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Abstract

Generative models have the ability to synthesize data points drawn from the data1

distribution, however, not all generated samples are high quality. In this paper,2

we propose using a combination of coresets selection methods and “entropic3

regularization” to select the highest fidelity samples. We leverage an Energy-Based4

Model which resembles a variational auto-encoder with an inference and generator5

model for which the latent prior is complexified by an energy-based model. In a6

semi-supervised learning scenario, we show that augmenting the labeled data-set,7

by adding our selected subset of samples, leads to better accuracy improvement8

rather than using all the synthetic samples.9

1 Introduction10

In machine learning, augmenting data-sets with synthetic data has become a common practice11

which potentially provides significant improvements in downstream tasks such as classification. For12

example, in the case of images, recent methods like MixMatch, FixMatch and Mean Teacher [1] [12]13

[13] have proposed data augmentation techniques which rely on simple pre-defined transformations14

such as cropping, resizing, etc.15

However, generating augmentations is not as straightforward in all modalities. Hence, one suggestion16

is to use samples from generative models to augment the data-sets. One issue that arises is that simply17

augmenting a data-set using a generative model can often lead to the degradation of classification18

accuracy due to some poor samples drawn from the generator. The question arises: can we filter the19

lower quality generated samples to avoid degradation in accuracy? In our method we select a subset20

of synthetic samples which have high fidelity to the underlying data-set via CRAIG [6], additionally21

we introduce “entropic regularization” by filtering samples with low entropy over the latent classifier.22

In semi-supervised learning, the goal is to learn a classifier model which maintains high classification23

accuracy while reducing the number of labeled observed examples. Generative modeling and24

especially likelihood-based learning is a principled formulation for unsupervised and semi-supervised25

learning. Within this family of models, energy-based models (EBM) are particularly convenient for26

semi-supervised learning, as they may be interpreted as generative classifiers. That is, we not only27

have access to the class predictions but may also draw samples from the model.28

Another direction in supervised learning is to reduce the amount of computation involved in training29

a model by reducing the data-set to a smaller subset. Such sets are coined coresets as a smaller set of30

representative points attempts to approximate the geometry of a larger point set under some metric.31

Recent art [6] introduces a novel algorithm CRAIG which constructs a weighted coreset such that the32

gradient over the full training data-set is closely estimated, which allows for gradient descent on the33

smaller coreset with considerable improvement in the sample- and computational-efficiency.34
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In this work, we show that semi-supervised learning and coreset subset selection are complementary35

and improve generalization as well as generation quality. First, a generative classifier is learned on a36

large set of unlabelled data and a small set of labeled data pairs. Then, the generative model is utilized37

to draw class conditional samples which augment the labeled data pairs. As such augmentation might38

be a considerably large set, in fact, we can draw infinite samples from the generative model, we39

recruit CRAIG to reduce the conditional samples to a much smaller coreset while approximately40

maintaining the full gradient over the cross-entropy term. As the generative model might synthesize41

conditional samples of low quality or even incorrect class identity, we apply an entropic filter to42

remove noisy samples. By learning a joint generative classifier we learn a generator that can produce43

samples that improve classification accuracy as well as a classifier that can boost generative capacity44

and quality.45

This method may be interpreted as a learned (and filtered) data augmentation as opposed to classical46

data augmentation in which the set of augmentation functions (e.g., convolution with Gaussian noise,47

horizontal or vertical flipping, etc.) is pre-defined and could be specific to a data-set or modality. We48

demonstrate the efficacy of the method by a significant improvement in classification performance.49

2 Synthetic Data Generation for Semi-Supervised Learning50

Notation Let x ∈ RD be an observed example. Let y be a K-dimensional one-hot vector as the51

label for classification with K categories. Suppose L = {(xi, yi) ∈ RD × {k}Kk=1, i = 1, ...,M}52

denotes a set of labeled examples where K indicates the number of categories and U = {xi ∈53

