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Abstract

Online pricing has been the focus of extensive research in recent years, particularly
in the context of selling an item to sequentially arriving users. However, what if a
provider wants to maximize revenue by selling multiple items to multiple users in
each round? This presents a complex problem, as the provider must intelligently
offer the items to those users who value them the most without exceeding their
highest acceptable prices. In this study, we tackle this challenge by designing online
algorithms that can efficiently offer and price items while learning user valuations
from accept/reject feedback. We focus on three user valuation models (fixed
valuations, random experiences, and random valuations) and provide algorithms
with nearly-optimal revenue regret guarantees. In particular, for any market setting
with N users, M items, and load L (which roughly corresponds to the maximum
number of simultaneous allocations possible), our algorithms achieve regret of
order O(NM log log(LT )) under fixed valuations model, Õ(

√
NMLT ) under

random experiences model and Õ(
√
NMLT ) under random valuations model in

T rounds.

1 Introduction

The ability to design algorithms that can achieve the optimal sale of goods to multiple users having
time-varying valuations for each of the goods is both timely and relevant, given the explosion in
the use of data in large-scale systems. This problem is commonly encountered in various contexts,
such as in the e-commerce (Amazon, eBay), ride-share (Uber, Lyft), airline, and hotel (Airbnb,
Booking.com) industries. Since the provider’s goal of maximizing revenue can only be achieved
through a delicate balance of considering prior transactions and adjusting offers and prices, it presents
a unique opportunity to advance our understanding of dynamic pricing.

We presently consider the problem of designing algorithms that aim to optimize the sale of multiple
goods to multiple users having time-varying valuations over the course of repeated rounds. At each
round, the provider offers each item to a user at a chosen price, and users decide whether or not to buy,
by comparing the offered price to their private valuation for the good. The provider may decide on
offers and prices based on outcomes of prior transactions, but each individual user accepts or rejects
their offer based only on their valuation for the current round. The provider’s goal is to maximize the
revenue accumulated in multiple rounds by judiciously selecting the offers and associated prices.

The provider, who is endowed with multiple items at each round, repeatedly offers these items
to multiple users at well-chosen prices. In response, the provider obtains feedback regarding the
acceptance or rejection decisions of the users and receives revenue for the accepted items. The
provider’s goal is to maximize the accumulated revenue over time by making offers that respect the
endowment constraints and user demands. In the process of identifying the best way of offering
the items to target users, the provider encounters challenges regarding two separate aspects of the
problem; such challenges are addressed in our work. As depicted in Figure 1, the first challenge is
to learn user preferences from interactive feedback; the second is to find offers and prices that will
result in maximal revenue.
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Figure 1: The provider’s goal is to maximize the
revenue obtained from sales over multiple rounds.
The provider decides on offers and prices while
interactively learning the user valuations from the
accept/reject feedback. At each round, only a
subset of items may be available for sale and only
a subset of users may be active.

The challenge of learning arises from the fact
that the provider does not have knowledge of
the user valuations ahead of time and hence has
to learn them while continually taking action.
On the other hand, the challenge of offering and
pricing stems from both of the facts that (a) avail-
able items are scarce and (b) user demands are
limited. Therefore, to achieve better outcomes,
the provider needs to make careful decisions on
which items to offer to which user within the
limits of these constraints. However, since the
valuations of the users are unknown, the offering
and pricing decisions involve a trade-off between
learning individual customer preferences in or-
der to increase long-term revenues and earning
short-term revenues by leveraging the informa-
tion acquired so far.

In this study, we focus on algorithms that offer
each item to only one user during each round.
This assumption eliminates the risk of multiple
users requesting the same item and removes the
need for the provider to decide who should re-
ceive it. Relaxing this assumption could possi-
bly offer more flexibility and revenue potential
during the earlier phases while learning the val-
uations. However, it does not result in a loss in the maximum achievable revenue under known
valuations, and hence our algorithms can still achieve no-regret guarantees. Additionally, offering a
limited number of items simplifies the process for users by reducing the number of choices they need
to consider. As the provider gains insights into user valuations over time, the offers become more
tailored and relevant, enabling users to focus on evaluating items that the provider believes will be of
the highest interest to them. This saves time and reduces the effort required to make a decision.

1.1 Our contributions

To the best of our knowledge, we are the first to address the problem of dynamic pricing for the sale
of multiple items to multiple users with unknown valuations. Our contributions are as follows.

• We consider three user valuation models: fixed valuations, random experiences, and random
valuations. While the fixed valuation and random valuation models are standard models explored
extensively in prior work on dynamic pricing (Bubeck et al., 2019), we also propose and analyze
the random experiences model as a more realistic representation of user behavior.

• We introduce a problem-dependent load parameter L that roughly corresponds to the maximum
number of simultaneous allocations possible (see Def. 2). We uncover its crucial role in character-
izing problem classes for which we can establish matching upper and lower regret bounds.

• We design regret-optimal (up to smaller order terms) algorithms for each setting. For any
market setting with N users, M items, and maximum load L, our algorithms achieve regret
O(NM log log(LT )) under fixed valuations model, Õ(

√
NMLT ) under random experiences

model and Õ(
√
NMLT ) under random valuations model in T rounds.

• All proposed algorithms have computational complexity O(NML) per round in the worst case.
The algorithms for fixed valuations and random experiences models have space complexity
O(NM) while the algorithm for random valuations has space complexity O(NM(LT )1/4).

2 Related work

Bandits for dynamic posted-pricing. The problem of dynamic pricing has been typically modeled
as a variant of the multi-armed bandit problem starting with Rothschild (1974). In their seminal
work, Kleinberg and Leighton (2003) developed a more general and widely-appreciated framework
to maximize revenue from selling copies of a single good to sequentially arriving users. In the
following years, there has been a growing body of work on multi-period single-product dynamic
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pricing problems under different user valuation models including non-parametric models (Besbes
and Zeevi, 2009; Keskin and Zeevi, 2014; Cesa-Bianchi et al., 2019; Bubeck et al., 2019), contextual
(feature-based) models (Paes Leme and Schneider, 2018; Cohen et al., 2020; Xu and Wang, 2021),
and other parametric models (Araman and Caldentey, 2009; Broder and Rusmevichientong, 2012;
Harrison et al., 2012; Chen and Farias, 2013; Besbes and Zeevi, 2015; Ferreira et al., 2018). However,
all of these works address the posted price problem for selling a single item in each round. Our
contribution stands out by considering the combinatorial aspect of the allocation problem faced in
simultaneously selling multiple items, a factor that was not taken into account in prior literature.

Combinatorial multi-armed bandits. The semi-bandits framework of Audibert et al. (2011) and the
combinatorial multi-armed bandits frameworks of Chen et al. (2013) and Kveton et al. (2015) model
problems where a player selects a combination of arms in each round and observes random rewards
from the played arms. Therefore, the selection of the offers in our setting shows parallelism with
these frameworks. However, their algorithmic solutions cannot be directly applied to our problem
because the feedback and reward mechanisms in dynamic pricing are crucially different than the
models considered in this literature. It is mainly because the feedback (acceptance/rejection) and
reward (revenue) are not only affected by the offers but also by the accompanying prices.

Bandits in matching markets. One recent line of related literature in computational economics
studies algorithms for learning socially-optimal matching in two-sided markets (Liu et al., 2020;
Johari et al., 2017; Jagadeesan et al., 2021). These frameworks can be used to model the problem of
allocating multiple items to multiple users with unknown valuations with the goal of maximizing
social welfare. However, these works only consider scenarios where all the users accept their
matchings (i.e. offers) without being affected by prices and send the provider real-valued random
feedback representing the welfare they achieve from this matching. In their recent work, Erginbas
et al. (2023) also analyze a similar problem of optimal and stable allocations and further allow users
to accept or reject their recommendations based on the prices. However, their framework also requires
random feedback to be sent to the provider regarding their valuation for each accepted matching,
whereas our problem setting limits the provider to only observe acceptance or rejection decisions.

