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Abstract

In the current era, Large Language Models (LLMs) continue to achieve remarkable1

results yet their evaluation is increasingly undermined by data-centric challenges2

such as contamination, memorization and benchmark bias which threaten the3

reliability of reported performance. To address these issues, we propose DC-4

Guard (Data Centric Guard), a unified framework for trustworthy evaluation of5

LLMs. This framework introduces three novel components: the Memorization6

Consistency Index (MCI) to probe hidden memorization, the Benchmark Ecology7

Score (BES) to quantify representativeness relative to real-world corpora, and the8

Contamination-Resilient Metric Adjustment (CRMA) to correct evaluation scores9

for the contamination risk. Together, these elements provide contamination-aware,10

bias-adjusted reproducible assessments. Beyond presenting this methodology, we11

discuss open challenges in maintaining robust evaluations under evolving data12

sources and shifting usage contexts. DC-Guard offers principled guardrails for fair13

and transparent benchmarking of the large-scale language models.14

1 Introduction15

The conventional benchmarks of LLM evaluation suffer from data contamination due to training-test16

overlap, hidden memorization of surface patterns and coverage bias arising from narrow benchmark17

distributions. As a result, the existing evaluation practices risk overestimating true model capabilities18

and undermining reliability. These data centric challenges raise serious concerns about fairness,19

reproducibility, and interpretability. The community has responded with a variety of methods such as20

overlap-based contamination detection, quiz-style memorization probes, ad-hoc measures of dataset21

bias. Yet, these efforts remain fragmented and non-standardized. Existing studies apply different22

signals, thresholds and definitions, making it difficult to compare results or establish the common23

ground.24

To address this gap, we propose a principled data-centric evaluation framework. The central idea is25

to treat benchmark evaluation not as a fixed score-reporting exercise, but as an ecological audit of26

contamination, memorization, and representativeness. This framework unifies scattered techniques27

into a coherent structure, introducing three new components: the Benchmark Ecology Score (BES) for28

quantifying coverage bias, the Memorization Consistency Index (MCI) for separating memorization29

from reasoning, and the Contamination-Resilient Metric Adjustment (CRMA) for reporting fairer30

accuracy under contamination risk. By reframing evaluation as a structured, contamination-aware31

ecological process, DC-Guard aims to provide transparent, reproducible, and trustworthy guardrails32

for both researchers and practitioners.33
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2 Literature Survey34

The central challenges most of the time revolve around data contamination, memorization, and35

benchmark representativeness. Several strands of work have emerged addressing these namely,36

Data Contamination: One of the earliest and most widely discussed challenge where benchmark37

items or near-duplicates are already present in the pretraining corpus. This compromises the validity38

of evaluation since the model may recall the material rather than generalizing it. Approaches for39

detecting contamination generally fall into two categories:40

1. Surface-level checks: n-gram overlap or token matching methods, which scan for exact or41

near-exact text overlap between benchmarks and training corpora. While simple, they fail to42

capture the semantic rephrasings or paraphrases.43

2. Semantic similarity checks: Embedding-based methods that measure closeness in the44

representation space, thereby detecting paraphrased or slightly altered duplicates. These45

approaches are more robust but still lack a clear calibration for what constitutes meaningful46

contamination.47

Recent studies have introduced more structured tools, such as quiz-style probes that evaluate whether48

a model can distinguish between original benchmark items and perturbed versions. These methods49

provide stronger evidence of contamination but remain task-specific and often lack standardization.50

Memorization: In this issue, even when evaluation items are not directly present in the training data,51

LLMs reproduce rare or idiosyncratic information memorized during pretraining. This challenges the52

notion of “generalization,” as models may appear capable when they are in fact recalling. To address53

this issue, several diagnostic strategies have been proposed such as:54

1. Paraphrase-based Probing: Checking whether models remain consistent across reworded55

prompts or equivalent queries. A sharp performance drop under paraphrasing often indicates56

superficial memorization.57

2. Frequency Analysis: Investigating whether models disproportionately reproduce sequences58

that were rare but frequent enough in training to be memorized.59

3. Quiz-style Memorization Detection: Rephrased or misleading options are introduced to60

test whether a model is truly reasoning or simply reproducing a memorized pattern.61

