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ABSTRACT

Protecting intellectual property on LLM-generated code necessitates effective wa-
termarking systems that can operate within code’s highly structured, syntactically
constrained nature. In this work, we introduce CodeTracer, an innovative adaptive
code watermarking framework underpinned by a novel reinforcement learning
training paradigm. At its core, CodeTracer features a policy-driven approach that
utilizes a parameterized model to intelligently bias token choices during next-token
prediction. This strategy ensures that embedded watermarks maintain code func-
tionality while exhibiting subtle yet statistically detectable deviations from typical
token distributions. To facilitate policy learning, we devise a comprehensive reward
system that seamlessly integrates execution feedback with watermark embedding
signals, balancing process-level and outcome-level rewards. Additionally, we em-
ploy Gumbel Top-k reparameterization to enable gradient-based optimization of
discrete watermarking decisions. Extensive comparative evaluations demonstrate
CodeTracer’s significant superiority over state-of-the-art baselines in both water-
mark detectability and the preservation of generated code’s functionality. Our code
is available at https://anonymous.4open.science/r/CodeTracer-B8EE.

1 INTRODUCTION

The unprecedented capabilities of large language models (LLMs) in code generation have introduced
critical challenges for intellectual property protection and code attribution (Li et al., 2022; Achiam
et al., 2023; Guo et al., 2024; Hui et al., 2024). As AI systems produce increasingly sophisticated
code that is difficult to distinguish from human-written code, the need for reliable code tracing
approaches has become urgent (Zhao et al., 2024; Wang et al., 2024). Traditional code watermark-
ing approaches apply post-generation transformations to completed code, making them inherently
incompatible with the autoregressive generation process of LLMs. Moreover, these methods re-
quire labor-intensive, language-specific transformation rules that must be manually crafted for each
programming language (Hamilton & Danicic, 2011; Yang et al., 2023; Li et al., 2024).

Existing LLM watermarking approaches operate on the autoregressive generation process by biasing
next-token predictions toward statistically detectable patterns (Radford et al., 2019; Kirchenbauer
et al., 2023a). In natural language contexts, this approach succeeds because text generation is robust,
as most positions admit multiple semantically valid token choices, allowing watermarking to be
applied across all generated tokens (Kuditipudi et al., 2023; Dathathri et al., 2024; Liu & Bu, 2024).

However, code watermarking presents distinct challenges that arise from the structural and semantic
constraints inherent to programming languages. Code generation imposes two critical constraints.
First, syntactic dependencies severely constrain the space of valid token choices, as certain tokens
are syntactically mandatory and their modification results in compilation failures (Guan et al., 2024).
Second, code positions exhibit heterogeneous sensitivity to modifications, where indiscriminate
watermarking strategies fail to account for the varying tolerance to perturbations across different code
locations (Lee et al., 2023). Recent efforts to incorporate watermarks during LLM code generation
show promise but remain impractical in real-world scenarios, as they require access to supplementary
prompts and model information to compute critical values like entropy during detection (Lee et al.,
2023; Guan et al., 2024; Zhao et al., 2024). We argue that an effective solution requires a model-based
approach that learns the necessary programming knowledge during training, enabling intelligent
watermarking decisions that adapt to syntactic and semantic constraints with minimal context.
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Consequently, we identify the core challenge in LLM code watermarking: how can we intelligently
determine optimal watermark insertion points and select semantically reasonable token choices that
maintain statistical detectability while preserving code functionality?

In this work, we propose CodeTracer, an adaptive code watermarking framework built upon a novel
reinforcement learning (RL) training paradigm. CodeTracer employs a policy-driven approach
that leverages a parameterized model to intelligently identify optimal insertion positions and guide
token selection during the code generation process. The parameterized model collaborates with
the original LLM to form a watermarked policy, where only the parameterized model undergoes
optimization during training. At generation time, the LLM provides logits while the parameterized
model intelligently determines watermark application and token selection decisions. To train the
watermarked policy, we employ reinforcement learning through a carefully designed dual-component
reward system. This system integrates two complementary feedback signals: execution feedback
that penalizes functionally incorrect code, and watermark embedding signals that comprise both
immediate process rewards for successful watermarked token selection and statistical outcome
rewards employing metrics such as the z-score to comprehensively assess detectability performance.
To enable end-to-end gradient-based optimization, we address the non-differentiability of discrete
bias token selection by Gumbel Top-k reparameterization (Xie & Ermon, 2019) and Straight-Through
Estimation (Bengio et al., 2013), achieving differentiable watermarked policy training.

Contributions. Our work yields several key contributions: (i) We introduce CodeTracer, an adaptive
watermarking framework that intelligently embeds watermarks during LLM code generation; (ii)
We develop a novel RL pipeline for code watermarking training that combines execution feedback
with dual watermark signals and enables differentiable optimization for the entire pipeline; and
(iii) Empirically, we validate the effectiveness of CodeTracer through comprehensive evaluations,
demonstrating its superior watermark detection capabilities while maintaining code functionality.