Learning in repeated auctions. The learning literature on auctions considers both offline (Morgen-
stern and Roughgarden, 2016; Cai and Daskalakis, 2017) and online approaches (Bar-Yossef et al.,
2002; Lavi and Nisan, 2000) to maximize the provider’s revenue from selling multiple items to multi-
ple users. Nonetheless, the implementation of these auctions often presents significant difficulties
due to the inherent complexities in obtaining precise valuations from human participants for all the
items. As a result, there is a growing interest in designing mechanisms that are accessible, simple to
use, and can easily elicit the valuations of the buyers while maximizing the revenue of the provider.
In this direction, our approach in this study follows the main premise of posted-price mechanisms
(Feldman et al., 2015; Einav et al., 2018), in which the provider sets a fixed price for each item, and
buyers decide whether or not to purchase the item at that price.

3 Problem setting
Notation: We use bold font for vectors x and matrices X, and calligraphic font X for sets. For a
vector x, we denote its i-th entry by xi and for a matrix X, we denote its (i, j)-th entry by xij . For
any positive integer n, we use [n] to denote the set {1, 2, . . . , n}. For real numbers a and b, we use
a ∧ b to denote their minimum and a ∨ b to denote their maximum.

Suppose the market consists of a set of users N of size N and a set of items I of size M . At each
round t ∈ [T ] over some fixed time horizon T , a provider is endowed with a subset of the items
denoted by Et ⊆ I and tries to sell these items to users with the goal of obtaining revenue. 1 We
assume that endowed items Et are only available for sale at time interval t. That is, the items that are
not sold at a round cannot be stored to be sold in future rounds.

Each user u ∈ N has an unknown and possibly time-varying valuation vtui for each item i at round
t. In this work, we consider that each user u has a time-varying request for at most dtu items and
has an additive utility model over items. Thus, the provider decides on a price vector pt ∈ RM

+ and
offers each user u ∈ N a subset of the available items denoted by St

u ⊆ Et of size at most |St
u| ≤ dtu.

Then, users decide to accept a subset of their offered items At
u ⊆ St

u based on their valuations and
the prices of the items in order to maximize their surplus given by

∑
i∈At

u
(vtui − pti).

1Our framework readily extends to scenarios where the provider is endowed with multiple copies of each
type of item. However, for simplicity in our analysis and presentation, we do not consider this generalization.
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Due to the additive utility assumption, when user u is offered St
u, it accepts all items i ∈ St

u that give
positive surplus (i.e. vtui ≥ pti) while rejecting all other items. 2 Hence, the set of accepted items can
be written as

At
u = {i ∈ St

u : vtui ≥ pti}.

For future reference, we also denote the collections of offered and accepted items at time t by
St = {St

u|u ∈ N} and At = {At
u|u ∈ N}, respectively. To eliminate the possibility of an item

getting accepted by multiple users, we consider posted-price offer mechanisms that offer each item to
at most one user. Therefore, the offered sets of items are disjoint, i.e. St

u ∩ St
u′ = ∅ for u ̸= u′.

Whenever a user accepts the offer of item i at round t, this sale generates pti revenue for the provider.
Therefore, the cumulative revenue obtained over T rounds equals to

T∑
t=1

∑
u∈N

∑
i∈At

u

pti =

T∑
t=1

∑
u∈N

∑
i∈St

u

pti 1{vtui ≥ pti}. (1)

After the provider decides on the price vector pt and the offers St = {St
u|u ∈ N}, the users report

their set of accepted items At = {At
u|u ∈ N}. We denote by Ht the history {Sτ ,pτ ,Aτ}t−1

τ=1 of
observations available to the provider when choosing the next set of offers St along with the next
price vector pt. The provider employs a policy π = {πt|t ∈ N}, which is a sequence of functions,
each mapping the history Ht to an action (St,pt).

The task of the provider is to repeatedly offer the items to users and choose the prices such that it can
achieve maximal revenue. To evaluate policies in achieving this objective, we define regret metrics
that measure the gap between the expected revenue of policy π and an optimal algorithm.
Definition 1. For a policy π, its revenue regret in T rounds is defined as

R(T,π) = OPT−
T∑

t=1

∑
u∈N

∑
i∈St

u

pti 1{vtui ≥ pti}, (2)

where OPT denotes the revenue of the optimal algorithm which will be defined separately for each
different valuation model in Section 4.

We can also represent the offers St = {St
u|u ∈ N} using binary variables xtui = 1{i ∈ St

u} that
indicate whether item i is a member of each of the sets St

u. With this definition, each variable xtui
is equal to 1 if user u is offered item i at time t and 0 otherwise. We collect these variables into a
matrix Xt ∈ {0, 1}N×M called the offer matrix. Due to endowment and demand constraints, the
offer matrix Xt at each time t needs to belong to the set

X t =

{
X ∈ {0, 1}N×M :

∑
i∈I

xtui ≤ dtu,∀u ∈ N and
∑
u∈N

xui ≤ eti,∀i ∈ I

}
, (3)

where each endowment quantity eti = 1{i ∈ Et} is equal to 1 when item i is available to be offered
at time t, and 0 otherwise. Using this notation, we can write the cumulative revenue as

T∑
t=1

∑
u∈N

∑
i∈N

xtuip
t
i 1{vtui ≥ pti}. (4)

Lastly, we define the maximum load parameter which refers to the maximum amount of simultaneous
demand and supply in the market. Formally,
Definition 2. For a problem with endowment sequence (Et)1≤t≤T and demand sequences (dtu)1≤t≤T

of all users u ∈ N , the maximum load is defined as

L = max
1≤t≤T

{Dt ∧ Et} , (5)

where Dt :=
∑

u∈N dtu and Et := |Et| are the total demand and endowment at time t, respectively.

Note that the maximum load parameter L is an upper bound for the number of offers that can be made
at any round t. This parameter is central to our analysis since the problem becomes more complex as
the maximum load increases.

2In this definition, we assume that all tie-breaks are resolved in favor of the provider.
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3.1 Summary of results

Our goal in this work is to provide insights into how to strategize multi-round posted-price offers
when the provider does not have prior knowledge of user valuations. In particular, we consider the
problem under three different valuation models as described below.

1. Fixed valuations: The valuations of users do not change over time. Formally, there exist values
vui such that vtui = vui for all t ∈ [T ].

2. Random experiences: The valuations of users are given as their average historical experience
where each experience is independently drawn from distributions specific to each user and each
item. Formally, we consider the experience of user u with item i to be given as the random variable
ztui independently drawn from some distribution with cumulative distribution function Fui for all
rounds at which user u has accepted item i. Then, each valuation vtui is given as the average of the
past experiences, i.e., the average of values {zτui|τ < t, i ∈ At

u}.
3. Random valuations: The valuations of users at different rounds are independently drawn from

distributions specific to each user and each item. Formally, there exist cumulative distribution
functions Fui for all (u, i) ∈ N × I such that each vtui is independently drawn from a distribution
with cdf Fui.

For each of the models described above, we derive upper and lower bounds for revenue regret,
matching up to logarithmic factors. We summarize our results in Table 1.

Table 1: Upper and lower bounds for revenue regret under different valuation models.

Model Upper Bound Lower Bound

Fixed Valuations (Section 4.1) O (NM log log(LT )) Ω (NM log log(LT/NM))

Random Experiences (Section 4.2) Õ
(√

NMLT
)

Ω
(√

NMLT
)

Random Valuations (Section 4.3) Õ
(√

NMLT
)

Ω
(√

NMLT
)

Remark. The frameworks of fixed valuations and random valuations can also be used to model
settings where each interacting user is associated with a type that determines their valuations. In this
case, the set N corresponds to the set of all user types and each demand parameter dtu represents the
total demand of users of type u in round t. Under the fixed valuations model, all users of type u have
valuation vtui = vui for item i at all rounds t. Under the random valuations model, each user of type
u has a random valuation with distribution Fui for item i independently for each user at each time t.
Since at most one user receives any item i in any round, it is sufficient to consider a single random
valuation vtui for each type u and item i at time t.

4 Methodology
We provide algorithms for achieving sub-linear revenue regret under different user valuation models
described in Section 3.1. While the strategies for the selection of offers are similar under different
models, we use different pricing strategies for different models as depicted in Figure 2.

