
Under review as a conference paper at ICLR 2023

NODE NUMBER AWARENESS REPRESENTATION FOR
GRAPH SIMILARITY LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This work aims to address two important issues in the graph similarity computa-
tion, the first one is the Node Number Awareness Issue (N2AI), and the second
one is how to accelerate the inference speed of graph similarity computation in
downstream tasks. We found that existing Graph Neural Network based graph
similarity models have a large error in predicting the similarity score of two graphs
with similar number of nodes. Our analysis shows that this is because of the global
pooling function in graph neural networks that maps graphs with similar number
of nodes to similar embedding distributions, reducing the separability of their em-
beddings, which we refer to as the N2AI. Our motivation is to enhance the differ-
ence between the two embeddings to improve their separability, thus we leverage
our proposed Different Attention (DiffAtt) to construct Node Number Aware-
ness Graph Similarity Model (N2AGim). In addition, we propose the Graph
Similarity Learning with Landmarks (GSL2) to accelerate similarity compu-
tation. GSL2 uses the trained N2AGim to generate the individual embedding for
each graph without any additional learning, and this individual embedding can
effectively help GSL2 to improve its inference speed. Experiments demonstrate
that our N2AGim outperforms the second best approach on Mean Square Error
by 24.3%(1.170 vs 1.546), 43.1%(0.066 vs 0.116), and 44.3%(0.308 vs 0.553),
for AIDS700nef, LINUX, and IMDBMulti datasets, respectively. Our GSL2 is at
most 47.7 and 1.36 times faster than N2AGim and the second faster model. Our
code is publicly available on https://github.com/iclr231312/N2AGim.

1 INTRODUCTION

Graph similarity computation is a fundamental problem for graph-based applications, e.g., graph
data mining, graph retrieval, and graph clustering (Kriege et al., 2020; Ok & Korea, 2020). Graph
Edit Distance (GED), which is defined as the least number of graph edit operators to transform
graphGi to graphGj , is one of the most popular graph similarity metrics (Gao et al., 2010; Neuhaus
et al., 2006; Bougleux et al., 2015). The graph edit operators are insert or delete a node/edge, or
relabel an edge. Unfortunately, the exact GED computation is NP-Hard in general (Zeng et al.,
2009), which is too expensive to leverage in the downstream tasks.

Recently, many Graph Neural Networks (GNNs) based graph similarity computation algorithms
have been proposed to compute the GED in a faster manner (Bai et al., 2019; 2020; Li et al., 2019;
Ling et al., 2021; Bai & Zhao, 2021; Wang et al., 2021). The GNN-based algorithms transform the
GED value to a similarity score and use an end-to-end framework to learn to map the given two
graphs to their similarity score. As a general framework, the Siamese neural network can be used
to aggregate information on each graph, while the feature fusion module can be used to capture the
similarity between them, and the Multi-layer Perceptron (MLP) is then leveraged for the regression.

However, the existing popular graph similarity models become very inaccurate in predicting the
similarity of two graphs with similar number of nodes, as shown in Fig 1. It is clear that the MSE of
all four models becomes large as the difference in the number of nodes in the two graphs becomes
smaller. In order to better understand this issue, we present in Section 3 a theoretical analysis of the
most widely used modules in the graph similarity models from a statistical viewpoint. As shown in
Fig 2(a)-(e), our conclusion is that all global pooling functions, also called graph readout functions,
map graphs with similar number of nodes to similar embeddings, which reduces the separability

1

https://github.com/iclr231312/N2AGim

Under review as a conference paper at ICLR 2023

Figure 1: Histogram of the Mean Square Error (MSE) of the existing graph similarity models on
three datasets at different level of SizeDiff. The SizeDiff represents the percentage difference in the
number of nodes and is defined as SizeDiff(G1, G2) = |N1 − N2|/max(N1, N2), where Ni is
the number of nodes inGi. It is clear that all models have a larger MSE when the SizeDiff is smaller,
i.e. when the number of nodes in the graph pair is similar.
between embeddings and leads to a large MSE for the models in predicting the similarity of two
graphs with similar number of nodes. We refer to this issue of indistinguishable embeddings of
graphs with similar number of nodes as the Node Number Awareness Issue (N2AI).

Our motivation to address the N2AI is to focus more on the differences between two similar embed-
dings during the learning process, and we propose the Different Attention (DiffAtt) to construct
our Node Number Awareness Graph Simialrity Model (N2AGim). DiffAtt is simple in architec-
ture, and can be added as a plug-and-play module to any global pooling method. Our evaluations
on three datasets (Section 5) demonstrate that the models with different pooling methods achieve
a significant improvement after using DiffAtt. Moreover, our N2AGim achieves state-of-the-art
performance compared to the popular GNN-based graph similarity models, e.g., better about on av-
erage 33.3%(0.515 vs 0.772), 51.4%(0.515 vs 1.059) on Mean Square Error (MSE) than EGSCT
(Qin et al., 2021) and GraphSim (Bai et al., 2020), respectively.

Figure 2: (a)-(d) Distributions of output from different global pooling functions with N nodes,
which show that all global pooling functions map graphs with similar number of nodes to similar
distributions. See Section 3 for details. (e) Illustration of the N2AI, i.e., the distribution of the
embeddings of two graphs with similar number of nodes is indistinguishable. Region A represents
where two distributions overlap, while B is the opposite. Our aim is to enhance the information in B
to address the N2AI. (f)-(g) Illustration of the Early Fusion Model (EFM) and Individual Embedding
Model (IEM).
Another issue of interest in the field of graph similarity learning is to accelerate the inference speed
of graph similarity models in downstream tasks. Qin et al. (2021) divided the graph similarity models
into two categories, one is the Early Fusion Model (EFM), shown in Fig 2(f), which performs feature
fusion at an early stage to achieve high accuracy but slow inference, and the other one is the Individ-
ual Embedding Model (IEM), shown in Fig 2(g), which generates an individual embedding for each
graph and then performs fusion. This model is fast but achieves low accuracy. The existing solution
(Qin et al., 2021) uses a special designed Knowledge Distillation (KD) paradigm to leverage an EFM
teacher to improve the individual embeddings generaged by the IEM student. However, motivated
by Balcan et al. (2008), we propose a faster and more accurate IEM called Graph Similarity Learn-
ing with Landmarks (GSL2). In GSL2, a subset of graphs, called landmarks S, are selected, and
then each graph G is represented as a vector uG = [GED(G, Ĝ1), · · · , GED(G, Ĝm)]T , where
Ĝ ∈ S. Finally, an MLP is learned to map the concatenation of the embeddings of the two graphs
to their GED target. Instead of learning the embeddings on the graph data, our GSL2 uses an al-
ready trained graph similarity model to directly generate an individual embedding for each graph,
and this individual embedding can effectively improve the inference speed of GSL2. To sum up, the
contributions of this paper can be summarized as follows:

2

Under review as a conference paper at ICLR 2023

• We found that the existing graph similarity models have a relatively large error in predicting
the actual similarity of two graphs with similar number of nodes, because the global pooling
function maps graphs with similar number of nodes into two distributions that are similar,
which we refer to as N2AI, thus reducing the performance of the graph similarity learning.

• A novel GNN-based graph similarity model, named N2AGim, is proposed. Our N2AGim
achieves excellent results in the graph similarity learning task by leverage the proposed
DiffAtt to effectively address the N2AI.

• In order to speed up the inference of graph similarity models, we propose the GSL2. The
GSL2 directly represents each graph as a vector, where each component is the GED value
between the graph and a landmark. GSL2 then learns the target GED values based on these
graph representations.

