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ABSTRACT

Verbalizing intermediate steps in token space has been central to eliciting rea-
soning in large language models (LLMs), with longer reasoning generally im-
proving performance but incurring substantial compute and memory costs. Prior
attempts to improve efficiency—such as KV-pruning or latent-space reasoning—
often suffer from loss of accuracy or training inefficiency. We propose Hybrid-
CoT, a framework that interleaves latent and text reasoning tokens in context. Our
method reduces the compression errors that troubles previous latent CoT methods
by keeping critical text tokens like math operations, in context, while compress
semantic reasoning into the latent space. In addition, we design in-context text-
to-token distillation to provide explicit supervision and iterative parallelized latent
rollout methods to improve training efficiency for latent token, while shortening
reasoning paths for efficiency. On challenging math reasoning benchmarks includ-
ing AIME and MATH, HybridCoT achieves 94% of the performance of finetuned
text-only CoT models with 1.97× less inference compute, and surpasses efficient
baselines (LightThinker and StreamLLM) by 1.36× and 1.26×, respectively.

1 INTRODUCTION

Fig 1: We train a language model to alternate between text and latent reasoning modes within the
same reasoning trace. It outputs text tokens first, which support the generation of succeeding latent
tokens. The text tokens are then removed from future context to speed up inference, while it retains
math tokens in the context, which turn out to be crucial for math reasoning tasks.

Large language models (LLMs) have achieved remarkable success on complex reasoning tasks by
generating extended reasoning sequences, known as chain-of-thought (CoT) reasoning (Wei et al.,
2022; Muennighoff et al., 2025; OpenAI, 2024). Beyond reasoning verbally in text space, there
is growing interest in latent reasoning using dense vector representations, or latent tokens (Hao
et al., 2024; Cheng & Durme, 2024; Shen et al., 2025). This approach offers several compelling
advantages: latent tokens can compress multiple reasoning steps into fewer representations, reducing
context length and memory requirements; they enable more flexible computation allocation rather
than uniform token budgets; and they can potentially capture reasoning patterns that are difficult to
express in natural language Zhu et al. (2025); Chen et al. (2025).

However, training models to reason with long latent CoT traces comes with significant challenges.
First, compression errors arise as existing latent CoT methods require a homogeneous context
of latent tokens. Storing all information and reasoning in latent space can introduce unintended
errors, especially for symbolic tokens like numbers and mathematical operators, as found in pre-
vious literature (Zhang et al., 2025). Second, latent tokens lack direct supervision signals since
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training data contains only textual reasoning traces. Previous methods leverage indirect supervision
through curriculum learning with text removal (Hao et al., 2024) or by distilling certain latents from
a teacher model (Cheng & Durme, 2024; Shen et al., 2025), but such indirect supervision becomes
less effective as reasoning length increases. Third, latent CoT model training is computationally
expensive, often requiring multiple times more time compared to text CoT training even for shorter
reasoning traces (Hao et al., 2024; Shen et al., 2025), and this overhead becomes worse as reasoning
traces grow longer (as it needs to multiple forward passes for generating all latent token before a
gradient update). As such, current latent CoT methods only demonstrate success in relatively simple
tasks like GSM8K (Cobbe et al., 2021) with short reasoning.

We propose Hybrid-CoT, a method to combine text and latent CoT within the same reasoning trace.
As illustrated in Fig. 1, the model is trained to alternate between text and latent reasoning modes
for a given problem. Upon generating a few text tokens, the model can switch to decoding a fixed
number of latent tokens. The text tokens are primarily used to support the generation of the suc-
ceeding latent tokens and will be removed from the future context to speed up inference. This
compression-like objective (Mu et al., 2023; Zhang et al., 2025) can provide fine-grained supervi-
sion signals, and we find that the trained models can produce longer latent sequences of up to a few
thousand tokens.

Notably, instead of removing all text tokens from the preceding context, we also train the model to
selectively keep certain tokens resulting in a hybrid context with both text and latent tokens. We
find that retaining math tokens in the context has a significant impact on the downstream perfor-
mance of the models: it avoids possible information loss during the compression or reconstruction
process, and the LM can leverage existing induction heads (Olsson et al., 2022) for symbolic pro-
cessing of the text tokens.

