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ABSTRACT

The problem is known as Inverse Constraint Inference (ICI). A common solver,
Inverse Constrained Reinforcement Learning (ICRL) seeks to recover the optimal
constraints in complex environments in a data-driven manner. Existing ICRL al-
gorithms collect training samples from an interactive environment. However, the
efficacy and efficiency of these sampling strategies remain unknown. To bridge this
gap, we introduce a strategic exploration framework with guaranteed efficiency.
Specifically, we define a feasible constraint set for ICRL problems and investi-
gate how expert policy and environmental dynamics influence the optimality of
constraints. Motivated by our findings, we propose two exploratory algorithms
to achieve efficient constraint inference via 1) dynamically reducing the bounded
aggregate error of cost estimation and 2) strategically constraining the exploration
policy. Both algorithms are theoretically grounded with tractable sample complex-
ity. We empirically demonstrate the performance of our algorithms under various
environments.

1 INTRODUCTION

Constrained Reinforcement Learning (CRL) addresses sequential decision-making problems within
safety constraints and achieves considerable success in various safety-critical applications (Gu et al.,
2022). However, in many real-world environments, such as robot control (Garcia & Shafie, 2020;
Thomas et al., 2021) and autonomous driving (Krasowski et al., 2020), specifying the exact constraint
that can consistently guarantee the safe control is challenging, which is further exacerbated when the
ground-truth constraint is time-varying and context-dependent.

Instead of utilizing a pre-defined constraint, an alternative approach, Inverse Constrained Reinforce-
ment Learning (ICRL) (Malik et al., 2021; Liu et al., 2024a), seeks to learn the constraint signals
from the demonstrations of expert agents and imitate their behaviors by adopting the inferred con-
straint. ICRL effectively incorporates expert experience into the online CRL paradigm and thus better
explains how expert agents optimize cumulative rewards under their empirical constraints. Under this
framework, existing ICRL algorithms often assume the presence of a known dynamics model (Scobee
& Sastry, 2020; McPherson et al., 2021), or a generative transition model that responds to queries
for any state-action pair (Papadimitriou et al., 2023; Liu et al., 2023). However, this setting has
a considerable gap with scenarios in practice where the transition models are often not available,
or even time-varying, necessitating agents to physically navigate to new states to learn about them
through exploration.

To mitigate the gap, some recent studies (Malik et al., 2021; Qiao et al., 2023; Baert et al., 2023)
explicitly maximized the policy entropy throughout the learning process, yielding soft-optimal policy
representations that favor less-selected actions. Unfortunately, such an uncertainty-driven exploration
largely ignores the potential estimation errors in dynamic models or policies. To date, it still lacks
a theoretical framework to demonstrate how well the maximum entropy approaches facilitate the
accurate estimation of constraints.

In this paper, we introduce a strategic exploration framework to solve ICRL problems with guaranteed
efficiency. Recognizing the inherent challenge in uniquely identifying the exact constraint from expert
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demonstration, the objective of our framework is to recover the set of feasible constraints where each
element can accurately align with expert preferences, rather than to identify an exact constraint. By
explicitly representing these constraint sets with the reward advantages and the transition model, we
manage to confine the constraint estimation error with the discrepancy by comparing the estimated
environmental dynamics and expert policy with the ground-truth ones. This strategy provides a
quantifiable measure of error for our constraint estimation, linking it directly to a computationally
tractable upper bound.

Under our framework, we design two strategic exploration algorithms for solving ICRL problems:
1) A Bounded Error Aggregate Reduction (BEAR) strategy, which guides the exploration policy
to minimize the upper bound of discounted cumulative constraint estimation error; and 2) Policy-
Constrained Strategic Exploration (PCSE), which diminishes the estimation error by selecting an
exploration policy from a predefined set of candidate policies. This collection of policies is rigorously
established to encompass the optimal policy, thereby promising to accelerate the training process
significantly. For both algorithms, we provide a rigorous sample complexity analysis, furnishing a
deeper understanding of the training efficiency of these algorithms.

To empirically study how well our method captures the accurate constraint, we conduct evaluations
under different environments. The experimental results show that PCSE significantly outperforms
other exploration strategies and is applicable to continuous environments.

2 RELATED WORK

In this section, we introduce previous works that are most related to our algorithms. Additional
discussions can be found in Appendix B.

Exploration in Inverse Reinforcement Learning (IRL). Compared with the exploration strategies
in RL for forward control (Amin et al., 2021; Ladosz et al., 2022), the exploration algorithms in IRL
have relatively limited studies. Balakrishnan et al. (2020) utilized Bayesian optimization to identify
multiple IRL solutions by efficiently exploring the reward function space. To learn a transferable
reward function, Metelli et al. (2021) introduced an active sampling methodology that is designed to
target the most informative regions with a generative model to facilitate effective approximations of
the transition model and the expert policy. A subsequent research (Lindner et al., 2022) expanded
this concept to finite-horizon MDPs with non-stationary policies, crafting innovative strategies to
accelerate the exploration process. To better quantify the precision of recovered feasible rewards,
Metelli et al. (2023) recently provided a lower bound on the sample complexity for estimating the
feasible reward set in the finite-horizon setting with a generative model.
Lazzati et al., 2024a

Lazzati & Metelli, 2024
Lazzati et al.. 2024b

These methods study only reward functions under a regular
MDP without considering the safety of control or the constraints in the environments.

Inverse Constrained Reinforcement Learning (ICRL). Unlike IRL which solely focuses on the re-
covery of reward functions, ICRL seeks to elucidate the preference of expert agents by inferring which
constraints they follow. The majority of ICRL algorithms update the cost functions by maximizing the
likelihood of generating the expert dataset under the maximum (causal) entropy framework (Scobee
& Sastry, 2020). This method can be efficiently scaled to both discrete (McPherson et al., 2021)
and continuous state-action space (Malik et al., 2021; Baert et al., 2023; Liu et al., 2023; Qiao et al.,
2023; Xu & Liu, 2024). To improve training efficiency, recent studies combined ICRL with bi-level
optimization techniques (Liu & Zhu, 2022; Gaurav et al., 2023). However, current ICRL methods
have not explored exploration strategies or conducted theoretical studies about the sample complexity
of their algorithms.
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3 PRELIMINARIES

Notation.

We define the vector infinity norm as ||a||. = max;|a;| and
the matrix infinity norm as |[Al[oc = max; >_; [A4;;|. We define min;_ y f(z) to return the minimum
positive value of f over X. The complete notation is given in Appendix A.

Constrained Markov Decision Process (CMDP). We model the environment as a stationary CMDP
MUc := (S, A, Pr,rce, uo,7), where S and A are the finite state and action spaces, with
the cardinality denoted as S = |S| and A = |A|; Pr(s'|s,a) € A, , defines the transition
distribution; r(s,a) € [0, Rmax) and c(s,a) € [0, Ciax] denote the reward and cost functions; e
defines the threshold (budget) of the constraint; o € A< denotes the initial state distribution; and
v € [0,1) is the discount factor. Without loss of generality, we denote the CMDP with known
cost as M U ¢, and the CMDP without cost (i.e., CMDP\c¢) as M. The agent’s behavior can be
modeled by a policy 7 € Ag“.

Our theoretical results are primarily derived
from a discrete finite state-action space framework within an infinite horizon setting.

Given the CMDP, we define the discounted normalized occupancy measure (Altman, 2021) as
Pha(s,a) = (1 =) 72,7 Pp (St = 5,4 = a) so that (1 — )V (r, o) = (piy,7) and
(1 =y)V™(c, o) = (phy, ), where (1 — ) is the normalizer for p7; to be a probability measure
and V'™ is a reward or cost state-value function under the policy 7 and the initial distribution z.

Constrained Reinforcement Learning (CRL). Within a CMDP environment, CRL learns a policy
7 that maximizes the cumulative rewards subject to a known constraint:

oo o0
arg max E,ompr [Zwtr(st, at)} sit. Epugmopr {thc(st,at)} <e. (D
t=0 t=0

In this paper, we primarily focus on the cumulative constraint as in (1) instead of instantaneous
constraints due to its broader applications (Wachi et al., 2024). In particular, since ¢ > 0, by setting
€ > 0, the constraint in (1) denotes a soft constraint, enabling its application to the environment with
stochastic dynamics. On the other hand, we convert this constraint into a hard one when setting € = 0,
which facilitates the enforcement of absolute constraints at each decision step.

Value and advantage functions. We define the reward action-value functions as Q%f and
Q'vi- The superscript 7 specifies the actual costs or rewards evaluated. The reward action-
value function is Qy; (s,a) = Ex p, [>ioo7v'7(st,as)], and the reward advantage function fol-
lows A;\’/Tlr(s,a) = Qi (s,a) — V[ (s), where the reward state-value function is V" (s) =
E.[Q'xf (s,a)]. The subscript specifies the environment M that contains reward function r. The
superscript specifies the actual rewards under evaluation. We define the cost action-value function
as Qe = Erpy [X o0 c(st,ar)]. The subscript specifies the CMDP environment M U c.
The superscript specifies the actual costs under evaluation. The cost state-value function follows

VX;IT[JC(S) = ETF [QﬂUc(S’ CL)]

4 LEARNING FEASIBLE CONSTRAINTS

This section introduces the feasible cost set,

Furthermore, we outline how to quantify the accuracy of an estimated cost set,
demonstrating how its estimation error can be bounded by imperfections in estimating environmental
dynamics and the expert policy.

4.1 FEASIBLE COSTS IN CMDP

Since the expert policy satisfies constraints while achieving the highest cumulative rewards, we define
feasible cost functions based on two intuitions: 1) if a policy achieves higher rewards than the expert
policy (shorter path in Figure 1, left), the underlying constraints must be violated, and we can detect
unsafe state-action pairs by examining these infeasible trajectories; 2) if a policy achieves the same or
lower rewards than the expert policy (equal or longer path in Figure 1, middle & right), this suggests
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Figure 1: Illustrating the trajectories of the expert policy (black) and exploratory policies (red and
blue) in the grid-worlds. The constraint set (gray) is not observable. In the left scenario, exploratory
policies reach the goal in shorter paths and thus have larger rewards. In the middle scenario, the
exploratory policies’ rewards match the expert’s. Their trajectories can overlap (red) or mismatch
(blue). In the right scenario, exploratory policies result in longer paths that gain fewer rewards.

an absence of notable constraint-violating actions,

, ICRL
focuses on identifying the minimal set of constraints necessary to explain expert behaviors (Scobee &
Sastry, 2020). In this sense, policies in case 2 are not employed to expand the cost set.

Lemma 4.1. Suppose the expert policy m¥ of a CMDP M U c is known and the current state-action
pairis (s',a’). Let AF (s") denote the set containing all expert actions at state s', i.e., AF (s')={a €
A | 7 (als’) >0}. Then, at least one of the following two conditions must be satisfied: 1) The cost

function ensures B, .= p, {Zfio yie(st,as)| = € 2) Va' ¢ AP (s'), A;'\’,TE (s',a") <0.

The above lemma shows that if there exists an action yielding greater rewards than the expert action,
the expert policy’s cumulative costs must reach the threshold. Thus, enforcing that any higher-reward
action must incur greater costs than the expert action is sufficient to establish a constraint-violation

condition (i.e., expected return of costs > ¢).

We formally define the ICRL problem as follows.

Definition 4.2. (ICRL problem (Malik et al., 2021)). An ICRL problem is a pair 8 = (M, 7, r),
where M is a CMDP\c and 7F € A4 is an expert’s policy. A cost representation ¢ € [0, Cppax] 54
is feasible for 9B if 7 is an optimal policy for the CMDP M U ¢, i.e., 7% € I}, .. We denote
by Cy: the minimal set of feasible cost functions for 93, named feasible cost set that satisfies

Before formulating the cost function, we introduce the necessary assumptions for different constraints.

Assumption 4.3. Either of the following two statements holds:
(i) The constraint in (1) is a hard constraint such that € = 0;
(ii) The constraint in (1) is a soft constraint such that € > 0, and the expert policy is deterministic.

