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Abstract

Geometric graph neural networks (GNNs) depend critically
on the construction of the underlying graph structure for
molecular modeling, protein structure prediction, and 3D
shape analysis. Recent rigidity-theory-inspired graph con-
structions aim to enhance the expressivity of geometric
GNNs–separating geometric graphs up to isometries, while
remaining sparse. However, their theoretical and empirical
behavior remains poorly understood, and—crucially—they
often fail to preserve local structure, introducing distortions
that hinder learning of neighborhood-scale geometry. We in-
troduce the Fundamental Forms Graph Construction (FFGC),
a construction method that generates sparse, invariant, and
architecture-agnostic graphs by pairing genus-0 projections
with curvature-aware geometry and iterative optimization for
reconciling global separation with local fidelity.

Introduction
Geometric deep learning leverages physical symmetry and
structure for data efficiency and accuracy on manifolds,
graphs, and groups (Bronstein et al. 2021; Battiloro et al.
2024; Liu et al. 2023), achieving remarkable performance
in molecular property prediction, protein folding, and shape
registration (Schütt et al. 2018; Jing et al. 2020; Igashov
et al. 2021). Equivariant GNNs now anchor many state-
of-the-art models (Schütt et al. 2018; Thomas et al. 2018;
Satorras, Hoogeboom, and Welling 2021; Brandstetter et al.
2021; Du et al. 2023) each with varying degrees of ex-
pressivity (Joshi et al. 2023; Sverdlov and Dym 2025).
However, until recently, the impact on expressivity from
the underlying geometric graph received comparatively lit-
tle attention (Morris et al. 2024; Sverdlov and Dym 2025;
Wang et al. 2025). In practice, when graphs are selected
for convenience rather than principle two recurrent issues
arise. (1) over-smoothed neighborhoods (large-k kNN or
large-radius ε-graphs) blur anisotropy, suppress informa-
tive spectral content, and induce near-harmonic smooth-
ing that erases directional signals crucial for physical in-
ference (Topping et al. 2021) and (2) task-driven rewirings
(random shortcuts, small-world/ring augmentations, hier-
archical/fragmentation graphs) can misalign local frames
and discard anisotropy, offering ad-hoc gains without being
metric- or symmetry-aware (Barbero et al. 2024; Qian et al.
2024; Sonthalia, Gilbert, and Durham 2023; Damke, Mel-
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Figure 1: Molecular surface and all atom representations of
the apo structure of the 4pfs protien prior to ligand binding.
The cryptic binding region is highlighted as yellow on the
surface (a) and red in the pointcloud (b).

nikov, and Hüllermeier 2020; Fey, Yuen, and Weichert 2020;
Tahmasebi, Lim, and Jegelka 2023). Empirically, across
benchmarks, performance tracks neighborhood quality more
than generic rewiring (Dwivedi et al. 2022; Hu et al. 2020).

The expressive power of geometric GNNs has long
been tied to separability criteria, from Weisfeiler–Lehman
tests (Xu et al. 2019) to more recent equivariant exten-
sion (Joshi et al. 2023; Hordan, Amir, and Dym 2024).
While fragmented graphs have been shown to be expressive
(Wollschläger et al. 2024), a principled path to separabil-
ity emerges from rigidity theory (Sverdlov and Dym 2025)–
when edge sets are sufficiently constraining, a point cloud’s
embedding is determined (up to global E(3) motions) by
pairwise relations. Recent work operationalizes this idea,
showing that carefully constructed sparse, connected graphs
can enhance the distinguishability of non-isometric struc-
tures (Wang et al. 2025). However, existing approaches still
face critical limitations, where (Sverdlov and Dym 2025)
relies on power graphs, which need an initial connected
graph, and (Wang et al. 2025)-style constructions are glob-
ally sparse, but then often rely on potentially dense radial
cutoffs to reintroduce local connections.