To make training of long latent CoT possible, we propose an efficient algorithm to approximate latent
tokens with constant complexity irrespective of reasoning length, compared to the linear complexity
of existing methods (Hao et al., 2024). Since we are targeting very challenging math problems like
those in AIME (MAA, 2024), existing methods would slow down training by hundreds of times—as
the model often needs to reason for hundreds of steps.

We demonstrate that models trained with Hybrid-CoT can achieve strong performance on math and
general reasoning benchmarks including AIME24-25 (MAA, 2024; 2025), AMC (MAA, 2023),
MATH (Hendrycks et al., 2021), and GPQA (Rein et al., 2023)—HybridCot matches 94% perfor-
mance of text CoT across all tasks (long-CoT benchmarks plus MATH and GPQA) with 1.97x less
compute; it outperforms efficient baselines LightThinker and StreamLLM by 1.36x and 1.26x on
average with Qwen3-8B and Qwen2.5-7B, respectively. In addition, HybridCoT demonstrate sig-
nificant improvement over other efficient baselines on complex math benchmarks that require long
CoT such as AIME (MAA, 2024) and AMC (MAA, 2023)—Hybrid-CoT achieves an averaged score
of 66.53% across these long-CoT benchmarks, in comparison with 37.57% for LightThinker (Zhang
et al., 2025) and 28.75% for StreamLLM (Xiao et al., 2023) with Qwen3-8B. We will fully release
our code to facilitate the research community to build on top of our method.

2 PRELIMINARIES AND RELATED WORKS

Latent chain-of-thought (CoT) and context compression represent two prominent approaches for re-
ducing computational complexity in Transformer-based LLMs. Latent CoT generates information-
rich dense vectors in continuous space, while context compression directly reduces the token count
in the input context. In this section, we present a unified view on these research streams and identi-
fies the existing challenges that motivate our study.

Language model and text CoT. For an input sequence of n tokens X = [x1, x2, . . . , xn] ∈ Vn

from a discrete vocabulary V ⊂ Z, an autoregressive LM F outputs a categorical distribution
F(·|X<i) over V for the i-th token given the prefix X<i. In transformer-based (Vaswani et al.,
2017) LMs, each token xi is embedded into a d-dimensional space ei ∈ Rd. They are processed
through a stack of model layers, where each layer mixes the embeddings along both the n and d
dimensions. The final layer outputs a continuous vector zi ∈ Rd for the i-th token, which is then
mapped to the logits over V using a linear projection. Notably, Transformers require quadratic
computational complexity with respect to context length, making long chain-of-thought reasoning
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computationally expensive. By autoregressively decoding the next tokens, the LM can generate a
sequence of length n representing the reasoning process for a given user problem q, and recent
work (Muennighoff et al., 2025; OpenAI, 2024) shows that as n increases, the model can solve in-
creasingly difficult tasks, a phenomenon often dubbed “inference time compute scaling”. However,
one common critique of text CoT is that it assigns uniform compute per decoding step, and it calls
for a more flexible allocation of compute for different steps given the difficulty of the reasoning.

Compressing text CoT with sparse attention. As the quadratic computational cost introduced
by increasing KV-cache size becomes the primary bottleneck for long-form reasoning (Austin et al.,
2025), context compression approaches improve inference efficiency by reducing the prefix size per
decoding step. One way is to have the LLM generate full text CoT and retain only a subset of tokens
in the context for each step. The subsetting can be a static sliding window (Xiao et al., 2023) or
dynamically determined (e.g., evicting certain tokens from the KV-cache (Zhang et al., 2023)). This
approach does not create explicit latent representations but instead relies on the language model to
implicitly learn to utilize the remaining contextual information effectively: as such, there’s substan-
tial performance drop above certain compression ratios(Zhang et al., 2023).