RD, i =M + 1, ...,M +N} denotes a set of unlabeled examples.54

Semi-Supervised Learning Let pθ(y | x) denote a soft-max classifier with parameters θ. The goal55

of semi-supervised learning is to learn θ with “good” generalization while decreasing the number of56

labeled examples M .57

2.1 Latent Energy Based Model58

Let z ∈ Rd be the latent variables, where D ≫ d. We assume a Markov chain y → z → x. Then the59

joint distribution of (y, z, x) is60

pθ(y, z, x) = pα(y, z) pβ(x|z), (1)

where pα(y, z) is the prior model with parameters α, pβ(x|z) is the top-down generation model with61

parameters β, and θ = (α, β). Then, the prior model pα(y, z) is formulated as an energy-based62

model [10],63

pα(y, z) = Z(α)−1 exp(Fα(z)[y]) p0(z). (2)

where p0(z) is a reference distribution, assumed to be isotropic Gaussian. Fα(z) ∈ RK is param-64

eterized by a multi-layer perceptron. Fα(z)[y] is yth element of Fα(z), indicating the conditional65

negative energy. Z(α) is the partition function. In the case where the label y is unknown, the prior66

model pα(z) =
∑
y pα(y, z) = Z(α)−1

∑
y exp(Fα(z)[y])p0(z). Taking log of both sides:67

log pα(z) = log
∑
y

exp(Fα(z)[y]) + log p0(z)− logZ(α), (3)

The prior model can be interpreted as an energy-based correction or exponential tilting of the reference68

distribution, p0. The correction term is Fα(z)[y] conditional on y, while it is log
∑
y exp(Fα(z)[y])69

when y is unknown. Denote70

fα(z) = log
∑
y

exp(Fα(z)[y]), (4)

and then −fα(z) is the free energy [2]. The soft-max classifier is pα(y|z) ∝ exp(⟨y, Fα(z)⟩) =
exp(Fα(z)[y]).

The generation model is the same as the top-down network in VAE [4], x = gβ(z) + ϵ, where71

ϵ ∼ N(0, σ2ID), so that pβ(x|z) ∼ N(gβ(z), σ
2ID).72
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We use variational inference to learn our latent space EBM by minimizing the evidence lower bound73

(ELBO) over our energy, encoder, and generator models jointly. Refer to appendix B for more details74

about learning the model.75

In summary, we can use the above model to i) classify data points ii) generate class-conditional76

samples iii) compute entropy for each generated sample. We will leverage these properties in the77

later sections to get better augmentation for our data-set.78

2.2 Sampling Synthetic data from the EBM79

Naturally, increasing the cardinality of the set of labeled samples L may improve the classification80

accuracy of soft-max classifier pθ(y | x). In the case of image models, traditional methods recruit a set81

of transformations or permutations of x such as convolution with Gaussian noise or random flipping.82

Instead we leverage the learned top-down generator pβ(x|z) to augment L with class conditional83

samples. This is beneficial as (1) the generative path is readily available as an auxiliary model of84

learning the variational posterior qϕ(z|x) by auto-encoding variational Bayes, (2) hand-crafting of85

data augmentation is domain and modality-specific, and (3) in principle the number of conditional86

ancestral samples is infinite and might capture the underlying data distribution well.87

We may construct the augmented set of L labelled samples L+ = {(xi, yi)} by drawing conditional88

latent samples from the energy-based prior model pα(y, z) in the form of Markov chains. Then, we89

obtain data space samples by sampling from the generator pβ(x|z).90

First, for each label y, we draw an equal number of samples Z = {zi} in latent space. One convenient91

MCMC is the overdamped Langevin dynamics, which we run for TLD steps with target distribution92

pα(y, z),93

z ∼ p0(z), (5)

zt+1 = zt + s∇z

[
fα(z)[y]− ∥z∥2

/
2] +

√
2sϵt, t = 1, . . . , TLD (6)

with negative conditional energy fα(z)[y], discretization step size s, and isotropic ϵt ∼ N(0, I).94

Then, we draw conditional samples {xi} in data space given {zi} from the top-down generator95

model pβ(x|z),96

L+ = {(xi ∼ pβ(x|zi), yi) | i =M +N, . . . ,M +N + L} (7)

which results in an augmented data-set of L class conditional samples.97

2.3 Entropic Regularization98

When learning the generative classifier on both labelled samples L and the above naive construction99

of augmentation L+, the classification accuracy tends to be worse than solely learning from L.100

As depicted in Figure 1a, a few conditional samples suffer from either low visual fidelity or even101

incorrect label identity. This reveals the implicit assumption of our method is that pβ(x|z)pα(z|y) is102

reasonable “close” to the true class conditional distribution p(x|y) under some measure of divergence,103

which is not guaranteed.104

To address the issue of outliers, we propose to exclude conditional samples for which the entropy in105

logits H(pθ(y|z)) exceeds some threshold T . We propose the following criteria for outlier detection,106

