Combining (Second-Order) Graph-Based and Headed-Span-Based
Projective Dependency Parsing

Anonymous ACL submission

Abstract

Graph-based methods are popular in depen-
dency parsing for decades, which decompose
the score of a dependency tree into scores
of dependency arcs. Recently, Yang and Tu
(2021) propose a headed-span-based method
that decomposes the score of a dependency
tree into scores of headed spans. In this pa-
per, we combine the two types of methods by
considering both arc scores and headed-span
scores, designing three scoring methods and
the corresponding dynamic programming algo-
rithms for joint inference. Experiments show
the effectiveness of our proposed methods.

1 Introduction

Dependency parsing is an important task in nat-
ural language processing. There are many meth-
ods to tackle projective dependency parsing. In
this paper, we focus on two kinds of global meth-
ods: graph-based methods and headed-span-based
methods. They both score all parse trees and glob-
ally find the highest scoring tree. The difference
between the two is how they score dependency
trees. The simplest first-order graph-based meth-
ods (McDonald et al., 2005) decompose the score
of a dependency tree into the scores of depen-
dency arcs. Second-order graph-based methods
(McDonald and Pereira, 2006) additionally score
adjacent siblings, i.e., pairs of adjacent arcs with
a shared head. There are many other higher-order
graph-based methods (Carreras, 2007; Koo and
Collins, 2010; Ma and Zhao, 2012). In contrast,
headed-span-based method (Yang and Tu, 2021)
decomposes the score of a dependency tree into
the scores of headed-spans: in a projective tree, a
headed-span is a word-span pair such that the sub-
tree rooted at the word covers the span in the sur-
face order. Figure 1 shows an example projective
parse tree and all its headed-spans. Because graph-
based methods and the headed-span-based method
take very different perspectives (i.e., composition

reads

child book
the a
the child reads a book
the a
child book

reads

Figure 1: An example projective dependency parse tree
with all its headed-spans.

of arcs vs. headed-spans) towards projective de-
pendency parsing, it is theoretically interesting and
intuitively beneficial to combine them.

We design three different ways to score a de-
pendency tree with both arc and headed-span de-
composition and propose the following dynamic
programming algorithms for joint inference. We
first design an O(n*) algorithm adapted from the
Eisner-Satta algorithm (Eisner and Satta, 1999) to
combine first-order graph-based and headed-span-
based methods using the hook trick. Then we de-
sign two O(n?) algorithms adapted from the Eisner
algorithm (Eisner, 1997) and its second-order ex-
tension (McDonald and Pereira, 2006) to combine
first/second-order graph-based methods and the
headed-span-based method using the head-splitting
trick: we decompose the score of a headed-span
into two terms assuming that the score of the left
span boundary is independent to that of the right
span boundary for each headword. We conduct ex-
tensive experiments on PTB, CTB, and UD, show-
ing the effectiveness of our proposed methods.

2 Model

2.1 Scoring

Given an input sentences 1, ..., Zy, we add <bos>
(beginning of sentence) and <eos> (end of sen-

tence) as xg and x,11. We apply mean-pooling
at the last layer of BERT (Devlin et al., 2019)
(i.e., averaging all subwords embeddings) to ob-
tain the word-level embeddings e;!. Then we feed
€0, ..., en41 into a three-layer BiLSTM (Hochre-
iter and Schmidhuber, 1997) network to get
€0y -y Cnt1, Where ¢; = [fi; b;], fi and b; are the
forward and backward hidden states of the last
BiLSTM layer at position 7 respectively. We use
hi = [fk, bx+1] to represent the kth boundary lying
between x, and x41, and use e; ; = hj — h;j_1 to
represent span (4, j) from position i to j inclusive
where 1 < i < j < n. Then we compute:

. s';“]c (for arc x; — x;, used in all three models)
by feeding c;, ¢; into a deep biaffine function
(Dozat and Manning, 2017).

s;'y (for headed-span (i, j, k) where zy, is
the headword of span (i, j), used in §3.1) by

feeding e; ;, ¢, to a deep biaffine function.