Reasoning with latent CoTs. Recent works have explored using the hidden states of the LLM as
latent CoTs for the intermediate reasoning steps. Specifically, this approach involves autoregres-
sively decoding using dense vectors zi that forms a “latent chain of thought” (Hao et al., 2024,
latent CoT). It needs fewer decoding steps given that latent vectors can be more flexible and carry
additional information (Zhu et al., 2025), thus improving the inference speed. However, there are
two challenges during training: it lacks direct supervision for latent COTs, as training data only
contains textual CoTs; and the training is very inefficient as it requires autoregressively decoding
zi to obtain policy latents before each backward pass (whereas standard training only requires a
single pass of forward per training step), which can slow down training by n-fold, where n is the
number latent tokens. Despite recent attempts to address some of these challenges (Shen et al., 2025;
Cheng & Durme, 2024; Wang et al., 2025), latent CoT methods are still limited to relatively simple,
short-form reasoning tasks, tailing behind the performance of text CoT methods.

Gisting. Recent approaches also explore interleaving text generation with “soft tokens” that com-
press the context. For example, context gisting (Mu et al., 2023) trains an LM to store relevant
information of the prompt in the activations values for fixed gist tokens [g1, . . . , gm], g ∈ Vgist.
LightThinker (Zhang et al., 2025) extends this method to iteratively compress the reasoning with
the same set of gist tokens for multiple reasoning steps. On the other hand, Chevalier et al.
(2023) uses the language model to recursively generate an m-sized block of summary vectors
[s(b,1), . . . , s(b,m)], s(b,i) ∈ Rd for the b-th chunk in the context, using the transformer LM itself.
Noteworthily, upon generating the soft tokens, the methods remove all preceding text tokens,
leading to potential information loss as reported by Zhang et al. (2025). By interleaving the text
generation and compression steps, the model can have more fine-grained supervision signal for the
soft tokens, and they can scale to longer reasoning tasks. However, given the complexities of latent
rollout as mentioned above, there is no or limited recurrence among soft tokens. While they may
involve continuous vectors in the context, their primary focus is to compress rather than to advance
the reasoning process of each step.

3 METHOD

3.1 HYBRID TEXT AND LATENT CHAIN OF THOUGHT

Interleaving text and latent reasoning blocks. Recall that we define a reasoning block as a
subsequence of the full reasoning trace, segmented by sentences or paragraphs. We train the
LM to alternate between text and latent reasoning modes in discrete blocks. Formally, we de-
fine X[b] = [x(b,1), x(b,2), . . . , x(b,kb)] as the b-th block of text tokens of length kb, and Z[b] =

[z(b,1), z(b,2), . . . , z(b,m)] as the corresponding block of m latent vectors z ∈ Rd. We note that kb
varies for different blocks, while m is fixed as a hyper-parameter—in each reasoning block, the
model first generates kb text tokens x(b,i) ∈ V from the vocabulary for a draft of textual reasoning;
Upon generating the special token <latent>, which indicates the completion of textual reason-
ing for that block, the model switches to latent reasoning mode and autoregressively decodes a
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fixed number of m latent tokens. Compared with previous method (Zhang et al., 2025) that uses
a fixed set of special text tokens for compressing all reasoning blocks, our approach uses flexible,
continuously-valued latent vectors to carry more information through autoregressive generation and
advance the reasoning process.

Mixing text and latent tokens in the context. Before moving to the next block, our method can
opt to retain a subset of text tokens in the b-th stage. In contrast to typical context compression
methods that discard all text tokens from previous blocks and rely solely on compressed repre-
sentations, our approach selectively preserves important textual information. Formally, we define
X ′[b] = [x(b,i)]i∈Sb

as the selected text tokens from block b, where Sb ⊆ {1, 2, . . . , kb} is the set of
indices for tokens to be retained. It is inspired by the observation that certain parts of the reasoning
process require a more precise, exact mode (e.g., math computation), and fully relying on latent
vectors for such reasoning may cause unintended errors (Zhang et al., 2025). While one could train
models to automatically learn optimal text selection policies (Shen et al., 2024; Akhauri et al., 2025),
we adopt a simple approach for our mathematical reasoning experiments: we construct the index set
Sb for tokens of math symbols, numbers, and computations.1 In practice, we prompt a powerful lan-
guage model to label math text spans with <math> in the training data (see Appendix A for details).
During inference, the LLM generates <math> tags, the tokens between which will be preserved in
its original textual format, as illustrated below.