What remains missing is a principled graph construction
that simultaneously balances local and global structure while
maintaining sparsity and rigidity. We introduce the Funda-
mental Forms Graph (FFG), which encodes the first and
second fundamental forms—metric and curvature—via edge
lengths and face–dihedral angles. FFGs yield sparse, con-



nected graphs with |E| = 3|V| − 6, for |V| ≥ 3, ensur-
ing all supplied points are connected. Under mild genericity,
they provide provably complete E(3) invariants, leveraging
a discrete fundamental theorem of surfaces to uniquely de-
termine the underlying point cloud up to rigid motion. FFGs
are flexible and preserve local structure allowing representa-
tions that better capture neighborhood-scale geometry with-
out resorting to dense neighborhoods or ad-hoc rewiring.

Figure 1 illustrates the importance of careful graph con-
struction in real world applications of protein pocket discov-
ery using CryptoBench (Škrhák et al. 2024). Cryptic pock-
ets arise from subtle, state-dependent deformations (hinge
openings, side-chain flips, transient saddles) that may be
invisible on the apo surface yet are presaged by local
metric/curvature signals and coordinated long-range cou-
plings. This local–global pairing lets message passing detect
nascent pocket formation: local curvature shifts that hint at a
cleft are reinforced (or vetoed) by global pathways that open
cooperatively across a hinge.

Background
This section reviews geometric graphs, defines expressivity,
and recalls an existing approach.

Geometric Graphs Despite a variety of forms for defin-
ing a geometric graph (Joshi et al. 2023; Sverdlov and Dym
2025; Wang et al. 2025), we present a generalized version
accounting for the inclusion of additional features. A ge-
ometric graph G := (V, E ,X,F ,E) contains a set of m
nodes V = {1, . . . ,m}, and p edges E , along with three
associated feature sets for geometric features X , invariant
node features F and invariant edge features E. It will be
critical in the construction of a geometric graph to assert that
any node or edge features constructed respect their invariant
and equivariant principles.

The symmetry group of geometric graphs is the product
of the permutation group Sn and rigid motions E(3). The
action of a permutation matrix P on a geometric graph is
given by PG := (PX,PF ,PE(X)P⊤). A rigid motion
in E(3) is a rotation or orthogonal matrix Q ∈ O(3) and
a translation t ∈ R3 which acts on the geometric graph as
QG + t := (QX + t1⊤,F ,E).

Geometric GNNs Let fi ⊆ F and eij ⊆ X be the geo-
metric node and edge features selected by a particular geo-
metric GNN framework. Generically a geometric GNN then
propagates features as

f
(t+1)
i = UPD

(
f
(t)
i ,AGG

(
{f (t)

i , f
(t)
j , eij | j ∈ Ni}

))
,

where eij are edge attributes (e.g. xi−xj or pre-determined
invariant attributes such as relative distance ∥xi − xj∥), Ni

denotes the one-hop neighbors of node i, i.e., the set of nodes
in V that are adjacent to i in E , and UPD and AGG are
learnable update and aggregate functions. After T message-
passing steps, a multiset Readout function produces graph-
level features via the Readout

sglobal = Readout
(
{f (T )

i | i ∈ V}
)
.

Expressivity of Geometric GNNs Invariant expressivity
captures what a geometric GNN can distinguish and rep-
resent. Given two point clouds that differ up to E(3), typ-
ically by leveraging injective message passing, informative
geometric features (distances, angles, dihedrals), all to avoid
collapsing distinct structures under the limitation of WL-1.

A maximally expressive GNN F, where the update, ag-
gregation, and readout functions are all injective, can, after
depth T , distinguish two geometric graphs G1 and G2 as dis-
tinct:

sglobal1 =: F (G1) ̸= F (G2) := sglobal2 .

As shown by (Xu et al. 2019), expressivity is limited to
that of the WL-1 algorithm (Weisfeiler and Leman 1968).