Despite these advances, memorization detection still struggles with calibration. For instance, if a62

model answers consistently across paraphrases, is it demonstrating robust reasoning or consistent63

recall? Current approaches lack a principled metric to separate the two.64

Benchmark Representativeness: Another growing concern is the mismatch between benchmarks65

and real-world usage. Widely used datasets often emphasize narrow domains and stylized problem66

settings which create a coverage bias where benchmarks may not reflect the diversity of tasks, topics,67

and linguistic structures encountered in the deployment. Research has sought to quantify repre-68

sentativeness using distributional similarity metrics, comparing benchmarks against large reference69

corpora. Yet, these studies use different divergence measures and rarely translate their findings into70

an interpretable score that can be easily adopted with.71

In summary, related works have identified the core risks but have addressed them piecemeal. What72

is missing is a data-centric framework that unifies these strands under a coherent philosophy and73

provides principled metrics. This motivates our proposal of DC-Guard, which consolidates the74

fragmented efforts into a single theoretical pipeline.75

3 Proposed Framework76

We introduce Data Centric Guard (DC-Guard), whose central principle is to reframe benchmark77

evaluation as an ecological audit. Each benchmark is treated not merely as a static dataset, but78

as an environment whose validity depends on its freedom from contamination, its resistance to79

memorization artifacts, and its representativeness of real-world usage.80
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The DC-Guard is organized into three theoretical pillars, each corresponding to a novel contribution.81

Benchmark Ecology Score (BES), Memorization Consistency Index (MCI), and Contamination-82

Resilient Metric Adjustment (CRMA) are linked in a workflow that begins with auditing the dataset,83

proceeds to auditing the model behavior, and finally yields adjusted evaluation scores that more84

faithfully represent the true generalization.85

1. Benchmark Ecology Score (BES): Traditional benchmarks are often narrow in scope and86

do not reflect the linguistic and topical diversity encountered in the deployment. Hence, BES87

quantifies the degree of divergence between a benchmark dataset and a real-world reference88

corpus. The score draws inspiration from ecological diversity indices, where ecosystems are89

evaluated based on species richness and evenness. Analogously, benchmarks can be viewed90

as habitats that sample certain linguistic species (topics, styles, reasoning types).91

Computation:92

(a) Represent each benchmark and reference corpus in a shared distributional space, such93

as topic distributions or sentence embeddings.94

(b) Compute divergence between the two distributions95

(c) Map the divergence to a categorical scale: Low Bias (close alignment), Medium Bias,96

or High Bias (substantial mismatch).97

2. Memorization Consistency Index (MCI): It is designed to disentangle memorization from98

reasoning by measuring, how models respond to paraphrased variants of benchmark prompts99

while correcting for the background answer frequency.100

Workflow:101

(a) For each benchmark item x, generate paraphrased variants that preserve semantic102

meaning but alter surface form.103

(b) Compute Consistency(x): the fraction of paraphrases where the model produces104

identical answers.105

(c) Compute Background Match(x): the probability that same answer arises in unrelated106

prompts (capturing rote response patterns).107

(d) Define the index:108

MCI(x) = Consistency(x)×
(
1− BackgroundMatch(x)

)
A high MCI typically indicates that responses are driven by memorization rather than109

reasoning. Medium MCI suggests mixed signals hence, requires closer inspection. Low110

MCI suggests reliance on reasoning or contextual adaptation rather than rote recall.111

3. Contamination-Resilient Metric Adjustment (CRMA): This integrates contamination112

detection and memorization into a single adjusted metric, preventing inflation of perfor-113

mance scores due to training-test overlap. It modifies raw accuracy scores by discounting114

performance proportional to estimated contamination probability, while integrating the115

memorization evidence from MCI metric.116

Formulation: Let,117

• Acc = raw accuracy of the model on benchmark items.118

• Ĉ = calibrated contamination probability, derived from null-model similarity distribu-119

tions.120

• MCI = Memorization Consistency Index for the same items.121

We define the Adjusted Accuracy as:122

Accadj = Acc×
(
1− Ĉ · f(MCI)