Text CoT X[1] [x(1,1), . . . , x(1,k1)]

Latent CoT Z[1] [x(1,1), . . . , x(1,k1)
↷, z(1,1), . . . , z(1,m)]

Select Text X ′[1] [���x(1,1),��. . ., x(1,j1), . . . , x(1,jl1 )
,��. . .,���x(1,k1)

↷, z(1,1), . . . , z(1,m)], j1, . . . , jl1 ∈ S1

To formalize the per-token generation process, we use the notation X[b, i] = [x(b,1), . . . , x(b,i)] to
denote the first i elements of sequence X[b], and similarly for Z[b, i]. We define C[b, i] as the hybrid
context till the i-th latent token in the b-th block:

C[b, i] = X ′[1]⊕ Z[1]⊕ · · · ⊕X ′[b]⊕ Z[b, i], (1)

where ⊕ denotes list concatenation.

Fig 2: We add sparsity in the atten-
tion matrix: for each token, it can
only attend to (1) math tokens kept
from previous blocks, (2) all previ-
ous latent tokens and (3) all text to-
kens in the current block.

In the text CoT stage, the LM generates the next token fol-
lowing a categorical distribution over the vocabulary: x(b,i) ∼
F(·|C[b − 1,m] ⊕ X[b, i − 1]) for the i-th text token in the
b-th block; in the latent CoT stage, it outputs the latent token
z(b,i) = Flatent(C[b, i− 1]) given the hybrid context. Different
from COCONUT (Hao et al., 2024) that directly uses the LM’s
last hidden state as the latent token, we apply a linear layer
to project the last hidden state to the latent vectors, which is
trained jointly with the rest of the model.

Training objective. Our method modifies the standard in-
struction fine-tuning pipeline on reasoning data (Muennighoff
et al., 2025) to support hybrid reasoning. For each textual rea-
soning trace in the training data, we first preprocess the data
to split it into multiple blocks of reasoning by sentences or
by paragraphs and insert the <latent> tags. During train-
ing, the model generates latent tokens after each text reasoning
block and learns to compress the text reasoning into latent to-
kens. During inference, the model can automatically generate
text tokens wrapped with <latent> tags and following latent tokens. Once it finishes the latent to-
ken generation, the preceding text tokens will be removed from the context except those in <math>
tags. The hybrid context is implemented using a sparse attention mask. As illustrated in Fig. 2,
within a reasoning block containing both text and latent tokens, the sparse attention matrix ensures
that each token attends only to its designated context, effectively mimicking token removal.

1This strategy serves as a proof-of-concept, and the framework can be generalized to other domains by
developing appropriate token selection criteria accordingly.
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Following Hao et al. (2024), we compute the cross-entropy loss on all the text tokens in the con-
text. Since we interleave text and latent tokens, the loss on the text token can provide fine-grained
supervision for each latent reasoning stage.2 Unlike prior work, our design retains text tokens in the
context when training latent tokens within the same reasoning block, providing direct supervision
that can help stabilize and accelerate training. At the same time, these text tokens are masked out
from the context of inter-block latent tokens, ensuring that no information leaks across blocks.

3.2 EFFICIENT TRAINING WITH ITERATIVE PARALLELIZED LATENT ROLLOUT

Fig 3: In iterative latent rollout, after the ℓ-
th full iteration, the first ℓ blocks of latent
tokens become exact (colored red) and stop
updating (borderless).

Compared to text CoT, one important difference in
latent CoT training is that it requires the model to
autoregressively generate, or “roll out”, the latent
tokens before every loss computation and gradient
update. In existing methods (Hao et al., 2024; Shen
et al., 2025), it requires B×m forward passes to gen-
erate all latent tokens for a reasoning trace consisting
of B blocks with m tokens each.3 As a result, the
complexity becomes a multiple of the number of la-
tent tokens in all reasoning blocks B×m, compared
to standard text-only training, making it computa-
tionally expensive to train on long reasoning tasks
(as it slows down the training by O(B) times).