The rationale behind case (ii) is that when the expert policy 7% is stochastic at state s, we only know
Ey/rrnE [Qﬂi(s, a)] = V/f/[ti(s) > 0. In order to determine the value of Qf\f[jc(s, a) for a specific
expert action a, additional information is required, such as whether the budget is used up and reward
signals of other expert actions. Furthermore, note that in some states, expert policy is not defined
if all actions lead to constraint violation. Since feasible cost functions are defined to explain expert
behaviors, we do not utilize them to explain the non-existing expert policy in such states. In this
work, S denotes all the states where the expert policy is available. Based on these findings, we are
ready to establish the implicit formulation of feasible cost sets.

Lemma 4.4. (Feasible Cost Set Implicit). Under Assumption 4.3, let 3 = (M, ¥ r) be an ICRL
problem. ¢ € RS*4 is a feasible cost, i.e., ¢ € Cq if and only if V(s,a) € S x A:

(1) Expert Consistent (s,a): If 7 (a|s) > 0, QS‘(IUEC(S, a) — V/f/(fi(s) =0
(2) Constraint-Violating (s, a): If 7 (a|s) = 0 and A;\’,T{E(s, a) >0, Qj\’j[jc(s, a) — V/f/lti(s) > 0;
(3) Non-Critical (s,a): If 7 (a|s) = 0 and A;\’,T{E(s,a) <0, Qf\’j[jc(s, a) — V/f/lti(s) <0.
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Case (1) in the above lemma justifies the rationale behind case (ii) in Assumption 4.3. We proceed to
the explicit form of feasible cost sets.

Lemma 4.5. (Feasible Cost Set Explicit). Let 3 = (M, ¥, r) be an ICRL problem. Let ¢ € RS*A,
then c is a feasible cost, i.e., ¢ € Cy if and only if , V(s,a) € S x A:

c=Ay C+(E—~Pr)Ve, @

Intuitively, the first term in (2) penalizes constraint-violating movements that not only deviate from

T,

the expert’s preference but also have larger rewards (i.e., Ay, K > 0). This penalty ensures the
violation of constraint condition in (1), thereby prohibiting any policies following these movements.
The second term V¢ € RS can be interpreted as a cost-shaping operator that depends on the CMDP
but not on the expert policy. To represent hard constraints, V¢ is a zero matrix whose entries are all

E
zeros, i.e., V° = 05. However, if the target constraint is soft, we must ensure that V(s) = V(. (s).

4.2 ERROR PROPAGATION

Our primary objective is to minimize the estimation error of constraints (i.e., the feasible cost sets Cy).
To define this error, based on Lemma 4.5, we first bound the estimation error of the cost functions
(i.e., elements in the set) with some theoretically manageable terms in the following.

Lemma 4.6. (Error Propagation). Let g = (M, 7% r) and‘fj = (M\, 72 r) be two ICRL problems.
E
For any ¢ € Cy satisfying c = A7 (+ (E—~yPr)V°and ||c||oc < Cinax. there exists ¢ € Cqy such

that element-wise it holds that:

le—al <7 |(Pr - Pve| + |57 - a2 ¢. 3)

Furthermore,

'I"ﬂ'E
Ve(s)lloo < Crmax/(1 —7) and [[(]|oc < Crmax/ min?;ya) [Axg |-

This lemma states the existence of a cost ¢ in the estimated feasible set Cfg fulfilling the bound

composed by two terms. The first term concerns the estimation error of the transition model. The
second term depends on both the expert policy approximation and the estimated MDP, which can be
further decomposed as follows:

Lemma 4.7. For a given policy w, let A} denote the reward advantage function based on the
original CMDP M U c. For an estimated policy T, let A%’;\T denote the reward advantage function

based on the estimated MDP M and estimated cost function ¢. Then, we have

n Y1 +7)

‘AM_A/{/T 1—7v

2’7 o rT
< —|(Pr— PRV
_1_7M7» Ve

](w — R PrViT].

With the estimation error of cost functions bounded as in Lemma 4.6, we next analyze the estimation
errors of optimal policies 7* between CMDP with true cost and estimated cost, i.e., M Uc and M U€.
This error quantifies the extent to which the estimated cost function captures expert behaviors.

Lemma 4.8. Let M = (S, A, Pr, 7, ¢, jig,7) be a CMDP without the knowledge of the cost (i.e.,
CMDP\c). For every given policy , the first inequality below holds element-wise. For every optimal

policies 7 € I, ., and T € Hj\?ua of CMDPs M U c and Mue respectively, the second
inequality below holds.

|Q%iue — Q%ivel < |Isxa —yPrm) e -1

max | QViLe — Quello <

me{m*,m*}

)

=l

With the above results, we can define the optimality of the estimated cost sets based on the Probably
Approximately Correct (PAC) condition (Haussler, 1992; Mohri et al., 2018). The estimated feasible
set C@ is “close” to the exact feasible set Cy, if for every cost ¢ € Cy, there exists one estimated cost

ce ng that is “close” to ¢, and vice versa.
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Definition 4.9. (Optimality Criterion). Let Cyz be the exact feasible set and C@ be the feasible set

recovered after observing n > 0 samples collected in the source M and 7. We say that an algorithm
for ICRL is (e, , n)-correct if with probability at least 1 — §, it holds that:

inf  sup ‘Q%‘—UC(S, a) — Qj\:[u?(s, a)‘ <e,Ve e Cp,
ceCq mrell?,

Muc
inf  sup ’QﬂUc(s, a) — Qfua(s, a)‘ <eVce Caq»
c€Cop Rrelly,

where 7* is an optimal policy in M U ¢ and 7* is an optimal policy in Mue

The above definition aims to ensure the estimation error of cost does not compromise the optimality
of the expert policy. The first condition manifests completeness, since the recovered feasible cost
set needs to track every potential true cost function. The second condition expresses accuracy since
any recovered cost function must be in close proximity to a viable true cost function, preventing an
unnecessarily large recovered feasible set. The dual requirements are inspired by the PAC optimality
criterion in (Metelli et al., 2021; Lindner et al., 2022).

5 EFFICIENT EXPLORATION FOR ICRL

In this section, we introduce algorithms for efficient exploration by leveraging the aforementioned
cost set and estimation error. Our objective is to collect high-quality samples from interactions
with the environment, thereby improving the accuracy of our cost set estimations. Unlike most
existing ICRL works (Papadimitriou et al., 2023; Liu et al., 2022a) that rely on a generative model
for collecting samples, our exploration strategy must determine which states require more frequent
visits and how to traverse to them starting from the initial state so. To achieve this goal, we first
define the estimated transition model and the expert policy (Section 5.1), based on which we develop
a BEAR (Bounded Error Aggregate Reduction) strategy algorithm (Section 5.2) and a PCSE (Policy-
Constrained Strategic Exploration) algorithm (Section 5.3) for solving ICRL problems, respectively.

5.1 ESTIMATING TRANSITION DYNAMICS AND EXPERT MODEL

We consider a model-based setting where the agent strategically explores the environment to learn
transition dynamics and expert policy. These components are vital for bounding the estimation error
of the feasible cost set (Lemma 4.6). To achieve this, we record the returns of a state-action pair
(s,a) by observing a next state s’ ~ P(-|s,a), and the preference of expert agents ap ~ m(-|s)
in each visited state. For iteration Vk, we denote by ny (s, a, s’) the number of times we observe
the transition (s, a, s"). Denote ny(s,a) = > cg nk(s,a,s") and ng(s) = >, 4 7k (s, a). For the
expert policy and the transition model estimation, we define the cumulative counts Ny (s, a,s’) =
2521 nj(s,a,s"), Ni(s,a) = Z?:l n;(s,a) and Ni(s) = Zle n;(s). Accordingly, we can
represent the estimated transition model and expert policy as:

Nk(sa a, Sl)
Ny (s,a)

Do ~ Ni (57 a)

Pr,(s'|s, a) = i (als) = =57 @
N (s)

where 27 = max{1, z}. With these estimations, we derive the confidence intervals for the transition

model and expert policy using the Hoeffding inequality (see Lemma C.5). We prove that the true

transition model and the expert policy fall into these intervals with high probability. Based on these

results, we derive an upper bound on the estimation error of feasible cost sets and prove that this

upper bound can be guaranteed with high probability as follows:

Lemma 5.1. Let § € (0,1), with probability at least 1 — 6, for any pair of cost functions ¢ € Cq and
Cr € C‘f}k at iteration k, we have

l
|c(s,a) _/C\k(sva)l < Ck(37a)7 Ck(s>a) = min {U M?S(;li)acmax} P (5)

min™T o —
where o — Yo (Rmax<3+v2{_w)2 Ayt lva) t0(s,a) = log

(36SA(N,j(s,a))2>
— .



Under review as a conference paper at ICLR 2025

It is worth noting that Cy, (s, a) typically decreases after the number of samples collected for a specific
(s, a) pair reaches a peak. To efficiently allocate a fixed number of samples to meet the demand of
Definition 4.9, we introduce the exploration strategy next.

5.2 EXPLORATION VIA REDUCING BOUNDED ERRORS

Based on the above upper bound, we are ready to design algorithms for efficiently solving the
ICRL problem. Since our primary goal is to fulfill the PAC-condition in Definition 4.9, we begin
by establishing an upper bound on the estimation error, which pertains to the disparity for the
performance of optimal policy 7* between CMDP with true cost and CMDP with estimated cost at
iteration k, i.e., M U ¢ and M U ¢. Our key results are presented as follows:

Lemma 5.2. At iteration k, let e (s,a;7*) = \QMUC(S a) — 3\/7(TUC (s, a)| defines the estimation

error of discounted cumulative costs within the true CMDP\c M. For any policy 7% € 1T}, ., we
upper bound the above estimation error ey (-) as follows:

lex (s, a5 7*)lloo < [|1g (Isxa =7y Prm)~'Cil - ©6)

To reduce this error bound, we introduce BEAR exploration strategy for ICRL in Algorithm 1
(represented in teal color), which explores to reduce the bounded error. This is equivalent to solving
the RL problem defined by M = (M\r) U Cy, where we replace the reward r in MDP M with C},.
We can use any RL solver to find the exploration policy in practice. We show in Corollary C.6 that
the exploration algorithm converges (satisfies Definition 4.9) when either of the following statements
is satisfied:

(4)

Sample Complexity. Next, we analyze the sample complex1ty of Algorithm BEAR. The updated
accuracy ¢, in Algorithm 1 equals to (i) of (7). Let n'(s,a|so), h € [nmax] be the probability of
state-action pair (s, a) reached in the h-th step following a policy 7, € II, (c, starting in state so.
We can compute it recursively:

1

= Gmex  Cils,a)<e, (i) |16 Isxa —vPrm) " 'Cil|  <e. (D)

ne(s, also) = (als) L=y, (s, also) : Zﬂ'k als)Pr(s|s’, a")ni(s', a'|so),

a’,s’

where 7y, is the exploration policy in iteration k. We then define the pseudo-counts that are crucial to
deal with the uncertainty of the transition dynamics in our analysis.

Definition 5.3. (Pseudo-counts) We introduce the pseudo-counts of visiting a specific state-action
pair (s, a) in the h-th step within the first k iterations as:

Mmax

0 S35 also).

h=1 =1

Similar to (4), we define N, (s,a) = max{0, Ny (s,a)}. The following lemma upper bounds the
estimation error of feasible costs with the pseudo-counts under a certain confidence interval.