...........

(a) Fixed valuations (b) Random experiences (c) Random valuations

if rejected if rejected
if rejectedif accepted if accepted

if accepted

... ...

Figure 2: The selection of prices for different valuation models. (a) If the offer is accepted (rejected),
we set the new value of aui (bui) as the offered price pti. (b) If nui = 2j for some j ∈ N and the
offer is accepted (rejected), we set the new value of aui (bui) as a number smaller (larger) than pti. (c)
After offering an item at price k/K, we update the kth confidence interval based on whether the offer
is accepted or rejected.
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Algorithm 1 Offerings with incremental search prices
aui ← 0, bui ← 1 and βui ← 0.5 for all u ∈ N , i ∈ I
for t = 1, 2, . . . , T do

Calculate Xt by solving problem (8) using bui values.
for (u, i) ∈ {(u, i) : xtui = 1} do ▷ offer item i to user u

pti ← aui + βui 1{bui − aui ≥ 1
LT
} ▷ set the price

Offer item i to user u at price pti and observe 1{vtui ≥ pti}.
if vtui ≥ pti then aui ← aui ∨ pti else bui ← bui ∧ pti ▷ update the interval
if bui − aui ≤ βui then βui ← β2

ui ▷ update the search step size
end for

end for

4.1 Revenue maximization under fixed valuations

In this section, we focus on the scenario where the provider makes posted-price offers to users whose
valuations are fixed over time. We formalize this condition in the following assumption.
Assumption 1. The valuation of any user u ∈ N for any item i ∈ I is given by vtui = vui for some
vui ∈ [0, 1] at all rounds t ∈ [T ].

In the case of fixed valuations, we define the optimum strategy as the one that maximizes the revenue
under complete information on user valuations. Therefore, the optimum offers Xt

∗ and prices pt
∗ for

all rounds t are given by maximizing the cumulative revenue as given in (4). That is, we define the
optimum objective value as

OPT =

T∑
t=1

[
max

Xt∈X t
max

pt∈RM
+

∑
u∈N

∑
i∈I

xtuip
t
i1{vui ≥ pti}

]
, (6)

and let Xt
∗ and pt

∗ be the solutions that maximize term t. Note that for any allocation Xt ∈ X t, we
have

∑
u∈N xtui ≤ eti ≤ 1. Therefore, whenever an item i is offered to a user u, the optimum price

of item i is equal to the user’s valuation vui. In other words, the optimum price for item i is given by
pti =

∑
u∈N xtuivui. Based on this observation, the revenue-maximizing offer can be found as

Xt
∗ = argmax

Xt∈X t

∑
u∈N

∑
i∈I

xtuivui. (7)

We note that the integer program in (7) can be written as an instance of maximum weight bipartite
matching. Then, using a variant of the Hungarian algorithm for unbalanced bipartite graphs (Ramshaw
and Tarjan, 2012), this problem can be solved in space O(NM) and time O(NML) in the worst
case. (See Appendix A for details.)

Since there is no randomness in user responses, every response from a user u about item i gives
the provider complete information about a lower or upper bound on vui, depending on whether the
user response was to accept or reject the offered price for the item i. For this reason, the algorithm
operates by keeping track of intervals [aui, bui] that contain vui value for each u ∈ N , i ∈ I at all
rounds. At each time t, the algorithm chooses which items to offer to each user using these intervals
and then determines a price for each offered item. The selection of the allocations is done according
to the OFU principle (Dani et al., 2008; Abbasi-Yadkori, 2011) in order to ensure low regret. In
particular, the offers are chosen by replacing each vui in problem (7) with btui to obtain

Xt = argmax
Xt∈X t

∑
u∈N

∑
i∈I

xtuib
t
ui. (8)

Having decided on the offers, the next step is to decide on the price of the offered items. Similar to
the challenge we encountered in selecting the offers, the selection of prices should also serve two
different goals that are in tension with each other. On one hand, learning new information about
users’ valuations requires us to set prices to values from (aui, bui). On the other hand, to ensure
the offers are accepted and generate revenue, we would need to select prices lower than or equal
to aui. The crucial property that enables us to obtain O(NM log log(T )) regret is that the function
p → vui − p1{p ≤ vui} is asymmetric and decreases more slowly on the left than on the right as
discussed in Kleinberg and Leighton (2003). Based on this observation, we design a pricing algorithm
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that operates by offering item i to user u at prices increasing with increments of βui. When the width
of the interval [aui, bui] becomes smaller than the precision parameter βui, we set the new precision
parameter as β2

ui and continue exploration with this smaller step size. However, as we show in the
proof of Theorem 1, continuing to explore indefinitely would result in a regret linear in T . To avoid
this issue, the algorithm should stop exploration after achieving a certain level of precision and offer
item i to user u at the maximum price that is certainly acceptable, namely aui.

We provide a summary of this algorithm in Algorithm 1 and provide an upper bound for its regret
in Theorem 1. As the lower bound provided in Theorem 2 shows, the regret of this algorithm is
order-optimal up to smaller terms.
Theorem 1 (Upper bound for Fixed valuations). Assuming fixed valuations in a market with N users,
M items, and maximum load L; the regret of Algorithm 1 in T rounds satisfies

R(T,π) ≤ 2NM log log(LT ) + 1.

Proof. See Appendix B.1.

Theorem 2 (Lower bound for Fixed valuations). If N , M , and L ≤ M are given parameters and
π is any randomized policy; there exist randomly generated market instances of N users with fixed
valuations for M items and maximum load L such that the expected regret of π in T ≥ 4NM

L rounds
is Ω(NM log log(LT/NM)).

Proof. See Appendix B.2.

4.2 Revenue maximization under random experiences

This section focuses on the case where the valuations of the users are given as the average of their
past experience. We assume that each user obtains independent experiences about the items that
they accept at every round. Then, the users form their valuation at each time as the average of their
experiences so far. Formally, we make the following assumption.
Assumption 2. Whenever a user u ∈ N accepts an item i ∈ I at round t ∈ [T ], it obtains an
independent random experience ztui with unknown cdf Fui over [0, 1] with mean vui. Then, the
valuation of any user u ∈ N for any item i ∈ I at round t ∈ [T ] is given as

vtui =
1

mt
ui

∑
τ∈T t

ui

ztui, (9)

where T t
ui = {τ < t : i ∈ At

u} is the set of rounds before round t at which user u has accepted and
experienced item i, and mt

ui := |T t
ui| denotes the size of this set.

Under the random experiences model, we define the optimum strategy as the one that maximizes the
revenue with complete information on possible user experiences ztui, and hence user valuations vtui at
all times. Therefore, the optimum revenue that can be obtained in T rounds is given by

OPT = max
Xt∈X t:t∈[T ]

pt∈RM
+ :t∈[T ]

T∑
t=1

∑
u∈N

∑
i∈I

xtuip
t
i1{vtui ≥ pti}, (10)

which is a random variable due to the randomness in ztui and hence the randomness in vtui. Next, we
note that for any fixed sequence of offers {Xt|t ∈ [T ]}, the objective is maximized at prices that
satisfy pti =

∑
u∈N xtuivui at all t. Therefore, we can write the optimum value for the objective as

OPT = max
Xt∈X t:t∈[T ]

T∑
t=1

∑
u∈N

∑
i∈I

xtuiv
t
ui. (11)

Note that in problem (11), we need to globally maximize over Xt for all rounds t ∈ [T ] because the
values of vtui depend on selections of Xt at previous rounds. In order to deal with this dependency
between the selections of Xt, in Lemma 9, we show that OPT is not likely to be much larger than
the sum of the mean valuations of the best offers at all rounds.
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Algorithm 2 Offerings with scheduled learning
aui ← 0, bui ← 1, nui ← 0, and mui ← 0 for all u ∈ N , i ∈ I
for t = 1, 2, . . . , T do

Calculate Xt by solving problem (8) using bui values
for (u, i) ∈ {(u, i) : xtui = 1} do ▷ offer item i to user u

if ∃j ∈ N s.t. nui = 2j then pti ← (aui + bui)/2 else pti ← aui ▷ set the price
Offer item i to user u at price pti and observe 1{vtui ≥ pti}.
γ ←

√
8 log(NMT )/mui ▷ set the confidence level

if vtui ≥ pti then aui ← aui ∨
(
pti − γ

)
else bui ← btui ∧

(
pti + γ

)
▷ update the interval

if vtui ≥ pti then mui ← mui + 1
nui ← nui + 1

end for
end for

Next, we describe our algorithm in Algorithm 2. As the users accept and experience the items, their
valuations converge to the mean of their experience distribution. Therefore, before extracting the
mean valuation information from the users, the provider must ensure that users accept and sufficiently
experience the items. Then, to extract this information, the algorithm occasionally asks for higher
prices while taking the risk of rejected offers. However, since there are at most log(T ) such learning
rounds per user-item pair, it does not cause any significant loss in revenue.