Fundamental Forms Graph Family
Rather than rewiring graph connectivity, we re-establish the
graph connectivity. Moreover, unlike other base principles
graph construction methods, we utilize graphs exclusively
derived from a genus-0 mesh.
Definition 0.1. (Closed Genus-0 Triangle Mesh) M :=
(V, E , T ,X) is given by a set of vertices V , a set of asso-
ciated vertex locations X ⊂ R|V |×3,a set of edges E , and a
set of triplets corresponding to faces T . In order for M to
be genus-0, (V, E) must be a maximally planar graph.

Fundamental Forms on Meshes In the smooth setting
the Fundamental Theorem of Surfaces states that when the
two fundamental forms of a 2-manifold (metric and curva-
ture) are known, then they uniquely determine the surface
up to E(3). The discrete version of this theorem comes from
(Wang, Liu, and Tong 2012), which states that a closed sur-
face mesh with fixed length edges and dihedrals, can un-
der certain conditions determine a unique immersion of the
mesh up to E(3).

Let M = (V, E , T , X) be a closed genus-0 mesh. An ori-
entation of M is a choice of ordered faces T̃ ⊂ {(i, j, k) :
{i, j, k} ∈ T } such that along every interior edge e =
{i, j} ∈ E with incident (unordered) faces {i, j, k} and
{i, j, ℓ}, the two ordered faces appear with opposite edge
directions, i.e., (i, j, k) ∈ T̃ implies (j, i, ℓ) ∈ T̃ . On a con-
nected, 2-manifold mesh such a global orientation exists and
is unique up to a global flip (Meyer et al. 2003).

For an oriented triangle τ = (i, j, k) ∈ T̃ , the unit face
normal is given by

n̂τ =
(xj − xi)× (xk − xi)

∥(xj − xi)× (xk − xi)∥
.

For an interior edge e = {p, q} ∈ E shared by faces
τ, τ ′ ∈ T , define the (unit) edge tangent by choosing the
orientation (p, q) induced by τ and setting

t̂e,τ =
xq − xp

∥xq − xp∥
.

The signed dihedral angle at e is then

ϕe = atan2
(
(n̂τ × n̂τ ′)·t̂e, n̂τ ·n̂τ ′

)
.

This convention makes the set {ϕe}e∈E well defined, and
always exist because we assume a closed mesh. We explain
how to handle degenerate faces in ??.



Fundamental Forms Graph

Definition 0.2. (Fundamental Forms Graph) We define the
fundamental forms graph associated with a genus-0 mesh
M as

FFG(M) = (V, E , { le, ϕe }e∈E),

where le and ϕe denote the edge lengths and oriented dihe-
dral angles, respectively.

Definition 0.3. (Fundamental Forms Graph Constructor)
Given a point cloud X a fundamental forms graph construc-
tor returns an FFG, by first building a mesh and then calcu-
lating its geometric features.

These edge features alone suffice to use the discrete fun-
damental theorem of surfaces, guaranteeing that there exists
a unique embedding F : V → X , up to a global rigid motion
E(3).

Proposition 0.1. (Complete Invariant) Given two FFGs
built on any two distinct-distance point clouds (no two points
are the same distance apart), G = FFGC(X) and G′ =
FFGC(X ′) Assuming a maximally expressive GNN F

F (G) = F (G′) ⇐⇒ X ∼= X ′ up to E(3)

Proof. Suppose a maximally expressive one-layer GNN
F assigns the same global feature to FFG(M) and
FFG(M′). Then the multisets of accumulated edge fea-
tures coincide, i.e.

{{ {{ eij :j ∈ Ni }} : i ∈ V }}
= {{ {{ e′i′j′ : j′ ∈ N ′

i′ }} : i′ ∈ V ′ }}.

This implies |V| = |V ′|, and after relabeling if necessary,
the multisets of incident edge features at each vertex also
match. Hence each node i ∈ V has the same degree as its
counterpart in V ′, so |E| = |E ′|.