H(z) = −
∑
y

pθ(z|y) log pθ(z|y). (8)

Note,(8) is the classical Shannon entropy of over the soft-max normalized logits of the classifier.107

Then, we may construct a more faithful data augmentation as follows,108

ZT = {zi ∼ p(z|yi) | H(zi) < T , i =M +N, . . . ,M +N + L}, (9)

L+
H = {(xi ∼ pβ(x|zi), yi) | i =M +N, . . . ,M +N + L}. (10)

Figure 1b depicts conditional samples sorted by H(z) for which samples with relatively large Shannon109

entropy suffer from low visual fidelity.110

The learning and sampling algorithm is described in Algorithm 1 (appendix) as an extension of [10].111
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(a) Unsorted Conditional Samples. (b) Sorted Conditional Samples.

Figure 1: Class conditional samples drawn from pβ(x|z)pα(z|y). (a) Outliers suffer from low visual
fidelity (e.g., the last sample in the row of “ones”) or wrong label identiy (e.g., the last image of row
of “sevenths”. (b) Conditional samples sorted by increasing Shannon entropy H(z) over the logits.

2.4 Coreset Selection112

Training machine learning models on large data-sets incur considerable computational costs. There113

has been substantial effort to develop subset selection methods that can carefully select a subset of the114

training samples that generalize on par with the entire training data [6] [11]. Since we can generate115

virtually infinite amount of synthetic samples, we must select the best subset of points to augment116

our base data-set with. Intuitively CRAIG selects a subset that can best cover the gradient space of the117

full data-set. It does this by selecting exemplar medoids from clusters of datapoints in the gradient118

space. As a bi-product, CRAIG robustly rejects noisy and even poisoned datapoints. The subset119

corset algorithm ADACORE improves on CRAIG’s results by selecting diverse subsets [11]. Utilizing120

coreset methods allows us to select samples from the generator that is representative of the ground121

truth data-set while rejecting points that may negatively impact our network performance.122

Formally, the CRAIG [6] algorithm aims to identify the smallest subset S ⊂ V and corresponding123

per-element stepsizes γj > 0 that approximate the full gradient with an error at most ϵ > 0 for all the124

possible values of the optimization parameters w ∈ W.125

S∗ =arg min
S⊆V,γj≥0∀j

|S|, s.t. max
w∈W

∥∥∥∥∥∥
∑
i∈V

∇fi(w)−
∑
j∈S

γj∇fj(w)

∥∥∥∥∥∥ ≤ ϵ (11)

For deep neural networks it is more costly to calculate the above metric than to calculate vanilla SGD,126

In deep neural networks, the variation of the gradient norms is mostly captured by the gradient of the127

loss w.r.t the inputs of the last layer L. [6] shows that the normed gradient difference between data128

points can be efficiently bounded approximately by129

∥∇fi(w)−∇fj(w)∥ ≤ c1

∥∥∥Σ′
L

(
z
(L)
i

)
∇f (L)i (w)− Σ′

L

(
z
(L)
j

)
∇f (L)j (w)

∥∥∥+ c2 (12)

where z(l)i = w(l)x
(l−1)
i . This upper bound is only slightly more expensive than calculating the loss.130

In the case of cross entropy loss with soft-max as the last layer, the gradient of the loss w.r.t. the131

i-th input of the soft-max is simply pi − yi, where pi are logits and y is the one-hot encoded label.132

As such, for this case CRAIG does not need a backward pass or extra storage. This makes CRAIG133

practical and scalable tool to select higher quality generated synthetic data points.134

2.5 Implicit learned data augmentation135

In the following, we will re-interpret the above explicit data augmentation and entropic regularization136

into an implicit augmentation which can be merged into a simple term of the learning objective137

function.138

The assumed Markov chain underlying the model is y → z → x. Let ẑ ∼ qϕ(z|x) de-139

note the conditional sample ẑ from the approximate posterior given an observation x. Let140

ŷ ∼ pθ(y|ẑ) denote the predicted label for which the logits of C classes are given as Fα(z) =141