Lemma 5.4. With probability at least 1 — 6 /2, Vs,a,h,k € S x A X [0, nmax] x NT, we have:

min { o %977@)70111% <7 M, (8)
2N} (s,a) Ny (s, a)

where {1;(s, a) = log(36SA(N," (s,a))?/0) and & = max{o, v2Ciax }-

Subsequently, the sample complexity of Algorithm 1 is presented as follows:

Theorem 5.5. (Sample Complexity of BEAR). If Algorithm BEAR terminates at iteration K with the
updated accuracy €, then with probability at least 1 — ¢, it fulfills Definition 4.9 with a number of

samples upper bounded by
~ 52S A
o2
(1 —7)%e%

The above theorem has taken into account the sample complexity of the RL phase. In fact, further
improvements can be made to enhance the algorithm’s performance.
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5.3 EXPLORATION VIA CONSTRAINING CANDIDATE POLICIES

The above exploration strategy has limitations, as it explores to minimize uncertainty across all
policies, which is not aligned with our primary focus of reducing uncertainty for potentially optimal
policies. As a result, this approach places an additional burden on sample efficiency. To address these
limitations, we propose PCSE for ICRL in Algorithm 1 (represented in purple color). Specifically,

Algorithm 1 BEAR and PCSE for ICRL in an unknown environment

Input: significance § € (0 1) target accuracy €, maximum number of samples per iteration ny,ax;
Initialize k < 0, g9 =
while ¢, > ¢ do
Solve RL problem defined by MC* to obtain the exploration policy 7y;
Solve optimization problem in (9) to obtain the exploration policy 7;
Explore with 75, for n. episodes;
For each episode, collect 7y, samples from (s, a);
Update accuracy €j41 = maxX(s q)esx.A Cry1(s,a)/(1 —7);
Update accuracy eyy1 = |18 (Lsxa — vPrm) " Crlloc:
Update 77, | and Py in (4);
k<« k+1.
end while

1—y>

we intentionally constrain the search for policies to those yielding a value function at iteration k close
to the estimated optimal one. Thus we focus only on the plausibly optimal policies and formulate the
optimization problem as:

Epp1 = sup pg(Isxa —vPrm)Cryr, st I =I5 N1, ©)
/LQGAS
welly

c __ A . T c,m G
IIj, = {7‘[‘ € A5 : sup g (VM P Vﬂkufi) §4€k+e},

HoEAS
r_ EA'AZ f (Vl\ﬂ'_ rﬂk)
g {77— s HUIQASMO k
where 3, = 2(»;1??2,‘ | Pr— PTkHoo + 21R’T,a§ [[(7* = 7)o

The rationale in ITj, can be attributed to the intersection of two aspects: 1) IIj, constrains exploration
policies to visit states within an additional budget, thereby ensuring resilience to estimation error
when searching for optimal policies; 2) II}, states that exploration policies should focus on states
with potentially higher cumulative rewards, where possible constraints lie. As the estimation error
decreases, the gap (i.e., Qi) also diminishes, eventually converging to zero, which ensures the
optimality of constrained policies. We have shown in Appendix C.12 that optimality policies can be
captured by subsequent I1;.

To solve the optimization problem (9), we represent its Lagrangian objective as L(p7%,, A) =
~(p3s Cor) 422 (L= (VI +90) = (s ) +2 (1= (VES .+ 20+ (s )
where A = [A1, A2]T records two Lagrangian multipliers. The dual problem of (9) can be defined as
I;lﬁlr)r\lg())(L(pﬂM,)\). (10)
To solve this dual problem, we assume that Slater’s condition is fulfilled and we follow the two-

timescale stochastic approximation (Borkar & Konda, 1997; Konda & Tsitsiklis, 1999). The following
two gradient steps are alternately conducted until convergence,

Potrrr = Pok — k(Lo (0 k> M) + W), A1 = M + b (LA (03 s i) + Uk),

where coefficients aj, < by, satisfying Sonak = Zbk = og,'Za% < oo and Zbﬁ < c0. W
and U}, are two zero-mean noise sequences. Under this condition, the convergence is guaranteed
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in the limit (Borkar, 2009). At each time step k, the exploration policy is calculated as: 7 (a|s) =
Pk (8:0) /220 PR k(s @)

Sample Complexity. In the following theorem, we prove that PCSE for ICRL fulfills the

PAC-condition in Definition 4.9 and we show its sample complexity. To present this result,

we define the cost advantage function A% (s,a) = Q%< (s,a) — V=% (s), in which ¢ €
. R ue Mue . Mué )

arg min ce,, MaX(s a)esx.A [¢(s,a) — Cx (s, a)] is the cost function in the exact cost feasible set Cyp

closest to the estimated cost function ¢k (s, a) at the terminating iteration K.

Theorem 5.6. (Sample Complexity of PCSE). If Algorithm PCSE terminates at iteration K with
accuracy €k and the accuracy of previous iteration is € i _1, then with probability at least 1 — 6, it
fulfills Definition 4.9 with a number of samples upper bounded by

_ <2 2 2
n§0<min{(la 5;1 _ (6ek—1 +€) SA2 })
— € . C,*

V)€K min, ) (Aﬂua(s’a)) g2

The first term matches the sample complexity of the BEAR strategy since both strategies explore for
the same purpose. The second term depends on the ratio (6ex_1 + €)/ex and the minimum cost
advantage function min, ) A%’Afug. The ratio depends on both n,,,x and n.. If the two values are
high, the ratio is high and the algorithm tends to uniformly sample every state-action pair. Otherwise,
the ratio is small due to the fact that 7 is an accumulation of Cx 1 (generally larger than Cg). A
smaller €, namely a tighter constraint, benefits the sample efficiency. The cost advantage function
ming 4) A}Afue shows that the larger the suboptimality gap, the easier to infer the constraint.

6 EMPIRICAL EVALUATION

We empirically compare our algorithms against SIAIt gy o 2rntE o Srnet EEEE
other methods across both discrete and continu-

ous environments, where the agent aims to nav- .
igate from a starting location to a target location T
(where it receives a positive reward) while sat-  ° 7 ® ¢ C 2o e s e Tz aas e 01z e e
isfying the constraint condition. Figure 2: Four different Gridworld environments.

w
o kN w s o o

Experiment Settings. The evaluation metrics include: 1) discounted cumulative rewards, which mea-
sure the optimality of the learned policy; 2) discounted cumulative costs, which assess the safety of the
learned policy; and 3) Weighted Generalized Intersection over Union (WGIoU) (see Appendix D.2),
which evaluates the similarity between inferred constraints and ground-truth constraints.

Comparison Methods. We compare our exploration algorithms, i.e., BEAR and PCSE, with four
other exploration strategies. Results of two baselines: random exploration and e-greedy exploration
are demonstrated in Figure 3.

5

6.1 EVALUATION UNDER DISCRETE ENVIRONMENTS

Figure 2 illustrates four discrete testing environments, each characterized by distinct constraints. The
white, red, and black markers indicate the starting, target, and constrained locations, respectively. The
expert policy is trained under ground-truth constraints, while the ICRL algorithms are examined when
these constraints are not available. Note that these environments are stochastic so that the environment
executes a randomized sampled action with a specific probability (p = 0.05). Figure 3 shows the
training process of three metrics for six exploration strategies in four Gridworld environments, along
with the performance of expert policy (represented by the grey line). It can be shown that the
performance of the optimal policy in M U ¢ gradually converges to the performance of the optimal
policy in M U c. Also, we find that PCSE (represented by the red curve) exhibits the highest sample
efficiency while achieving similar performance among the six exploration strategies. In Gridworld-2
and Gridworld-4, WGIoU converges to a degree of similarity less than 1 (ground-truth). This is
because ICRL emphasizes the identification of the minimal set of constraints necessary to explain
expert behaviors. We demonstrate the learned constraints in the rightmost column of Figure 8 and 10.
The learned constraints are captured because visiting these states leads to higher cumulative rewards,
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12 Gridworld-2 Gridworld-3 Gridworld-4
—— Random 0125

— BEAR — Random — Random — Random
egreedy | 0.06 — BEAR — BEAR 0.06 — BEAR
0.100

— pese e-greedy e-greedy e-greedy

8
8
@
=
K] —— Expert — pCSE 0075 — pCSE 008 — pCSE
2 os 0.04 — Expert — Expert ¥ A Expert
3 0.050
Qo4 0.02 0.02 0
° z
2 02 e 0.025
g h o )
AN AR 0.00
3 N 0.00
2 oo . 0.000
O -0z ~0.02 -0.025 —0.02
3 50 100 150 260 [ 50 160 150 260 [) 50 160 150 260 [ 50 100 150 260
Iteration Iteration Iteration Iteration
12 — Random — Random — Random | 1?2 — Random
1o — BEAR | 20 — BEAR 05 — BEAR 10 — BEAR
egreedy egreedy | o4 egreedy egreedy
08 — pcsE |4 — pese — pese 08 — pese
— Expert — Expert 03 — Expert — Expert

02

1 0.4
01 IJ\ ,
\ A o

0.0

e e it

-0.1

Discounted Cumulative Costs

—02 -02
0 50 160 150 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iteration Iteration Iteration Iteration
10 10 10 1.0
os 05 05 ‘\‘ﬁ\j/ 05
2
o 0o 0.0 0.0 0.0
2
o5 — Random — Random —0s — Random —— Random
— BEAR -0 — BEAR — BEAR -05 — BEAR
e-greedy e-greedy e-greedy e-greedy
-10 — PCSE “10 — pese -0 — PCsE 10 — PCSE
—— Ground-truth —— Ground-truth —— Ground-truth —— Ground-truth
0 50 100 150 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iteration Iteration Iteration Iteration

Figure 3: Training curves of discounted cumulative rewards (top), costs (middle), and WGIoU
(bottom) for four exploration strategies in four Gridworld environments.

whereas other uncaptured ground-truth constraints do not influence the optimality of expert behavior.
Constraint learning processes of six strategies are demonstrated in Figure 7 to 10 in Appendix E.1.

6.2 EVALUATION UNDER CONTINUOUS ENVIRONMENTS

Inferred Constraints Point Maze Point Maze
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9
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Figure 4: Point Maze environment, inferred constraints, discounted cumulative rewards and costs.

Figure 4 (leftmost) illustrates the continuous Point Maze environment, where the green agent has a
continuous state space. The agent’s goal is to reach the red ball inside the maze with pink walls. The
environment is stochastic due to the noises imposed on the observed states. Figure 4 (middle left)
demonstrates the inferred constraints (represented by blue dots) obtained through PCSE, with the
center of the maze designated at (0, 0). Figure 4 (middle right and rightmost) reports the discounted
cumulative rewards and costs during training. Check Appendix E.2 for more experimental details.

7 CONCLUSIONS

This paper introduces a strategically efficient exploration framework for ICRL problems. We
conduct theoretical analysis to investigate the influence of estimation errors in expert policy and
environmental dynamics on the estimation of constraints. Building upon this, we propose two
exploration strategies, namely BEAR and PCSE. Both algorithms actively explore the environment to
minimize the aggregated bounded error of cost estimation. Moreover, PCSE goes a step further by
constraining the exploration policies to plausibly optimal ones, thus enhancing the overall efficiency.
We provide tractable sample complexity analyses for both algorithms. To validate the effectiveness
of our method, we perform empirical evaluations in various environments. Several future research
directions deserve attention to address the limitations of this paper: 1) extending this work to
finite-horizon settings and deriving lower bounds for sample complexities, and 2) analyzing the
transferability of constraint information.

10
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A  NOTATION AND SYMBOLS

In Table 1, we report the explicit definition of notation and symbols applied in our paper.

Table 1: Overview of notation and symbols

Symbol Name Signature
M CMDP without knowing the cost (CMDP\c) (S, A, Py, €, 1o, 7)
MUec CMDP (S, A, Pr,r c, e, 10,7)
S State space
A Action space /
Pr Transition model A, 4
S0 Initial state
T Policy A
a2 Expert policy A
r Reward function RS*A
c Cost function RS*A
€ Threshold of constraint RS
Vil Reward state-value function of 7 in M RS
QW Reward action-value function of 7 in M RS*xA
AT Reward advantage function of 7 in M RS*xA
Ve Cost state-value function of 7w in M U ¢ RS
QL Cost action-value function of 7 in M U ¢ RS*A
v Cost advantage function of 7 in M U ¢ RS*A
Cyp Exact feasible set /
Cy Recovered feasible set /
ni (s, also) State action pair visitation frequencies AS*A
P Occupancy measure of 7 in M AS*A
€ Target accuracy R*
d Significancy (0,1)
Ne Number of exploration episodes N+
E Expansion operator RS — RS*A
Isua Identity matrix on S x A /
Is Identity matrix on S
[a] Set that contains integers from 0 to a {0,1,...,a},a e N

B ADDITIONAL RELATED WORKS

Sample Efficiency. Sample-efficient algorithms have been explored across various RL directions,
yielding significant advancements. To find the minimal structural assumptions that empower sample-
efficient learning, Jin et al. (2021) introduced the Bellman Eluder (BE) dimension and proposed a
sample-efficient algorithm for problems with low BE dimension. Liu et al. (2024b) introduced a
sample-efficient RL framework called Maximize to Explore (MEX), which reduces computational
cost and enhances compatibility. In the field of imitation learning, Liu et al. (2022b) addressed
both online and offline settings, proposing optimistic and pessimistic generative adversarial policy
imitation algorithms with tractable regret bounds. In the realm of model-free RL, Jin et al. (2018)
developed a Q-learning algorithm with Upper Confidence Bound (UCB) exploration, achieving a
regret bound of /T in episodic MDPs. Wachi et al. (2018) modeled state safety values using a
Gaussian Process (GP) and proposed a more efficient approach to balance the trade-off between
exploring the safety function, exploring the reward function, and exploiting knowledge to maximize
rewards. In the context of constrained reinforcement learning (CRL), Miryoosefi & Jin (2022) bridged
reward-free RL and CRL, providing sharp sample complexity results for CRL in tabular Markov
Decision Processes (MDPs). Focusing on episodic finite-horizon Constrained MDPs (CMDPs),
Kalagarla et al. (2021) established a probably approximately correct (PAC) guarantee on the number
of episodes required to find a near-optimal policy, with a linear dependence on the state and action
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spaces and a quadratic dependence on the time horizon. From a meta-learning perspective, Liu
& Zhu (2023) framed the problem of learning an expert’s reward function and constraints from
few demonstrations as a bi-level optimization, introducing a provably efficient algorithm to learn a
meta-prior over reward functions and constraints. For misspecification in IRL, (Skalse & Abate, 2023)
provides a framework and tools to evaluate the robustness of standard IRL models (e.g., optimality,
Boltzmann rationality) to misspecification, ensuring reliable inferences from real-world data. (Skalse
& Abate, 2024) quantifies IRL’s sensitivity to behavioral model inaccuracies, showing that even small
misspecifications can result in significant errors in inferred reward functions.