• Experimental results show that our N2AGim achieves the state-of-the-art performance,
while our GSL2 achieves a good accuracy and inference speed to efficiently handle down-
stream tasks.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS

Graph data G can be viewed as a pair of adjacency matrix A ∈ {0, 1}N×N and a node feature
matrix X ∈ RN×C . N is the number of nodes in the graph, and C is the dimension of the
initial node features. Node i and node j have an edge if and only if Ai,j = 1. Considering
X = [x1, x2, ..., xN]T , a Message Passing Neural Network (MPNN) layer is defined as (Fey &
Lenssen, 2019) : x(k)i = γ(k)(x

(k−1)
i ,�j∈N (i)φ

(k)(x
(k−1)
i , x

(k−1)
j , ei,j)), where x(k)i ∈ RCk is an

embedding of node i at the kth layer, and φ performs a differentiable transform on each node or
edge. � is an aggregate function to aggregate the transformed attributes of nodes and their neigh-
bors. N (i) denotes the neighbors of node i and ei,j is the edge feature from node i to node j. γ is a
differentiable function to update the node embeddings. Following the idea of MPNN, several GNNs
and their variants have been proposed to deal with graph mining tasks, e.g., Kipf & Welling (2016)
and Velickovic et al. (2017). One of the vital works is the Graph Isomorphism Network (GIN) (Xu
et al., 2018), which is at most as powerful as the Weisfeiler-Lehman (WL) graph isomorphism test
(Leman & Weisfeiler, 1968), and it is defined as : x′i = hΘ

(
(1 + ε) · xi +

∑
j∈N (i) xj

)
, where

hΘ is an MLP. We believe that this representation ability is effective in addressing N2AI. Therefore,
we leverage the GIN layer as the backbone to construct our N2AGim.

2.2 DEEP GRAPH SIMILARITY LEARNING

The graph similarity problem is defined as: given two graphsGi andGj with their similarity metric,
the graph similarity models learn a function that maps the two graphs to their similarity metric.
The Graph Matching Network (GMN) (Li et al., 2019) is the first deep graph similarity model,
which computes the similarity between two given graphs by a cross-graph attention mechanism. Bai
et al. (2019) turned the graph similarity task into a regression task. They not only proposed widely
used graph similarity datasets, but also leveraged the GCN layers and self-attention-based fusion
to design SimGNN. Further, in their later work (Bai et al., 2020), the proposed GraphSim directly
learns the similarity based on the node-level interaction of the two given graphs. By leveraging
a trained SimGNN to guide the search space of the A* algorithm, GENN-A* (Wang et al., 2021)
achieves the best-in-class performance, but needs too long inference time on the test data, i.e., 290.1
hours to solve the GED computation on AIDS700nef dataset (Qin et al., 2021). Considering that
GENN-A* is too time-consuming in practice, we do not compare our proposed methods with it in our
evaluations. In order to achieve a faster speed, Qin et al. (2021) proposed a Knowledge Distillation
(KD) paradigm to improve the individual graph embeddings generated by the student model.

However, we found that none of these existing graph similarity models are designed to address
the N2AI. In order to address the N2AI, our N2AGim leverages the GIN layers and the proposed
DiffAtt to enhance the differences between the embeddings of two graphs and therefore achieves the
state-of-the-art performance on benchmark datasets. Compared to EGSCS (Qin et al., 2021), our
GSL2 directly generates an individual graph representation for each graph, and the only learnable

3

Under review as a conference paper at ICLR 2023

Figure 3: Overlapping probability of graph embedding with N and N + δ number of nodes. (a)
shows the overlap probabilities with different N when the δ is 1; (b) shows the overlap probabilities
for different δ when the N is 5.

parameter of our GSL2 is a simple MLP. Besides, the evaluation also shows that our GSL2 has a
higher accuracy and faster inference speed than EGSCS.

3 NODE NUMBER AWARENESS ISSUE (N2AI) ANALYSIS

Here, we provide a formal theoretical analysis of N2AI and reveal the reasons for its existence.
GNNs usually generate the embeddings of a graph by multi-layer GNN aggregation layers and
global pooling methods. The GIN is known for having at most as powerful as WL-Test, that is, to
distinguish whether two graphs are isomorphic, which indicates that GIN is effective in distinguish-
ing graphs with similar node numbers and address the N2AI. Hence, we focus on the impact of widly
used different global pooling methods on the N2AI, including the one order statistical methods, i.e.,
Global Sum Pooling (GSP), Global Max Pooling (GMP), Global Average Pooling (GAP) and the
second order statistical methods, i.e., Second Order Pooling (SOP) (Wang & Ji, 2020).

Let’s assume that the node feature matrix output by the graph neural network layers is X =
[v1,v2, · · · ,vC], where vi ∈ RN is the feature on the ith channel. We model all variables in X as
i.i.d random variables that follow a Gaussian distribution N (µ, σ2), where µ > 0. The one order
statistical methods F is used to convert vi into a single value g = F(vi), which outputs a fix-sized
vector, and the second order statistical methods convert vi and vj as a single value g = F(vi,vj),
which outputs a fix-sized matrix. Here, we learn the N2AI by studying whether a pooling method
Fi can appropriately distinguish between X with number of nodes N and N + δ, i.e., the differenti-
ation between the two distributions p(g|N,Fi) and p(g|N + δ,Fi), where δ denotes the difference
between the number of nodes. We first assume that X obeys N (1, 4) and show the output distri-
bution of different pooling functions for different number of nodes in Fig 2(a)-(d). Intuitively, all
four global pooling methods have a lot of overlap in terms of output distribution when the number of
nodes is similar, and less overlap in terms of distribution when the number of nodes is very different.

We further define the probability of this overlap with the following equation:

O(Fi, N, δ) =
∫

min {p(g|N,Fi), p(g|N + δ,Fi)}
max {p(g|N,Fi), p(g|N + δ,Fi)}

dg, (1)

where O(Fi, N, δ) denotes the proportion of the overlapping area that occupies the total area of Fi
withN andN+δ nodes. Obviously, the outputs of the GSP and GAP obey the Gaussian distributions
N (Nµ,Nσ2) and N (µ, σ

2

N), respectively, but it is difficult to obtain the distributions that the GMP
and the SOP satisfy. Therefore, we perform a large number of randomized experiments and leverage
the Kernel Density Estimation (KDE) to obtain an approximate distribution for the GMP and SOP.
The overlapping probabilities of the four global pooling methods are shown in Fig 3.

From Fig 3(a), it is clear that most of the global pooling methods overlap more than 80% of the area
of the distribution withN andN+1 nodes, which means that existing graph similarity networks have
difficulty distinguishing graphs with similar number of nodes in the output distribution, thus leading
to the N2AI. According to Fig 3(b), the probability of overlap between embedding distributions
decreases as the difference in node counts increases. A way to address N2AI is to make the graph
similarity model focus on the differences between the two embeddings. Inspired by this, we propose
the DiffAtt to enhance the difference between two embeddings generated by the above four global

4

Under review as a conference paper at ICLR 2023

Figure 4: (a) N2AGim first uses the multi-scale GIN layers to aggregate the information in the graph,
then DiffAtt for feature fusion, and finally MLP to predict the similarity scores. (b) GSL2 generates
individual embeddings for each graph by calculating the GED values between them and landmarks,
and then uses MLP to map the individual embeddings of the two graphs to their GED values.

pooling methods. The evaluation on benchmark datasets demonstrates that our DiffAtt brings a huge
performance improvement to the graph similarity models.

4 PROPOSED METHODS

4.1 NODE NUMBER AWARENESS GRAPH SIMILARITY MODEL (N2AGIM)

Our proposed N2AGim consists of three stages: Multi-Scale GIN layers, Different Attention based
feature fusion and the MLP regressor. Fig 4(a) shows a block diagram of our N2AGim. On the
following, we provide details of our proposed N2AGim:

Multi-Scale GIN layers. Given a graph data G = (A,X), where A and X are as defined in Section
2, the GIN layers, which can effectively address N2AI because it is at most as powerful as WL-Test
to distinguish whether two graphs are isomorphic or not, are leveraged as our backbone to update
the node embeddings. All the MLPs in GIN have one linear layer with the Layer Normalization (Ba
et al., 2016) and ReLU activation function. Besides, we apply the residual connections (He et al.,
2016) and an additional FeedForward Neural Network (FFN) to enhance the node embeddings. We
stack 3 GIN layers to aggregate multi-scale information of the node’s neighbors. After each GIN
layer, a one order statistical pooling method is applied to generate the graph embeddings.

