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Abstract

Graph-based methods are popular in depen-001
dency parsing for decades, which decompose002
the score of a dependency tree into scores003
of dependency arcs. Recently, Yang and Tu004
(2021) propose a headed-span-based method005
that decomposes the score of a dependency006
tree into scores of headed spans. In this pa-007
per, we combine the two types of methods by008
considering both arc scores and headed-span009
scores, designing three scoring methods and010
the corresponding dynamic programming algo-011
rithms for joint inference. Experiments show012
the effectiveness of our proposed methods.013

1 Introduction014

Dependency parsing is an important task in nat-015

ural language processing. There are many meth-016

ods to tackle projective dependency parsing. In017

this paper, we focus on two kinds of global meth-018

ods: graph-based methods and headed-span-based019

methods. They both score all parse trees and glob-020

ally find the highest scoring tree. The difference021

between the two is how they score dependency022

trees. The simplest first-order graph-based meth-023

ods (McDonald et al., 2005) decompose the score024

of a dependency tree into the scores of depen-025

dency arcs. Second-order graph-based methods026

(McDonald and Pereira, 2006) additionally score027

adjacent siblings, i.e., pairs of adjacent arcs with028

a shared head. There are many other higher-order029

graph-based methods (Carreras, 2007; Koo and030

Collins, 2010; Ma and Zhao, 2012). In contrast,031

headed-span-based method (Yang and Tu, 2021)032

decomposes the score of a dependency tree into033

the scores of headed-spans: in a projective tree, a034

headed-span is a word-span pair such that the sub-035

tree rooted at the word covers the span in the sur-036

face order. Figure 1 shows an example projective037

parse tree and all its headed-spans. Because graph-038

based methods and the headed-span-based method039

take very different perspectives (i.e., composition040
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Figure 1: An example projective dependency parse tree
with all its headed-spans.

of arcs vs. headed-spans) towards projective de- 041

pendency parsing, it is theoretically interesting and 042

intuitively beneficial to combine them. 043

We design three different ways to score a de- 044

pendency tree with both arc and headed-span de- 045

composition and propose the following dynamic 046

programming algorithms for joint inference. We 047

first design an O(n4) algorithm adapted from the 048

Eisner-Satta algorithm (Eisner and Satta, 1999) to 049

combine first-order graph-based and headed-span- 050

based methods using the hook trick. Then we de- 051

sign two O(n3) algorithms adapted from the Eisner 052

algorithm (Eisner, 1997) and its second-order ex- 053

tension (McDonald and Pereira, 2006) to combine 054

first/second-order graph-based methods and the 055

headed-span-based method using the head-splitting 056

trick: we decompose the score of a headed-span 057

into two terms assuming that the score of the left 058

span boundary is independent to that of the right 059

span boundary for each headword. We conduct ex- 060

tensive experiments on PTB, CTB, and UD, show- 061

ing the effectiveness of our proposed methods. 062

2 Model 063

2.1 Scoring 064

Given an input sentences x1, ..., xn, we add <bos> 065

(beginning of sentence) and <eos> (end of sen- 066



tence) as x0 and xn+1. We apply mean-pooling067

at the last layer of BERT (Devlin et al., 2019)068

(i.e., averaging all subwords embeddings) to ob-069

tain the word-level embeddings ei1. Then we feed070

e0, ..., en+1 into a three-layer BiLSTM (Hochre-071

iter and Schmidhuber, 1997) network to get072

c0, ..., cn+1, where ci = [fi; bi], fi and bi are the073

forward and backward hidden states of the last074

BiLSTM layer at position i respectively. We use075

hk = [fk, bk+1] to represent the kth boundary lying076

between xk and xk+1, and use ei,j = hj − hi−1 to077

represent span (i, j) from position i to j inclusive078

where 1 ≤ i ≤ j ≤ n. Then we compute:079

• sarc
i,j (for arc xi → xj , used in all three models)080

by feeding ci, cj into a deep biaffine function081

(Dozat and Manning, 2017).082

• s
span
i,j,k (for headed-span (i, j, k) where xk is083

the headword of span (i, j), used in §3.1) by084

feeding ei,j , ck to a deep biaffine function.085

• sleft
k,i and s

right
k,j (for headed-span (i, j, k), used086

in §3.2 and §3.3) by feeding ck, hi−1 and087

ck, hj into two different deep biaffine func-088

tions.089

• ssib
i,j,k (for adjacent siblings xi → {xj , xk}090

with k < j < i or i < j < k, used in §3.3) by091

feeding ci, ck, cj into a deep triaffine function092

(Zhang et al., 2020).093

2.2 Learning094

We decompose the training loss L into Lparse +095

Llabel. For Lparse, we use the max-margin loss096

(Taskar et al., 2004):097

Lparse = max(0,max
y′ 6=y

(s(y′) + ∆(y′, y)− s(y))098

where ∆ measures the difference between the in-099

correct tree and gold tree y. Here we let ∆ to100

be the Hamming distance (i.e., the total number101

of mismatches of arcs, sibling pairs, and (split)102

headed-spans depending on the setting). We use103

the same label loss Llabel in Dozat and Manning104

(2017).105

3 Parsing106

We use the parsing-as-deduction framework107

(Pereira and Warren, 1983) to describe the pars-108

ing algorithms of our proposed models.109

1For some datasets requiring the use of gold POS tags, we
additionally concatenate the POS tag embedding to obtain ei

