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Abstract

Graph-based methods are popular in depen-
dency parsing for decades, which decompose
the score of a dependency tree into scores
of dependency arcs. Recently, Yang and Tu
(2021) propose a headed-span-based method
that decomposes the score of a dependency
tree into scores of headed spans. In this pa-
per, we combine the two types of methods by
considering both arc scores and headed-span
scores, designing three scoring methods and
the corresponding dynamic programming algo-
rithms for joint inference. Experiments show
the effectiveness of our proposed methods.

1 Introduction

Dependency parsing is an important task in nat-
ural language processing. There are many meth-
ods to tackle projective dependency parsing. In
this paper, we focus on two kinds of global meth-
ods: graph-based methods and headed-span-based
methods. They both score all parse trees and glob-
ally find the highest scoring tree. The difference
between the two is how they score dependency
trees. The simplest first-order graph-based meth-
ods (McDonald et al., 2005) decompose the score
of a dependency tree into the scores of depen-
dency arcs. Second-order graph-based methods
(McDonald and Pereira, 2006) additionally score
adjacent siblings, i.e., pairs of adjacent arcs with
a shared head. There are many other higher-order
graph-based methods (Carreras, 2007; Koo and
Collins, 2010; Ma and Zhao, 2012). In contrast,
headed-span-based method (Yang and Tu, 2021)
decomposes the score of a dependency tree into
the scores of headed-spans: in a projective tree, a
headed-span is a word-span pair such that the sub-
tree rooted at the word covers the span in the sur-
face order. Figure 1 shows an example projective
parse tree and all its headed-spans. Because graph-
based methods and the headed-span-based method
take very different perspectives (i.e., composition
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Figure 1: An example projective dependency parse tree
with all its headed-spans.

of arcs vs. headed-spans) towards projective de-
pendency parsing, it is theoretically interesting and
intuitively beneficial to combine them.

We design three different ways to score a de-
pendency tree with both arc and headed-span de-
composition and propose the following dynamic
programming algorithms for joint inference. We
first design an O(n*) algorithm adapted from the
Eisner-Satta algorithm (Eisner and Satta, 1999) to
combine first-order graph-based and headed-span-
based methods using the hook trick. Then we de-
sign two O(n?) algorithms adapted from the Eisner
algorithm (Eisner, 1997) and its second-order ex-
tension (McDonald and Pereira, 2006) to combine
first/second-order graph-based methods and the
headed-span-based method using the head-splitting
trick: we decompose the score of a headed-span
into two terms assuming that the score of the left
span boundary is independent to that of the right
span boundary for each headword. We conduct ex-
tensive experiments on PTB, CTB, and UD, show-
ing the effectiveness of our proposed methods.

2 Model

2.1 Scoring

Given an input sentences 1, ..., Zy, we add <bos>
(beginning of sentence) and <eos> (end of sen-



tence) as xg and x,11. We apply mean-pooling
at the last layer of BERT (Devlin et al., 2019)
(i.e., averaging all subwords embeddings) to ob-
tain the word-level embeddings e;!. Then we feed
€0, ..., en41 into a three-layer BiLSTM (Hochre-
iter and Schmidhuber, 1997) network to get
€0y -y Cnt1, Where ¢; = [fi; b;], fi and b; are the
forward and backward hidden states of the last
BiLSTM layer at position 7 respectively. We use
hi = [fk, bx+1] to represent the kth boundary lying
between x, and x41, and use e; ; = hj — h;j_1 to
represent span (4, j) from position i to j inclusive
where 1 < i < j < n. Then we compute:

. s';“]c (for arc x; — x;, used in all three models)
by feeding c;, ¢; into a deep biaffine function
(Dozat and Manning, 2017).

s;'y (for headed-span (i, j, k) where zy, is
the headword of span (i, j), used in §3.1) by

feeding e; ;, ¢, to a deep biaffine function.

. S.lkeflt and srlght (fOI’ headed—span (iaja k)’ used

in §3.2 and §3.3) by feeding ci, h;—1 and
¢k, h; into two different deep biaffine func-
tions.
. flgk (for adjacent siblings z; — {zj,z1}
withk < j <7ori < j < k,used in §3.3) by
feeding c¢;, ¢, ¢; into a deep triaffine function

(Zhang et al., 2020).