Different Attention based feature fusion. We propose Different Attention (DiffAtt) to enhance
the difference between the embeddings to address the N2AI and obtain a joint embedding by fusing
features of the two graph-level embeddings at each layer. Given the graph embeddings h

(k)
i and

h
(k)
j at the kth layer, the DiffAtt is defined as :

Att(k) = Softmax(MLPs(k)(|h(k)
i − h

(k)
j |))

u
(k)
Gi

= flatten(Att(k) � h
(k)
i), u

(k)
Gj

= flatten(Att(k) � h
(k)
j)

(2)

where u
(k)
Gi
∈ RC is the enhancement embeddings of Gi, the flatten(·) denotes the flatten opera-

tion, and� denotes the Hadamard Product. It is evident that DiffAtt can give greater weight to large
differences between the two embeddings and dynamically capture the differences that really matter
with learnable parameters, which can effectively increase the separability of two graph embeddings
with similar or even same number of nodes, thus effectively addressing N2AI. Next, we concatenate
the two enhancement embeddings as their joint embeddings as u(k)

Gi,Gj
= concat([u

(k)
Gi
,u

(k)
Gj

]). Fi-

5

Under review as a conference paper at ICLR 2023

nally, we concatenate all the joint embeddings u(k)
Gi,Gj

at different layers to obtain a multi-scale joint

embedding as uGi,Gj = concat([u
(0)
Gi,Gj

, · · · ,u(3)
Gi,Gj

]).

MLP regressor. A two-layer MLP is then applied to map uGi,Gj to the similarity scores. In the
graph similarity task, the normalization GED is defined as nGED(G1, G2) =

GED(Gi,Gj)
(|Ni|+|Nj |)/2 , and the

ground truth similarity score is defined as exp(−nGED(Gi, Gj)), which is in the range of (0,1].
We adopt the Mean Square Error (MSE) as the loss function to train N2AGim.

4.2 GRAPH SIMILARITY LEARNING WITH LANDMARKS (GSL2)

The graph similarity task inherently requires a deep fusion of the features of two graphs at the early
stage and then learns from the joint embeddings to predict the similarity score, as shown in Fig 2(f).
This makes it difficult to extract the individual embedding of each graph, which leads to higher com-
putational costs in practice (Qin et al., 2021). Qin et al. (2021) used a KD-paradigm to improve the
individual embeddings generated by the student IEM. In contrast, we provide a novel IEM frame-
work, called Graph Similarity Learning with Landmarks (GSL2), which directly generates the
individual embeddings of each graph without additional learning.

Theorem 1 Let landmarks S denote an infinite set containing every graph, and uG is the embedding
of graph G, defined as: uG = [GED(G, Ĝ1), · · · , GED(G, ĜInfinity)]

T , where Ĝi ∈ S. The
GED value between any G1 and G2 satisfies:

GED(G1, G2) = min
i
{uG1i

+ uG2i
} = min

i
{GED(G1, Ĝi) +GED(G2, Ĝi)}, (3)

The proof of Theorem 1 is provided in the Appendix A. Theorem 1 illustrates that the GED values
between two graphs can be calculated by their GED values with landmarks. However, Theorem 1
needs to satisfy two requirements, the first one is to obtain an infinite S and the second one is a
large number of calculations of the exact GED values of the graphs and landmarks, both of which
are impossible to satisfy in a practical scenario. The first requirement can be approximately solved
by randomly selecting M graphs from the training graph set to form S. For the second requirement,
the approximate GED values between graphs and landmarks can be computed quickly using a graph
similarity model, e.g., SimGNN, GraphSim, or N2AGim, which is equivalent to adding noise to
the generated ũG. However, in practice, we find that the direct use of mini{ũG1i

+ ũG2i
} to

approximate the GED target GED(G1, G2) has a relatively large error due to the limited number of
landmarks and the noise in ũG. Therefore, we propose to use MLP to learn to map the two generated
embeddings to their GED target.

An illustration of our GSL2 is shown in Fig 4(b), and the details are as follows: First, a subset of
the graphs, S = {Ĝ1, · · · , ĜM}, named landmarks, are randomly selected from the the training
graph set. Second, any graph similarity model can be leveraged to efficiently obtain the individual
embeddings for each graph by computing their GEDs to the landmarks. However, from the above
analysis, we can see that reducing the noise in ũG can improve the prediction accuracy. Therefore,
we leverage our N2AGim, which achieves the state-of-the-art performance, to calculate GED values
for all graphs with landmarks. However, we found that directly converting exponential similarity
values to GED values caused significant errors, so we used the ATS2 similarity metric to retrain
N2AGim, see the Appendix B for details. Third, we concatenate two individual graph embeddings
together in a joint embedding and learn an MLP to map the joint embedding to their GED target.

4.3 COMPARISON OF OUR N2AGIM AND GSL2

Accuracy. N2AGim can effectively address N2AI by fusing the features of two graphs by DiffAtt at
multiple scales, and thus can achieve better performance. However, GSL2 uses N2AGim to quickly
generate an individual embedding with noise for each graph and learn from the noisy embeddings,
so the performance will be lower than that of N2AGim.

Inference speed. Given q query graphs, the aim is to compute the similarity between all query
graphs and the p graphs which already exist in the database. Assume the time to compute the
similarity of a pair of graphs is TN for N2AGim and the time to compute the similarity of a pair
of embeddings is TMLP for the MLP in GSL2. Since N2AGim, as an EFM, requires fusion of
graph pairs to obtain joint embeddings at each layer, it has a computational time of p × q × TN .

6

Under review as a conference paper at ICLR 2023

Figure 5: Visualisation of MSE for different models on test data with similar number of nodes. We
split the test graph pairs with no more than 37.5% difference in the number of nodes into 5 bins
for validation. Note that on graphs with a small number of nodes like AIDS700nef and LINUX, a
difference of 7.5% SizeDiff represents a difference of approximately one node.

However, GSL2, as a IEM, first generates the individual embedding of each graph using N2AGim
and then predicts the similarity between the two embeddings using MLP, requiring a computation
time of (p + q) ×M × TN + p × q × TMLP , where M is the number of landmarks. Since GSL2

reduces the time complexity of computing joint embeddings and the inference speed of MLPs is
generally lower than that of N2AGim, i.e., TMLP � TN , the query tasks can be addressed more
efficiently by GSL2. Especially in industrial scenarios, graph data is usually preprocessed offline as
the embedding. If all the graph embeddings are stored offline, the inference time of GSL2 is just
p× q × TMLP . In summary, as an IEM, GSL2 can be up to TN/TMLP times faster than N2AGim.
The experimental results in Section 5.3 also demonstrate that GSL2 can be up to 47.7 times faster
than N2AGim, which shows that GSL2 can effectively address the similarity computation tasks.

5 EXPERIMENTS

In this section, we evaluate our proposals using the AIDS700nef, LINUX and IMDBMulti datasets
provided by Bai et al. (2019) for the graph similarity learning and compare our method with other
state-of-the-art methods. The statistics and details of these datasets and data processing are pro-
vided in Appendix B. Note that all the experiments are performed on a Linux server with Intel(R)
Xeon(R) Gold 6226R CPU @ 2.90GHz and 8 NVIDIA GeForce RTX 2080Ti. The evaluation met-
rics we adopted are Mean Square Error (MSE) (in the format of 10−3), Spearman’s Rank Correlation
Coefficient (ρ) and Precision at 10 (p@10). All metrics with their meanings are listed in the Ap-
pendix. The N2AGim is evaluated using the PyTorch Geometric (Fey & Lenssen, 2019). We use
Adam optimizer, a learning rate of 0.001, the batch size is set to 2000, and the hidden channel is set
to 64. We run 200 epochs on the three datasets, and after running 150 epochs, we perform validation
at the end of every epoch. Ultimately, the parameter that results in the least validation loss is chosen
to perform the evaluations on the test data. We implement the GSL2 using the PyTorch (Paszke
et al., 2019), and the details can be found in our source code.