Constraint Inference. Constraint learning in reinforcement learning has advanced significantly
to address shared safety requirements and improve scalability and efficiency. Chou et al. (2018)
introduced a method to infer shared constraints across tasks using safe and unsafe trajectories,
leveraging hit-and-run sampling and integer programming with theoretical guarantees. Kim & Oh
(2022) proposed Off-Policy TRC, a sample-efficient RL method with CVaR constraints that addresses
distributional shift via surrogate functions and trust-region constraints, achieving high returns and
safety in complex tasks. To ensure stable convergence, Moskovitz et al. (2023) developed ReLOAD,
which guarantees last-iterate convergence and overcomes limitations of gradient-based methods in
CRL. For scenarios with unknown rewards and dynamics, Lindner et al. (2024) introduced a CMDP
method that constructs a convex safe set from safe demonstrations, enabling task transferability
and outperforming IRL-based approaches. Kim et al. (2024) extended IRL framework to infer
tighter safety constraints from diverse expert demonstrations, addressing the ill-posed nature of
constraint learning and enhancing multi-task generalization. Our approach infers a feasible cost set
encompassing all cost functions consistent with the provided demonstrations, eliminating reliance
on additional information to address the inherent ill-posedness of inverse problems. In contrast,
prior works either require multiple demonstrations across diverse environments or rely on additional
settings to ensure the uniqueness of the recovered constraints. This feasible set approach can focus
on analyzing the intrinsic complexity of the ICRL problem only, without being obfuscated by other
factors, resulting in solid theoretical guarantees (Lazzati et al., 2024b).

C PROOFS OF THEORETICAL RESULTS IN THE MAIN PAPER

In this section, we provide detailed proofs of theoretical results in the main paper.

C.1 PROOF OF LEMMA 4.1

Proof. If neither case happens, i.e., E, .z p, {Z;’io ~e(sy, at)} < eand 3 a” € A that satisfies

both a” ¢ AF(s') and ATM”: (s',a”) > 0, we can always construct a new policy, which only differs
0 ,a=a"

from the expert policy 7Z in state s', as 7'(a|s’) = L - There must 3 6 € (0,1]
—b,a~m

that uses some (or all) of the left budget e — E,, = p, {Zfi oY e(se, at)] while having a larger

cumulative rewards, which makes 7 not an optimal policy. This makes a contradiction.

The existence of such 6 can be proved as follows. By recursively using the Bellman Equation, we can
assume

el E E e B
]Elto |:VM2UC(SO)i| - T= a(,bl,(), PT77T af}/) + ﬁ(,uov PT77T ?7) ' Eﬂ'E |:QM2UC(S a4 ) ) (11)

where the leftover budget 7 € (0, €], coefficients & > 0, 8 > 0. /3 can not equal to 0, since state s’
has to be visited with at least some probability. Otherwise, we do not need to explain 7 (s’).
E
U

Note that if Q%Y (s, a") <Eqe [Qf\’,’tTZEUC(s’ ,a? )} , 7' is a strictly better policy than expert policy

E E
for any 6 € (0, 1]. Hence, we focus on Q'vf ,.(s',a") > E » [Qj\’,’{wc(s’, aE)] In this case, we
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can always obtain a § > 0, by letting

By [Vimbe(s0)| = 7' = aluo, Pr,7%,9) + Blsto, Prow?,7) - (1= O)E s [ Q705" a®)]
+6Q5T (5 a )) (12)

where 7/ € [0,7) denotes the leftover budget after applying 7. By subtracting Eq. (l 1) from

Eq. (12), we have V Q' UC(s a’)>E.r [QMQUC(S a )} and QMQUC(S a’) # QM2UC(5 a®)
(otherwise 7 = 7/),

T -1

0= - (13)
Blho, Pr, 72, 1) (@0 (s, a”) = QRc(', aP))

With this analysis, if AZ’LE (s’,a”) > 0, which indicates 2) of Lemma 4.1 is not satisfied

E E E
so 1) must be satisfied, Q% .(s,a) > Eqr Qj’j{;UC(s,aE)} = Vyiue(s) suffices to let
EonE Py | Dopeo ¥ (e, as)| > € which is a constraint-violating condition. O

C.2 PROOF OF LEMMA 4.4

Proof. In this proof, we distinguish two cases as in Assumption 4.3.
In the first case, the constraint n (1) is hard, i.e., ¢ = 0.

(i) By definition of expert policy 7, we have V/f/f;ic(s) = 0. On one hand, if c is feasible,
V/f/’l;ric = E.=[Q%1, UC] = 0. Also, since ¢ € [0,Crax), QM be = 0. Asa result
QMQUC = 0 = V(. On the other hand, any ¢ € [0, Crnay] that satisfies QM Ue =
V/f,gic = 0 makes 7% an optimal policy under this condition.

(ii) By definition of expert policy 7, we have VM2SC(S) = 0. On one hand, since

E

AT’”ZE(S a) > 0, if ¢ is feasible, Qi’/’fic(s a) > 0, otherwise 7 is not optimal. On

the other hand, any cost function ¢ € [0, Ciyay] that satlsﬁes Q MQUL(S a)>0= VM Uc(s)
ensures action a violates the constraint, and makes 7 an optimal policy under this condition.
B
(iii) By definition of expert policy 7", we have V" . (s) = 0. On one hand, since
AC\’LE(S a) <0, any c(s,a) € [0, Crayx] ensures the expert’s optimality However, in terms
E
of the minimal set Cyp in Definition 4.2, ¢(s,a) = 0 and QMQUC(S a) = 0=V .(s).

On the other hand, any c(s,a) € [0, Cpax] that satisfies QMQUC(S, a)=0= V/\CAZSC(S)

ensures 7 an optimal policy under this condition.

In the second case, the constraint in (1) is soft, i.e., € > 0, and the expert policy is deterministic.

(i) Since the expert policy 7% is deterministic, we have Q AIZUC(S a) = V/f,’gic(s). On one
hand, if ¢ is feEasible, Qf\’:{wc(i, a) = VMQUC(S). On the other hand, any ¢ € [0, Cinax] that
satisfies Q7. (s, @) = Vi .(s) makes 7% an optimal policy under this condition.

(i1) In this case, since AT”TQE(S a) > 0, situation 2) of Lemma 4.1 is not satisfied. As a

result, 1) of Lemma 4.1 must be satisfied. On one hand, if ¢ is feasible, Q7 Uc(s a) >
QMzuc(S a?) = VMQUC<5> suffices to let B, .= p, [thoy c(st,at)} > €. On the

E E
other hand, any cost function ¢ € [0, Cinax] that satisfies Q% . (s,a) > Vo . (s) ensures
action a violates the constraint and makes 7 an optimal policy under this condition.

E
(iii) On one hand, since A’y ”2 (s,a) < 0, any relationship between Qv ,.(s,a) and Vi, UC(8)
ensures the expert’s optimality. However, in terms of the minimal set Cyp in Definition
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42, QMM(

ya) < V/f/l“ .(s). On the other hand, any ¢ € [0, Cax] that satisfies
Q/\’AQUC(&@) < ij,fr .(s) ensures

£ an optimal policy under this condition.

O

C.3 PROOF OF LEMMA 4.5

Lemma C.1. Let B = (M, ¥ r) be an ICRL problem. A Q-function satisfies the condition of
Lemma 4.4 if and only if there exist ( € R‘;E;A and V¢ € RS such that:
T 7TE c
Qe = Ay (+EVE, (14)
where the expansion operator E satisfies (Ef)(s,a) = f(s).

E
Here, the term ¢ ensures 1) (when Axf > 0) the constraint condition in (1) is violated at (s, a)

pairs that achieve larger rewards than the expert policy, and 2) (when Aj;fg 0) only necessary cost
functions are captured by feasible cost set Cop.

Proof. We prove both the ’if” and “only if” sides.

To demonstrate the "if" side, we can easily see that all the Q-functions of the form Q% ,.(s,a) =
B
AT (s,a)((s,a) + EV*(s) satisfies the conditions of Lemma 4.4 in the following:

1) Let s € S and a € A such that 77 (als) > 0, then we have Q5 .(s,a) = V°(s) = Vi, ,.(5).
This is the condition (i) in Lemma 4.4.

2) Let s € S and a € A such that 7% (a|s) = 0 and Q'f (s7a) > V/CfE(s), then we have

Qve(s.0) = YT (s,0)C(s,0) + Ve(s) = Y] (5,0)C(5,0) + Vg o) > Viigu(s). This is
the case (ii) in Lemma 4.4.

3)Let s € S and a € A such that 7%(als) = 0 and QME(s,a) < V/CfE(s), then we have

Qse(s,a) = AT (s,0)C + VE(s) = AT (s,a)C(s,a) + VEu(s) < VEq.(s). This is the
case (iii) in Lemma 4.4.

To demonstrate the "only if" side, suppose that 04, satisfies conditions of Lemma 4.4, we take
Vels) = Viue(s)-

1) In the critical region and follows the expert policy, where Q:JE (s,a) = V/C’IWE (s), 0¢(s,a) =
Q%ue — EVi4. = 0. Hence, there definitely exists ((s,a) > 0.

2) Ir; the constraint-violating region with more rewards, where QT/\’,TE(s,a) > V/C’l”E (s),
AV (s,a)¢(s,a) = Q5ue — EVique > 0. Hence, there definitely exists (s, a) > 0.