(Fα(z)[1], Fα(z)[2], . . . , Fα(z)[C]).142
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The factorization which recruits the log-sum-exp lifting (3) as exponential tilting of the the reference143

distribution p0(z) so that the conditional pα(y|z) is defined, and, amortized inference (19) with144

variational approximation of the posterior qϕ(z|x). These conditional distributions allow us to145

express learned data augmentation as the chain,146

y
qT (z|y)→ z

pθ(x|z)→ x
qϕ(z|x)→ ẑ

Fα(z)[y]→ ŷ. (13)

in which the conditional z|y is given as a MCMC dynamics. Specifically, we define qT (z|y) as K-147

steps of an overdamped Langevin dynamics on the learned energy-based prior exp(Fα(z)[y])p0(z),148

which iterates149

zk+1 = zk + s∇z log p(zk|y) +
√
2Tsϵk, k = 0, . . . ,K − 1, (14)

with discretization step-size s, temperature T and isotropic noise ϵk ∼ N(0, I).150

For the (labeled) data distribution pdata the labels y are known. For the data augmentation, we151

assume a discrete uniform distribution over labels y ∼ U{1, C}. Then, we define augmentation of152

synthesized examples as the marginal distribution153

paug(x) = EyEz|y[p(x|z)p(z|y)]. (15)

Then, we may introduce an augmented data-distribution as the mixture of the underlying labeled154

data-distribution pdata and the augmentation paug and mixture coefficient λ,155

pλ(x) = λpdata(x) + (1− λ)paug(x). (16)

As we have access to pθ(y|x) = Epθ(z|x)pθ(y|z) and can extend the objective to minimize the KL156

divergence under the augmented data distribution such that the labels y of (labeled) pdata and paug157

are recovered under the model,158

Epλ(x)[KL(p(y|x)∥p(ŷ|x))]. (17)

In information theory, the Kraft-McMillian theorem relates the relative entropy KL(p∥q) =159

Ep[log p/q] to the Shannon entropy H(p) and cross entropy H(p, q),160

KL(p∥q) = H(p, q)−H(p). (18)

In our case, the first term reduces to soft-max cross entropy over the (labeled) data distribution pdata161

and sampled labels y ∼ U{1, C}. Hence, to minimize the above divergence, we must minimize the162

cross entropy which is consistent with classical learning of discriminative models. However, note that163

in our case the steps in (13) are fully differentiable, so that the data augmentation itself turns into an164

implicit term in the unified objective function rather than an explicitly constructed set of examples.165

Lastly, we wish to re-introduce the entropic regularization for implicit data augmentation. Note,166

the entropic filter can be interpreted as a hard threshold on H(p(ŷ|x))) < T . Here the Langevin167

dynamics qT on z maximizes the logit Fα(z)[y], i.e. minimizes H(p(ŷ|x))), for which the Wiener168

process materialized in the noise term
√
2Tsϵk with temperature T introduces randomness, or,169

smoothens the energy potential such that the dynamics converges towards the correct stationary170

distribution. High temperature T leads to Brownian motion, while low T leads to gradient descent.171

We realize that T controls H(p(ŷ|x))) as it may be interpreted as a soft or stochastic relaxation of T .172

That is, we can express the entropic filter in terms of the temperature T of qT and only need to lower173

T to obtain synthesized samples with associated low entropy in the class logits.174

3 Experiments: Learning data augmentation175

We evaluate our method on standard semi-supervised learning benchmarks for image data. Specif-176

ically, we use the street view house numbers (SVHN) [8] data-set with 1, 000 labeled images and177

64, 932 unlabeled images. The inference network is a standard Wide ResNet [14]. The generator178

network is a standard 4-layer de-convolutional network as regularly used in DC-GAN. The energy-179

based model is a fully connected network with 3 layers. Adam [3] is adopted for optimization with180

batch-sizes n = m = l = 100. The models are trained for T = 1, 200, 000 steps with augmentation181

after Ta = 600, 000 steps. The short-run MCMC dynamics in (6) is run for TLD = 60 steps.182
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At iteration Ta, we take L class conditional samples from the generator with an equal amount of183

samples (L/10 for each digit). We filter conditional samples based on H as described in Section 2.3184

for which the threshold T = 1e−6 was determined by grid search. Next, we run CRAIG on the185

generated samples to keep a subset of 10% of the samples. For these additional examples, we compute186

the soft-max cross-entropy gradient with per-example weights obtained by CRAIG and update the187

model with step size η3 < η2 or a loss coefficient of 0.1 to weaken the gradient of L+
H relative to188

the original labeled data L. Additionally, for every 10, 000 iteration, we rerun CRAIG to choose an189

updated subset of generated samples.190

L
Method 0 10,000 40,000 100,000 200,000

Baseline 92.0 ± 0.1 88.1 ± 0.1 - - -
H - 93.5 ± 0.1 93.8 ± 0.1 - -
H & CRAIG - 93.0 ± 0.1 93.5 ± 0.1 93.9 ± 0.1 93.9± 0.1
H & CRAIG & PL - - 94.5 ± 0.1 - -

Table 1: Test accuracy with varied number of conditional samples L on SVHN [8].