5.1 ABLATION STUDY

We perform ablation studies to show the influence of the DiffAtt in N2AGim and GSL2 with different
GED computation algorithms. For N2AGim, we compare the performance of using and without
using DiffAtt across the four global pooling functions mentioned. Besides, we compare our DiffAtt
with the other popular attention based global pooling methods, i.e., Neural Tensor Network (NTN)
(Bai et al., 2019), Embedding Fusion Network (EFN) (Qin et al., 2021), Global Soft Attention
(GSA) (Li et al., 2015), Set2Set (Vinyals et al., 2015), Context Based Attention (CBA) (Bai et al.,
2019), and Cross Context Based Attention (C2BA), under the same architecture. It is worth noting
that most of the existing graph similarity models leverage the CBA to generate graph embeddings,
e.g., Li et al. (2019); Bai et al. (2019); Qin et al. (2021); Zhang et al. (2021), which is defined
as FCBA(X) =

∑N
n=1 sigmoid(x

T
nc)xn, where c denotes the context information of the graphs.

C2BA is different from CBA only in that global context information c is from another graph in the
graph pair. For our GSL2, we experiment with different graph similarity models. We also provide
additional ablation experiments on the hyperparameter selection of our methods, including selecting
different numbers of landmarks in GSL2, etc. in Appendix G.

Table 1 demonstrates that our DiffAtt effectively improves 44 metrics out of 48 metrics of the four
global pooling methods, especially giving a huge boost to 12 metrics on the IMDBMulti dataset,

7

Under review as a conference paper at ICLR 2023

Table 1: Results of the ablation study on using or without using our DiffAtt. Bold means the best.
The Average denotes the average value over the three datasets. The ↑ denotes that the larger this
indicator is, the better the performance, while the ↓ indicates the opposite.

Fi DiffAtt AIDS700nef LINUX IMDBMulti Average
MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑

GAP 8 3.004 0.819 0.486 0.457 0.987 0.970 0.753 0.866 0.878 1.405 0.891 0.778
GAP 4 3.042 0.810 0.511 0.256 0.990 0.979 0.404 0.907 0.890 1.234 0.902 0.793
GMP 8 3.051 0.817 0.501 0.396 0.988 0.970 0.386 0.871 0.875 1.278 0.892 0.782
GMP 4 2.839 0.827 0.538 0.440 0.987 0.985 0.305 0.920 0.896 1.195 0.911 0.806
SOP 8 3.039 0.811 0.496 0.261 0.991 0.973 0.776 0.892 0.863 1.359 0.898 0.777
SOP 4 1.144 0.918 0.663 0.066 0.993 0.998 0.309 0.915 0.903 0.506 0.942 0.855
GSP 8 1.396 0.903 0.624 0.116 0.992 0.983 0.392 0.859 0.884 0.635 0.918 0.830
GSP 4 1.170 0.916 0.672 0.066 0.994 0.995 0.308 0.918 0.893 0.515 0.943 0.853

Table 2: Results of the ablation study of comparing our DiffAtt with other attention methods. Bold
means the best, and † means the next best.

AIDS700nef LINUX IMDBMulti Average
MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑

NTN 2.456 0.845 0.554 0.139 0.993† 0.987 0.463 0.891 0.874 1.019 0.910 0.805
GBA 3.224 0.814 0.499 0.754 0.982 0.961 0.368 0.869 0.881 1.449 0.888 0.780

Set2Set 3.308 0.815 0.511 0.543 0.985 0.974 0.355 0.876 0.878 1.402 0.892 0.788
CBA 1.487 0.902 0.611 0.165 0.990 0.987 0.406 0.855 0.884 0.686 0.916 0.827

C2BA 1.269 0.911 0.662 0.094 0.993 0.995 0.439 0.887 0.875 0.601 0.930 0.844†

EFN 1.249† 0.912† 0.644† 0.078† 0.993† 0.990† 0.315† 0.902† 0.891† 0.547† 0.936† 0.842

DiffAtt 1.170 0.916 0.672 0.066 0.994 0.995 0.308 0.918 0.893 0.515 0.943 0.853

such as 46.3%(0.404 vs 0.753), 21.0%(0.305 vs 0.386), 60.2%(0.309 vs 0.776) and 21.4%(0.308 vs
0.392) on the four MSE metrics. This shows that DiffAtt has powerful generalization to effectively
solve the N2AI of all pooling methods. In terms of the average results, SOP and GSP showed better
results than GMP and GAP after the use of DiffAtt, which is the result of the smaller percentage
of overlap area and greater distribution differences. Because of the higher performance and less
computational cost of GSP, we finally chose it as the global pooling function in N2AGim.

Compared to other attention mechanisms, in Table 2, DiffAtt achieves the best results on all metrics
under the same experimental setup and architecture, especially better than the EFN on average on
three metrics 5.8%(0.515 vs 0.547), 0.7%(0.943 vs 0.936) and 1.3%(0.853 vs 0.842), respectively.
As can be seen from the Table 3, the accuracy of GSL2 increases as the generated GEDs are closen
to the true GED values, which validates our analysis in Section 4.2 and shows that the performance
of GSL2 can be improved by using our N2AGim.

5.2 GRAPH SIMILARITY LEARNING

We compare our N2AGim and GSL2 with a number of state-of-the-art methods for graph similarity
learning tasks: GMN (Li et al., 2019), SimGNN (Bai et al., 2019), H2MN (Zhang et al., 2021),
GraphSim (Bai et al., 2020), and EGSC (Qin et al., 2021). We note discrepancies in the MSE
reported by various papers. For examples, the MSE reported in Bai et al. (2019), Bai et al. (2020) and
Zhang et al. (2021) is 1

2|̇D|

∑D
i=1(s− ŝ)2, but Qin et al. (2021) reported MSE as 1

|D|
∑D
i=1(s− ŝ)2.

To provide a consistent comparison, we use the MSE metric of the latter formula, and the results are
shown in Table 4. Our N2AGim achieves the best performance in most of the cases. On AIDS700nef,
the performance is improved by about 24.3%(1.170 vs 1.546 on MSE), 2.0%(0.916 vs 0.898 on ρ)
and 3.5%(0.672 vs 0.649 on p@10) compared to EGSCS. On LINUX, our N2AGim achieves the

Table 3: Results of the ablation study of comparing different graph similarity models used in GSL2.
All graph similarity models were trained using ATS2 and we transform the results to the exponential
similarity scores and report it. The brackets represent the GED algorithm used in GSL2 and the GT
represents the ground truth GED values. M is set to 60, 30 and 70 on three datasets, respectively.

AIDS700nef LINUX IMDBMulti Average
MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑

SimGNN 3.151 0.827 0.397 0.752 0.983 0.921 3.722 0.934 0.826 2.542 0.915 0.715
GraphSim 1.824 0.889 0.562 0.283 0.991 0.979 - - - 1.053 0.94 0.771
N2AGim 1.184 0.917 0.675 0.071 0.994 0.989 0.341 0.973 0.9 0.532 0.961 0.855

GSL2(SimGNN) 2.187 0.873 0.518 0.402 0.987 0.975† 0.668 0.949 0.852† 1.086 0.936 0.782
GSL2(GraphSim) 1.824 0.883 0.505 0.210 0.990 0.971 - - - 1.017 0.936 0.738
GSL2(N2AGim) 1.470† 0.905† 0.604† 0.074† 0.994† 0.995 0.510 0.971† 0.869 0.685† 0.957† 0.822†

GSL2(GT) 1.258 0.915 0.633 0.068 0.995 0.995 0.512† 0.985 0.850 0.613 0.965 0.826

8

Under review as a conference paper at ICLR 2023

Table 4: Results of the graph similarity learning task. Bold means the best.
AIDS700nef LINUX IMDBMulti Average

MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑ MSE ↓ ρ ↑ P@10 ↑
GMN 3.772 0.751 0.401 2.054 0.933 0.833 8.844 0.725 0.604 4.890 0.803 0.613

SimGNN 2.378 0.843 0.421 3.018 0.939 0.942 2.528 0.878 0.759 2.641 0.887 0.707
GraphSim 1.574 0.874 0.534 0.116 0.981 0.992 1.486 0.926 0.828 1.059 0.927 0.785

H2MN 1.826 0.881 0.521 0.210 0.990 0.975 1.178 0.913 0.889 1.071 0.928 0.795
EGSCT 1.601 0.901 0.658 0.163 0.988 0.994 0.553 0.938 0.872 0.772 0.942 0.841
EGSCS 1.546 0.898 0.649 0.293 0.984 0.978 0.581 0.935 0.857 0.807 0.939 0.828

N2AGim 1.170 0.916 0.672 0.066 0.994 0.995 0.308 0.918 0.893 0.515 0.943 0.853
GSL2 1.470 0.905 0.604 0.074 0.994 0.995 0.510 0.971 0.869 0.685 0.957 0.822

Table 5: Results of inference time for each model. The suffix of ’-R’ means that the input is the
raw query graph, while the suffix of ’-F’ means that the embeddings of the query graph are stored
offline. All times reported below are in seconds.