2.2 Learning

We decompose the training loss L into Lparse +
Ligve1.  For Lpase, we use the max-margin loss
(Taskar et al., 2004):

Lparse = max(O, g}iz((s(y/) + A(y/, y) - S(:U))
where A measures the difference between the in-
correct tree and gold tree y. Here we let A to
be the Hamming distance (i.e., the total number
of mismatches of arcs, sibling pairs, and (split)
headed-spans depending on the setting). We use
the same label loss Ligpe; in Dozat and Manning
(2017).

3 Parsing

We use the parsing-as-deduction framework
(Pereira and Warren, 1983) to describe the pars-
ing algorithms of our proposed models.

"For some datasets requiring the use of gold POS tags, we
additionally concatenate the POS tag embedding to obtain e;

31 O(n*

In this case, we combine first-order graph-based
parsing and headed-span-based parsing. The score
of a dependency tree y is defined as:

W= ¥ o X,
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) modified Eisner-Satta algorithm

We design a dynamic programming algorithm
adapted from the Eisner-Satta algorithm, which
uses the hook trick to accelerate bilexicalized
context-free parsing.  The axiom items are

A with initial score 0 and the deduction
rules are listed in Figure 2. Unlike the original
Eisner-Satta algorithm, we distinguish between
“finished” spans and “unfinished” spans. An “un-
finished” span can absorb a child span to form a
larger span, while in a “finished” span, the head-
word has already generated all its children, so it can-
not expand anymore and corresponds to a headed-
span for the given headword. By explicitly distin-
guishing between “unfinished* spans and “finished*
spans, we can incorporate headed-span scores sP*"
into parsing via the newly introduced rule FINI SH.
We then modify the rule L-LINK and R-LINK ac-
cordingly as only a “finished” span can be attached.

32 O3

In order to decrease the inference time complexity
from O(n?) to O(n?), we decompose s)""; into
two terms:

sy = Y

(zi—wj)ey

) modifed Eisner algorithm
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and modify the Eisner algorithm accordingly. The

axiom items are Il and A with initial
(A 11

score 0 and the deduction rules are shown in the
first two rows of Figure 3. Similar to the case in the
previous subsection, the original Eisner algorithm
does not distinguish between “finished”” complete
spans and “unfinished” complete spans. An “unfin-
ished” complete span can absorb another complete
span to form a larger incomplete span, while a “fin-
ished” complete span has no more child in the given
direction and thus cannot expand anymore. We in-
troduce new rules L-FINISH and R-FINISH to
incorporate the left or right span boundary scores
respectively, and adjust other rules accordingly.
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Figure 2: Deduction rules for our modified Eisner-Satta algorithm (Eisner and Satta, 1999). Our modifications are
highlighted in red. All deduction items are annotated with their scores.
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Figure 3: Deduction rules for our modified Eisner algorithm (Eisner, 1997) (first two rows) and its second-order
extension (McDonald and Pereira, 2006) (all rows). Our modifications are highlighted in red. All deduction items

are annotated with their scores.

3.3 O(n?) modified second-order Eisner
algorithm

We further enhance the model with adjacent sibling
information:
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where for each adjacent sibling part z; — {x;, 1},
x; and xj, are two adjacent dependents of ;.

Similarly, we modify the second-order extension
of the Eisner algorithm (McDonald and Pereira,
2006) by distinguishing between “unfinished” and
“finished” complete spans. The additional deductive
rules for second-order parsing are shown in the last
row of Figure 3 and the length of the “unfinished”
complete span is forced to be 1 in the rule L-LINK
and R-LINK.



bg ca cs de en es fr it nl no ro u | Avg

+BERTmulli]ingual

Biaffine+MM" 90.30 9449 9265 8598 91.13 9378 91.77 9472 91.04 9421 8724 9453 | 91.82