3) In the non-critical region with less rewards, where QTM”E (s,a) < VL’[TE (s), AS\’/’(TE (s,a)((s,a) =
Q%ue — EViu. < 0. Hence, there definitely exists ((s,a) > 0. O

Proof of Lemma 4.5
Proof. Recall that Q% . = (Isx.a — vPrm?)~!c and based on Lemma C.1, we can show that:
¢ = (Lswa—vPrr®) (437" ¢ + BV°)
’l‘,ﬂ'E c E r,7rE E c
= AW ¢+ BV — yPraP ATT ¢ — yPraPEV
Since WEA%rE =0gand 7PE = I,

=AW (+(E—Pr)Ve
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C.4 PROOF OF LEMMA 4.6
Proof. From Lemma 2, we can express the reward functions belonging to Cyz and C‘ﬁ as:
E
c=A (+(E—~Pp)Ve
c= AEEEJr (E—yPr)Ve

where (¢, ¢ ) € Rgé*‘ and V,V € RS. Since we look for the existence of ¢ € Cg» we provide a
specific choice of YA/, Eand Z: Ve= Ve, Z: ¢. Thus, we have:

== (437" C— AZ7C) + ((B=Pr)Ve — (B —Pr)V°)
= (4" - Az )¢y (Pr-Pr)ve
Take the absolute value, we obtain:
- () e )

E ~E
<|ATT — ATT
< |ang” - a2

C+|Pr - Pryve

We now bound the infinity norm of ( and V¢  First, from Eq. (14), we know that
EVe(s) = Qj\,éUC(s,aE). Hence, intuitively ||[V¢(s)||cc < ?T’;"E Second, from Eq. (2),
c(s,a) = AYf (s,a)((s,a) + (E — vPr)Ve(s). 1) When A%T > 0, ¢ = (c(s,a) —
(E — APr)Ve(s)) A% (5,0) < Cnax/min.  AYT (s,a). 2) When A7T < 0, ¢ =

= (s,a)
(—c(s,a) + (E — fyPT)VC(s))/(—A;’:{E (s,a)). Since (E — yPr)Ve(s) = c(s,a”) < Cuax

¢ < Crax/(— maxiS o) A:\f[E(s, a)). 3) When A;{,’[E = 0, we define ((s,a) = 0. To combine all
+

the three conditions, [[([lsc < Cinax/min(, \A:\:[E|

O

C.5 PROOF OF LEMMA 4.7

Lemma C.2. (Simulation Lemma for action-value function.) Let M = (S, A, Py, r, po,y) and

M= (S, A, Pr,r, tt0,7) be two MDPs. Let @ € A% be a policy. The following equality holds
element-wise:

Qi ~ @ =Isa—APra) (P~ POV (9

Proof. The proof can be shown as follows:
Qi — Q7 = (Usxa —vPra)'r = (Isxa = YPr7) ' (Isxa — vPr7)Q7S
= (Isxa —vPr7) H(Isxa — 712?)@}; — (Isxa — YPrA) " (Isxa = PrA)Q72
= Y(Isxa —yPra) "\ (Pr — Pr)RQ3
= YIsxa —yPr#) " (Pr — Pr)VET
O

Lemma C.3. (Simulation Lemma for state-value function.) Let M = (S, A, Py,r, uo,7) and

M = (S, A, ]5;-, T, 1o,7) be two MDPs. Let © € A§ be a policy. The following equality holds
element-wise:
Vil =Vl =as —vaPr) 'w(Pr — Pr)VeT (16)
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Proof. The proof can be shown as follows:
Vil = VT = (Is =77 Pr)~'r = (Is = ¥@Pr) " (Is = A Pr)VT
= (Is = v#Pr)~'(Is = ¥#Pr)VET — (Is = v#Pr) ™' (Is = A Pr)V
= 1(Is —y&Pr)"'#(Pr — Pr)VET
=Is —77Pr) "7 (Pr = Pr)VET
L]

Lemma C.4. (Policy Mismatch Lemma.) Let M = (S, A, Pr, 7, j10,7) be an MDP. Let 7,7 € A%
be two policies. The following equality holds element-wise:

Vil = Vil =4(Is —vaPr) " Ym = 7)Prvyy

Proof. The proof can be shown as follows:
Vii = Vi = (s =77Pr) " (Is = 4@Pr)Vi{" = (Is = 47Pr) '
= (Is =7Pr)"'(Is =7 Pr)Vy — (Is —vaPr) ™ (Is = ymPr) V[
=9(Is —7Pr) " (m = ) PrVi[

O
Proof of Lemma 4.7
Proof. By utilizing the triangular inequality of norms, we can obtain:
‘Aj{/’[—A%’Af < ‘AM—A}’AT +‘ij—,4;’1
1,11 27 oo rT 7(1 + ’V) ~ T
S 15 (Pr=Pr)VE' |+ =~ 5 [(m — 7)PrVyTl, (17)

where the second inequality is derived by the following two parts.

PartI. Let’s consider the first part.

(4) r7 rT r7 7

= (@ - ) - B (il - Vi)
(@ — @ )1 +1B(vil - Vi)

(#4) 1, e e~ P

=" ‘(Ism —yPra) " (Pr — Pr)Ve ‘ +v ‘(Is —y7Pr) & (Pr — Pr)VY

W || (Usxa = vPrE) | (Pr - PV

A - AT
‘ MM

(@)
<

+[ts = ¥#Pr) 7| Il [(Pr = PRV
(v) 27 _— ~
< —— |(Pr— Pp)VT
<1 |(Pr - PrvE,

* (i) exploits the definition of advantage function.
* (ii) applies the triangular inequality.

* (iii) applies the simulation Lemma for action-value function in Lemma C.2 (a variant of
(Agarwal et al., 2019, Lemma 2.2)) and the simulation Lemma for state-value function in
Lemma C.3.

* (iv) exploits Holder’s inequality and the theorem of matrix infinity norm inequalities that
[ABllco < [[Allol[Blloo-

* (v) exploits the fact that || (Isx.4 — YP77) oo < ﬁ, |(Is — Y7 Pr) Yoo < ﬁ, and
7]l < 1.
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Part II. Let’s consider the second part:

= | (@7 - uf) - £ (v - i)
MPTV/(] PTVj\"f) (V](jr - fo)
(15 ) (033

(2) (147) ’E<VXA’” - Vﬁf)

iv)

’Aj(/’[ — AT

—
=

< (1 +7) |(Is =77 Pr) " (m = 7)PrVy
<Y1 +9) ||Is —v7Pr) M| [(x = F) PrViy|
(v) ~(1 N o

< WD - vy

* (i) applies the Bellman equation @ = r + vPrV.

* (ii) applies the triangular inequality.

* (iii) holds since || Prl|oo < 1.

* (iv) applies the policy mismatch Lemma for state-value function in Lemma C.4.

* (v) exploits the fact that||(Is — 77 P7r) "o < 2=

1—y
O
C.6 PROOF OF LEMMA 4.8
Proof. We can show that:
e — Qe & |(Isxa —yPrm)~'e = (Isxa — vPrm)~'¢]
= |(Isxa —yPrm) e —7ql| (18)
* (a) results from the matrix representation of Bellman equation, i.e., Qj\fUc = (Isxua —
yPrm)~le.
By definition of infinity norm, we have
Q5iue = Qiviuel < Q570 — Qfuelloc- (19)

Further, we derive the error upper bound of the action-value function by that of cost.

1058 — Q5imalloe L || (Tssa — vPrm) e -2l

D|(Zssn = vPr) | _lle

d 1
<
S 7z

lle = elloo

* (b) uses Eq. (18)
* (c) exploits the theorem of matrix infinity norm inequalities that || AB||oc < || Allcol|Bloo
1

e (d) results from |[(Isx.a — YT P7) "o < T°
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C.7 PROOF OF LEMMA 5.1

Lemma C.5. (Good Event). Let 6 € (0,1), define the good event &y as the event at iteration k such
that the following inequalities hold simultaneously for all (s,a) € S x Aand k > 1:

= r7E Rmax gk (57 CL)
Pry — PRV | (s,0) < :
(Pri — Pr) T | (s a)_1_7 N (5,0)

Rmax ‘ek(sv a)
1—~\ 2N} (s,a)

(Pr—Pri)Vag™ | (s,a) <

Rmax ék(sva)
1—~\ 2N} (s,a)’

(r = 7E)PrVIT | (s,0) <

Rmax gk(saa)
L—~\ 2N (s,a)’

— ~FE
(R =72 Pravist | (s,a) <
k

Cmax Ek(saa)
1—~\ 2N} (s,a)’

|(Pr = Pro)ve| (s,a) <

C(max gk(saa)
1—~\ 2N} (s,a)’

|(Pr = Pry)V| (s.a) <

where VXA/’?E, V/ClﬂE, Ve and V¢ are defined in Lemma 4.6 and Lemma 4.7. li(s,a) =
k
log(36SA(N, (s,a))?/8). Then, Pr(&) >1— 6.

Proof. We show that each statement does not hold with probability less than J/6. Let us denote

_ Chax Lk (s,a) 3 _ Cumax , [/ tk(s,0) :
(s,a) = T I (o) and 3;,(s,a) = s 5. Consider the second to last

inequality. The probability that it does not hold is:

3
ﬁN,t(

s,a)

Pr {Hk; >1,3(s,a) € Sx A: ‘(PT — Pr)ve

(s,a) > B?V,:r(s,a)(s’ a)}

B 3k = 12 |(Pr = PrgVe|(s,0) > B3, 0 (5,0)]
(:b) Z Pr [Elm >0: ‘(PT — ﬁ;’k)vc‘ (s,a) > ﬁfn(87(1):|

S e[| - Frave] s,0) > (s, a)

m (s,a)

(@) —2(82,(s,a))?>m?
I3 Y vy | 2l
m (s,a) m (C{max)

= Z Z 2exp (i (s, a))

m (s,a)
= ( )365A(m+)2
§ w2

o
— G+ <g (20)

* (a) and (c) use union bound inequalities over (s, a) and m.
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* (b) assumes that we visit a state-action pair (s, a) for m times, and only focus on these m
times that the transition model is updated.

* (d) applies the Hoeffding’s inequality and ||V ¢||cc < Cmax/(1 — =) in Lemma 4.6. The
factor m? in the numerator results from dividing by 1/m to average over samples, and the
factor m in the denominator results from the sum over m in the denominator of Hoeffding’s
bound.

Similarly, we have 6]1\;3(5,@(3, a) = Pffjf;‘ / 214\’;55(521) and BL2(s,a) = %‘d’;‘, / % for Lemma’s

first and second, third and fourth inequalities, respectively. Lemma’s last inequality employs

3N+ ( )(57 a) and 33 (s,a) again. A union bound over the six probabilities results in Pr(&y,) <
r (s,a _
(6/640/640/64+0/6+40/6+0/6) =9. Thus, Pr(E) =1 —Pr(&) > 1—0. O

Proof of Lemma 5.1

Proof.
~ (@) = c raf r7l
e(s.@) = @ils, )| < 7 |(Pr = Pr)Ve|+|A%T - A5 |¢
© 5 (Bmax(3 +7)¢(s,0) + Cmax(1 = 7)) | _li(s,a)
B (1—9)? 2N (s,a)
< Y (Bmax(3 + 1)|[¢llco + Cmax(1 = 7)) Ui (s,a)
B (I—79)? 2N (s,a)
o+ 7’.7rE
< WCmax (Rmax(3 + 7)/m1n(s,a) |A/\/l | + (1 - 7)) Ek(s’ a) 21
B (1—9)? 2N (s,a)
* (a) uses Lemma 4.6 and the triangular inequality.
¢ (b) uses Lemma 4.7 and Lemma C.5.
Also, note that
le(s,a) — Ck(s,a)] < max{c(s,a),ck(s,a)} < Cmax (22)
Thus, the following formula also holds true,
le(s,a) — Cr(s,a)| < Ck(s,a),V (s,a) €S X A, (23)
. li(s,a)
C s = P N Omax 3 24
k(s,a) mln{a QNJ(S,CL) } (24)

. E
YCmax RmaX(3+7)/min+ |A7'7r [+(1—7)
.. (s,a) 1“*M .
where, for concision, we denote o = =72 . Taking the supre-

mum of Eq. (23) over all (s, a) pairs, we obtain

lle(s,a) — Ck(s,a) oo < r(na>)<Ck(s, a). (25)

)

O

C.8 UNIFORM SAMPLING STRATEGY FOR ICRL WITH A GENERATIVE MODEL

Corollary C.6. Let Cy be the exact feasible set and C‘ik be the feasible set recovered after k
iterations. The conditions of Definition 4.9 are satisfied, if either of the following statements are
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satisfied:
1

Cr(s,a) <eg;
1—7 (s,tglea;{xA k(s,0) <

@) m g |l (s =2 Prm) 0] <0 = | () M| 0| () 115
0 c€Cqp eeCy,

Proof. For statement (1),

* *
C,T C,T

inf su ‘ = (s,a) — ’Asa’< inf su o™ (s.a) — Q%T _ (s,a
aely, W*EH%UC Muel @) = Qo (5 4) aeCy, w*en%UCHQMUC(7 )= Qi (5 Dl
(a) 1
inf S
L el o) ~ o)
©_1 max Ci(s,a) <e,
1 — 7y (s,a)esxA B
inf sup Qj\flr@c(sa Cl) - Qj\f[r(j’c\k (S,CL) < inf Sup HQ.(;\’/T(ch(Sa a) - Qj\’:lréak (Sa a)”oo
c€Clyp mrell™. c€Clyp mrell.
g M ucy M Ucy
(N ¢ R
< i T els.0) — Bu(s.0)]
@ 1

max Ci(s,a) <e,
1-— Y (s,a)eSx.A

where step (a) and (c) use Lemma 4.8, step (b) and (d) use Lemma 5.1.