)
(1)

where f(MCI) scales contamination penalties by memorization evidence. For instance, if123

contamination is detected but memorization is low, the penalty is reduced, thereby avoiding124

double penalization. This formulation couples contamination and memorization signals into125

a single correction factor, ensuring balanced fairness in evaluation.126
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4 Discussion127

While DC-Guard establishes a structured framework for auditing benchmarks and mitigating con-128

tamination and memorization, it also opens up several avenues for deeper inquiry. Primarily, the129

Benchmark Ecology Score (BES) provides a systematic way of quantifying benchmark represen-130

tativeness by drawing parallels to ecological diversity. It mainly relies on selecting a reference131

corpus against which diversity is measured. This inevitably introduces bias, which must be carefully132

addressed. The ecological alignment must be re-assessed periodically as real-world tasks evolve133

over time. A major challenge is how do we define and update the ground truth ecology in a dynamic134

language environment.135

The Memorization Consistency Index (MCI) uses paraphrased variants and background-match136

corrections which bridges the gap between anecdotal evidence of memorization and a quantitative137

diagnostic tool. Paraphrase-based probing has inherent limitation which is generating faithful138

paraphrases that preserve difficulty, context, and cultural nuance is nontrivial. Overreliance on these139

automated paraphrasing tools risks in introducing artifacts. Another challenge lies in differentiating140

productive memorization like recalling factual constants from unproductive memorization like141

verbatim recall of benchmark items. A nuanced taxonomy of memorization types needs to be142

developed.143

As LLM applications increasingly shift toward interactive, multimodal, and real-time settings, the144

static text benchmarks alone may prove inadequate. Extending the framework to multi-turn dialogues,145

multimodal datasets, and task-specific evaluation remains an open frontier. DC-Guard provides three146

metrics that could serve as standardized reporting tools, improving comparability across studies.147

But, Standardization itself is difficult: different research groups may operationalize BES or MCI148

differently depending on corpora, paraphrasing techniques and contamination baselines. Model149

developers could optimize them without genuinely improving the generalization. Moreover, publicly150

flagging contaminated benchmarks may inadvertently disincentivize dataset re-use, even when re-use151

is valid. Balancing transparency with practicality and aligning evaluation standards with policy152

frameworks, remain as an unresolved societal challenge. Without community-wide guidelines, the153

results may diverge. There is a need for shared benchmarks, open-source toolkits, and consensus154

protocols to ensure reproducibility.155

5 Conclusion156

LLMs have reached unprecedented levels of fluency and task coverage but their evaluation pipelines157

remain deeply entangled with data centric challenges. Traditional methods often underemphasize158

these problems, leading to inflated claims of progress and unreliable signals. In this paper, we159

introduced DC-Guard, a framework that rethinks evaluation from a data-centric perspective.160

By combining three dimensions namely Benchmark Ecology Score (BES) to assess benchmark161

representativeness, Memorization Consistency Index (MCI) to diagnose model recall behavior, and162

Contamination-Resilient Metric Adjustment (CRMA) to correct inflated scores, the framework163

provides a holistic approach for auditing the LLM evaluation pipeline. The strength lies not only in164

its individual components but also in its integration of ecology, memorization, and contamination165

into a single evaluative lens. This multidimensional view encourages the field to move beyond and166

achieve more trustworthy measures of generalization.167
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Supplementary Material191

The lifecycle of an LLM typically unfolds across three stages: pretraining, where the model learns192

statistical regularities from massive text corpora; fine-tuning and alignment, where the model is193

adapted to follow instructions or domain-specific data; and evaluation, where performance is reported194

on benchmarks meant to represent real-world use. Research on evaluation of LLMs has increasingly195

shifted towards identifying the flaws in the standard benchmarking practices.196

Let us view the usage of the theoretical definitions of DC-Guard Metrics namely Benchmark Ecol-197

ogy Score (BES), Memorization Consistency Index (MCI) and Contamination-Resilient Metric198