. S.lkeflt and srlght (fOI’ headed—span (iaja k)’ used

in §3.2 and §3.3) by feeding ci, h;—1 and
¢k, h; into two different deep biaffine func-
tions.
. flgk (for adjacent siblings z; — {zj,z1}
withk < j <7ori < j < k,used in §3.3) by
feeding c¢;, ¢, ¢; into a deep triaffine function

(Zhang et al., 2020).

2.2 Learning

We decompose the training loss L into Lparse +
Ligve1. For Lpase, we use the max-margin loss
(Taskar et al., 2004):

Lparse = max(O, g}iz((s(y/) + A(y/, y) - S(:U))
where A measures the difference between the in-
correct tree and gold tree y. Here we let A to
be the Hamming distance (i.e., the total number
of mismatches of arcs, sibling pairs, and (split)
headed-spans depending on the setting). We use
the same label loss Ligpe; in Dozat and Manning
(2017).

3 Parsing

We use the parsing-as-deduction framework
(Pereira and Warren, 1983) to describe the pars-
ing algorithms of our proposed models.

"For some datasets requiring the use of gold POS tags, we
additionally concatenate the POS tag embedding to obtain e;

31 O(n*

In this case, we combine first-order graph-based
parsing and headed-span-based parsing. The score
of a dependency tree y is defined as:

W= ¥ o X,

(Iiﬁxj)ey (ll7rl7x1)ey

) modified Eisner-Satta algorithm

We design a dynamic programming algorithm
adapted from the Eisner-Satta algorithm, which
uses the hook trick to accelerate bilexicalized
context-free parsing. The axiom items are

A with initial score 0 and the deduction
rules are listed in Figure 2. Unlike the original
Eisner-Satta algorithm, we distinguish between
“finished” spans and “unfinished” spans. An “un-
finished” span can absorb a child span to form a
larger span, while in a “finished” span, the head-
word has already generated all its children, so it can-
not expand anymore and corresponds to a headed-
span for the given headword. By explicitly distin-
guishing between “unfinished* spans and “finished*
spans, we can incorporate headed-span scores sP*"
into parsing via the newly introduced rule FINI SH.
We then modify the rule L-LINK and R-LINK ac-
cordingly as only a “finished” span can be attached.

32 O3

In order to decrease the inference time complexity
from O(n?) to O(n?), we decompose s)""; into
two terms:

sy = Y

(zi—wj)ey

) modifed Eisner algorithm

drc left rlght
IR DRty

(l’L 373,24) Ey
and modify the Eisner algorithm accordingly. The

axiom items are Il and A with initial
(A 11

score 0 and the deduction rules are shown in the
first two rows of Figure 3. Similar to the case in the
previous subsection, the original Eisner algorithm
does not distinguish between “finished”” complete
spans and “unfinished” complete spans. An “unfin-
ished” complete span can absorb another complete
span to form a larger incomplete span, while a “fin-
ished” complete span has no more child in the given
direction and thus cannot expand anymore. We in-
troduce new rules L-FINISH and R-FINISH to
incorporate the left or right span boundary scores
respectively, and adjust other rules accordingly.

@ 7 i
FINISH:
ar
S1+ Shc 514 875,
f ~ N
i h
S1
i c J
51+ Shee
i j h

S1 S2
i h k h k+1 j
R-comB: R-LINK
S1 + S2
i h j
S1 52
i k—1h kh j
L-coMB: L-LINK:
81+ S2
i h j

Figure 2: Deduction rules for our modified Eisner-Satta algorithm (Eisner and Satta, 1999). Our modifications are
highlighted in red. All deduction items are annotated with their scores.

S1

>N R N A
ik E j i k k+1j i
R-COMB: R-LINK: R-FINISH: ——
S1+ S2 s1+ s2 + 52’3 — S;iihr
i i g L
82
4 C N/ Z
j k ki jk—1 k i j i
L-COMB: L-LINK: L-FINISH: ————
5 N arc
51 + S2 S1 +52+5,J 51 +S$§
J (o in
S1 S2 S2 S1
N 4 - N 2
— = (. —
gk=1 ki ik k ik ok
COMB: L-LINK-2 &~——— R-LINK-2 @—n—
51+ S2 s1+ s2+ 55 s1+ s2+ shy
+Szi,bk, +S;i,bk,j
b 7 :
o i

Figure 3: Deduction rules for our modified Eisner algorithm (Eisner, 1997) (first two rows) and its second-order
extension (McDonald and Pereira, 2006) (all rows). Our modifications are highlighted in red. All deduction items

are annotated with their scores.