2 RELATED WORK

LLM Watermarking. Existing LLM watermarking approaches embed imperceptible signatures
during token sampling by modifying logits or altering the sampling procedure (Kirchenbauer et al.,
2023a; Kuditipudi et al., 2023; Zhao et al., 2023; Christ et al., 2024; Dathathri et al., 2024). A
prominent example is the green-red watermarking scheme (Kirchenbauer et al., 2023a;b), which
partitions the vocabulary into “green” (preferred) and “red” (avoided) tokens, biasing generation
toward green tokens while suppressing red ones, enabling statistical detection of watermarked content.
Xu et al. (2024) propose a reinforcement learning approach for watermark embedding that requires
training the LLM, which may cause unexpected behaviors for LLMs. Critically, these methods
encounter difficulties in low-entropy scenarios typical of code generation (Lee et al., 2023).

Code Watermarking. Code watermarking presents distinct challenges due to the strict syntactic and
semantic constraints inherent in programming languages. Traditional approaches modify existing
code through formatting changes or control flow restructuring (Hamilton & Danicic, 2011; Ma
et al., 2019; Li et al., 2024; Yang et al., 2023; Liu et al., 2024; Dathathri et al., 2024). Recent
LLM-focused methods leverage entropy distributions (Lee et al., 2023; Li et al., 2023) or type
predictors (Guan et al., 2024) to guide watermark insertion. However, these techniques typically
require privileged access to LLM parameters, generation probabilities, or original prompts during
watermark detection, significantly limiting their practical deployment (Zhao et al., 2024). In contrast,
CodeTracer adaptively embeds watermarks during generation without such prerequisites.

RLVR and GRPO. Reinforcement Learning with Verifiable Rewards (RLVR) enhances LLMs by
integrating verifiable reward signals into the training process, demonstrating improved robustness
against reward hacking and superior performance (Lambert et al., 2024; Guo et al., 2025; Team et al.,
2025). However, RLVR is constrained by scarcity of reliably verifiable signals, with most applications
limited to mathematical problems and code execution tasks. DeepSeek-R1 (Guo et al., 2025) combines
verifiable rewards with Group Relative Policy Optimization (GRPO), which improves computational
efficiency over traditional policy optimization methods. Code watermarking emerges as a natural fit
for RLVR, as watermark detection provides unambiguous, token-level verification signals that can be
efficiently computed. We exploit this natural alignment by employing GRPO with watermark-based
verifiable rewards to achieve both computational efficiency and robust watermarking.
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3 CODETRACER: A POLICY-DRIVEN WATERMARKING FRAMEWORK

Problem Setting. In code generation tasks, a large language model takes a sequence of input tokens
representing the prompt x = [x1, x2, . . . , xn] and generates an output sequence y = [y1, y2, . . . , ym]
containing the generated code. At each generation step t, the LLM πθ processes the input prompt
x and previously generated tokens to compute a logit vector l = [l1, l2, . . . , l|V|] over the entire
vocabulary V . Each value lj represents the model’s preference for token vj ∈ V . This logit vector is
transformed into a probability distribution using the softmax function, from which token yt is sampled.
To enable detection of LLM-generated code, in-generation watermarking techniques, such as the
approach by Kirchenbauer et al. (2023a), modify the LLM’s original logits l to form watermarked
logits l̃. This modification is achieved by adding biases to the logits of a specific subset (green list)
G ⊂ V of the vocabulary, selected using a pseudorandom function (PRF). This process yields a
watermarked code sequence ỹ = [ỹ1, ỹ2, . . . , ỹm′ ]. The presence of watermark is then statistically
inferred by analyzing frequency difference of tokens appearing within the biased vocabulary subset.

Challenges in LLM Code Watermarking. LLM watermarking faces severe performance degra-
dation in code generation due to unique challenges distinct from natural text watermarking. Unlike
natural language, code is highly structured with precise syntax where small modifications can dras-
tically alter functionality or render the code inoperable. This inherent rigidity creates significant
constraints for watermarking techniques. First, watermark position selection is critical, as many
positions in code are immutable. Unlike natural text where alterations rarely affect meaning, code
contains structural elements that cannot be modified. For example, changing def to func in Python
function definitions breaks syntax. Any watermarking approach must avoid these critical positions.
Second, watermark token choice must respect contextual constraints. Even at modifiable positions,
replacement tokens must maintain syntactic validity. For instance, if status = “active” is wa-
termarked by replacing “active” with class, the result causes a syntax error. This contextual
sensitivity severely limits the available vocabulary for watermarking. Consequently, effective code
watermarking requires a deeper understanding of code structure and semantics.