SimGNN N2AGim GraphSim EGSCS-R EGSCS-F GSL2-R GSL2-F

AIDS700nef 5.106 9.245 4.383 4.383 0.975 3.874 0.718
LINUX 8.582 13.163 9.120 9.120 1.414 5.007 1.159

IMDBMulti 122.939 87.032 114.676 87.032 2.256 15.792 1.824

best performance in all three metrics, especially in MSE which is 43.1%(0.066 vs 0.116) better than
the second best model, GraphSim. On IMDBMulti, N2AGim achieves the best MSE and p@10
performance, but close not perform as well on ρ (0.918 vs 0.938) than EGSCT. Although GSL2

does not learn embeddings directly in the graph data, it achieves the state-of-the-art performance
on three of the nine metrics on three datasets. Compared to the EGSCS, our GSL2 achieved better
performance in eight of the nine metrics on three datasets, demonstrating the powerful expressive
ability of the generated embeddings in GSL2. Compared to GSL2, which learns on embeddings with
noise, N2AGim achieves a better performance, especially better by about 20.4%(1.170 vs 1.470),
1.2%(0.916 vs 0.905) and 11.3%(0.672 vs 0.604) on AIDS700nef. In addition, we visualised the
MSE in test data with similar number of nodes for different models in Fig 5. Compared to the other
models, N2AGim shows a significant improvement on graph pairs with similar number of nodes,
demonstrating its effectiveness in addressing N2AI.

5.3 INFERENCE TIME

In this section, we provide a comparison of inference times for GSL2 and the rest of the graph
similarity models on test data. Our evaluation reflects real-world graph queries: we treat the training
graph set as the graphs that already exist in the database and can be preprocessed, and the test graph
set as the query graph. We calculate the similarity of a query graph to all graphs in the database
at once to obtain the total query time, and all times are averaged over five tests. The results are
shown in Table 5. By obtaining individual embeddings of the graphs offline, GSL2-F comes out
to be 12.9, 11.3 and 47.7 times faster than N2AGim on the three datasets, respectively. Compared
to EGSCS-F, GSL2-F is 1.36, 1.22 and 1.24 times faster, respectively. This shows the potential of
GSL2 to efficiently compute graph similarity in realistic scenarios.

6 CONCLUSION

This paper addresses two issues in graph similarity tasks, one is the N2AI and the other is the issue
of improving the speed of graph similarity model inference for downstream tasks. By analysing the
performance of popular graph similarity models, we show that graph similarity models have diffi-
culty distinguishing the embeddings of two graphs with similar number of nodes, because the global
pooling function maps graphs with similar number of nodes to similar embedding distributions,
reducing the separability between embeddings. Therefore, DiffAtt is proposed to enhance the dif-
ference between two similar embeddings, thus the proposed N2AGim achieves the state-of-the-art
performance. To speed up the graph similarity computation, the GSL2 is proposed. Instead of learn-
ing embeddings in graph data, GSL2 generates individual embeddings directly by a trained graph
similarity model. Our analysis and experiments both demonstrate that such individual embeddings
have a powerful expressive ability and can efficiently handle downstream tasks.

9

Under review as a conference paper at ICLR 2023

7 ETHICS STATEMENT

This work proposes two methods to address the real-time graph similarity tasks. Our proposed
methods have a great potential for practical graph-based applications due to their high precision and
high speed. Our methods also be applied to address any similarity problem between the graph data,
e.g., the binary function similarity problem, which can be helpful for the software copyright issue.
Therefore, we believe that our methods do not have any negative impact of the society but make
positive impact of the society.

8 REPRODUCIBILITY STATEMENT

Our code is publicly available on https://github.com/iclr231312/N2AGim. We provide trained mod-
els and test code in our anonymous repository to help researchers quickly reproduce test results.
Besides, we provide the source code for the training, including the hyperparameter settings and the
fixed random seed we use to ensure our work is reproducible. Please get more details from our
repository.

REFERENCES

Moez Ali. PyCaret: An open source, low-code machine learning library in Python, April 2020.
URL https://www.pycaret.org. PyCaret version 1.0.0.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jiyang Bai and Peixiang Zhao. Tagsim: type-aware graph similarity learning and computation.
Proceedings of the VLDB Endowment, 15(2):335–347, 2021.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neu-
ral network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 384–392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 3219–3226, 2020.

Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of learning with similarity func-
tions. Machine Learning, 72(1):89–112, 2008.

Sébastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzere, and Mario
Vento. A quadratic assignment formulation of the graph edit distance. arXiv preprint
arXiv:1512.07494, 2015.

Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. Speeding up graph edit distance computation
through fast bipartite matching. In International Workshop on Graph-Based Representations in
Pattern Recognition, pp. 102–111. Springer, 2011.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern
Analysis and applications, 13(1):113–129, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

10

https://github.com/iclr231312/N2AGim
https://www.pycaret.org

Under review as a conference paper at ICLR 2023

Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5(1), 2020. ISSN 23648228. doi: 10.1007/s41109-019-0195-3.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In International conference on
machine learning, pp. 3835–3845. PMLR, 2019.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma, Fangli Xu, Alex X Liu, Chunming Wu, and
Shouling Ji. Multilevel graph matching networks for deep graph similarity learning. IEEE Trans-
actions on Neural Networks and Learning Systems, 2021.

Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for the computation
of graph edit distance. In Joint IAPR International Workshops on Statistical Techniques in Pat-
tern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 163–172.
Springer, 2006.

Seongmin Ok and South Korea. A Graph Similarity for Deep Learning. (NeurIPS), 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Can Qin, Handong Zhao, Lichen Wang, Huan Wang, Yulun Zhang, and Yun Fu. Slow learning and
fast inference: Efficient graph similarity computation via knowledge distillation. Advances in
Neural Information Processing Systems, 34, 2021.

Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by means of bipartite
graph matching. Image and Vision computing, 27(7):950–959, 2009.

Charles Spearman. The proof and measurement of association between two things. 1961.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. stat, 1050:20, 2017.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015.

Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learn-
ing of graph edit distance via dynamic embedding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5241–5250, 2021.

Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. An efficient graph
indexing method. In 2012 IEEE 28th International Conference on Data Engineering, pp. 210–
221. IEEE, 2012.

Zhengyang Wang and Shuiwang Ji. Second-order pooling for graph neural networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374,
2015.

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing stars:
On approximating graph edit distance. Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn:
Graph similarity learning with hierarchical hypergraph matching networks. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2274–2284, 2021.

11

Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 1.

Here, we provide a proof of Theorem 1. The GED satisfies the triangle inequality, i.e., for any G1

,G2 and G3, there must exist:

GED(G1, G2) ≤ GED(G1, G3) +GED(G2, G3). (4)

In particular, when G3 is isomorphic to a graph on the least-cost edit path between G1 and G2, there
must exist:

GED(G1, G2) = GED(G1, G3) +GED(G2, G3). (5)

Thus, assume there exists an infinite set S containing every graph, any graph can be encoded as an
infinitely long vector as:

uG = [GED(G, Ĝ1), GED(G, Ĝ2), · · · , GED(G, ĜInfinity)]
T , (6)

where Ĝi ∈ S, so that for any two graphs G1 and G2, it exists:

GED(G1, G2) = min
i
(uG1i

+ uG2i
). (7)

B DATASETS AND PRE-PROCESSING

We perform an evaluation of our methods on AIDS700nef, LINUX and IMDBMulti datasets pro-
vided by Bai et al. (2019). Following is a brief overview of benchmark datasets:

1. AIDS700nef dataset contains 700 graphs from AIDS dataset which represent antivirus
screen chemical compound, and all of them have 10 or less than 10 nodes.