Based on these observations, we establish an upper bound for our algorithm’s regret in Theorem 3.
Furthermore, as indicated by the regret lower bound presented in Theorem 4, our algorithm’s regret is
order-optimal up to smaller terms.
Theorem 3 (Upper bound for random experiences). In any market of N users satisfying the random
experience model given in Assumption 2 for M items and maximum load L, with probability 1− 2δ,
the revenue regret of Algorithm 2 satisfies

R(T, π) = O
(√

NMLT log(NM/δ) +NM log T
)
.

Proof. See Appendix C.2.

Theorem 4 (Lower bound for random experiences). If N , M , and L ≤M are given parameters and
π is any randomized policy; there exist randomly generated market instances of N users satisfying
the random experience model given in Assumption 2 for M items and maximum load L such that the
expected regret of π in T ≥ N rounds is Ω(

√
NMLT ).

Proof. See Appendix C.3.

4.3 Revenue maximization under random valuations

In this section, we consider the case where the valuations of the users are given as independent
random variables drawn from distributions specific to each user and item. Formally,
Assumption 3. The valuation of any user u ∈ N for any item i ∈ I at round t ∈ [T ] is given as an
independent random variable vtui with unknown cdf Fui over [0, 1].

Given foreknowledge of the distribution of valuations, but not of the individual valuations at different
rounds, it is easy to see what the optimal pricing strategy would be. The expected revenue obtained
from offering item i to user u at price p is given as ψui(p) = p(1 − Fui(p)), which we call to be
the revenue function. Since valuations are independent over time and their distribution is known,
the individual responses provide no useful information about future realizations of the valuations.
Therefore, the best price for offering item i to user u is given by

p∗ui = argmax
p∈R+

p(1− Fui(p)). (12)

Thus, letting ψ∗
ui = ψui(p

∗
ui) denote the maximum expected revenue that can be obtained by offering

item i to user u, an optimum policy that knows the distribution of valuations can obtain revenue

OPT =

T∑
t=1

{
max
X∈X t

∑
u∈N

∑
i∈I

xuiψ
∗
ui

}
. (13)
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Algorithm 3 Offerings with quantized pricing

K = (LT/ (NM log(LT )))1/4, nuik ← 0, and ψuik ← 1 for all u ∈ N , i ∈ I, k ∈ [K]
for t = 1, 2, . . . , T do

for (u, i) ∈ N × I do
buik ←

(
ψuik +

√
8 log(NMKT )/nuik

)
∧ 1, ∀k ∈ [K] ▷ compute UCB

kui ← argmaxk buik and bui ← maxk buik ▷ compute best price levels
end for
Calculate Xt by solving problem (8) using bui values.
for (u, i) ∈ {(u, i) : xtui = 1} do ▷ make offers

Offer item i to user u at price pui = kui/K and observe zui = 1{vtui ≥ pui}
ψuik ← (nuikψuik + puizui)/(nuik + 1) for k = kui

nuik ← nuik + 1 for k = kui
end for

end for

However, without the knowledge of the distributions, we are required to learn the expected revenue
(i.e. rewards) at different prices via exploration. As previously done in the literature on pricing under
random valuation models (Kleinberg and Leighton, 2003), we apply techniques from the literature
on the multi-armed bandit problem to develop an algorithm with low regret guarantees. To do so,
we quantize the set of possible prices by limiting the provider to strategies that only offer prices
belonging to the set {1/K, 2/K, ...1} for suitably chosen K. This brings us into a setting where each
offer of item i to a user u at price k/K yields a revenue which is a random variable taking values
in [0, 1], whose distribution depends on (u, i, k), but the rewards for a given action are i.i.d. across
the rounds. Therefore, offering item i to user u and kth price level can be represented as pulling an
arm that generates revenue with expectation ψuik = ψui(k/K). In total, the expected revenue of any
offering and pricing is

T∑
t=1

∑
u∈N

∑
i∈I

K∑
k=1

xtuikψuik, (14)

where xtuik are binary variables that denote whether user u is offered item i at kth price level at round
t. Due to endowment and demand constraints, these variables at time t must satisfy conditions (1)∑

i∈I
∑K

k=1 xuik ≤ dtu, (2)
∑

u∈N
∑K

k=1 xuik ≤ eti, and (3)
∑K

k=1 xuik ≤ 1 for all u ∈ N , i ∈ I.

In the literature on combinatorial multi-armed bandits, the standard regret bounds for UCB-based
algorithms have an inverse dependency on the gap between the rewards of optimal and suboptimal
arms (Kveton et al., 2015). To use similar techniques in proving regret bounds for our algorithm,
we make the following hypothesis on the distributions of valuations, which translates directly into
bounds on price sub-optimality gaps maxk ψuik − ψuik.
Assumption 4. The revenue function ψui(p) has a unique global maximum at p∗ui ∈ (0, 1), and
ψ′′
ui(p

∗
ui) is defined and strictly negative.

Next, we show that our algorithm can attain the regret upper bound stated in Theorem 5. Moreover,
as illustrated in Theorem 6, our algorithm’s regret is order-optimal up to smaller terms.
Theorem 5 (Upper bound for random valuations). In any market of N users satisfying the random
valuation model given in Assumptions 3 and 4 for M items and maximum load L, with probability
1− δ, the revenue regret of Algorithm 3 satisfies

R(T,π) = O
(√

NMLT log(LT ) log(NMT/δ)
)
.

Proof. See Appendix D.2.

Theorem 6 (Lower bound for random valuations). If N , M , and L ≤M are given parameters and
π is any randomized policy; there exist randomly generated market instances of N users satisfying
the random valuation model given in Assumptions 3 and 4 for M items and maximum load L such
that the expected regret of π is Ω(

√
NMLT ) in T rounds.

Proof. See Appendix D.3.
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5 Numerical experiments
In this section, we demonstrate the efficacy of our proposed algorithms through a numerical study.
We provide our results in Figures 3 and 4. At each round t ∈ [T ], the provider is endowed with each
item i ∈ I (i.e. i ∈ Et) independently with probability 0.5. On the other hand, each user u ∈ N has
a random demand dtu with uniform probability over {0, 1, 2}. For the case of fixed valuations, we
choose each vui independently from Beta(2, 2). For other two models, we set each Fui as the cdf of
Beta(αui, βui) where αui and βui are uniformly and independently chosen over [1, 5].
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Figure 3: Instantaneous regret under different valuation models. The darker lines correspond to the
mean across 20 experiments with N = 150 users and M = 100 items. The shaded areas indicate the
region of error spanning two standard deviations. Results demonstrate the efficacy of our algorithms
in achieving diminishing regret as our theoretical results predict.
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Figure 4: Regret as a function of time horizon T under different valuation models. The darker lines
correspond to the mean across 5 experiments with N = 150 users and M = 100 items. The shaded
areas indicate the region of error spanning two standard deviations. Note that the horizontal axis is
logarithmic in the plot for fixed valuations and linear in the plots for the other two cases. Results verify
that our algorithms can achieve sub-logarithmic regret under the fixed valuations model, sub-linear
regret under random experiences model, and sub-linear regret under random valuations model.