Table 1 depicts results for the test accuracy on SVHN for a varied number of conditional samples L.191

First, we learned the model without data augmentation as a baseline. Then, we draw L conditional192

samples without an entropic filter and observe worse classification performance. As described earlier,193

we introduce the entropic filter H to eliminate conditional samples of low quality which leads to a194

significant improvement in classification performance with increasing L. Finally, we combine both195

the entropic filter H and coreset selection by CRAIG to further increase L. For L = 10, 000 there196

is a significant improvement in classification accuracy when introducing CRAIG, which however197

decreases with increasing L. Lastly, to further boost accuracy we pseudo-label unlabeled data points198

from the SVHN data-set using the latent classifier. We reject data points whose entropy over the199

latent classifier is above 10−6.200

4 Conclusion201

In the setting of semi-supervised learning, we have investigated the idea of combining generative202

models with a coreset selection algorithm, CRAIG. Such a combination is appealing as a generative203

model can in theory sample an infinite amount of labeled data, while a coreset algorithm can reduce204

such a large set to a much smaller informative set of synthesized examples. Moreover, learned205

augmentation is useful as many discrete data modalities such as text, audio, graphs, and molecules do206

not allow the definition of hand-crafted semantically invariant augmentations (such as rotations for207

images) easily.208

We illustrated that a naive implementation of this simple result deteriorates the performance of the209

classifier in terms of accuracy over a baseline without such data augmentation. The underlying issue210

here was isolated to being related to the Shannon entropy in the predicted logits over classes for a211

synthesized example. High entropy indicates samples with low visual fidelity or wrong class identity,212

which may confuse the discriminative component of the model and lead to a loop in which uncertainty213

in the predictions leads to worse synthesis. In the first attempt, we constraint the class entropy in the214

set of augmented examples by taking a subset of the generated data-set with a hard threshold on the215

Shannon entropy. This resulted in significant empirical improvement of classification accuracy of216

two percentage points on SVHN. Moreover, we introduced pseudo labels which further improved217

performance.218

Then, we show that the latent energy-based model with symbol-vector couplings has conditional219

distributions for end-to-end training of learned augmentations readily available. We formulate learned220

data augmentation as the KL-divergence between two known conditional distributions, show the221

relation to cross-entropy, and relax the entropy regularization into the temperature of the associated222

Langevin dynamics. This not only allows learning data augmentations as an alteration of the learning223

objective function but also paves the way toward a theoretical analysis.224
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A Algorithms263

Algorithm 1: Semi-supervised learning of generative classifier with coreset selection.
input :Learning iterations T , augmentation iteration Ta, learning rates (η0, η1, η2, η3), initial

parameters (α0, β0, ϕ0), observed unlabelled examples {xi}Mi=1, observed labelled
examples {(xi, yi)}M+N

i=M+1, unlabelled, labelled and augmented batch sizes (n,m, l),
number of augmented samples L, entropy threshold T , and number of Langevin
dynamics steps TLD.

output : (αT , βT , ϕT ).
for t = 0 : T − 1 do

1. Mini-batch:
Sample {xi}mi=1 ⊂ U , {xi, yi}m+n

i=m+1 ⊂ L, and {xi, yi}m+n+l
i=m+n+1 ⊂ L+

H.
2. Prior sampling:
For each unlabelled xi, initialize a Markov chain z−i ∼ qϕ(z|xi) and update by MCMC with

target distribution pα(z) for TLD steps.
3. Posterior sampling:
For each xi, sample z+i ∼ qϕ(z|xi) using the inference network and reparameterization trick.
4. Unsupervised learning of prior model:
αt+1 = αt + η0

1
m

∑m
i=1[∇αFαt

(z+i )−∇αFαt
(z−i )].

5. Unsupervised learning of inference and generator models:
ψt+1 = ψt + η1

1
m

∑m
i=1[∇ψ[log pβt

(x|z+i )]−∇ψKL(qϕt
(z|xi)∥p0(z)) +∇ψ[Fαt

(z+i )].
6. Supervised learning of prior and inference model:
θt+1 = θt + η2

1
n

∑m+n
i=m+1

∑K
k=1 yi,k log(pθt(yi,k|z

+
i )).