3.1 O(n4) modified Eisner-Satta algorithm 110

In this case, we combine first-order graph-based 111

parsing and headed-span-based parsing. The score 112

of a dependency tree y is defined as: 113

s(y) =
∑

(xi→xj)∈y

sarc
i,j +

∑
(li,ri,xi)∈y

s
span
li,ri,i

114

We design a dynamic programming algorithm 115

adapted from the Eisner-Satta algorithm, which 116

uses the hook trick to accelerate bilexicalized 117

context-free parsing. The axiom items are 118

i i i

with initial score 0 and the deduction 119

rules are listed in Figure 2. Unlike the original 120

Eisner-Satta algorithm, we distinguish between 121

“finished” spans and “unfinished” spans. An “un- 122

finished” span can absorb a child span to form a 123

larger span, while in a “finished” span, the head- 124

word has already generated all its children, so it can- 125

not expand anymore and corresponds to a headed- 126

span for the given headword. By explicitly distin- 127

guishing between “unfinished“ spans and “finished“ 128

spans, we can incorporate headed-span scores sspan 129

into parsing via the newly introduced rule FINISH. 130

We then modify the rule L-LINK and R-LINK ac- 131

cordingly as only a “finished” span can be attached. 132

3.2 O(n3) modifed Eisner algorithm 133

In order to decrease the inference time complexity 134

from O(n4) to O(n3), we decompose s
span
l,r,i into 135

two terms: 136

s(y) =
∑

(xi→xj)∈y

sarc
i,j +

∑
(li,ri,xi)∈y

(sleft
i,li

+ s
right
i,ri

) 137

and modify the Eisner algorithm accordingly. The 138

axiom items are
i i

and
i i

with initial 139

score 0 and the deduction rules are shown in the 140

first two rows of Figure 3. Similar to the case in the 141

previous subsection, the original Eisner algorithm 142

does not distinguish between “finished” complete 143

spans and “unfinished” complete spans. An “unfin- 144

ished” complete span can absorb another complete 145

span to form a larger incomplete span, while a “fin- 146

ished” complete span has no more child in the given 147

direction and thus cannot expand anymore. We in- 148

troduce new rules L-FINISH and R-FINISH to 149

incorporate the left or right span boundary scores 150

respectively, and adjust other rules accordingly. 151
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R-COMB:
i h k

s1

k + 1 jh

s2

i h j

s1 + s2
R-LINK:

i c j

s1

i jh

s1 + sarc
h,c

FINISH:
i h j

s1

i h j

s1 + sspan
i,j,h

L-COMB:
i k − 1 h

s1

k h j

s2

i h j

s1 + s2
L-LINK:

i c j

s1

i j h

s1 + sarc
h,c

Figure 2: Deduction rules for our modified Eisner-Satta algorithm (Eisner and Satta, 1999). Our modifications are
highlighted in red. All deduction items are annotated with their scores.

R-COMB:
i k

s1

k j

s2

i j

s1 + s2
R-LINK:

i k

s1

k + 1 j

s2

i j

s1 + s2 + sarc
i,j

R-FINISH:
i j

s1

i j

s1 + sright
i,j

L-COMB:
j k

s1

k i

s2

j i

s1 + s2
L-LINK:

j k − 1

s1

k i

s2

j i

s1 + s2 + sarc
i,j

L-FINISH:
j i

s1

j i

s1 + sleft
i,j

COMB:
j k − 1

s1

k i

s2

j i

s1 + s2
L-LINK-2

j k

s1

k i

s2

j i

s1 + s2 + sarc
i,j

+ssib
i,k,j

R-LINK-2
i k

s1

k j

s1

i j

s1 + s2 + sarc
i,j

+ssib
i,k,j

Figure 3: Deduction rules for our modified Eisner algorithm (Eisner, 1997) (first two rows) and its second-order
extension (McDonald and Pereira, 2006) (all rows). Our modifications are highlighted in red. All deduction items
are annotated with their scores.