To address this issue, we present an iterative algo-
rithm that can approximate latent tokens with only
L × m forward passes, where L is a small con-
stant hyper-parameter and L ≪ B. The intuition
behind this method is to relax the causal dependen-
cies across reasoning blocks, which enables greater
parallelism during forward computation. At the same time, we apply iterative updates to progres-
sively reduce approximation error. This design increases the number of forward passes only by a
much smaller factor, rather than scaling with the number of latent tokens, thereby greatly reducing
computational cost.

Formally, we denote z̃
(ℓ)
(b,i) as the value of the latent token z(b,i) in the ℓ-th iteration, and we set the

initial value of the i-th latent token in all blocks as z̃(0)(b,i) = vi,∀b ∈ [1, B], which is initialized as
the token embeddings of textual gist tokens [g1, . . . , gm], g ∈ Vgist introduced in Section 2. At the
t-th token generation in the ℓ-th iteration, the latent tokens in the b-th block is

Z̃
(ℓ)
t [b] = [

Newly updated tokens in the ℓ-th iteration︷ ︸︸ ︷
z̃
(ℓ)
(b,1), . . . , z̃

(ℓ)
(b,t) ,

Rest tokens from the previous iteration︷ ︸︸ ︷
z̃
(ℓ−1)
(b,t+1), . . . , z̃

(ℓ−1)
(b,m) ]. (2)

Next, we use C(ℓ)
t [b, i] to denote the updated hybrid context with the latent tokens updated to Z̃

(ℓ)
t [b].

As shown in Fig. 3, inside the ℓ-th iteration, when decoding the t-th token, the LM can compute the
t-th latent tokens for all blocks in parallel: z̃(ℓ)(b,t) = Flatent(C(ℓ)

t−1[b, t − 1]),∀b ∈ [1, B]. We update
the t-th latent tokens in all blocks, which will be used to approximate the subsequent latent tokens.
After generating m latent tokens for all blocks in parallel, one iteration is completed. The generated
latent tokens are then used as inputs for the next iteration if ℓ < L; otherwise, the process terminates
and the final latent tokens are used for training.

The convergence of our iterative parallelized latent rollout algorithm is guaranteed: after finishing
the ℓ-th full iteration, the first ℓ blocks of latent tokens become exact without any approximation.
Therefore, the proportion of the approximated latent token in the context decreases as the number
of iterations increases. As a result, the error of the approximated latent tokens also decreases. Given

2We can consider the loss on the text tokens for the ℓ + 1-th stage as the reconstruction loss for the ℓ-th
block of latent tokens.

3It requires one additional pass to compute the token probabilities to compute the loss and update the model.
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the numerical complexities of the underlying transformers, it is hard to provide theoretical error
bounds, and we pick the L empirically. This approach shares root with a concurrent work (Wu et al.,
2025) that uses a Jacobi iteration to improve latent CoT during inference time.

Connection between our method and existing works. In the extreme cases, when L = 0, our
rollout method degrades to LightThinker (Zhang et al., 2025), where latent tokens are replaced
by fixed textual gist tokens; when L = B × m, our method becomes COCONUT (Hao et al.,
2024), which needs to generate all latent tokens autoregressively without any parallelization. The
former is less expressive, while the latter is computationally expensive and hard to train. Our method
serves as a general framework that unifies existing approaches, offering a balanced trade-off between
efficiency and expressiveness, and achieving strong practical training performance.

4 EXPERIMENT SETUP

We evaluate our hybrid latent-text reasoning approach on mathematical reasoning benchmarks, com-
paring against 2 baselines: StreamLLM (Xiao et al., 2023), which modifies attention mask to enable
efficient attention computation, and LightThinker (Zhang et al., 2025), which uses textual gist CoT
tokens to compress context. In addition, we investigate the trade-offs between inference efficiency
and reasoning accuracy when using our proposed iterative rollout algorithm.