6 Conclusion
Our study presents a comprehensive solution to maximizing expected revenue in a repeated interaction
setting, where a provider seeks to sell multiple items to multiple users. By focusing on different
valuation models, we design online learning algorithms that can infer user valuations and offer items
to those who value them most to ensure approximately optimal revenue regret. The results of this
study have important implications for online marketplaces and can help providers optimize pricing
strategies and maximize revenue in a dynamic and uncertain environment.
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A Algorithmic Details for Solving the Integer Program
The integer linear program in (7) can be written as an instance of maximum weight bipartite matching.
In this graph, we represent each user u with dtu left nodes and we represent each endowed item i
with a right node. Then, we construct the complete weighted bipartite graph where the weight of an
edge between a node for user u and a node for item i is given as vui. In total, this graph has Dt left
vertices, Et right vertices, and DtEt weighted edges where Dt and Et correspond to total demand
and endowment at time t (as given in Definition 2).

Then, using a variant of the Hungarian algorithm for unbalanced bipartite graphs (Ramshaw and
Tarjan, 2012), this problem can be solved in space O(DtEt) and time O(DtEt min{Dt, Et}).
Since we can upper boundDt ≤ N ,Et ≤M , and min{Dt, Et} ≤ L, we conclude that the algorithm
runs in space O(NM) and time O(NML) in the worst case.

B Proofs for Revenue Maximization with Fixed Valuations
B.1 Proof of Theorem 1

Letting OPTt denote the optimum revenue at each time t and Rt denote the regret at round t,

Rt = OPTt −
∑
u∈N

∑
i∈I

xtuip
t
i1{vui ≥ pti}

= max
X∈X t

{∑
u∈N

∑
i∈I

xuivui

}
−
∑
u∈N

∑
i∈I

xtuip
t
i1{vui ≥ pti}

≤ max
X∈X t

{∑
u∈N

∑
i∈I

xuib
t
ui

}
−
∑
u∈N

∑
i∈I

xtuia
t
ui1{vui ≥ pti}

=
∑
u∈N

∑
i∈I

xtuib
t
ui −

∑
u∈N

∑
i∈I

xtuia
t
ui1{vui ≥ pti}

=
∑
u∈N

∑
i∈I

xtui(b
t
ui − atui1{vui ≥ pti}).

Then, we sum over all 1 ≤ t ≤ T to have

R(T,π) =

T∑
t=1

Rt

≤
T∑

t=1

∑
u∈N

∑
i∈I

xtui(b
t
ui − atui1{vui ≥ pti})

=
∑
u∈N

∑
i∈I

∑
t∈Tui

(btui − atui1{vui ≥ pti}),

where Tui = {t : 1 ≤ t ≤ T, xtui = 1} denotes the time indices where (u, i) is offered. Now, we let

Rui =
∑
t∈Tui

(btui − atui1{vui ≥ pti})

be an upper bound for the total regret incurred from offering the pair (u, i) such that we have
R(T,π) ≤

∑
u∈N

∑
i∈I Rui. Now, let kth learning epoch for pair (u, i) correspond to the time

indices in which βt
ui = (1/2)k and the pair (u, i) is offered. That is,

T k
ui = {t ∈ Tui : βt

ui = (1/2)k}.

Note that we have btui − atui ≤ βt
ui = (1/2)k for each t ∈ T k

ui. During the learning phase, each
epoch T k

ui ends either when the offer (u, i) is rejected or the offer (u, i) is accepted 2k − 1 times in a
row. Therefore, in epoch k, there are at most one rejection and 2k − 1 acceptances. As a result, the
regret incurred by offers (u, i) during each T k

ui is upper bounded as∑
t∈T k

ui

(btui − atui1{vui ≥ pti}) ≤ 1 + (2k − 1)(1/2)k ≤ 2. (15)
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Note that a learning epoch T k
ui can last for anywhere between 1 to 2k rounds in total. Therefore, if

we were to continue exploration indefinitely, the number of learning epochs could be as large as T
in the worst case. Consequently, continuing to explore indefinitely would result in linear regret. To
avoid this issue, the algorithm should stop exploration after achieving a certain level of precision
and offer item i to user u at the maximum price that is certainly acceptable, namely aui. We let this
precision level be ϵ and make the algorithm choose price aui when btui − atui ≤ ϵ. Based on this
stopping rule, Kui = ⌈log log(1/ϵ)⌉ becomes the last epoch for (u, i) and therefore we run at most
Kui − 1 learning epochs before the last epoch.

Since the offers are always accepted in this last epoch, we incur at most ϵ regret at each round of it.
Consequently, we have

Rui ≤ 2 log log(1/ϵ) + ϵ|T Kui
ui |

≤ 2 log log(1/ϵ) + ϵ|Tui|.

Since Xt includes at most L offers, we also have
∑

u∈N
∑

i∈I |Tui| ≤ LT . Thus,

R(T,π) ≤ 2NM log log(1/ϵ) + ϵLT. (16)

Letting ϵ = 1/(LT ), we obtain

R(T,π) ≤ 2NM log log(LT ) + 1. (17)

B.2 Proof of Theorem 2

Consider a market with users N = [N ] where the demands of users are given as

dtu =

{
L, if t = (u− 1) mod N

0, otherwise.

so that only one user has nonzero demand in each round. Next, let M ′ be the smallest prime number
larger than or equal to M . If N = M ′, let M ′ be the next smallest prime number. By the prime
number theorem, we always have M ′ ≤ 4M , and N and M ′ are always co-prime. Then, consider
a set of items I = [M ′] such that the valuation of all users for the first M items are uniformly and
independently chosen over [0, 1] while the last M ′ −M items are artificial items that have zero
valuation for all users. Next, assume that the set of available items Et at each time t is given according
to

i ∈ Et ⇐⇒ i− t+ 1 ∈ {1, 2, . . . , L} mod M ′

such that at most L of the items are available at each round, and hence the maximum load parameter
in this market is equal to L. By construction, the optimum offering pattern at each time is to
offer all available items to a single user that has non-zero demand. Hence, the problem of the
provider reduces to only learning the price at which it should offer each item. There are NM
actual user-item pairs and each item i ∈ [M ] is offered to user u ∈ [N ] for at least ⌊LT/NM ′⌋ ≥
⌊LT/4NM⌋ ≥ 1 rounds. In the literature on pricing optimization, each pricing problem is known to
have Ω(log log(To)) regret in To rounds (Kleinberg and Leighton, 2003). Therefore, any policy must
have Ω(NM log log(LT/NM)) regret in total.

C Proofs for Revenue Maximization with Random Experiences

C.1 Preliminary Lemmas

Lemma 7. With probability 1− δ,

|vtui − vui| ≤

√
8 log(NM/δ)

mt
ui

for all (u, i) ∈ N × I and for all t ∈ N.

Proof. Let Ht−1 be the σ-algebra generated by (Ht,X
t,pt) and let H0 = σ(∅,Ω). Fix some

(u, i) and define ϵtui := ztui − vui for all t ∈ N. By previous assumptions, E[ϵtui|Ht−1] = 0 and
E[exp(λϵtui)|Ht−1] ≤ exp

(
λ2/2

)
for all t ∈ N.
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Define δtui := [(ztui − vui)
2 − (ztui − vtui)

2]1{xtui = 1}. Then, we have

δtui =
[
−(vtui − vui)

2 + 2ϵtui(v
t
ui − vui)

]
1{xtui = 1}.

Therefore, the conditional mean and conditional cumulant generating function satisfy

µt
ui := E[δ

t
ui|Ht−1] = −(vtui − vui)

21{xtui = 1}
ψt
ui(λ) := logE[exp(λ[δtui − µt

ui])|Ht−1]

= logE[exp(2λϵtui(v
t
ui − vui))|Ht−1]1{xtui = 1}

≤ (2λ(vtui − vui))
2

2
1{xtui = 1}.

Applying Lemma 14, we have, for all x ≥ 0 and λ ≥ 0,

P

(
t−1∑
τ=1

δτui ≤
x

λ
+

t−1∑
τ=1

(vtui − vui)
2(2λ− 1)1{xτui = 1} ,∀t ∈ N

)
≥ 1− e−x.

Therefore,

P

 ∑
τ∈T t

ui

[(zτui − vui)
2 − (zτui − vtui)

2] ≤ x

λ
+
∑

τ∈T t
ui

(vtui − vui)
2(2λ− 1) ,∀t ∈ N

 ≥ 1−e−x.