2. LINUX dataset contains 1000 graphs selected from Wang et al. (2012), which represent
Program Dependence Graph (PDG) generated by Linux kernel.

3. IMDBMulti dataset(Yanardag & Vishwanathan, 2015) contains ego-networks of ac-
tors/actresses, where nodes represent an actor/actress and edges indicate that these two
actors/actress participated in the same movie.

For AIDS700nef and LINUX datasets, Bai et al. (2019) compute the GED of every graph pair
using an algorithm named A*, and for IMDB datasets, the minimum of GED computed by three
algorithms: Beam (Neuhaus et al., 2006), Hungarian (Riesen & Bunke, 2009) and VJ (Fankhauser
et al., 2011), is considered as the ground truth. In order to enhance the node features of the graph,
we concatenate the one-hot encoding of the node degree into its features on these three datasets.
Note that, the GED metric is first normalized as nGED =

GEDGi,Gj

0.5·(|Gi|+|Gj |) , where |Gi| represents the
number of nodes in Gi. and then adopted a function λ(x) = e−x to transform to range (0,1]. We
randomly split datasets into 60%, 20%, 20% as training graph set Tr, validation graph set V , and
testing graph set Te, respectively. We take the Cartesian product of Tr labeled with their similarity
scores as the the training set. The validation set (testing set) is defined as the Cartesian product of
Tr and V (Te) labeled with the ground truth. The training set is defined as {(Gi, Gj , sGi,Gj

)|Gi ∈
Tr,Gj ∈ Tr}, where sGi,Gj

denotes the similarity score of Gi and Gj , and the validation dataset
and the testing dataset is {(Gi, Gj , sGi,Gj)|Gi ∈ Tr,Gj ∈ V }, {(Gi, Gj , sGi,Gj)|Gi ∈ Tr,Gj ∈
Te}, respectively.

However, we found in GSL2 that directly converting the exponential similarity scores predicted by
the graph similarity models to GED values can cause significant errors. Therefore, we used a new
similarity score to train the graph similarity models, called Adaptive Transform Similarity Scores
(ATS2), and transform the results back to exponential similarity score for comparison with other
models at test time. The ATS2 is defined as:

ATS2(G1, G2) = 1− lg(nGED(G1, G2) + 1)/ lg(max
i,j
{nGED(Gi, Gj)}+ 1). (8)

12

Under review as a conference paper at ICLR 2023

Table 6: Statistics of all the datasets used in our experiments.
Datasets Graphs Avg nodes Avg edges Pairs of testing graphs Node attr

AIDS700nef 700 8.9 17.6 58,800 "

LINUX 1000 7.58 13.87 120,000 %

IMDBMulti 1500 13 65.94 270,000 %

C EVALUATION METRICS

The evaluation metrics that we adopted are the Mean Square Error (MSE), the Spearman’s Rank
Correlation Coefficient (ρ) (Spearman, 1961), and the Precision at 10 (P@10) (Bai et al., 2019).
Moreover, we provide the results of the τ (Kendall, 1938) and P@20 metrics in the experiments in
Appendix. The MSE metric can accurately calculate the distance between the predition results from
the model and the ground truth, and ρ and τ evaluate the matching between the global ranking result
of the prediction results and the ground truth, while P@k is the intersection of the top k results of
the prediction and the ground truth.

D N2AI

Here, we provide a more detailed description of the N2AI in the popular graph similarity models. We
grouped the testing set by the number of nodes in the graph and counted the MSEs. We normalized
the MSEs with Min-Max Normalization, and visualized the results in Fig 6. It is clearly that the large
MSE are all concentrated in locations with similar number of nodes, which reflects the prevalence
of N2AI.

E N2AGIM WITH SECOND ORDER POOLING

Given the feature map Xk at the kth layer, Second Order Pooling (SOP) is defined as:

H(k) = F(X(k)) = (X(k))T · (X(k)) (9)

where H(k) ∈ RC×C is a fixed size matrix. For the SOP, we define the DiffAtt as :

Diff (k) = |H(k)
i −H(k)

j |

Att(k) = Softmax2D(Diff (k) ⊗Θ(k) + bias(k))

U
(k)
Gi,Gj

= Att(k) � (H
(k)
i H

(k)
j

T
)

(10)

Where U
(k)
Gi,Gj

∈ RC×C is the joint embeddings, and Θ(k) ∈ RC×C and bias(k) ∈ RC×C are two

learnable parameter. If the U
(k)
Gi,Gj

is directly flattened into a vector for regression, it will result
in a larger amount of parameters for the model. Therefore, motivated by the Bai et al. (2020), we
apply four convolution layers with residual connections to learn the U

(k)
Gi,Gj

, and flatten the feature

map to a vector u
(k)
Gi,Gj

to reduce the parameters of the model. Finally, we concatenate all the

joint embeddings u
(k)
Gi,Gj

at different layers to obtain a multi-scale joint embedding as uGi,Gj =

concat([u
(0)
Gi,Gj

, · · · ,u(3)
Gi,Gj

]).

F JOINT EMBEDDING VISUALISATION WITH DIFFATT AND WITHOUT
DIFFATT

We also visualised the joint embeddings generated with and without DiffAtt with each of the three
datasets using T-SNE, as shown in Fig 7. It is clearly that the joint embeddings generated with
DiffAtt are more separable than those without DiffAtt.

13

Under review as a conference paper at ICLR 2023

Figure 6: Heatmap of the normalized MSE for different graph similarity models with different
number of nodes. 14

Under review as a conference paper at ICLR 2023

Figure 7: t-SNE visualisation of the joint embeddings generated by models using DiffAtt and those
not using DiffAtt. The colours represent the similarity ground truth of the joint embeddings. It
is clear that the joint embeddings with DiffAtt are more separable than those without DiffAtt, for
example, the similarity scores of the joint embeddings along the arrows gradually increase, and the
joint embeddings with high similarity are concentrated in the elliptical region.

Table 7: Results of MSE for different models on test data with small difference in the number of
nodes on the AIDS700nef dataset.

SizeDiff H2MN EGSCS GraphSim EGSCT N2AGim

[0.000, 0.075) 2.880 2.265 2.485 2.272 1.661
[0.075, 0.150) 2.059 1.611 1.869 1.694 1.226
[0.150, 0.225) 1.442 1.260 1.555 1.428 0.898
[0.225, 0.300) 1.545 1.615 2.022 2.182 0.894
[0.300, 0.375) 0.916 0.901 0.917 1.443 0.573

G ADDITIONAL EXPERIMENTS AND RESULTS

Here we provide more ablation experiments about N2AGim and GSL2 in the same training frame-
work as Section 5.

G.1 RESULTS ON N2AGIM’S EFFECTIVE IMPROVEMENT OF N2AI

The Fig5 visually demonstrates that N2AGim achieves better performance than the other models
when the number of nodes is similar, showing that N2AGim can address N2AI effectively. Here
we provide more detailed numerical comparison results in Table 7, 8 and 9. Note that the graphs
in AIDS700nef and LINUX all have a relatively small number of nodes, and a 7.5% difference in
node number can be seen as a difference of one node. The results demonstrate that N2AGim achieves
better performance than the other models at all levels of SizeDiff , especially about 26.7%(1.661 vs
2.265), 19.4%(0.191 vs 0.237) and 35.4%(1.103 vs 1.707) better than the second better performance
when the difference in number of nodes is less than 7.5% on the three datasets, respectively. This is
a strong evidence that N2AGim practically improves N2AI.