3.3 O(n?) modified second-order Eisner
algorithm

We further enhance the model with adjacent sibling
information:

Ssib

arc
Sij T .k

Z?]

2 2

(z;—w5)€y (zi—{zj,xx}) €Y

+ Y (s stE

(l3,rs,x;) €y

right
1,75

where for each adjacent sibling part z; — {x;, 1},
x; and xj, are two adjacent dependents of ;.

Similarly, we modify the second-order extension
of the Eisner algorithm (McDonald and Pereira,
2006) by distinguishing between “unfinished” and
“finished” complete spans. The additional deductive
rules for second-order parsing are shown in the last
row of Figure 3 and the length of the “unfinished”
complete span is forced to be 1 in the rule L-LINK
and R-LINK.

bg ca cs de en es fr it nl no ro u | Avg

+BERTmulli]ingual

Biaffine+MM" 90.30 9449 9265 8598 91.13 9378 91.77 9472 91.04 9421 8724 9453 | 91.82

Span 91.10 9446 9257 8587 91.32 9384 91.69 9478 91.65 9428 8748 9445 | 91.96

10+Span 91.44 9454 9268 8575 9123 9384 91.67 9497 91.81 9435 87.17 9449 | 91.99

10+Span+Headsplit 91.46 9453 92,63 8578 91.25 93.77 9191 9488 9159 94.18 8745 9447 | 91.99

Biaffine+20+MM 91.58 9448 92.69 8572 9128 9380 91.89 9488 91.30 9423 8755 94.55 | 92.00

20+Span+Headsplit 91.82 94,58 9259 8565 9128 9386 91.80 9475 9150 9440 87.71 9451 | 92.04
For reference

MFVI20 91.30 93.60 92.09 82.00 90.75 9262 89.32 93.66 91.21 91.74 86.40 92.61 \ 90.61

Table 1: Labeled Attachment Score (LAS) on twelves languages in UD 2.2. We use ISO 639-1 codes to represent
languages. T means reported by Yang and Tu (2021). MFVI20: Wang and Tu (2020). Span: Yang and Tu (2021).

PTB CTB
UAS LAS UAS LAS
+BERT e +BERTase
Biaffine+MM' 9722 9571 93.18 92.10
Span 9724 9573 9333 9230
10+Span 9726 95.68 93.56 92.49
10+Span+HeadSplit 9730 9577 93.46 92.42
Biaffine+20+MM 9728 9573 9342 9234
20+Span+HeadSplit 9723 95.69 93.57 92.47
For reference
MFVI20 9691 9534 9255 91.69
HierPtr 97.01 9548 92.65 91.47
+XLNetlarge +BERTbuse
HPSG’ 97.20 95.72 - -
HPSG+LAL® 9742 9626 9456 89.28

Table 2: Results on PTB and CTB. b denotes use of ad-
ditional constituency tree data and thus not comparable
to our work. T denotes results reported by Yang and Tu
(2021). HPSG: Zhou and Zhao (2019); HPSG+LAL.:
Mrini et al. (2020); HierPtr: Fernandez-Gonzélez and
Goémez-Rodriguez (2021).

4 Experiments

4.1 Setup

We conduct experiments on in Penn Treebank
(PTB) 3.0 (Marcus et al., 1993), Chinese Treebank
(CTB) 5.1 (Xue et al., 2005) and 12 languages
on Universal Dependencies (UD) 2.2. We use the
same data processing, evaluation methods, and hy-
perparameters as Yang and Tu (2021) for fair com-
parison and we refer readers to their paper for de-
tails due to the limit of space. We set the hidden
size of the Triaffine function to 300 additionally.
The reported results are averaged over three runs
with different random seeds.

4.2 Main result

Table 1 and 2 show the results on UD, PTB
and CTB respectively. We additionally reim-
plement Biaffine+20+MM by replacing the

TreeCRF loss of Zhang et al. (2020) with the
max-margin loss for fair comparison. We
refer to our proposed models as 10+Span

(§3.1), 1lO+Spant+Headsplit (§3.2), and
20+Span+Headsplit (§3.3) respectively.