Noting that vtui = 1
mt

ui

∑
τ∈T t

ui
zτui, we have

∑
τ∈T t

ui
[(zτui − vui)

2 − (zτui − vtui)
2] ≥ 0 for all t.

Then, choosing λ = 1
4 and x = log 1

δ gives

P

 ∑
τ∈Tui(t)

(vtui − vui)
2 ≤ 8 log(1/δ) ,∀t ∈ N

 ≥ 1− δ,

which implies

P

(
|vtui − vui| ≤

√
8 log(1/δ)

mt
ui

,∀t ∈ N

)
≥ 1− δ.

By applying a union bound over all (u, i) pairs, we have

P

(
|vtui − vui| ≤

√
8 log(NM/δ)

mt
ui

,∀(u, i) ∈ N × I,∀t ∈ N

)
≥ 1− δ.

Lemma 8. With probability 1− δ,
vui ∈ [atui, b

t
ui]

for all (u, i) ∈ N × I and for all t ∈ N.

Proof. From Lemma 7, we have |vtui − vui| ≤
√
8 log(NM/δ)/mt

ui for all (u, i) ∈ N × I and for
all t ∈ [T ] with probability 1− δ. Assume that this condition holds true.

We prove the statement of the lemma by induction. Assume vui ∈ [atui, b
t
ui] as the inductive

hypothesis. Then, if user u accepts item i at price pti, then we have vtui ≥ pti. Therefore, pti − vui ≤
vtui−vui ≤

√
8 log(NM/δ)/mt

ui. So, at+1
ui = atui∨ (pti−

√
8 log(NM/δ)/mt

ui) ≤ vui. Similarly,
we can also show bt+1

ui = btui ∧ (pti +
√
8 log(NM/δ)/mt

ui) ≥ vui. Therefore, vt+1
ui ∈ [at+1

ui , b
t+1
ui ].

Lemma 9. With probability 1− δ, the value of OPT satisfies

OPT−
T∑

t=1

{
max
X∈X t

∑
u∈N

∑
i∈I

xuivui

}
≤ O

(√
NMLT log(NM/δ)

)
. (18)
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Proof. Let us define

ÕPT =

T∑
t=1

{
max
X∈X t

∑
u∈N

∑
i∈I

xuivui

}
. (19)

Then, using the definition of OPT and ÕPT together with Lemma 7, we have

OPT = max
Xt∈X t:t∈[T ]

T∑
t=1

∑
u∈N

∑
i∈I

xtuiv
t
ui

= max
Xt∈X t:t∈[T ]

{
T∑

t=1

∑
u∈N

∑
i∈I

xtuivui +

T∑
t=1

∑
u∈N

∑
i∈I

xtui(v
t
ui − vui)

}

≤ max
Xt∈X t:t∈[T ]

{
T∑

t=1

∑
u∈N

∑
i∈I

xtuivui

}
+ max

Xt∈X t:t∈[T ]

{
T∑

t=1

∑
u∈N

∑
i∈I

xtui(v
t
ui − vui)

}

= ÕPT + max
Xt∈X t:t∈[T ]

{
T∑

t=1

∑
u∈N

∑
i∈I

xtui(v
t
ui − vui)

}

≤ ÕPT + max
Xt∈X t:t∈[T ]

{
T∑

t=1

∑
u∈N

∑
i∈I

xtui

√
8 log(NM/δ)

mt
ui

}

≤ ÕPT +
√
8 log(NM/δ) max

Xt∈X t:t∈[T ]

{
T∑

t=1

∑
u∈N

∑
i∈I

xtui

√
1/mt

ui

}
.

Recall that ntui counts the number of times user u is offered item i and mt
ui counts the number of

corresponding acceptances. Since an item i can be rejected only when ntui = 2j for some j ∈ N, we
can write

T∑
t=1

∑
u∈N

∑
i∈I

xtui

√
1

mt
ui

=
∑
u∈N

∑
i∈I

∑
t:xt

ui=1

√
1

mt
ui

≤
∑
u∈N

∑
i∈I

 ∑
t:xt

ui=1

∄j∈N:nt
ui=2j

√
1

mt
ui

+
∑

t:xt
ui=1

∃j∈N:nt
ui=2j

√
1

mt
ui


≤
∑
u∈N

∑
i∈I

mT
ui∑

k=1

√
1

k
+ log T


≤
∑
u∈N

∑
i∈I

(
2
√
mT

ui + log T

)
where we upper bound the first term inside the parentheses using

∑n
k=1

1√
k

≤
∫ n

0
dx√
x

= 2
√
n

and we upper bound the second term by noting that it can have at most log T terms. Also note
that the total number of offers over all time intervals is upper bounded by LT , and therefore∑

u∈N
∑

i∈I m
T
ui ≤ LT . Then, using the Cauchy-Schwartz inequality, we can write

T∑
t=1

∑
u∈N

∑
i∈I

xtui

√
1

mt
ui

≤ 2

√
NM

∑
u∈N

∑
i∈I

mT
ui +NM log T

≤ O(
√
NMLT +NM log T ).

Putting all together, we conclude the proof of the lemma.
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C.2 Proof of Theorem 3

By Lemma 8, the confidence bounds include the mean, i.e., vui ∈ [atui, b
t
ui] with probability 1− δ.

Assume that this condition holds.

Then, the offered items are accepted whenever there does not exist j ∈ N such that ntui = 2j . So, we
have that mt

ui ≥ ntui/2 because ntui counts the number of times item i is offered to user u, and mt
ui

counts the number of times item i is accepted by user u.

Furthermore, we recall that intervals are only updated at time step t if xtui = 1 and ntui = 2j for
some j ∈ N. Therefore, we can show an upper bound for the width of the intervals [atui, b

t
ui]. Define

the width gtui = btui − atui. When the update happens, the interval’s size gtui becomes at most
gt−1
ui /2 +

√
8 log(NM/δ)/mt

ui ≤ gt−1
ui /2 +

√
16 log(NM/δ)/ntui. Therefore,

gtui ≤
K∑
j=1

(
1

2

)K−j
√

16 log(NM/δ)

2j+1
,

where K = log2 n
t
ui is the number of times the interval is updated before time t. Then,

gtui ≤
√
16 log(NM/δ)

2K

K∑
j=1

(√
2
)j−1

≤
√
16 log(NM/δ)

2K
(2K/2 − 1)(1 +

√
2)

≤
√

144 log(NM/δ)

2K

≤
√

144 log(NM/δ)

2lognt
ui−1

≤

√
288 log(NM/δ)

ntui
.

Now, let Lt
ui = {xtui = 1,∃j ∈ N, ntui = 2j} denote the learning event for pair (u, i) at round t.

Also note that xtui = 1 at some t, then pti = 1{¬Lt
ui}atui + 1{Lt

ui}(atui + btui)/2. Next, we recall
the definition of ÕPT in (19) and let

Y t = argmax
X∈X t

∑
u∈N

∑
i∈I

xuivui, (20)

with entries ytui. Then, the regret with respect to ÕPT is given as the difference

R̃(T,π) := ÕPT−
T∑

t=1

∑
u∈N

∑
i∈I

xtuip
t
i1{vtui ≥ pti}

=

T∑
t=1

{∑
u∈N

∑
i∈I

ytuivui −
∑
u∈N

∑
i∈I

xtuip
t
i1{vtui ≥ pti}

}
.