For statement (2),

(e)

inf su o™ (s.a) — Q%"  (s,a)| < inf max|(I. —~Prm) Ye—2¢
Ekecik W*EH%UC MUC( ’ ) QMUCk( ’ ) - Ekecik ﬂeﬂ}i‘( SxA =T Tﬂ—) | /ﬂ
) B
< e |(Isa — 7 Prm) 14l
Tellt
< max max |ul (I —~Prr)iCL] < e
< max max o (Isxa —vPrm)~'Ci| <,
o7 o7 (9)

. . -1
At %;eglff Qrle(s:a) —QMuek(s,a)( < Inf max |(Isxa —yPrm)~te -

EYCk

(h)
< max |(Isxa — vPrm) ' Cy
mellf

< max ma T(r —yPrm) 0| < e
,Wel_I)%#OEAXS‘,Uo( sxA —yPrm) k| =

where step (e) and (g) use Eq. (18), step (f) and (h) use Lemma 5.1. O

Uniform Sampling Strategy for ICRL with a Generative Model

In this part, we additionally consider the problem setting where the agent does not employ any
exploration strategy to acquire desired information, but utilizes uniform sampling strategy to query a
generative model. The problem setting is based on the following assumption, which is stronger than
the assumption in the main paper.

Assumption C.7. The following statements hold:
(1). The agent have access to the generative model of M,
(ii). The agent can query the expert’s policy 7% in any state s € S.

More specifically, the agent can always query a generative model about a state-action pair (s, a) to
receive a next state s’ ~ P(-|s, a) and about a state s to receive an expert action ag ~ 7 (-|s). We
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Algorithm 2 Uniform Sampling Strategy for ICRL

Input: significance § € (0 1), target accuracy €, maximum number of samples per iteration 7,,,x

Initialize k < 0, g =

while ¢, > ¢ do
Collect [ “zax] samples from each (s,a) € S x A

Update accuracy ey, = ﬁ ( Igléig‘(XACk_i_l(S, a)
s,a

1—v

Update 7, | (als) and Py, (s'|s, a) in (4)
k+—k+1
end while

first present Alg. 2 for uniform sampling strategy with the generative model and study the sample
complexity of this algorithm in Theorem C.9.

Lemma C.8. (Metelli et al., 2021, Lemma B.8). Let a,b > 0 such that 2aV/b > e. Then, the
inequality x > alog(bx?) is satisfied for all x > —2aW_, (—#) where W_j is the secondary
component of the Lambert W function. Moreover, —2aW_, ( o \[) <da 1og(2a\[)

Theorem C.9. (Sample Complexity of Uniform Sampling Strategy). If Algorithm 2 stops at iteration
K with accuracy €, then with probability at least 1 — 0, it fulfills Definition 4.9 with a number of
samples upper bounded by,

~ d?SA
K
Y¥Comax (Rxxxax(3+'y)/ minl, \AQ’IE \+(1*7)> ~ o
where 0 = =2 and O notation suppresses logarithmic terms.

Proof. We start from Corollary C.6. We further bound:

1 1 li(s,a)

_ ax Ci(s,a) = —— a
1—7 (s,tgleé(xfl k(s,a) 1—x (s,c?)lenga 2N, (s, a)

After K iterations, based on uniform sampling strategy, we know that Nx > 1 forany (s,a) € S x A.
To terminate at iteration K, it suffices to enforce every (s,a) € S x A:

YCmax (RmaX(?’ + 'y)/mln (s,a) |Arﬂ |+ (1 — '7)) li(s,a)
(I—=7)3 QNI;"(S, a)

T TK'E 2
V22 (Rax(3 +9)/ minf, o |37 |+ (1= 7)) bu(s,0)
)

=K

= Ng(s,a) =

From Lemma C.8, we derive
NK(Sa a)

_ 7’72 (Bmax(3 +7)I¢]lsc + Crmax(1 — 7))2W - 2(1 — )%k [ 4
(1 _’7>65%( - 72 (Rmax(3+7)“§Hoo+CmaX(1*'Y))2 3654

272 (Rmax (3 4+ 7)I¢]loc + Crnax(1 — V))Qlog (72 (Rinax (3 4+ )¢ llso 4 Conax(1 — 7)) /365A>
5

! (=i (1- 7%
= 6 72 (RII‘aX(3+’Y)HCHOO +Cmax(1 —’}/))2
(1 —7)0ek
r P 2
~ 20r2nax (Rmax(3 + "Y)/Hlln(s a) ‘A | (1 _ 7))
- 2 27)
(1 - ) EK
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By summing n = Z(Sﬁa)eg”A Nk (s, a), we obtain the upper bound.

2
( 2Cfnax( max(3+7)/m1118a) |A7‘7r |+ (1_7)) S.A)
n<Q

(28)
(1 =)0k
. YCmax (R11mx(3+7)/ min?;wa) |A;\;1WE H’(l_'}/))
Since o = T2 , we have
_ 2
n<o 754 ) (29)
(I—7)%ek

Regarding the sample complexity in the RL phase, since the reward function is known, by Corollary
2.7 in Section 2.3.1 from book ’Reinforcement Learning: Theory and Algorithms’ (Agarwal et al.,
2019), the sample complexity of obtaining a e-optimal policy is O(SA/(1 — v)3¢?), which is
dominated by the sample complexity in Theorem 5.5. Note that o also contains 1/(1 — 7). As a
result, Eq. (29) still holds true, after taking the sample complexity of this RL phase into account. [

C.9 PROOF OF LEMMA 5.2

Proof.

(a) (b)
ller(s,a; )]0 < ||(I$xA—’YPTF*)_1|C—/C\HHOO < ||u§(15xA—7PT7r)‘1Ck||OO. (30)

* (a) follows Lemma 4.8 (treat 1 = 7* and ¢ = ¢},).

¢ (b) follows Lemma 5.1.

C.10 PROOF OF LEMMA 5.4

Proof. This results generalizes (Kaufmann et al., 2021, Lemma 7) to our setting. We define event
Gent as:

gt = {VkEN*,V(s,a)ESXA:Nk(s,a) %N( a) — log<2§A)}. 31

We calculate the probability of the complement of event G,

P((9™))

(a) 1. 25 A

< Y P <E|k € N: Ni(s,a) < 5 Ni(s,a) — log <5>>
(s,a)eSx.A

¢ JkeN: n"ix21 )<1anx k(s,als0) —1

- S5y (87 a) = 5 : MO(SO)TH (s,a SO) og
(s, a)€S><.A h=1 i=1 so h=1 i=1

(© P

< = _ >

< 2 2’ (32)
(s,a)eSx.A

* (a) results from a union bound over (s, a).
¢ (b) results from Definition 5.3.

¢ (c¢) results from (Kaufmann et al., 2021, Lemma 9).
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As a result, we have with probability at least 1 — §/2:
1.
Nk(saa) Z iNk(Saa) 7ﬁ0nt(5)7 (33)

where et (0) = log (25A4/6).

The following proof adapts from (Lindner et al., 2022, Lemma B.18). Distinguish two cases. First,
let Bent (0) < Nk(s a). Then Ni(s,a) > Nk (s,a), and

min{g _bils,a) max} <o | s \/1og (3654 N+(s a))2/5)

2N, (s,a)’ (s,a)
log(36SA(N, (s,a)/4)2/6) 20k (s, a)
- ”\/ Moz e .

where we use that log(365Ax2/5)/x is non-increasing for z > e4/ 5:5—, where e is Euler’s number.

For the second case, let Sent (0 i ). Then,
. gk 4/Bcnt 4£k
min max max < Cmax S max 35
{U 2N } N + (s,a) N + (33)
where we use /j(s,a) = log (SGSA (N, (s,a))?/8) = Bent(8) + log (18(N;f (s,a))?) = Bent (6).

By combining the two cases, we obtain

. l(s,a) 201, (s . [20k(s,a)
mm{g 2N (s,a)’ Cmax} < maxto, \[CMX}\/ s,a U\/N,j(s,ay G0

where we denote & = max{c, v/2Cax }- O

C.11 PROOF OF THEOREM 5.5

Proof. We assume BEAR exploration strategy terminates with 7 iterations, then

LmaXC (s, )(i lmaxmin{a ET(S’G)),C}MX}
a

=

1 —7 (s,0) 1 —7 (s,0) QN;_(S,

® 1 _ [ 20,(s,a)

< maxo,| =————=
1— Y (s,a) Nﬁ'(s, a)

=é€r, (37)

where step (a) follows Lemma 5.1 and step (b) results from Lemma 5.4. Hence, we obtain,
. 7 . v+ 2
o= - %67(5, a) A 210g(36514(NT (s,a))?/9)
1—7 (s,0) \| Nft(s,a) 1—7 (sa) N (s,a)

F 2log(36SA(N; (s,a))2/4)
“1l—x N (s,a)
Thus,
- < 265210g(36SA(N (s,a))?/0)
’ (=)

From Lemma C.8, we have
- 452 (1 —7)%e2 4]
N+ = W_ | - T
(0 = -Gz < 1252\ 3654
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852 44252 36SA
< log \/
(1—7)%2 (L=7)2ezV 4
2

~ o
=0 ——= 38
(7=5=) o
By summing over n =}’ ,csx 4 N7 (s, a), we obtain the upper bound.
~( 0°SA
<O —> 39
"= ((1—7)283)’ e

where 5 = max{o, \/iCmax}

For consistency with the sample complexity of uniform sampling strategy, we replace 7 with K, and

obtain
. ~2
n<d <"SAQ> . (40)
( K
O

C.12 THEORETICAL RESULTS ON POLICY-CONSTRAINED STRATEGIC EXPLORATION (PCSE)
Definition C.10. We define the optimal policy w.r.t. cost, reward, and safety as follows:

* The cost minimization policy: 7¢* = argmin_ . E[>, v c(s, ar)).

* The reward maximization policy: 7™* = arg max_ iy E[>_, v'7(s¢, ar)].

* The optimal safe policy: 7* = argmax, cr;  E[Y, v'7(s¢, ;)] where g pe = {7 :

E>2 v'e(st, ar)] < €}

Accordingly, we can have the following relations:

safe

o B [VO™ (50)] < Epup[VE™ (50)] < Epup[VE™  (80)] + € where the equality normally

holds that V=™ (s9) = 0.
* B [V5T (50)] < Epyg [V (50))-

Let’s define the following symbols:

1
¢ g0 = .
0= 11—y)

* EF = SUD, casxa pd (Isxa — yPrm)Cy
* &) = MaXrem, , €,
We can construct a set of plausibly optimal policies as

I, = 115 N 11,

¢ = A N I E,\Tf — E’\* <
I3, {77 € A5 #fggs o (VMUC} VMuak) <dey + 26}

I =dreAd: inf T(VT—VT*)>% :
k {77 S HolgASMo b o ) =

where Ry = 3225 || Pr — Prllo + 2255 [|(7" = 7)o

Lemma C.11. (7* propagation). Under the good event &y, if m*, Tr, € I _| then m* € 1I,
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Proof. Given a c € Cp, we can show:

T c,m* C,% T e, c,m* c,m*
sup [ (VA =V ) = sup ug (VA S 72 S Vs
LoEAS MuUcy MUty LoEAS Mucy MuUc MuUc

(%) N

< su L (5 ver _yer )
= MOGES Ho \&r + Vidie Muzy,
(i

< 2ep + 2e,

which demonstrates that 7* € 1If.

¢ (i) holds since

| c,m* c,m*

o VT | < (Is —yn Pr) e —
< (Is —ym* Pr)~ 7" Cy,

where

_ VC7* )
MuUcy

(41)

— The first inequality follows (Metelli et al., 2021, Lemma B.2) (treat 7, = —¢}, and

r = —c).

— The second inequality is due to the good event definition in Lemma C.5.

As a result:

*

sup MOT(VCA’” —Ver ):52 < max e = ¢

MuUgcy, MuUc

o EAS melly_y

* (ii) holds since

~c,*
c,m™* C,% _ yremt C, Ty’

Mue Mug,  Muec Mugy,
S AU Vi
- MuUc MuUey +
=minV:" —minVE"  +e
MuUc T M

i Ck

’ ’
< min V& — min V& +
nelly_, MUc  qrelly | MUg

< max |VE  —VET | 4+ 2
~ melle_, | MU MuUc ’

where

2€

— The first inequality utilizes E,,,[Vo™ (s0)] + € > E,,, [VS™ (s0)].