We draw the following observations:

* Second-order information is still help-

ful even with powerful encoders (i.e.,
BERT). Biaffine+20+MM outperforms
Biaffine+MM in almost all cases.

e Combining first-order graph-based and
headed-span-based methods is effective. Both
10+Span and 10+Span+Headsplit
beat Biaffine+MM and Span in almost all
cases. However, when incorporating span
information into the second-order model, the
improvement is slight: only +0.04 average
LAS on UD, +0.13 LAS on CTB, and
worse performance (-0.04 LAS) on PTB.
We speculate that the utility of adjacent
sibling information and span information is
overlapping.

* Decomposing the headed-span scores is effec-
tive. 10+Span+Headsplit has a compa-
rable performance to 10+Span while man-
ages to decrease the time complexity from
O(n*) to O(n3). We speculate that power-
ful encoders mitigate the issue of independent
scoring.

5 Conclusion

In this paper we have presented three scoring and
decoding methods to combine graph-based and
headed-span-based methods for projective depen-
dency parsing. Experiments show the effectiveness
of our proposed methods.

References

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 957-961, Prague, Czech Republic.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the Fifth
International Workshop on Parsing Technologies,
pages 54-65, Boston/Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics, pages 457-464, College Park, Maryland,
USA. Association for Computational Linguistics.

Daniel Ferndndez-Gonzdlez and Carlos Goémez-
Rodriguez. 2021. Dependency parsing with

bottom-up hierarchical pointer networks. CoRR,
abs/2105.09611.
Sepp Hochreiter and Jirgen Schmidhuber. 1997.

Long short-term memory. Neural computation,
9(8):1735-1780.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1-11, Uppsala, Sweden.
Association for Computational Linguistics.

Xuezhe Ma and Hai Zhao. 2012. Fourth-order depen-
dency parsing. In Proceedings of COLING 2012:
Posters, pages 785-796, Mumbai, India. The COL-
ING 2012 Organizing Committee.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 91-98, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In 71th Conference of the European Chap-
ter of the Association for Computational Linguis-
tics, Trento, Italy. Association for Computational
Linguistics.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 731-742, Online. Association for Com-
putational Linguistics.

Fernando C. N. Pereira and David H. D. Warren. 1983.
Parsing as deduction. In 215t Annual Meeting of the
Association for Computational Linguistics, pages
137-144, Cambridge, Massachusetts, USA. Associ-
ation for Computational Linguistics.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller,
and Christopher Manning. 2004. Max-margin pars-
ing. In Proceedings of the 2004 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1-8, Barcelona, Spain. Association for Com-
putational Linguistics.

Xinyu Wang and Kewei Tu. 2020. Second-order neural
dependency parsing with message passing and end-
to-end training. In Proceedings of the Ist Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93-99, Suzhou, China. Association
for Computational Linguistics.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Nat. Lang.
Eng., 11(2):207-238.

Songlin Yang and Kewei Tu. 2021. Headed span-based
projective dependency parsing.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295-3305, Online. Association for Computa-
tional Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396-2408, Florence, Italy. Association for Compu-
tational Linguistics.

https://aclanthology.org/D07-1101
https://aclanthology.org/D07-1101
https://aclanthology.org/D07-1101
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://aclanthology.org/1997.iwpt-1.10
https://aclanthology.org/1997.iwpt-1.10
https://aclanthology.org/1997.iwpt-1.10
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
http://arxiv.org/abs/2105.09611
http://arxiv.org/abs/2105.09611
http://arxiv.org/abs/2105.09611
https://aclanthology.org/P10-1001
https://aclanthology.org/P10-1001
https://aclanthology.org/P10-1001
https://aclanthology.org/C12-2077
https://aclanthology.org/C12-2077
https://aclanthology.org/C12-2077
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.3115/981311.981338
https://aclanthology.org/W04-3201
https://aclanthology.org/W04-3201
https://aclanthology.org/W04-3201
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
http://arxiv.org/abs/2108.04750
http://arxiv.org/abs/2108.04750
http://arxiv.org/abs/2108.04750
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

