. Results are specific to experimental conditions in which the subsampled data is 80% of lowest value
data and the sensitive group is age range. The highlighted triplets are cases where subsampling improves the
balance of the sensitive group regardless of the data valuation technique used for subsampling.

Table 8: Condition-4tech
j with attribute age range on datasets subsampled by selecting the (a)

highest and (b) lowest value data (80%). Representation balance generally improves as the result of
subsampling for this attribute.
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H DVALCARD SECTION DESCRIPTIONS

The proposed DValCard framework consists of six sections: “Introduction”, “System Flowchart”,
“DVal Candidate Data”, “DVal Method”, “DVal Report”, and “Ethical Statement and Recommenda-
tions”. We briefly describe the suggested section contents below.

DValCard Template

Introduction providing details on the DValCard developer, including the date of its devel-
opment and contact details of the developers.

System Flowchart
• DVal in the life cycle context
DVal Candidate Data
• Data information (datasheet)
• Data preprocessing
DVal Method
• DVal technique(s)
• Learning algorithm(s)
• Performance metric(s)
• Evaluation data
DVal Report

• Data values (describe)

• Excluded/removed instances (describe)

• Included/chosen instances (describe)

Ethical Statement and Recommendations
• Intended users, and in/out-of-scope use

cases

• Potential ethical issues to consider

• Legal considerations

• Environmental considerations

• Recommendations

Figure 21: Proposed structure of a DValCard for data valuation transparency.

H.1 INTRODUCTION

The DValCard introduction includes general details about the DValCard and its developers, including
the date, the version of the card’s development, and contact information for its authors, including at
least one corresponding author.

H.2 SYSTEM FLOWCHART

The system flowchart consists of a diagram detailing the complete life cycle of the data valuation
method, with the purpose of illustrating where data valuation occurs with respect to other algorith-
mic design choices. Depending on the use case, data valuation may be part of data preprocessing,
cleaning, or curation; or it may be conducted independently at the end of the data life cycle. Inclu-
sion of a system flowchart promotes greater clarity in data value interpretation and usage. The key
subsections of this section is:

DVal in the life cycle context. A pictoral flowchart indicating data valuation with respect to other
processes in the system.

H.3 DVAL CANDIDATE DATA

The phrase “DVal candidate data” pertains to the data to be processed to obtain the corresponding
data values. The DVal candidate data can come from various sources. It is crucial to be trans-
parent and provide comprehensive details about the data sources used, along with the collection,
preprocessing, and preparation of the data for accurate data valuation. This will ensure enhanced
comprehension and clarity in understanding how the data values were derived. Key subsections of
this section include:
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Data information Details about how, where, when, and why the DVal candidate data was curated.
This information includes details about the source and statistics of DVal data, its collection and
curation process, licenses and privacy, and preprocessing. When applicable, the dataset datasheet
Gebru et al. (2021) is included.

Data preprocessing When preprocessing is applied to candidate data prior to data valuation, in-
formation is provided regarding the steps taken to prepare candidate data for valuation.

H.4 DVAL METHOD

This section of the DValCard provides crucial information regarding the primary data valuation
technique(s) and their usage. It contains a description of the method(s), including strengths, short-
comings, and characteristics e.g. runtime and space complexity, as well as the performance metric(s)
used to evaluate the contribution of data points or groups of data points toward the desired quantifi-
cation of data value. The performance metric function(s) may be model or data-driven. If applicable,
it also contains a mathematical formulation of the method(s).

If the life cycle is model-driven, details are included pertaining to the learning algorithm(s), e.g., the
model class, parameters, training procedure, and running time. If evaluation data is utilized by the
data valuation technique(s), details are included in this section, including the evaluation data source,
statistics, and preprocessing and cleaning procedures before data valuation. Key subsections of this
section include:

DVal technique(s) Provide information about the data valuation technique(s) with references, if
appropriate.

Performance metric(s) A description of the chosen performance metric(s) utilized to determine
data value, with references when appropriate.

Learning algorithm(s) A description of the learning algorithm(s) used in data valuation.

Evaluation data Details about how, where, when, and why the evaluation data was curated.This
information includes details about the source and statistics of evaluation data, its collection and
curation process, licenses and privacy, and preprocessing. When applicable, the dataset datasheet
Gebru et al. (2021) is included.

H.5 DVAL REPORT

The DVal report includes a comprehensive analysis of both qualitative and quantitative aspects of
raw or relative data values for a specific task or application. This analysis comprises the distribu-
tional analysis of data values, as well as an examination of how these values inform decisions related
to the intended task - such as data removal or selection. The intended application for the data values
significantly influences the output data values and which specific assessments are required. Key
subsections of this section include:

Data values Quantitative summary of data values, including the distribution of data values and
their statistics, e.g., maximum/minimum data value.

Removed/excluded instances Information regarding excluded data/instances, e.g., the diversity,
distribution, and density of the excluded instances and discussions of how data values may have
influenced those results. When applicable, data value distributions are reported by class and
group/attribute (especially protected classes of individuals). Threshold values for exclusion are pro-
vided.

Chosen/included instances Information regarding included data/instances, e.g., the diversity, dis-
tribution, and density of the included instances and discussions of how data values may have
influenced those results. When applicable, data value distributions are reported by class and
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group/attribute (especially protected classes of individuals). Threshold values for inclusion are pro-
vided.

H.6 ETHICAL STATEMENT AND RECOMMENDATIONS

This section comprises ethical, legal, and environmental considerations, intended users, in- and out-
of-scope use cases, and general recommendations for data valuation. Key subsections of this section
include:

Intended users and in/out-of-scope use cases Descriptions of the main stakeholders of the data
valuation system and any (un)intended use cases of the resulted data values.

Potential ethical issues to consider A concise discussion about the challenges and limitations of
using the data values and potential impact on the intended task.

Legal considerations At a minimum, details are included regarding permissions and licenses per-
taining to the data valuation process.

Environmental considerations A summary of the potential impact of the data valuation process
on the environment, including details pertaining to GPU usage, when applicable.

Recommendations A discussion of additional cautions intended users might consider as well as
potential mitigation strategies.
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