3.3 O(n3) modified second-order Eisner152

algorithm153

We further enhance the model with adjacent sibling154

information:155

s(y) =
∑

(xi→xj)∈y

sarc
i,j +

∑
(xi→{xj ,xk})∈y

ssib
i,j,k156

+
∑

(li,ri,xi)∈y

(sleft
i,li

+ s
right
i,ri

)157

where for each adjacent sibling part xi → {xj , xk}, 158

xj and xk are two adjacent dependents of xi. 159

Similarly, we modify the second-order extension 160

of the Eisner algorithm (McDonald and Pereira, 161

2006) by distinguishing between “unfinished” and 162

“finished” complete spans. The additional deductive 163

rules for second-order parsing are shown in the last 164

row of Figure 3 and the length of the “unfinished” 165

complete span is forced to be 1 in the rule L-LINK 166

and R-LINK. 167
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bg ca cs de en es fr it nl no ro ru Avg

+BERTmultilingual

Biaffine+MM† 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Span 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96
1O+Span 91.44 94.54 92.68 85.75 91.23 93.84 91.67 94.97 91.81 94.35 87.17 94.49 91.99
1O+Span+Headsplit 91.46 94.53 92.63 85.78 91.25 93.77 91.91 94.88 91.59 94.18 87.45 94.47 91.99

Biaffine+2O+MM 91.58 94.48 92.69 85.72 91.28 93.80 91.89 94.88 91.30 94.23 87.55 94.55 92.00
2O+Span+Headsplit 91.82 94.58 92.59 85.65 91.28 93.86 91.80 94.75 91.50 94.40 87.71 94.51 92.04

For reference

MFVI2O 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61

Table 1: Labeled Attachment Score (LAS) on twelves languages in UD 2.2. We use ISO 639-1 codes to represent
languages. † means reported by Yang and Tu (2021). MFVI2O: Wang and Tu (2020). Span: Yang and Tu (2021).

PTB CTB
UAS LAS UAS LAS

+BERTlarge +BERTbase

Biaffine+MM† 97.22 95.71 93.18 92.10
Span 97.24 95.73 93.33 92.30
1O+Span 97.26 95.68 93.56 92.49
1O+Span+HeadSplit 97.30 95.77 93.46 92.42
Biaffine+2O+MM 97.28 95.73 93.42 92.34
2O+Span+HeadSplit 97.23 95.69 93.57 92.47

For reference

MFVI2O 96.91 95.34 92.55 91.69
HierPtr 97.01 95.48 92.65 91.47

+XLNetlarge +BERTbase

HPSG[ 97.20 95.72 - -
HPSG+LAL[ 97.42 96.26 94.56 89.28

Table 2: Results on PTB and CTB. [ denotes use of ad-
ditional constituency tree data and thus not comparable
to our work. † denotes results reported by Yang and Tu
(2021). HPSG: Zhou and Zhao (2019); HPSG+LAL:
Mrini et al. (2020); HierPtr: Fernández-González and
Gómez-Rodríguez (2021).

4 Experiments168

4.1 Setup169

We conduct experiments on in Penn Treebank170

(PTB) 3.0 (Marcus et al., 1993), Chinese Treebank171

(CTB) 5.1 (Xue et al., 2005) and 12 languages172

on Universal Dependencies (UD) 2.2. We use the173

same data processing, evaluation methods, and hy-174

perparameters as Yang and Tu (2021) for fair com-175

parison and we refer readers to their paper for de-176

tails due to the limit of space. We set the hidden177

size of the Triaffine function to 300 additionally.178

The reported results are averaged over three runs179

with different random seeds.180

4.2 Main result181

Table 1 and 2 show the results on UD, PTB182

and CTB respectively. We additionally reim-183

plement Biaffine+2O+MM by replacing the184

TreeCRF loss of Zhang et al. (2020) with the 185

max-margin loss for fair comparison. We 186

refer to our proposed models as 1O+Span 187

(§3.1), 1O+Span+Headsplit (§3.2), and 188

2O+Span+Headsplit (§3.3) respectively. 189

We draw the following observations: 190

• Second-order information is still help- 191

ful even with powerful encoders (i.e., 192

BERT). Biaffine+2O+MM outperforms 193

Biaffine+MM in almost all cases. 194

• Combining first-order graph-based and 195

headed-span-based methods is effective. Both 196

1O+Span and 1O+Span+Headsplit 197

beat Biaffine+MM and Span in almost all 198

cases. However, when incorporating span 199

information into the second-order model, the 200

improvement is slight: only +0.04 average 201

LAS on UD, +0.13 LAS on CTB, and 202

worse performance (-0.04 LAS) on PTB. 203

We speculate that the utility of adjacent 204

sibling information and span information is 205

overlapping. 206

• Decomposing the headed-span scores is effec- 207

tive. 1O+Span+Headsplit has a compa- 208

rable performance to 1O+Span while man- 209

ages to decrease the time complexity from 210

O(n4) to O(n3). We speculate that power- 211

ful encoders mitigate the issue of independent 212

scoring. 213

5 Conclusion 214

In this paper we have presented three scoring and 215

decoding methods to combine graph-based and 216

headed-span-based methods for projective depen- 217

dency parsing. Experiments show the effectiveness 218

of our proposed methods. 219
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