Recalling that the confidence bounds include the mean, i.e., vui ∈ [atui, b
t
ui],

R̃(T,π) ≤
T∑

t=1

{∑
u∈N

∑
i∈I

ytuivui −
∑
u∈N

∑
i∈I

xtuia
t
ui1{¬Lt

ui}

}

≤
T∑

t=1

{∑
u∈N

∑
i∈I

ytuivui −
∑
u∈N

∑
i∈I

xtuia
t
ui +

∑
u∈N

∑
i∈I

xtuia
t
ui1{Lt

ui}

}

≤
T∑

t=1

{∑
u∈N

∑
i∈I

ytuivui −
∑
u∈N

∑
i∈I

xtuia
t
ui

}
+

T∑
t=1

∑
u∈N

∑
i∈I

1{Lt
ui}.
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Since Xt is selected according to

Xt = argmax
X∈X

∑
u∈N

∑
i∈I

xuib
t
ui, (21)

we can upper bound the first term as∑
u∈N

∑
i∈I

(ytuivui − xtuia
t
ui) ≤

∑
u∈N

∑
i∈I

(ytuib
t
ui − xtuia

t
ui)

≤
∑
u∈N

∑
i∈I

(xtuib
t
ui − xtuia

t
ui)

=
∑
u∈N

∑
i∈I

xtuig
t
ui.

On the other hand, the second term is upper bounded as

T∑
t=1

∑
u∈N

∑
i∈I

1{Lt
ui} ≤ NM log T.

Therefore, we can upper bound R̃(T,π) as

R̃(T,π) ≤
T∑

t=1

∑
u∈N

∑
i∈I

xtuig
t
ui +NM log T.

Then, we can show

T∑
t=1

∑
u∈N

∑
i∈I

xtuig
t
ui ≤

T∑
t=1

∑
u∈N

∑
i∈I

xtui

√
288 log(NM/δ)

ntui

=
√
288 log(NM/δ)

T∑
t=1

∑
u∈N

∑
i∈I

xtui

√
1/nt

ui

≤ O(
√
NMLT log(NM/δ)),

where the proof of the last step is similar to the proof of Lemma 9. Therefore, with probability 1− δ,

R̃(T,π) ≤ O(
√
NMLT log(NM/δ) +NM log T ).

Then, we use Lemma 9 which holds with probability 1− δ. Therefore, by applying a union bound,
we can show that

R(T, π) = OPT − ÕPT + R̃(T,π)

≤ O(
√
NMLT log(NM/δ) +NM log T ),

with probability 1− 2δ.

C.3 Proof of Theorem 4

Recall that our observations are limited to accept-reject signals given by indicator variables 1{vtui ≥
pi} for all (u, i) such that xtui = 1. Furthermore, the valuations are given by

vtui =
1

ntui

∑
τ∈T t

ui

ztui,

where ztui are i.i.d. random variables with mean vui and Tui(t) = {τ < t : xtui = 1}. Hence, the
signal 1{vtui ≥ pi} is a function of ztui in Tui(t). As a result, the problem of learning revenue-
maximizing offers by observing ztui for all (u, i) such that xtui = 1 is no harder than that of learning
revenue-maximizing offers by observing 1{vtui ≥ pi} signals for all (u, i) such that xtui = 1.
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On top of observing ztui, if we further assume that an oracle sets the prices pi = vtui whenever
xtui = 1 (such that all the offers are accepted by achieving revenue vtui), the corresponding problem
becomes an online linear optimization problem with semi-bandit feedback. In this problem, at each
round t, the algorithm chooses an offering Xt from the set of feasible offers X t, observes ztui for all
(u, i) such that xtui = 1, and aims to maximize the total revenue (note that the revenue at time t is
equal to the sum of valuations for all (u, i) such that xtui = 1). Since this problem is also no harder
than our original problem, any lower bound for this problem also applies to our setting.

Let N = [N ] and I = [M ] be the set of users and items respectively. Then, consider a market setting
where the demands of users are given as

dtu =

{
L, if t = (u− 1) mod N

0, otherwise

so that only one user has nonzero demand in each round and each user is active for Θ(T/N) rounds.
Let Et = I for all rounds and note that the maximum load in this market is L as needed. Consequently,
we have N independent sub-problems where each sub-problem corresponds to offering the best L
items in I to a single user. In the literature on online linear optimization with semi-bandit feedback,
this problem is known as the L-sets problem and it is known that for any algorithm there exists
an instance such that expected regret Ω(

√
LMTo) in To rounds Kleinberg and Leighton (2003).

Therefore, for any algorithm, each of N sub-problems has Ω(
√
LMT/N) regret which corresponds

to Ω(
√
NMLT ) regret in total for the whole problem.

D Proofs for Revenue Maximization with Random Valuations

D.1 Preliminary Lemmas

Lemma 10. For any u ∈ N and i ∈ I, there exists constants C1 and C2 such that

C1(p− p∗ui)
2 < ψui(p

∗
ui)− ψui(p) < C2(p− p∗ui)

2 (22)

for all p ∈ [0, 1].

Proof. Since ψ′′
ui(p

∗
ui) is strictly negative, there exists constants A1, A2, ϵ > 0 such that A1(p −

p∗ui)
2 < ψui(p

∗
ui)− ψui(p) < A2(p− p∗ui)

2 for all p ∈ (p∗ui − ϵ, p∗ui + ϵ). Since the set S = {p ∈
[0, 1] : |p − p∗ui| ≥ ϵ} is compact and ψui(p

∗
ui) − ψui(p) > 0 for all p ∈ S, there exists constants

B1, B2 such that B1(p − p∗ui)
2 < ψui(p

∗
ui) − ψui(p) < B2(p − p∗ui)

2 for all p ∈ S. Hence, if we
set C1 = A1 ∧B1 and C2 = A2 ∨B2, we obtain the statement of the lemma.

Lemma 11. For any u ∈ N and i ∈ I, define ∆uik = maxk ψuik − ψuik. If ∆̃ui0 ≤ ∆̃ui1 ≤
· · · ≤ ∆̃ui(K−1) are the elements of the set {∆ui1, . . . ,∆uiK} sorted in ascending order, then
∆̃uik ≥ c1(k/2K)2.

Proof. Applying Lemma 10 and using the definition of ∆uik, we can show that ∆uik ≥ C1(p
∗
ui −

k/K)2. Then, lower bound on ∆̃uik follows upon observing that at most j elements of the set
{1/K, 2/K, . . . , 1} lie within a distance j/2K of p∗ui.

Lemma 12. For any u ∈ N and i ∈ I, we have ψ∗
ui −maxk ψuik ≤ C2/K

2.

Proof. Applying Lemma 10 and noting that at least one of the prices {1/K, 2/K, . . . , 1} lies within
a distance 1/K of p∗ui, we obtain the statement of the lemma.

D.2 Proof of Theorem 5

Let π∗ be the algorithm that chooses the optimum choice of offers and prices. Let π∗
K be the

algorithm that chooses the optimum choice of offers, but chooses the prices as the best price from the
set {1/K, 2/K, . . . , 1}. Let π denote our algorithm described in Algorithm 3. Furthermore, let ρ(·)
represent the expected revenue obtained by an algorithm. Then, the regret of policy π satisfies

R(T,π) = ρ(π∗)− ρ(π) = (ρ(π∗)− ρ(π∗
K)) + (ρ(π∗

K)− ρ(π)).
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We begin with upper bounding ρ(π∗
K)− ρ(π). Recall that we can represent the expected revenue of

any offering and pricing (that is constrained to set the set {1/K, 2/K, . . . , 1}) as

∑
u∈N

∑
i∈I

K∑
k=1

xtuikψuik,

where xtuik are binary variables that denote whether user u is offered item i at kth price level. Due
to the endowment, demand constraints, and the constraint that requires the prices to be from the set
{1/K, 2/K, . . . , 1}, the xtuik variables at each time t need to belong to the set

X t
e =

{
X ∈ {0, 1}N×M×K :

∑
i∈I

K∑
k=1

xuik ≤ dtu,∀u ∈ N

and
∑
u∈N

K∑
k=1

xuik ≤ eti,∀i ∈ I

and
K∑

k=1

xuik ≤ 1,∀u ∈ N , i ∈ I
}
.