— The second inequality utilizes Ve,E, [VO™ (so)] < K, [Ve™ (s0)]

E,,[Ve™ " (s0)] + ¢ for € > 0 and the assumption that 7*, 7 € II§_,.

— The third inequality results from Lemma C.12.

By following the inequality (42), we have:

T c,T c, T
max sup U (VAA—VA )—|—2€=€k+2€
melly_, HoEAS 0 Mucy MuUc

Lemma C.12.
max f(z) — max g(z) < max(f(z) — g(x))
min f(2) ~ min g(z) < max(f(z) - g(x))
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Proof. For the first inequality, suppose x; = arg max f(z) and x2 = arg max g(z), then we have,
max f(2) — maxg(z) = f(@1) — glw2) < F(@1) — glar) < max(f(x) - glx))

For the second inequality, suppose x3 = argmin f(z) and x4 = argmin g(z), then we have,
min f(z) —min g(x) = f(r3) = g(z4) < f(2a) — g(wa) < max(f(z) - g(z))

O

Lemma C.13. Under the good event &, if Tr, & € 11$_ | and & ¢ 115, then § is suboptimal for some
cost Cr € R‘ik/ forall k' > k.

Proof. Let’s consider the following decomposition:

@

~c,*

of - _yer S yet  _ypyte
MUCk/ MUCk/ - MUCk/ MUCkI
of et of  _ yery” Tyt
- T Mug,, MUz, MUy, MUz, MUy, MUG,
(44) e
> 4 ol STk
- Ck + ‘/./\/anC Mucy
(4id)
> 2e
which indicates that £ cannot be optimal for k' > k.
. . c, " e, C,*
¢ (i) holds sin Uk >R =
( ) 0 ds since VMUEkI - VMUEk/ VMUEk/

~C,%

* (ii) holds by following (Metelli et al., 2021, Lemma B.5) (treat 7 = 7, and m = §
respectively, while 7, = ¢, and 7, = Cp/)

T e,y " e,y "
sup p (VAA —VAA) <2 < 2¢g
pocas | O\ MUz T Mugy k

T (1 sk o ¢
su VAAvaA)<25 <92
HUEES “0( Mua,  Mug, ) = = Sk

* (iii) holds since according to the definition of IIf and considering our assumption that
& ¢ TI%, we have:

T c,& C,x
yes e ) dep +2
Mflelgs Ho ( Moz, Rug, )~ AEk T A€

Lemma C.14. If ey = ﬁ, then for every k > 0, it holds that ©*, 7, € IIf,.

Proof. We prove the result by induction on k. For k = 0, for every policy 7 € A4, we have

SUD o eAs Ko (VXA/’LA — V;?ZE ) < ﬁ < deg < 4eg + €. Thus, IT§ contains all the policies, i.e.,
0 0
II§ = Ag‘, and in particular 7*, 75 € II§. Suppose that for every 1 < k’ < k the statement holds,
we aim to prove that the statement also holds for k. Let k' = k — 1, from the inductive hypothesis
we have that 7*, 7} € IIj,_,. Then, from Lemma C.11, it holds that 7* € IIf. If %k-i—l € 11, the
proof is finished. If 7?2 11 ¢ TI¢, we prove by contradiction. Let 1 < j < k be the iteration such that
Th1 € 1§y and 7 | ¢ 115, Note that this assumption always holds, since I1§ contains all policies.
Recalling the inductive hypothesis, we have that %;‘ € II5_;. Thus, from Lemma C.13, it must be that

T4 is suboptimal for all j'>3, in particular for j* = k + 1, which brings about a contradiction. [
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Lemma C.15. It holds that 7* € 117, where:

T = {77 e AL : inf pul (fo Vﬁ’\%*) > %k} where

HoEAS
27Rmax

(1—=7)?

’yRmax

Ry = WH( = 7)o

“NIPr — Prle +

Proof. We should show if 7 € I}, we will have V" > VJC[T*.

T Ty, T T ot L TS e
VI VIR S VI VI VT VT VAT VAT VT -V

(4,41 zzz) 29 Riax Y Rmax ~ v "
< Pr = Prlloc + 7225 |[(7* = ) loo + VAT = Vi
(1 e || l (1— 7)2| M M

=Ry + Vi -Vl

Since inf,,,cas 11 (V/%ﬂ - V}:/l’f*) > MRy, it must hold that inf,, cas pf (V/Cl” — V/(’/v(”*) >0

* To show (i), we first follows the simulation Lemma for the state-value function:

VT — VT = y(Is = ywPr) 'n(Pr — Pr)Vif

Then we derive an upper bound for the difference of these state-values as follows:

Vi VAT < 2 Im(Pr — PrViT

WRmx

< Gl 7(Pr = Pr)lso
mex

< ) B Prfl

T (-2
* (ii) holds due to the policy mismatch Lemma C.4:

ViE =V =A(ls — A7 Pr) Nt =7 PrVT

Then we derive an upper bound for the difference of these state-values as follows:

rw* r,T* Y * ~% rw
Ve =V Sl—’y”(w —T)PrVo" o

YRumax 1 s~

S AT =7)Pris
(1—=79)?
Y Rmax s

< [loo
e (7" =77

e (iii) holds due to the derivation to (i):

T* T* ’YRInax
YR _yni <
M M

< 5 11Pr — Prlo
1-7)

Since we can guarantee VT, > VT, we know 7* € {n|VT > V7, }. Subsequently, according to
our Lemma 4.4, to find the feasible constraint set, the exploration policy should follow the 7 that
visits states with larger cumulative rewards. [

Lemma C.16. Under the good event Ey, let ¢ € argmin e, Max(s g)esx.A (s, @) — Cx(s, a)|. If

T c,m C,*
7 € Uy and 7 € g1, then sup,, cas Hg <V/T/Tu5 — Vﬁue) < bey, + €.
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Proof.
T c,T C,*
sup i (VA =V ~)
LHoEAS Mué Mué
< sup ’uT (Vc,Tr _VCJT )+ sup MT (Vcnr _Vc,* )+ sup MT (Vc,* _Vc,* )
= ens O \TMue  TRua) T PO PO ki, T Mua) T CoRs O U Mue, T Me)?

(a) (b) (c)
< (eg) + (deg +€) + (ex)
= 6ep +€

where

. T ¢, ysCm T
(a) holds due to sup,, cas g (V/\’/Tua Vﬁ/t\uaj <ep < e

T c,T C,* .
. Pt — V= <
(b) results from SUP,ocas Ho (VMUac VMuEk) < 4ep + €, since w € 11,

* (c) follows Eq. (42), recalling the definition of ¢.

C.13 PROOF OF THEOREM 5.6

Proof. First of all, note that PCSE for ICRL is optimizing a tighter bound (Corollary C.6 (2)),
compared with that of BEAR exploration strategy (Corollary C.6 (1)). Thus, results of Theorem 5.5,
namely sample complexity of BEAR strategy, still apply to PCSE for ICRL, serving as the sample
complexity in the worst case. Let’s begin the problem-dependent analysis. Recall the definition of
advantage function A%’}UE(S, a) = Qj\:}ué(s, a) — V/%(:E(s). Suppose we have derived a value of

Nk (s, a) so that for all (s,a) € S x A, it holds that:

29 —mingeq AL (s,a ek
Ck(s,a) =min{ o M,Cmax < _@;f(s,a) < < MUC( ) . (43)
2N, (s, a) N (s, a) Geg—_1+€

From Lemma C.8, we obtain

_ 2(72(651(_1 JrE)QZK(S,a)
(ming e 4 Aj\’;ue(s’ a’))%%

_ 452 (68](,1 + 6)2 W (mina’EA A.C/\,’/i:u&(& a/))25%( 1)
(ming e4 Aj\kjué(s, a))2ed ! 402(6e—1 + €)? V 365 A
. 802(661(71 + 6)2 o 40’2(661(71 + 6)2 365 A
~ (mingreq A%’;UE(S, a’))%e? (ming e 4 A%’}Ué(s, a))e Vo6
N 2 2
=0 3 ) (6515(7;1 Jre)/ 2.2 ' (44)
(ming e 4 A/\’Zua(s’ a'))?e3,

Summing over n = Z(S_’a) cSxA N ,j (s, a) and recalling the sample complexity of BEAR exploration
strategy in Theorem 5.5, we obtain

~ 2:2 2 2
n<O( mn{ 17 *S;AQ bkt SAQ ~ . 45)
(1 —7)%e% (ming, q) Aﬁué(s,a)) €%
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Next, we explain the rationale for assumption in Eq. (43). We have for every 7 € 11,

R (a)
llex(s, a; 7, 7%)loo <

max Ve ebT

me{m*,m*} /VIU|C i

®) _
< yug (Is — 'Yﬂ'PT)_lﬂ'Ck

© EK T Doy—1 C,*

< - Mo (Is —ymPy)~'m (_A/\?ua>

(i) 767K T c,m c,* (e)

T bexi e (ver. - ver,) < ex. (46)

* (a) follows the step (h) in Lemma 4.8.
* (b) follows the matrix form Bellman equation for value function.

* (c) is based on the assumption in Eq. (43).

e (d) follows (Metelli et al., 2021, Lemma B.3), where we treat r = —¢ and note that
VMU( 8 Ve QMU( 8 = Q. d A% Mu(=&) =A%

¢ (e) results from Lemma C.16 and v < 1.

O

C.14 OPTIMIZATION PROBLEM AND THE TWO-TIMESCALE STOCHASTIC APPROXIMATION

We can now formulate the optimization problem.

T
epy1 = sup py (Lsxa —vPrm)Cria
HOEAS
welly

s.t. Il = Hi n HZ

c AA T ver 175 <4 9 47)
R=ATE S'MEEESMO(M\UCA]C_ o) S ek + 2e
r=qm€AS: inf (V’;’r V’ﬁ*> > R
k {W S lmlél As Ho fvi Z N
27 Rmax Rumax * ~x
where Ry, = {225 (| Pr — Prllos + s (= 7)o
Recall that the discounted normalized occupancy measure is defined by
Pa(s,a) Z’y P (st = s,a; = a), (48)

where the normalizer (1 — ~) makes p%,(s, a) a probability measure, i.e., Z(S a) piq(s,a) = 1.

The promised relationship between reward value function and occupancy measure is as follows:

—

(1 - V)V]\d/{ i) (1 - )EHO,THPT [thr(sh at)}
t=0

N 'Y) Z,Yt Z ]P)ZD(St =S,a¢ = G)T(St =S,ay = (L)

t=0 (s,a)

b) Z l (1—~ nyt]PZO gts,ata)] : [r(st:s,at:a)}

(s,a)
= <p./\/l’ >7 (49)
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where step (a) follows the definition of the reward state-value function, and step (b) exchanges the
order of two summations.