Under the assumption of a distinct-distance point cloud,
we assume that each edge length is unique, for any edge
li,j ∈ E the feature eij = ∥xi − xj∥ appears exactly once
in the incident multisets of i and j. Therefore, i, j must also
be present in E ′, and thus the underlying graphs (V, E) and
(V ′, E ′) are equivalent.

Since the graphs share the same connectivity and are both
maximally planar by construction, they share the unique set
of associated faces T = T ′ (Whitney 1932).

Therefore, both FFGs M = (V, E , T ; {eij}) and M′ =
(V ′, E ′, T ′; {e′ij}) are identical. Now by the local integrabil-
ity condition we can invoke the Discrete Fundamental Theo-
rem of Surfaces to realize a unique immersion. Hence the re-
constructed point clouds X and X ′ coincide up to E(3). The
reverse is trivial: if the point clouds coincide, an invariant
construction method will result in the same graph, meaning
even a maximally expressive GNN F will map to the same
global feature.

Fundamental Forms Graph Construction
To make FFGs tunable toward preferred representations,
we introduce a graph-point cloud fitting step posed as a
quadratic assignment over permutations. The first step is to
choose a template graph. The vertices of this graph are then
assigned to a given point cloud with by matching their intrin-
sic distances. After the assignment is found, the geometric
features are calculated.

Template Graph We use meshes obtained from the
convex hull of Fibonacci spheres (González 2010).
Their near–equal-area node placement yields uni-
form triangulations with low node-degree variance,
and—crucially—supports any prescribed vertex count
N . By contrast, grid-based schemes (e.g., equiangular,
HEALPix, cube, icosahedral) are only available at specific
resolutions; to match a given N requires oversampling
to the nearest resolution and then downsampling before
retriangulating. Random sampling provides the least
regularity.

Graph-point cloud assignment problem To match in-
trisic distances we consider the following. Let D ∈ Rn×n

≥0

be a matrix derived from X (e.g., Euclidean distances Dij =
∥xi−xj∥2, or any pairwise weighting that emphasizes local-
ity), and let S ∈ Zn×n

≥0 be the graph–geodesic (shortest-path)
distance matrix of a template graph. The graph–point cloud
assignment problem seeks a bijection P ∈ Πn such that
the permuted point-cloud metric PDP⊤ best aligns with the
template metric S. We formulate this as

min
P∈Πn

∥S − PDP⊤ ∥F ,

which explicitly aligns two metric spaces—graph geodesic
and Euclidean—by searching for an (approximate) isometry
between them. Intuitively, pairs that are close in D are en-
couraged to be close in S, i.e., mapped to nearby nodes on
the template.

Degenerate Faces Even though the calculation of face
normals necessitates that a face τ ∈ T , must have a non-zero
area, we can still assign it a normal such that our resulting
dihedrals ensure local integrability. The only caveat is that
this will only work for degenerate faces with unique points.

For any three collinear points p, q, r ∈ V , choose any unit
vector orthogonal to,

±(xq − xp) or ± (xp − xr) or ± (xr − xq)

as the normal for the face. The additional degree of free-
dom does not impact the uniqueness of the immersion. This
can be understood by considering an in-process reconstruc-
tion where p, q ∈ V have already been placed in R3, then r
will be placed somewhere in the span of xp − xq , and there-
fore its position is fixed no matter what transitionary rotation
is applied. Now with these normals in place we can calculate
dihedrals as before.

Graph Construction Properties
Permutation invariance. Because the objective depends
on X only through D, any unbiased optimizer (or an exact



solver) yields a mapping that is invariant to relabelings of
the point cloud: if Q ∈ Πn reindexes X (so D 7→ QDQ⊤),
then P ⋆ transforms to P ⋆Q⊤ without changing the value
of equation . Thus the resulting fitted graph construction re-
mains permutation invariant to input labeling.