Adjustment (CRMA) on widely adopted benchmarks:199

Example 1200

Let us consider evaluating a model on the widely used SQuAD (Stanford Question Answering201

Dataset) benchmark, with Wikipedia (2023 snapshot) serving as the reference corpus. Suppose the202

model has been fine-tuned on QA tasks, we are now interested in quantifying how contamination and203

memorization affect reported accuracy.204

Assumptions:205

• Raw accuracy (Acc): 85%206

• Benchmark Ecology Score (BES): Medium Bias (factual QA coverage, under-represents207

reasoning/dialogue diversity)208

• Contamination probability (Ĉ): 0.25 (25% overlap chance with pretraining corpus)209

• Memorization Consistency Index (MCI): 0.70 (high consistency across paraphrases)210

• Function f(MCI) = MCI (linear scaling)211
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Inferences:212

1. BES: Medium Bias ⇒ Benchmark is focused but not fully representative; lacks reasoning213

breadth.214

2. MCI: High value indicates the model tends to repeat answers across paraphrases, signaling215

memorization.216

3. CRMA:217

Accadj = 0.85×
(
1− 0.25× 0.70

)
= 0.85× 0.825 = 0.701

The adjusted accuracy falls to 70.1%, showing that contamination and memorization materi-218

ally inflate reported performance.219

Example 2220

Let us consider evaluating a model on the DROP (Discrepancy in Reading Comprehension) bench-221

mark, which is specifically designed to test reasoning over passages with arithmetic and logical222

operations. Suppose the dataset has minimal overlap with pretraining corpora (low contamination),223

and the model is observed to adapt flexibly across paraphrased question variants.224

Assumptions:225

• Raw accuracy (Acc): 72%226

• Benchmark Ecology Score (BES): Medium Bias (divergence detected but with sufficient227

topical coverage)228

• Contamination probability (Ĉ): 0.05 (low, as benchmark items are adversarially generated)229

• Memorization Consistency Index (MCI): 0.25 (low, indicating reliance on reasoning rather230

than rote recall)231

• Function f(MCI) = MCI (linear scaling)232

Inferences:233

1. BES: Medium Bias ⇒ Benchmark is somewhat representative but not overly narrow.234

2. MCI: Low value suggests model responses vary across paraphrases in meaningful ways,235

pointing toward reasoning reliance rather than memorization.236

3. CRMA:237

Accadj = 0.72×
(
1− 0.05× f(0.25)

)
= 0.72× (1− 0.0125) = 0.72× 0.9875 = 0.711

Hence, the adjusted accuracy remains close to raw accuracy, reflecting that contamination is238

not materially inflating the scores.239

Example 3240

Let us evaluate a model on a subset of MMLU (Massive Multitask Language Understanding), where241

items range from definitional recall to light reasoning. The benchmark is reasonably aligned with242

real-world knowledge queries (good ecology), but historical public availability of some items induces243

moderate contamination. Model behavior suggests a mix of recall and reasoning.244

Assumptions:245

• Raw accuracy (Acc): 78%246

• Benchmark Ecology Score (BES): Low Bias (close alignment to reference corpus)247

• Calibrated contamination probability (Ĉ): 0.15 (moderate)248

• Memorization Consistency Index (MCI): 0.45 (medium; mixed signals)249

• Scaling function: f(MCI) = MCI (linear)250
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Inferences:251

1. BES: Low Bias ⇒ the benchmark is broadly representative; ecology alone would not explain252

inflated scores.253

2. MCI: Medium value indicates partial reliance on recall with some genuine generalization.254

3. CRMA:255

Accadj = 0.78×
(
1−0.15×f(0.45)

)
= 0.78×

(
1−0.0675

)
= 0.78×0.9325 = 0.72735 ≈ 72.7%

The adjustment is noticeable (reflecting moderate contamination and mixed memorization)256

but smaller than in high-contamination cases.257

Therefore, the metrics of DC-Guard: BES contextualizes the benchmark scope, MCI highlights258

possible memorization artifacts, and CRMA yields an adjusted, contamination-resilient performance259

score that better reflects generalization.260
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