G.2 MORE ABLATION EXPERIMENTS ON N2AGIM

We experimented with different settings of the backbone of N2AGim on the AIDS700nef
dataset. First we experimented with different types of GNNs and whether to use residual con-
nections and FFNs to enhance node embeddings, and the results are shown in Table 10. It is shown
that all GNNs show a significant improvement with the enhancement, especially in the MSE met-
rics about 13.4%(1.375 vs 1.191), 2.5%(1.254 vs 1.223) and 12.0%(1.330 vs 1.170), respectively.

Table 8: Results of MSE for different models on test data with small differences in the number of
nodes on the LINUX dataset.

SizeDiff H2MN EGSCS GraphSim EGSCT N2AGim

[0.000, 0.075) 0.709 0.474 0.258 0.237 0.191
[0.075, 0.150) 0.544 0.348 0.275 0.266 0.066
[0.150, 0.225) 0.317 0.241 0.184 0.254 0.035
[0.225, 0.300) 0.114 0.292 0.138 0.138 0.021
[0.300, 0.375) 0.205 0.170 0.118 0.163 0.026

15

Under review as a conference paper at ICLR 2023

Table 9: Results of MSE for different models on test data with small differences in the number of
nodes on the IMDBMulti dataset.

SizeDiff H2MN EGSCS GraphSim EGSCT N2AGim

[0.000, 0.075) 1.737 1.707 2.397 1.748 1.103
[0.075, 0.150) 0.900 0.887 1.889 0.861 0.552
[0.150, 0.225) 0.630 0.603 1.478 0.628 0.421
[0.225, 0.300) 0.609 0.547 1.040 0.537 0.431
[0.300, 0.375) 0.296 0.205 2.603 0.202 0.152

Table 10: Experimental results on N2AGim with different GNNs and whether to use residual con-
nections and FFNs on the AIDS700nef dataset.

GNN Res&FFN MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
GCN 8 1.375 0.898 0.756 0.615 0.686
GCN 4 1.191 0.912 0.778 0.668 0.738
SAGE 8 1.254 0.914 0.780 0.652 0.721
SAGE 4 1.223 0.911 0.778 0.680 0.726
GIN 8 1.330 0.904 0.766 0.614 0.697
GIN 4 1.170 0.916 0.783 0.672 0.736

Compared to other GNNs, GIN achieved better results in most cases, especially better on MSE
about 1.8%(1.170 vs 1.191) and 4.3%(1.170 vs 1.223), making it more suitable as a backbone for
N2AGim. We further experimented with the performance of N2AGim using different numbers of
GIN layers, which is shown in Table 11 and found that the number of layers had little effect on
performance, so we chose to use 3 layers of GIN.

G.3 EXPERIMENTAL RESULTS FOR DIFFERENT NUMBERS OF LANDMARKS IN GSL2.

We experimented with selecting different numbers of landmarks on the performance of GSL2,
and the results are shown in Table 12, 13, and 14. From the experimental results, we can find
that increasing the value of M can improve the accuracy of GSL2, but it also increases the inference
time. Considering the balance of inference speed and accuracy, we finally chose M as 60, 30, and
70 for three datasets, respectively.

G.4 EXPERIMENTAL RESULTS FOR GSL2 WITH DIFFERENT RANDOM SELECTED
LANDMARKS.

We next provide experimental results of GSL2 under different random seeds to test the sensi-
tivity of GSL2 to the selected landmarks, which is shown in Table 15, 16, and 17, respectively.
From these results, we can see that the selection of different landmarks affects the performance of
GSL2, but the effect is not significant, which shows the robustness of our GSL2.

Table 11: Experimental results on N2AGim with different number of GIN layers on the AIDS700nef
dataset.

Layers MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
3 1.170 0.916 0.783 0.672 0.736
4 1.199 0.917 0.785 0.673 0.723
5 1.174 0.913 0.781 0.674 0.736

16

Under review as a conference paper at ICLR 2023

Table 12: Experimental results for different numbers of landmarks selected on the AIDS700nef
dataset. M denotes the number of landmarks. Considering the balance of inference speed and
accuracy, we finally chose M as 60.

M GSL2-R (s) GSL2-F (s) MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
10 2.618 0.676 2.334 0.840 0.684 0.434 0.536
20 3.157 0.805 1.699 0.884 0.739 0.544 0.635
30 3.134 0.738 1.559 0.896 0.755 0.577 0.668
40 3.389 0.696 1.563 0.897 0.756 0.576 0.670
50 3.537 0.697 1.481 0.903 0.764 0.579 0.678
60 3.874 0.718 1.470 0.905 0.767 0.604 0.688
70 4.207 0.764 1.455 0.902 0.763 0.583 0.682
80 4.495 0.737 1.621 0.895 0.753 0.566 0.655
90 4.580 0.740 1.450 0.903 0.763 0.588 0.680

100 4.900 0.785 1.765 0.890 0.746 0.533 0.636
110 4.974 0.767 1.675 0.893 0.749 0.554 0.647
120 5.346 0.749 1.557 0.898 0.757 0.574 0.663

Table 13: Experimental results for different numbers of landmarks selected on the LINUX dataset.
Considering the balance of inference speed and accuracy, we finally chose M as 30.

M GSL2-R (s) GSL2-F (s) MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
10 4.254 1.015 0.696 0.981 0.920 0.944 0.939
20 4.283 1.035 0.382 0.987 0.944 0.975 0.951
30 5.007 1.159 0.074 0.994 0.964 0.995 0.991
40 5.235 1.132 0.080 0.994 0.967 0.990 0.988
50 5.467 1.052 0.084 0.994 0.967 0.990 0.993
60 5.753 1.017 0.081 0.994 0.967 0.991 0.993
70 6.018 1.040 0.088 0.993 0.960 0.987 0.989
80 6.634 1.039 0.209 0.991 0.957 0.973 0.960
90 6.763 0.970 0.077 0.994 0.964 0.989 0.989

100 7.703 1.115 0.130 0.993 0.962 0.982 0.976
110 7.752 1.111 0.212 0.990 0.947 0.974 0.960
120 8.268 1.111 0.087 0.994 0.966 0.993 0.994

G.5 EXPERIMENTAL RESULTS ON THE INFERENCE SPEED OF GSL2 BASED ON OTHER
MODELS.

We provide inference speed of GSL2 based on the other graph similarity models and the results
are shown in Table 18. It is clear that GSL2-F speeds up SimGNN by 7.7, 8.5, 73 times on three
datasets, respectively, and speeds up GraphSim 6.1, 10.2 and 59 times, respectively.

G.6 EXPERIMENTAL RESULTS ON GSL2 WITHOUT USING MLPS.

We provide experiments directly using mini{ũG1i
+ ũG2i

} and the results are shown in Table
19. Obviously, due to the limited number of landmarks, and the noise in the generated uG, direct
use of mini{ũG1i

+ ũG2i
} is very ineffective.

G.7 EXPERIMENTAL RESULTS ON GSL2 WITH DIFFERENT REGRESSION ALGORITHMS.

We provide experiments using different regression algorithms in GSL2 and the results are
shown in the Tab 20 21, 22, respectively. The experimental setup is the same as in Section 5, and
we use the default parameters in Pycaret (Ali, 2020) to train each model. In practice, the parameters
of the learning algorithm can be adjusted to obtain better results. It can be seen that the decision
tree based regression algorithms achieve good performance in this noisy embeddings. This also
illustrates the strong expressive ability of our generated embeddings.

17

Under review as a conference paper at ICLR 2023

Table 14: Experimental results for different numbers of landmarks selected on the IMDBMulti
dataset. Considering the balance of inference speed and accuracy, we finally chose M as 70.