Models and training setup. We test our models on 7–8B scale, training with Qwen2.5-7B (Team,
2024) and Qwen3-8B (Yang et al., 2025) as base architectures. We train our models using ran-
domly sampled 10k and 50k subsets of OpenThoughts-3 (Guha et al., 2025), which is a collection
of high-quality long CoT traces for math and coding questions. We implement our method using a
modified version of the llama-factory library (Zheng et al., 2024), utilizing DeepSpeed Zero-3 with
offloading (Rasley et al., 2020) to train our models on A100 GPUs. For training, we adopt the same
hyperparameters (e.g., learning rate, number of epochs) as Guha et al. (2025) for the 2 scales of
the training datasets, respectively. During training, we use a maximum sequence length of 21,000
tokens.

Datasets and evaluation. We evaluate models on challenging mathematical reasoning bench-
marks including competition math datasets such as AMC’23, AIME’24, AIME’25, the 500-problem
subset of MATH (Hendrycks et al., 2021) used by Lightman et al. (2023), and GPQA (Rein et al.,
2023). We adopt the same evaluation setup as Muennighoff et al. (2025), using a temperature 0.7,
top-p sampling with p = 1.0, and a maximum generation length of 32,768 tokens. For AIME’24,
Muennighoff et al. (2025) also creates an additional version with figures converted into in-context
vector graphics: we report the average performance over the two versions. Given their relatively
small dataset sizes, we run evaluations for AMC’23, AIME’24, AIME’25, and GPQA three times
using different random seeds, while MATH with more evaluation samples is evaluated once. All
runs use bfloat16 precision.4

5 MAIN RESULTS

Hybrid CoT achieves 94% performance as text-only CoT with 1.97x less compute. In Table 1,
we compare the performance of our hybrid latent-text reasoning approach against both text-only
reasoning baselines and existing efficiency-focused methods across challenging mathematical and
scientific benchmarks. Our results demonstrate that hybrid CoT can almost match standard text CoT
while providing significant efficiency gains. On Qwen3-8B, our method achieves a 70.96% averaged
score across all benchmarks, matching 94.19% of text CoT (75.34%) with 1.97x less compute.
On Qwen2.5-7B, our method achieves a 43.84% averaged score across all benchmarks, matching
87.45% of text CoT (50.13%) with 1.59x less compute. This demonstrates that HybridCoT can serve
as an efficient counterpart in efficiency-driven applications.

4While the choice of numerical precision does not significantly impact the baselines, our method performs
best with bfloat16, likely because the latent representations were trained in this precision.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Model performance on math reasoning benchmarks. “Gen. Len.” denotes generation length
in tokens.

AIME’24 AIME’25 AMC’23 MC Avg.⋆ MATH GPQA All Avg. Gen. Len. # Latent Comp. (×108)
Q

w
en

2.
5-

7B

Text CoT 33.89 23.33 65.00 39.03 86.00 42.42 50.13 16.4k – 2.16

StreamLLM (Xiao et al., 2023)

Sink=4, Window=1024 0.00 2.22 20.83 5.76 55.00 28.79 21.37 13.7k – 0.14
Sink=Input, Window=1024 10.56 16.67 45.00 20.69 80.40 36.87 37.90 20.9k – 0.24

LightThinker (Zhang et al., 2025)

m = 9, block=paragraph 13.89 23.33 56.67 26.94 76.00 37.21 41.42 22.3k 6.2k 0.84
m = 3, block=sentence 10.00 11.11 44.17 18.82 74.20 34.51 34.80 22.2k 2.4k 0.39

Hybrid CoT (Ours)

m = 9, block=paragraph 16.67 18.89 56.67 27.22 81.00 43.27 43.30 22.0k 4.8k 1.57
m = 3, block=sentence 21.11 17.78 57.50 29.38 83.40 39.39 43.84 21.1k 2.1k 1.36

Q
w

en
3-

8B

Text CoT 70.00 66.67 90.00 74.17 96.00 54.04 75.34 12.9k – 1.42

StreamLLM (Xiao et al., 2023)