Characterization of Prior Approaches
SCHull Graphs In (Wang et al. 2025) spherical convex-
hull (SCHull) graphs are introduced, they are generically
complete and simple to build. Let X ⊂ R3×N and x̂i =
ui/∥ui∥ ∈ S2. Take the convex hull of {x̂i}ni=1 in R3; its
boundary induces edges between pairs (x̂i, x̂j). The SCHull
graph uses edge features ℓij = ∥xi − xj∥ and ϕij equal to
the dihedral angle between the two boundary faces meeting
along x̂i, x̂j , and node feature ri = ∥ui∥.

The limitations come from a single static construction per
cloud: collisions when x̂i = x̂j for i ̸= j; loss of local Eu-
clidean structure from the direct projection xi 7→ x̂i, which
motivates added radial-cutoff connections; and as n grows,
the dihedrals begin to conform, which weakens local dis-
crimination.

Power Graphs Power graphs are also generically com-
plete (Sverdlov and Dym 2025), but rely on an initial start-
ing graph. In tasks where they are available chemical bonds
can fulfill this use, but in such tasks atom positions are not
typically generic. Otherwise neither radial cutoff nor K-NN
guarantee connectedness, and G 7→ Gp means that sparsity
may be compromised depending on the power and sparsity
of the underlying graph.

ComENet ComENet (Wang et al. 2022) offers another
sparse-complete style by assigning to each edge a dihedral
computed from its 2-hop neighborhood, but without a global
consistency prescription entire 2-hop neighborhoods can be
permuted while preserving these local dihedrals, so global
completeness is not guaranteed.

Graph Construction
The FFG optimization is implemented in JAX using OTT-
JAX for entropic Gromov–Wasserstein. Each inner step uses
Sinkhorn (max 200 iters, tol 10−5) and an outer GW loop
(max 50 iters, threshold 10−3) with warm starts. The solver
returns a soft transport T that we normalize and a hard per-
mutation P via Hungarian matching on T . The resulting
node mapping p induces a standard edge list (and/or cross-
graph correspondences) that is directly amenable to PyTorch
Geometric loaders and batching.

Protein Cryptic Docking
CryptoBench (Škrhák et al. 2024) is a large, curated bench-
mark for cryptic binding sites (CBSs)—sites that are not vis-
ible/accessible in the apo state but become druggable in the
holo state. It’s built from matched apo–holo pairs, grouped
by UniProt, clustered by sequence identity, and filtered for
substantial binding-site rearrangements; the public release
reports 1,107 structures with predefined splits to train/eval-
uate CBS predictors. The benchmark standardizes provides
region identifies for the cryptic regime of pocket detection.
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Figure 2: Graph construction comparison with a protein
cryptic pocket atoms highlighted in red and local connec-
tions on the pocket in blue. We observe that the SCHull
graph appears to have local structure in the point cloud pro-
jection, but the projection often separates points in the con-
vex hull graph. By comparison all of the FFGC graphs have
better local structure preservation.

Figure 2 illustrates the improved local structure preser-
vation of our FFG construction in comparison the baseline
SCHull. In particular, each atom identified in the pocket re-
gion is colored red and any connected binding atoms are
connected by a blue edge. We observe that although the
SCHull graph appears to have local structure, it is primar-
ily an artifact of the projection method. By contrast, the
Fibonacci method maintains local structure of the cryptic
pocket region. The molecule and its cryptic pocket region
are illustrated in Figure 1.

Concluding Remarks
We introduced the Fundamental Forms Graph Construction
(FFGC) as a principled framework for graph construction.
By encoding edge lengths and dihedral angles subject to lo-
cal integrability, our approach guarantees sparsity and con-
nectivity while providing features that uniquely determine
embeddings up to E(3). This stands in contrast to prevailing
constructions such as radial cutoff, k–nearest neighbors, or
SCHull graphs, which do not simultaneously ensure these
properties and admit direct geometric tunability. We leave
to future work the inclusion of a comprehensive empiri-
cal evaluation including contact-preservation, Euclidean lo-
cality preservation, and downstream cryptic-pocket bench-
marks.
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