Similarly, concerning the cost function, the relationship between the cost value function and (the
same) occupancy measure is as follows:

o0

=DV = (0= 1)Enpy | Y 'elsrrar)]
t=0

= (1 - ’Y)Z,yt Z PZO(St =S,a¢ = G)C(St =50t = a)
t=0 (s,a)

= Z l(l -7) Zwt]P’Zo(st =35,a; = a)] -le(se = s,a; = a))
(s,a) t=0

= (P, C)- (50)
For simplicity, denote the occupancy measure vector p7 , as vector x. As a result, the optimization
problem (47) can be recasted as a linear program.
min  — (z,Cxy1)
xr
s.t. —(1—7)(1//%2@ + deg, + 2¢€) + (z,¢) <0 (51)
(- NVE +9%) — (e.r) <0
To solve this linear program, we introduce the Lagrangian function and calculate its saddle points by
solving the dual problem. The Lagrangian of this primal problem is defined as:
L(z,A) = — (2,Chs) + M1 (—(1 — NV ek +20) + @>)
(L= NV + %) = (7)), (52)
where A = [A1, Ao]7 is a nonnegative real vector, composed of so-called Lagrangian multipliers. The

dual problem is defined as:
i L(x, A). 53
min max (z, ) (53)

x

To solve this dual problem, we follow a gradient-based approach, known as the two-timescale
stochastic approximation (Szepesvari, 2021), . At time step k, the following updates are conducted,

Tpa1 — Tk = —ak(L;(:ck, >\k) + Wk), (54)
A+l — g = bk(L//\(xk, )\k:) + Uk), (55)
where the two coefficients aj, < by, satisfying >, ar, = > by, = 00, >_aj < coand Y b? < oc.
Under this condition, the convergence is guaranteed in the limit. As an option, we can set a; =

c/k, by, = c¢/k%>F, with c being a constant and 0 < x < 0.5. W}, and U}, are two zero-mean noise
sequences. The two gradients are:

L (xg, M) = —Chi1 + M6k — Aar, (56)

! —(L=(VE .~ +4ec+2€¢) + (2,6)
L (ns M) = EA oy i’“)] = MO (57)
WETOY (1= ) (VE +9%) — {,7)
At each time step k, the exploration policy can be calculated as,
xi(s,a)
= =—. 58
mi(als) 2o ti(s,a) o

D EXPERIMENTAL DETAILS

We ran experiments on a desktop computer with Intel(R) Core(TM) i5-14400F and NVIDIA GeForce
RTX 2080 Ti.
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D.1 DISCRETE ENVIRONMENT

More details about Gridworld. In this paper, we create a map with dimensions of 7 x 7 units
and define four distinct settings, as illustrated in Figure 2. We use two coordinates to represent
the location, where the first coordinate corresponds to the vertical axis, and the second coordinate
corresponds to the horizontal axis. The agent aims to navigate from a starting location to a target
location, while avoiding the given constraints. The agent starts in the lower left cell (0, 0), and it has
8 actions which corresponds to 8 adjacent directions, including four cardinal directions (up, down,
left, right) as well as the four diagonal directions (upper-left, lower-left, upper-right, lower-right). The
reward and target location are the same, which locates in the upper right cell (6, 6) for the first, second
and fourth Gridworld environment or locates in the upper left cell (6,0) for the third Gridworld
environment. If the agent takes an action, then with probability 0.05 this action fails and the agent
moves in any viable random direction (including the direction this action leads to) with uniform
probabilities. The reward in the reward state cell is 1, while all other cells have a 0 reward. The cost
in a constrained location is also 1. The game continues until a maximum time step of 50 is reached.

Comparison Methods. The upper confidence bound (UCB) exploration strategy is derived from
the UCB algorithm, which selects an action with the highest upper bound. The maximum-entropy
strategy selects an action on a state with the maximum entropy given previous choices of actions.
The random strategy uniformly randomly selects a viable action on a state s. The e-greedy strategy
selects an action based on the e-greedy algorithm, balancing exploration and exploitation with the

exploration parameter € = 1/v/k.

More details about Figure 3. In Figure 3, we plot the mean and 68% confidence interval (1-
sigma error bar) computed with 5 random seeds (123456, 123, 1234, 36, 34) and exploration episodes
ne = 1. The six exploration strategies compared in Figure 3 include: upper confidence bound
(UCB), maximum-entropy, random, BEAR, e-greedy and PCSE. Meanwhile, we utilize the running
score to make the training process more resilient to environmental stochasticity: running_score =
0.2 % running_score + 0.8 * iteration_rewards (oriteration_costs) (Luo et al., 2022).

D.2 WEIGHTED GENERALIZED INTERSECTION OVER UNION (WGIoU)

In this section, we present the methodology for designing the metric that assesses the similarity
between the estimated and ground-truth cost functions, which we refer to as WGIoU. We commence
our discussion by explaining IoU, followed by GloU, and ultimately introduce the novel concept of
WGIoU for ICRL.

Intersection Over Union (IoU) score is a commonly used metric in the field of object detection, which
measures how similar two sets are. The IoU score is bounded in [0, 1] (0 being no overlap between
two sets and 1 being complete overlap). Suppose there are two sets X and Y,

X NY|
TIoU XUY|
Note that IoU equals to zero for all two sets with no overlap, which is a rough metric and incurs the
problem of vanishing gradients. To further measure the difference between two sets with no overlap,
Signed IoU (SIoU) (Simonelli et al., 2019) and Generalized IoU (GlIoU) (Rezatofighi et al., 2019) are
proposed. Both SIoU and GIoU are bounded in [—1, 1]. However, SIoU is constrained to rectangular
bounding box, which is not the case for cost function. By contrast, GIoU is not limited to rectangular
box. Thus, GIloU is more suitable for comparing the distance between the estimated cost function
and the ground-truth cost function.

[Z\(X UY)|

GloU = IoU — ,
1Z|

where set Z is the minimal enclosing convex set that contains both X and Y. Taking cost function into
account, the difference between ¢, the estimated cost function at iteration k and c the ground-truth
cost function is calculated as,

lener]  [(cdck)\(cUek)]
e U ekl lc @ e

GloU =

)
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where ¢, @ ¢ denotes the enclosing convex matrix of ¢ and ¢.

Note that the estimated cost function ¢, could have different values, but GIoU only reflects spatial
relationship and is unable to represent weight features. To accommodate our settings, weighted GloU
(WGIoU) is proposed, where we measure the distance between a weighted estimated cost function
and a uniformly valued (or weighted) ground-truth cost function. WGIoU is also bounded in [—1, 1].

To calculate WGIoU, first, remap the cost function to ({0} U [1, +00))° <%,
G (s.0) = il : (59)
min {minaa)eSXA (s, a), min?rs’a)EsXA c(s, a)}
c*(s,a) = ols, a) ) (60)

. . + ~ . +
min {mln(s7a)€SXAck(s,a),mln(s7a)E$XAc(s,a)}

where minz;’a) c5x .4 Teturns the minimum positive value of ¢ or c over all (s, a) pairs. Note that
¢ must exceed 0 at certain (s, a), otherwise the cost function are all zeros, indicating an absence
of constraint at anywhere. Also note that if ¢ are all zeros, let ¢; (s,a) = 0 and ¢*(s,a) =
c(s,a)/ minaa) csxa C(8,a). Besides the two trivial situations, the above two equations (59 and 60)
can be applied naturally.

Then, WGIoU is defined as:
@)

WGIoU = K -
O T W max{cp, oF, (@, c*)))

+ (e—<1,max{ffff,c*}> — 1) 1 {(c\?:a C*> = O} )

where 1 denotes the vector with appropriate length whose elements are all 1s. The rationale here
can be understood by distinguishing two cases. For the first case, there is overlap between ¢ and c,
so the second term in WGIoU is 0. For the first term, for some (s, a), 1) if both ¢; (s, a) > 1 and
c*(s,a) > 1, WGIoU approaches 1; 2) if either ¢} (s,a) = 0 or ¢* (s, a) = 0, WGIoU approaches 0.
For the second case, so there is no overlap between ¢ and (s, a), the first term in WGIoU is 0. The
second term is always below 0 and approaches —1 if the estimated and ground-truth cost functions
contain large values.

D.3 CONTINUOUS ENVIRONMENT

Density model. Recall that in Definition 5.3 , the concept of pseudo-counts is introduced to analyze
the uncertainty of the transition dynamics without a generative model. Here, we abuse the concept
of pseudo-counts for generalizing count-based exploration algorithms to the non-tabular settings
(Bellemare et al., 2016). Let p be a density model on a finite space X , and p,,(x) the probability
assigned by the model to x after being trained on a sequence of states x1, . . ., x,. Assume p,(z) > 0
for all x, n. The recoding probability p/, (x) is then the probability the model would assign to z if
it was trained on that same = one more time. We call p learning-positive if p!,(x) > p,(x) for all
Z1,...,Tn,x € X. A learning-positive p implies PG,,(x) > 0 for all z € X. For learning-positive
p, we define the pseudo-count as N, () = p, () - n,where n is the total count.The pseudo-count
generalizes the usual state visitation count function N,, (), also called the empirical count function
or simply empirical count, which equals to the number of occurrences of a state in the sequence.

BEAR
PCSE

Point Maze. In this environment, we create a map of 5m X 5m, where the area of each cell is
1m x 1m. The center of the map is the original point, i.e. (0,0). The constraint is initially set at the
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cell centered at (—1,0). The agent is a 2-DoF ball, force-actuated in the cartesian directions x and y.
The reward obtained by the agent depends on where the agent reaches a target goal in a closed maze.
The ball is considered to have reached the goal if the Euclidean distance between the ball and the goal
is smaller than 0.5m. The reward in the reward state cell is 1, while all other cells have a 0 reward.
The cost in a constrained location is also 1. The game terminates when a maximum time step of 500
is reached. The state space dimension is continuous and consists of 4 dimensions (two as x and y
coordinates of the agent and two as the linear velocity in the x and y direction). The action space is
discrete and at each state there are 8 permissible actions (8 directions to add a linear force), similar
to the action space of Gridworld environment. The environment has certain degree of stochasticity
because there is a sampled noise from a uniform distribution to the cell’s (x, y) coordinates.

E MORE EXPERIMENTAL RESULTS

E.1 GRIDWORLD ENVIRONMENTS

Figure 7, 8, 9 and 10 show the constraint learning process of six exploration strategies in four
Gridworld environments, i.e. Gridwworld-1, 2, 3 and 4. Note that in Figure 8 (Gridworld-2) and
Figure 10 (Gridworld-4) only a fraction of ground-truth constraint is learned. This is attributed
to ICRL’s emphasis on identifying the minimum set of constraints necessary to explain expert
behavior. Venturing into unidentified part of ground-truth constraints will not yield any advantages
for cumulative rewards.
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Figure 5: Training curves of discounted cumulative rewards (top), costs (middle), and WGIoU
(bottom) for two other exploration strategies in four Gridworld environments.

E.2 POINT MAZE ENVIRONMENT

Figure 6 shows the constraint learning process of PCSE in the Point Maze environment.
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Figure 6: Constraint learning performance of PCSE for ICRL in the Point Maze environment.
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Figure 7: Constraint learning performance of six exploration strategies for ICRL in Gridworld-1.
PCSE (1st row), BEAR strategy (2nd row), e-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).
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Figure 8: Constraint learning performance of six exploration strategies for ICRL in Gridworld-2.
PCSE (1st row), BEAR strategy (2nd row), e-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).
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Figure 9: Constraint learning performance of six exploration strategies for ICRL in Gridworld-3.
PCSE (1st row), BEAR strategy (2nd row), e-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).
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Figure 10: Constraint learning performance of six exploration strategies for ICRL in Gridworld-4.
PCSE (1st row), BEAR strategy (2nd row), e-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

F DISCUSSION ON SCALING TO PRACTICAL ENVIRONMENTS

Sample complexity analysis has primarily focused on discrete state-action spaces (Agarwal et al.,
2019). Existing algorithms for learning feasible sets (Metelli et al.. 2023: Zhao et al., 2023; Lazzati
et al., 2024a) struggle to scale effectively to problems with large or continuous state spaces. This
limitation arises because their sample complexity depends directly on the size of the state space, and
real-world problems frequently involve large or continuous spaces. Scaling feasible set learning to
practical problems with large state spaces remains a pressing challenge in the field (Lazzati et al.,
2024b). One key difficulty is the estimation of the ground-truth expert policy, which is hard to
obtain in an online setting. A potential solution involves extracting the expert policy from offline
datasets of expert demonstrations. However, these datasets often contain a mix of optimal and
sub-optimal demonstrations, leading to sub-optimal expert policies. Addressing this issue could
involve: 1) treating the dataset as noisy and applying robust learning algorithms designed to handle
noisy demonstrations, or 2) combining offline demonstrations with online fine-tuning, where feasible,
to refine the learned policy. Finally, the scalability of learning in continuous spaces is frequently
hindered by the curse of dimensionality. Dimensionality reduction techniques can mitigate this
challenge by simplifying state and action representations while retaining the features essential for
effective policy learning.

To enable our complexity analyses scalable to practical environments, linear Markov Deci-
sion Processes (MDPs) (Jin et al., 2020; Yang & Wang, 2019) offer a straightforward yet robust
framework by assuming that the reward function and transition dynamics can be represented as linear
combinations of predefined features. This assumption allows for theoretical exploration of sample
complexity. In future work, we plan to leverage the Linear MDP framework and its extensions (Jin
et al., 2021; Wang et al., 2020; Du et al., 2021) as a foundation to design scalable methods for
inferring feasible cost sets within the ICRL framework.
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