Sink=4, Window=1024 6.67 7.78 22.50 10.90 59.00 29.12 25.01 15.2k – 0.15
Sink=Input, Window=1024 16.67 16.67 65.00 28.75 84.00 38.89 44.24 17.5k – 0.20

LightThinker (Zhang et al., 2025)

m = 9, block=paragraph 46.11 36.67 80.00 52.22 91.40 52.02 61.24 20.4k 4.7k 0.63
m = 3, block=sentence 28.89 23.33 69.17 37.57 86.60 52.19 52.04 22.8k 2.6k 0.40

Hybrid CoT (Ours)

m = 9, block=paragraph 62.22 47.78 85.83 65.58 95.20 54.71 69.15 15.5k 3.5k 0.90
m = 3, block=sentence 61.67 54.44 88.33 66.53 94.80 55.56 70.96 14.4k 1.4k 0.72

⋆ Given the small sizes of AIME and AMC datasets, we include an average of these three datasets.

Hybrid CoT significantly outperforms baselines. When comparing with baselines, HybridCoT
significantly outperforms LightThinker, a state-of-the-art latent reasoning method, by 1.36x and
1.26x on Qwen3-8B and Qwen2.5-7B, respectively. In addition, our method provides superior
accuracy—70.96% on Qwen3-8B and 43.84% on Qwen2.5-7B—compared with training-free con-
text compression methods like StreamLLM—44.24% on Qwen3-8B and 34.80% on Qwen2.5-7B—
that suffer from information loss during compression in the text space.

HybridCoT works well on complex tasks that requires longer reasoning traces. Notably, our
approach shows particularly strong performance on competition mathematics problems that require
long CoT, achieving a 66.53% average on AIME and AMC benchmarks compared to 28.75% for
StreamLLM and 37.57% for LightThinker on Qwen3-8B. In addition, HybridCoT achieves an aver-
age of 29.38% on long-CoT benchmarks, in comparison with 18.82% for LightThinker and 20.69%
for StreamLLM on Qwen2.5-7B.

These results validate that our hybrid approach successfully combines the precision of textual rea-
soning with the efficiency of latent representations, enabling models to maintain high reasoning
performance while reducing computational overhead.

6 ABLATION STUDIES

Determining the best L A key hyperparameter in our iterative rollout algorithm is the number
of iterations L used during training. As shown in Fig. 5, we analyze the convergence behavior by
measuring the L2 norm of the embedding difference between the approximated latent tokens and
the ground truth latent tokens obtained through full autoregressive rollout. The plot demonstrates
that the approximation error decreases rapidly in the first few iterations, with the most significant
improvement occurring between iterations 0 and 2. Beyond iteration 2, the convergence rate slows
substantially, yielding diminishing returns in approximation quality. Based on this analysis, we set
L = 2 for all our experiments, as it provides the most effective trade-off between approximation
accuracy and computational efficiency. This choice allows us to capture the majority of the conver-
gence benefits while maintaining reasonable training costs.

7
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Fig 4: Compared to the baselines, Hybrid-CoT
finds a balance between inference compute and
model accuracy.

Fig 5: The latent tokens approximation quickly
converges after a few iterations in our iterative
algorithm.

Table 2: We ablate the best configuration of m as
well as the how to create the reaosoning blocks
(in terms of sentences or paragraphs) for our pro-
posed method.

m AIME’24 MATH1 GPQA Micro Avg.

Se
nt

en
ce

1 4.44 54.33 30.64 32.87
3 3.89 69.67 35.35 39.66
5 10.00 75.67 33.50 41.34
7 10.00 76.00 36.03 42.83
9 13.33 80.00 34.34 43.58

Pa
ra

gr
ap

h

1 1.11 54.00 27.61 30.54
3 6.11 66.00 29.29 35.66
5 6.67 70.67 32.15 38.64
7 8.89 72.33 32.32 39.57
9 8.89 75.33 33.00 40.78