Span 91.10 9446 9257 8587 91.32 9384 91.69 9478 91.65 9428 8748 9445 | 91.96

10+Span 91.44 9454 9268 8575 9123 9384 91.67 9497 91.81 9435 87.17 9449 | 91.99

10+Span+Headsplit  91.46 9453 92,63 8578 91.25 93.77 9191 9488 9159 94.18 8745 9447 | 91.99

Biaffine+20+MM 91.58 9448 92.69 8572 9128 9380 91.89 9488 91.30 9423 8755 94.55 | 92.00

20+Span+Headsplit  91.82 94,58 9259 8565 9128 9386 91.80 9475 9150 9440 87.71 9451 | 92.04
For reference

MFVI20 91.30 93.60 92.09 82.00 90.75 9262 89.32 93.66 91.21 91.74 86.40  92.61 \ 90.61

Table 1: Labeled Attachment Score (LAS) on twelves languages in UD 2.2. We use ISO 639-1 codes to represent
languages. T means reported by Yang and Tu (2021). MFVI20: Wang and Tu (2020). Span: Yang and Tu (2021).

PTB CTB
UAS LAS UAS LAS
+BERT e +BERTase
Biaffine+MM' 9722 9571 93.18 92.10
Span 9724 9573 9333 9230
10+Span 9726 95.68 93.56 92.49
10+Span+HeadSplit 9730 9577 93.46 92.42
Biaffine+20+MM 9728 9573 9342 9234
20+Span+HeadSplit 9723  95.69 93.57 92.47
For reference
MFVI20 9691 9534 9255 91.69
HierPtr 97.01 9548 92.65 91.47
+XLNetlarge +BERTbuse
HPSG’ 97.20 95.72 - -
HPSG+LAL® 9742 9626 9456 89.28

Table 2: Results on PTB and CTB. b denotes use of ad-
ditional constituency tree data and thus not comparable
to our work. T denotes results reported by Yang and Tu
(2021). HPSG: Zhou and Zhao (2019); HPSG+LAL.:
Mrini et al. (2020); HierPtr: Fernandez-Gonzélez and
Goémez-Rodriguez (2021).

4 Experiments

4.1 Setup

We conduct experiments on in Penn Treebank
(PTB) 3.0 (Marcus et al., 1993), Chinese Treebank
(CTB) 5.1 (Xue et al., 2005) and 12 languages
on Universal Dependencies (UD) 2.2. We use the
same data processing, evaluation methods, and hy-
perparameters as Yang and Tu (2021) for fair com-
parison and we refer readers to their paper for de-
tails due to the limit of space. We set the hidden
size of the Triaffine function to 300 additionally.
The reported results are averaged over three runs
with different random seeds.

4.2 Main result

Table 1 and 2 show the results on UD, PTB
and CTB respectively. We additionally reim-
plement Biaffine+20+MM by replacing the

TreeCRF loss of Zhang et al. (2020) with the
max-margin loss for fair comparison. We
refer to our proposed models as 10+Span

(§3.1), 1lO+Spant+Headsplit (§3.2), and
20+Span+Headsplit (§3.3) respectively.

We draw the following observations:

* Second-order information is still help-

ful even with powerful encoders (i.e.,
BERT). Biaffine+20+MM outperforms
Biaffine+MM in almost all cases.

e Combining first-order graph-based and
headed-span-based methods is effective. Both
10+Span and 10+Span+Headsplit
beat Biaffine+MM and Span in almost all
cases. However, when incorporating span
information into the second-order model, the
improvement is slight: only +0.04 average
LAS on UD, +0.13 LAS on CTB, and
worse performance (-0.04 LAS) on PTB.
We speculate that the utility of adjacent
sibling information and span information is
overlapping.

* Decomposing the headed-span scores is effec-
tive. 10+Span+Headsplit has a compa-
rable performance to 10+Span while man-
ages to decrease the time complexity from
O(n*) to O(n3). We speculate that power-
ful encoders mitigate the issue of independent
scoring.

5 Conclusion

In this paper we have presented three scoring and
decoding methods to combine graph-based and
headed-span-based methods for projective depen-
dency parsing. Experiments show the effectiveness
of our proposed methods.
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