7. Augment at iteration Ta:
ZT = {zi ∼ p(z|yi) | H(zi) < T , i =M +N, . . . ,M +N + L},
L+
H = {(xi ∼ pβ(x|zi), yi) | i =M +N, . . . ,M +N + L}.

8. Approximate the gradient below with CRAIG after iteration Ta according to (12):
θt+1 = θt+1 + η3

1
n

∑m+n+l
i=n+m+1

∑K
k=1 yi,k log(pθt(yi,k|z

+
i )).

264

B Learning the model with variational inference265

Given a data point in the unlabeled set, x ∈ U , the the log-likelihood log pθ(x) is lower bounded by266

the evidence lower bound (ELBO),267

ELBO(θ) = Eqϕ(z|x)[log pβ(x|z)]−DKL[qϕ(z|x)∥pα(z)] (19)

where θ = {α, β, ϕ} is overloaded for simplicity and qϕ(z|x) is a variational posterior, an approxi-268

mation to the intractable true posterior pθ(z|x).269

For the prior model, the learning gradient for an example is270

∇αELBO(θ) = Eqϕ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)] (20)

where fα(z) is the negative free energy defined in equation (4), Eqϕ(z|x) is approximated by samples271

from the variational posterior and Epα(z) is approximated with short-run MCMC chains [9] initialized272

from the variational posterior qϕ(z|x).273

Let ψ = {β, ϕ} collects parameters of the inference and generation models, and the learning gradients274

for the two models are,275

∇ψELBO(θ) = ∇ψEqϕ(z|x)[log pβ(x|z)]−∇ψDKL[qϕ(z|x)∥p0(z)] +∇ψEqϕ(z|x)
fα(z) (21)

where DKL[qϕ(z|x)∥p0(z)] is tractable and the expectation in the other two terms is approximated276

by samples from the varational posterior distribution qϕ(z|x).277

For one example of labeled data, (x, y) ∈ L, the log-likelihood can be decomposed log pθ(x, y) =278

log pθ(x)+log pθ(y|x). While we optimize log pθ(x) as the unlabeled data, we maximize log pθ(y|x)279

by minimizing the cross-entropy as in standard classifier training. Notice that given the Markov chain280

assumption y → z → x, we have281

pθ(y|x) =
∫
pθ(y|z)pθ(z|x)dz = Epθ(z|x)pθ(y|z) ≈ Eqϕ(z|x)

exp(Fα(x)[y])∑
k exp(Fα(x)[k])

. (22)
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In the last step, the true posterior pθ(z|x) which requires expensive MCMC is approximated by the282

amortized inference qϕ(z|x).283

C Related Work284

Data augmentation. Semi-supervised models with purely discriminative learning mostly rely on285

data augmentation which exploit the class-invariance properties of images. Pseudo-labels [5] train a286

discriminative classifier on a small set of labelled data and sample labels for a large set of unlabelled287

data, which in turns is used to further train the classifier supervised. MixMatch [1] applies stochastic288

transformations to an unlabeled image and each augmented image is fed to a classifier for which289

the average logit distribution is sharpened by lowering the soft-max temperature. FixMatch [12]290

strongly distorts an unlabeled image and trains the model such that the cross-entropy between the291

one-hot pseudo-labels of the original image and the logits of the distorted image is minimized. Mean292

teacher [13] employs a teacher model which parameters are the running mean of a student model293

and trains the student such that a discrepancy between teacher and student predictions of augmented294

unlabeled examples is minimized. Virtual Adversarial Training (VAT) [7] finds an adversarial295

augmentation to an unlabeled example within an ϵ-ball with respect to some norm such that the296

distance between the class distribution conditional on the unlabeled example and the one on the297

adversarial example is maximized.298

The methods of MixMatch, FixMatch and Mean teacher rely on pre-defined data augmentations,299

which are readily available in the modality of images as the semantic meaning is invariant to300

transforms such as rotation or flipping, but are difficult to construct in modalities such as language or301

audio modalities. Our method is agnostic to the data modality. Pseudo-labeling is closely related302

in that labels are sampled given unlabeled examples, whereas our method samples examples given303

labels. VAT is close to our method as it is modality agnostic and leverages the learned model to304

sample labeled examples, albeit of “adversarial” nature while our samples are “complementary.”305

DAPPER is closest to our method as it employs a generative model to augment the data-set, but it306

misses the coreset reduction.307
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