1 We use a 100 random subset of MATH.

Picking m and the block split In Table 2,
we ablate two key design choices: the num-
ber of latent tokens per block (m) and the
granularity of reasoning block splits (sentence
vs. paragraph level). We observe that per-
formance generally improves as m increases
from 1 to 9 across both splitting strategies,
with diminishing returns at higher values. No-
tably, sentence-level splitting consistently out-
performs paragraph-level splitting across all
block sizes, achieving a micro average of
43.58% compared to 40.78% at m = 9. How-
ever, sentence-level splitting introduces compu-
tational overhead due to more frequent transi-
tions between text and latent reasoning modes,
leading to training slowdowns. Considering
this efficiency trade-off, we adopt paragraph-
level splitting with m = 9 for our main ex-
periments, as it provides competitive perfor-
mance (within 3% of the best configuration)
while maintaining better computational efficiency.

7 CONCLUSION

We present HybridCoT, a method that trains a language model to interleave textual and latent CoT
steps for reasoning for math problems. The generated text tokens scaffolds the latent tokens, and
they are removed from the context to speed up inference. Certain text tokens like math symbols
and numbers are retained in the context, which we find to be crucial for math reasoning tasks. To
make training of long latent CoT possible, we introduce an iterative parallelized latent rollout al-
gorithm that has a constant complexity irrespective of the reasoning length. Empirical results show
that our method achieves 70.96% average performance on Qwen3-8B, matching 94% of text CoT
performance while requiring 1.97× less compute. Our method outperforms existing efficient reason-
ing approaches by 1.36× on average and shows particularly strong results on complex competition
mathematics problems. These results demonstrate that hybrid reasoning successfully combines the
precision of textual reasoning with the efficiency of latent representations.

8
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A ANNOTATION MATH SYMBOLS IN THE TRAINING DATA

You will be given text containing mathematical reasoning. Your task is to identify and wrap all
mathematical expressions, variables, and formulas with <math> tags.
Rules:

• Tag complete mathematical expressions (e.g., equations, inequalities, formulas)
• Tag individual variables when they appear in isolation
• Tag numerical computations and their results
• Do NOT tag mathematical terms written in words (e.g., “parabola”, “derivative”)
• Preserve the exact spacing and formatting within tags
• When multiple mathematical expressions are connected by “and”, “or”, or commas within

the same logical unit, tag them together as one to minimize flow disruption
• Please do NOT label spans like “Answer:”, “Solution:”, “Explanation:”, “Proof:”, “Con-

clusion:”, “Final Answer:”, “Final Solution:”, “Final Explanation:”, “Final Proof:”, “Final
Conclusion:”

• Do NOT modify the original text inside tags - copy it exactly as is, without adding LaTeX
commands

• If there are blocks of code, please do NOT generate any tags for them
Examples:

Example 1:
Input: Given that x + 2y = 10 and x - y = 1, we can solve for x and y. First, from the second
equation, x = y + 1.
Output: Given that <math>x + 2y = 10 and x - y = 1</math>, we can solve for <math>x
and y</math>. First, from the second equation, <math>x = y + 1</math>.

Example 2:
Input: The quadratic formula states that x = (−b±

√
b2 − 4ac)/2a. When a = 1, b = -5, and c

= 6, we get x = 2 or x = 3.
Output: The quadratic formula states that <math>x = (−b±

√
b2 − 4ac)/2a</math>. When

<math>a = 1, b = -5, and c = 6</math>, we get <math>x = 2 or x = 3</math>.

Example 3:
Input: The constraints are 0 ≤ x ≤ 10, y ≥ 0, and x + y ≤ 15. The objective function is
z = 3x+ 2y.
Output: The constraints are <math>0 ≤ x ≤ 10, y ≥ 0, and x + y ≤ 15</math>. The
objective function is <math>z = 3x+ 2y</math>.

Example 4:
Input: Set A = {1, 2, 3} and B = {2, 3, 4}, so A ∩B = {2, 3} and A ∪B = {1, 2, 3, 4}.
Output: Set <math>A = {1, 2, 3} and B = {2, 3, 4}</math>, so <math>A ∩ B = {2, 3}
and A ∪B = {1, 2, 3, 4}</math>.
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