M GSL2-R (s) GSL2-F (s) MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
10 6.525 1.513 0.703 0.964 0.898 0.843 0.862
20 7.773 1.458 0.687 0.974 0.929 0.854 0.872
30 8.916 1.470 0.589 0.968 0.915 0.860 0.882
40 10.902 1.714 0.640 0.967 0.912 0.832 0.858
50 12.312 1.786 0.536 0.969 0.918 0.852 0.890
60 13.142 1.524 0.582 0.972 0.920 0.856 0.871
70 15.792 1.824 0.510 0.971 0.916 0.869 0.887
80 17.720 1.912 0.499 0.974 0.932 0.868 0.878
90 18.897 1.774 0.502 0.973 0.927 0.855 0.888

100 20.914 1.806 0.508 0.971 0.924 0.863 0.890
110 24.730 1.804 0.524 0.969 0.911 0.864 0.882
120 26.778 1.830 0.520 0.970 0.919 0.865 0.887

Table 15: Experimental results on GSL2 using different random seeds on the AIDS700nef dataset.
Seed MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑

2 1.470 0.905 0.767 0.604 0.688
3 1.499 0.904 0.765 0.599 0.681
4 1.509 0.904 0.765 0.591 0.682
5 1.477 0.902 0.763 0.574 0.667

2233 1.577 0.896 0.755 0.568 0.665

std 0.042 0.004 0.005 0.016 0.010

H LIMITATIONS AND FUTURE WORKS

GSL2 represents each graph as the GED values between it and the landmarks, and learns on these
embeddings. However, this restricted number of landmarks and the embeddings with noise limit the
performance of GSL2. Moreover, the different randomly chosen landmarks can have some impact
on the performance of the GSL2, which requires a better landmark selection strategy to be proposed.
We leave these issues for the future works. Besides, this paper also discover the N2AI, a common
problem in graph similarity learning, which could inspire the future works.

18

Under review as a conference paper at ICLR 2023

Table 16: Experimental results on GSL2 using different random seeds on the LINUX dataset.
Seed MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑

2 0.074 0.994 0.964 0.995 0.991
3 0.083 0.993 0.948 0.987 0.987
4 0.098 0.992 0.947 0.983 0.982
5 0.090 0.992 0.947 0.992 0.990

2233 0.084 0.993 0.948 0.984 0.991

std 0.009 0.001 0.008 0.005 0.004

Table 17: Experimental results on GSL2 using different random seeds on the IMDBMulti dataset.
Seed MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑

2 0.510 0.971 0.916 0.869 0.887
3 0.532 0.965 0.890 0.852 0.883
4 0.559 0.970 0.902 0.852 0.881
5 0.553 0.970 0.902 0.866 0.874

2233 0.562 0.968 0.898 0.863 0.881

std 0.022 0.002 0.009 0.008 0.005

Table 18: Experimental results on how faster GSL2 can improve other graph similarity models.
SimGNN GraphSim N2AGim

AIDS LINUX IMDB AIDS LINUX IMDB AIDS LINUX IMDB
Original 5.106 8.582 122.939 4.383 9.12 114.676 9.245 13.163 87.032
GSL2-R 3.019 4.171 11.64 4.353 5.19 15.428 3.874 5.007 15.792
GSL2-F 0.665 1.013 1.684 0.713 0.896 1.946 0.718 1.159 1.824

Table 19: Experimental results on direct use of mini{ũG1i
+ ũG2i

}.
Datasets MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑

AIDS700nef 13.283 0.683 0.527 0.246 0.299
LINUX 3.133 0.961 0.913 0.767 0.811

IMDBMulti 1.802 0.955 0.897 0.721 0.762

19

Under review as a conference paper at ICLR 2023

Table 20: Experimental results on GSL2 using different regression algorithms on the AIDS700nef
dataset.

Model MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
Extra Trees 1.705 0.888 0.751 0.541 0.637
CatBoost 1.645 0.890 0.746 0.559 0.656

Random Forest 1.963 0.874 0.729 0.475 0.583
KNeighbors 1.909 0.872 0.732 0.561 0.657

XGBoost 1.870 0.874 0.724 0.524 0.618
LightGBM 2.317 0.849 0.694 0.456 0.567

Gradient Boosting 3.305 0.796 0.635 0.291 0.434
Decision Tree 4.854 0.743 0.609 0.382 0.479

Bayesian Ridge 6.108 0.504 0.383 0.066 0.139
Linear Regression 6.108 0.504 0.384 0.072 0.138

Ridge 6.108 0.504 0.384 0.071 0.138
Orthogonal Matching Pursuit 6.291 0.490 0.371 0.059 0.124

Huber 6.218 0.501 0.382 0.071 0.135
ElasticNet 6.470 0.483 0.372 0.077 0.143

Passive Aggressive Regressor 6.603 0.477 0.367 0.076 0.133
Lasso 7.325 0.432 0.333 0.076 0.143

AdaBoost 8.754 0.383 0.304 0.314 0.347
LassoLars 10.776 0.226 0.186 0.466 0.490

MLPs 1.470 0.905 0.767 0.604 0.688

Table 21: Experimental results on GSL2 using different regression algorithms on the LINUX dataset.
Model MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑

Extra Trees 0.078 0.999 0.996 0.987 0.991
Random Forest 0.103 0.998 0.994 0.981 0.981

XGBoost 0.175 0.992 0.964 0.978 0.967
KNeighbors 0.141 0.998 0.995 0.986 0.984

CatBoost 0.148 0.993 0.960 0.964 0.977
Decision Tree 0.222 0.997 0.994 0.987 0.988

LightGBM 0.980 0.979 0.921 0.951 0.949
Gradient Boosting 4.450 0.944 0.847 0.743 0.819

AdaBoost 24.366 0.591 0.472 0.298 0.300
ElasticNet 28.596 0.365 0.288 0.090 0.145

Orthogonal Matching Pursuit 30.056 0.319 0.265 0.045 0.045
Lasso 31.502 0.317 0.265 0.090 0.145
Huber 28.490 0.395 0.310 0.090 0.145

Bayesian Ridge 26.908 0.386 0.299 0.090 0.145
Ridge 26.908 0.388 0.305 0.090 0.145

Linear Regression 26.908 0.388 0.305 0.090 0.145

MLPs 0.074 0.994 0.964 0.995 0.991

20

Under review as a conference paper at ICLR 2023

Table 22: Experimental results on GSL2 using different regression algorithms on the IMDBMulti
dataset.

Model MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
Extra Trees 0.585 0.971 0.935 0.875 0.890

Random Forest 0.776 0.968 0.931 0.862 0.883
XGBoost 2.901 0.951 0.884 0.754 0.803

KNeighbors 0.837 0.961 0.924 0.876 0.899
LightGBM 13.573 0.925 0.837 0.728 0.758

Decision Tree 1.275 0.954 0.914 0.841 0.875
Gradient Boosting 48.646 0.825 0.700 0.206 0.320

Bayesian Ridge 75.886 0.333 0.250 0.015 0.034
Linear Regression 75.887 0.333 0.251 0.015 0.034

ElasticNet 75.690 0.330 0.252 0.013 0.033
Lasso 75.779 0.330 0.252 0.013 0.033
Ridge 75.959 0.336 0.254 0.015 0.036

Least Angle Regression 76.013 0.333 0.247 0.015 0.036
CatBoost 2.100 0.957 0.896 0.817 0.825

Huber 90.815 0.351 0.265 0.025 0.032
Orthogonal Matching Pursuit 174.995 0.236 0.178 0.022 0.045

MLPs 0.510 0.971 0.916 0.869 0.887

21

	Introduction
	Preliminaries
	Graph neural networks
	Deep graph similarity learning

	Node Number Awareness Issue (N2AI) analysis
	Proposed methods
	Node Number Awareness Graph Similarity Model (N2AGim)
	Graph Similarity Learning with Landmarks (GSL2)
	Comparison of our N2AGim and GSL2

	Experiments
	Ablation study
	Graph similarity learning
	Inference time

	Conclusion
	Ethics statement
	Reproducibility statement
	Proof of Theorem 1.
	Datasets and pre-processing
	Evaluation metrics
	N2AI
	N2AGim with Second Order Pooling
	Joint embedding visualisation with DiffAtt and without DiffAtt
	Additional experiments and results
	Results on N2AGim's effective improvement of N2AI
	More ablation experiments on N2AGim
	Experimental results for different numbers of landmarks in GSL2.
	Experimental results for GSL2 with different random selected landmarks.
	Experimental results on the inference speed of GSL2 based on other models.
	Experimental results on GSL2 without using MLPs.
	Experimental results on GSL2 with different regression algorithms.

	Limitations and future works