Similar to the proof of Lemma 7, we have |ψ̂t
uik − ψuik| ≤

√
8 log(NMK/δ)/ntuik for all u ∈ N ,

i ∈ I and t ∈ [T ]. For ease of notation, let us define B :=
√

8 log(NMK/δ) and wt
uik =

√
1/nt

uik.
Assuming that this condition holds, we can show that

ρ(π∗
K)− ρ(π) ≤

T∑
t=1

[
max
X∈X t

e

∑
u∈N

∑
i∈I

K∑
k=1

xuikψuik −
∑
u∈N

∑
i∈I

K∑
k=1

xtuikψuik

]

≤
T∑

t=1

[
max
X∈X t

e

∑
u∈N

∑
i∈I

K∑
k=1

xuik

(
ψ̂t
uik +

B

wt
uik

)
−
∑
u∈N

∑
i∈I

K∑
k=1

xtuikψuik

]

≤
T∑

t=1

[∑
u∈N

∑
i∈I

K∑
k=1

xtuik

(
ψ̂t
uik +

B

wt
uik

)
−
∑
u∈N

∑
i∈I

K∑
k=1

xtuikψuik

]

≤
T∑

t=1

∑
u∈N

∑
i∈I

K∑
k=1

xtuik

(
ψ̂t
uik − ψuik +

B

wt
uik

)
.

Hence, with probability 1− δ, we have

ρ(π∗
K)− ρ(π) ≤ 2B

T∑
t=1

∑
u∈N

∑
i∈I

K∑
k=1

xtuik
wt

uik

. (23)

At each time step t, consider the list consisting ofwt
uik for all (u, i, k) ∈ Ot := {(u, i, k) : xtuik = 1}.

Let’s now consider the overall list consisting of the concatenation of all of these lists over all
rounds. Let’s order this list in decreasing order to obtain a list w̃ = (w̃1, w̃2, . . . , w̃J) where
J =

∑T
t=1 |Ot| ≤ LT . Using this notation, we have

ρ(π∗
K)− ρ(π) ≤ 2B

J∑
j=1

w̃j .

First, for any (u, i, k) pair, the list w̃ can contain at most 1 + 1/c2 elements that are associated
with (u, i, k) and larger than or equal to c. Secondly, note that xtuik = 1 only if B/wt

uik ≥
maxk ψuik − ψuik = ∆uik. As a result, size of {t : xtuik = 1} is at most B2/∆2

uik. Therefore,
the number of times a (u, i, k) pair can appear in the list w̃ is also upper bounded by B2/∆2

uik.
Therefore, summing over all k ∈ [K], we can upper bound the number of elements that are associated
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with (u, i) and larger than or equal to c by

K∑
k=1

min

{
1 +

1

c2
,
B2

∆2
uik

}
=

K−1∑
k=0

min

{
1 +

1

c2
,
B2

∆̃2
uik

}

≤ 1 +
1

c2
+

K−1∑
k=1

min

{
1 +

1

c2
,
B2

C2
1

(
2K

k

)4
}

≤ 1 +
1

c2
+
B

C1

√
1 +

1

c2

K−1∑
k=1

(
2K

k

)2

= O

(
1 +

1

c2
+BK2

√
1 +

1

c2

)
.

where the second step uses Lemma 11. Thus, the total number of times that any confidence set can

have size at least w̃j is upper bounded by O
(
NM

(
1 + 1

w̃2
j

)
+NMBK2

√
1 + 1

w̃2
j

)
. Using this

result, we can write w̃j = O

(
min

{
1, 1√

(j/BNMK2)2−1
+ 1√

j/NM−1

})
. Hence,

J∑
j=1

w̃j = O

 J∑
j=1

min

{
1,

1√
(j/BNMK2)2 − 1

+
1√

j/NM − 1

}
= O

LT∑
j=1

min

{
1,

1√
(j/BNMK2)2 − 1

+
1√

j/NM − 1

}
= O

(
BNMK2 log(LT ) +

√
NMLT

)
.

Therefore,

ρ(π∗
K)− ρ(π) = O

(
B2NMK2 log(LT ) +

√
NMLT

)
. (24)

Next, we bound ρ(π∗) − ρ(π∗
K). Note that for each (u, i), at least one of the numbers

{1/K, 2/K, . . . , 1} lies within 1/K of p∗(u, i). Then, by Lemma 12, ψ∗
ui −maxk ψuik ≤ C2/K

2

for some absolute constant C2. Therefore, the gap ρ(π∗)− ρ(π∗
K) is upper bounded as

ρ(π∗)− ρ(π∗
K) ≤ C2LT

K2
. (25)

Combining equations (24) and (25), we have

R(T,π) = O

(
B2NMK2 log(LT ) +

√
NMLT +

LT

K2

)
.

Lastly, we choose K4 = Θ
(

LT
NM log(LT )

)
to obtain

R(T,π) = O
(
B2
√
NMLT log(LT )

)
= O

(√
NMLT log(LT ) log2(NMK/δ)

)
= O

(√
NMLT log(LT ) log2(NMT/δ)

)
.

where the last step uses 0 ≤ K4 ≤ T and T ≥ 1.
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D.3 Proof of Theorem 6

Consider the same market setting (demands and endowments) in Appendix Section B.2, but assume
that the valuations are i.i.d. random instead of being fixed. By construction, the optimum offering
pattern at each time is to offer all available items to a single user that has non-zero demand. Hence, the
problem of the provider reduces to only learning the price at which it should offer each item. There
are NM actual user-item pairs and each item i ∈ [M ] is offered to user u ∈ [N ] for Θ(LT/NM ′)
rounds. In the literature on pricing optimization with i.i.d. valuations, each pricing problem is known
to have Ω(

√
To) regret in To rounds (Kleinberg and Leighton, 2003). Therefore, any policy must

have Ω(
√
NMLT ) regret in total.

E Martingale Exponential Inequalities

Consider a sequence of random variables (Zn)n∈N adapted to the filtration (Hn)n∈N. Assume
E[exp(λZi)] is finite for all λ. Define the conditional mean µi = E[Zi|Hi−1], and define the
conditional cumulant generating function of the centered random variable [Zi − µi] by ψi(λ) :=
logE[exp(λ[Zi − µi])|Hi−1]. Then, for a process (Mn(λ))n∈N defined as

Mn(λ) = exp

{
n∑

i=1

λ[Zi − µi]− ψi(λ)

}
,

we can prove the following properties.

Lemma 13. (Mn(λ))n∈N is a martingale with respect to the filtration (Hn)n∈N, and E[Mn(λ)] = 1
for any λ.

Proof. By definition, we have

E[M1(λ)|H0] = E[exp{λ[Z1 − µ1]− ψ1(λ)}|H0] = 1.

Then, for any n ≥ 2,

E[Mn(λ)|Hn−1] = E[Mn−1(λ) exp{λ[Zn − µn]− ψn(λ)}|Hn−1]

=Mn−1(λ)E[exp{λ[Zn − µn]− ψn(λ)}|Hn−1]

=Mn−1(λ),

since Mn−1(λ) is a measurable function of the filtration Hn−1.

Lemma 14. For all x ≥ 0 and λ ≥ 0,

P

(
t∑

i=1

λZi ≤ x+

t∑
i=1

[λµi + ψi(λ)] ,∀t ∈ N

)
≥ 1− e−x.

Proof. For any λ, (Mn(λ))n∈N is a martingale with respect to (Hn)n∈N and E[Mn(λ)] = 1 by
Lemma 13. For arbitrary x ≥ 0, define τx = inf{n ≥ 0|Mn(λ) ≥ x} and note that τx is a stopping
time corresponding to the first time Mn crosses the boundary x. Since τ is a stopping time with
respect to (Hn)n∈N, we have E[Mτx∧n(λ)] = 1. Then, by Markov’s inequality

xP(Mτx∧n(λ) ≥ x) ≤ E[Mτx∧n(λ)] = 1.

Noting that the event {Mτx∧n(λ) ≥ x} =
⋃n

k=1{Mk(λ) ≥ x}, we have

P

(
n⋃

k=1

{Mk(λ) ≥ x}

)
≤ 1

x
.

Taking the limit as n→ ∞, and applying monotone convergence theorem shows that

P

( ∞⋃
k=1

{Mk(λ) ≥ x}

)
≤ 1

x
.
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Consequently, we can write

P

( ∞⋃
k=1

{Mk(λ) ≥ ex}

)
≤ e−x.

Then, by definition of Mk(λ), we conclude

P

( ∞⋃
k=1

{
n∑

i=1

λ[Zi − µi]− ψi(λ) ≥ x

})
≤ e−x
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