3.1 CODETRACER

To address the aforementioned challenges, CodeTracer introduces a policy-driven framework that
integrates a watermark model πϕ with an LLM πθ, yielding a composite watermarked policy πθ⊕ϕ

capable of generating watermarked code. At each generation step t, the watermark model πϕ(a|c)
operates conditioned on the current context c, defined as the concatenation of a segment of the input
x and the sequence of previously generated tokens y<t within a fixed-length window. The output
of this policy is an action a = (w,G), where w ∈ {0, 1} is a binary variable indicating whether to
apply watermarking at the current position, and G ⊂ V represents a set of preferred “green” tokens.

The generation of a token is then achieved by sampling from a modified logit vector from the
watermarked policy πθ⊕ϕ as:

l̃j = lj + w · δ · 1vj∈G, (1)
where δ is a hyperparameter controlling the bias applied to the logits of tokens in the green list
G when watermarking is active (w = 1), and 1vj∈G is an indicator function equaling 1 if token
vj ∈ G and 0 otherwise. The watermark strength is governed by the size of the green token set,
|G| = γ|V| for a predefined ratio γ ∈ (0, 1), and the bias magnitude δ. The complement of the green
set, R = V \G constitutes the “red” token set. This policy-driven and context-aware approach allows
for dynamic control over both the placement of the watermark and the vocabulary subset used for
biasing the generation process. In essence, this formulation empowers the policy to strategically
influence the token sampling process by preferentially selecting tokens from the green set G, while
simultaneously regulating the watermark through the binary decision w.

Consequently, during generation, CodeTracer applies the watermarked policy πθ⊕ϕ(ỹ|x) that takes
the same input as the LLM πθ but generates biased outputs ỹ = [ỹ1, ỹ2, . . .] via modified logits l̃j .

Detection. During detection, given an output sequence s = [s1, s2, . . . , sT ′ ] of length T ′, Code-
Tracer reconstructs the watermarking decisions independently using only the watermark model πϕ,
without requiring access to the LLM πθ. This reconstruction determines, for each token, whether
watermarking was applied (w = 1 or w = 0) and, if so, the composition of the corresponding
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Figure 1: CodeTracer: A framework for LLM code watermarking through selective token biasing.
The diagram shows our end-to-end pipeline where a trainable watermark model collaborates with
an LLM to embed detectable statistical patterns in generated code. A reward system optimizes the
dual objectives of preserving code functionality while maximizing watermark detectability. The
watermark model operates as a plug-in module, enabling deployment beyond those used during
training. Importantly, watermark detection requires only the watermark model, not the original LLM.

green token set G. We identify the subset of tokens where watermarking was active, denoted as
{sw=1}, and count the total number of watermarked positions T = |{sw=1}|. We then count
how many of watermarked tokens belong to their respective reconstructed green sets, denoted as
NG = |{s : s ∈ {sw=1}∧s ∈ G}|. To assess the statistical significance, we employ a one-proportion
z-test for the proportion of watermarked tokens belonging to their predicted green sets:

z =
NG − Tγ√
Tγ(1− γ)

. (2)

Under the null hypothesis of no watermarking, we expect NG to follow a binomial distribution with
success probability γ. A sufficiently large positive z-score provides strong statistical evidence for
watermark presence, indicating that watermarked tokens appear in their predicted green sets with
frequency significantly higher than the expected random baseline of γ. The complete algorithms for
watermark generation and detection are formalized in Algorithm 1 and Algorithm 2, respectively.

4 LEARNING TO WATERMARK IN CODETRACER

We formulate training of watermarked policy πθ⊕ϕ within a reinforcement learning framework. This
section first gives an overview of the training pipeline, then discusses the reason to use RL for policy
learning, and finally addresses specific design challenges along with our proposed approach.

4.1 HOW TO LEARN THE WATERMARKED POLICY?

As shown in Figure 1, we employ the GRPO algorithm (Shao et al., 2024) as our RL framework to
train the watermark model πϕ(a|c) within the watermarked policy πθ⊕ϕ. GRPO offers computational
efficiency and has demonstrated effectiveness in integrating rule-based rewards for coding and
mathematical tasks (Guo et al., 2025). Our training pipeline requires three key components from the
standard GRPO framework: a training policy, a reference policy, and reward functions. We use the
integrated watermarked policy πθ⊕ϕ as the training policy rather than solely πϕ, as the complete code
generation process requires coordinated operation of both the LLM and watermark model. Crucially,
we freeze the LLM parameters θ during training and optimize only the watermark model parameters
ϕ. This design ensures a portable and efficient watermarking solution that trained watermark model
can be applied to other pre-trained LLMs without requiring fine-tuning or additional training data.

4
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4.2 WHY USE RL FOR LEARNING?

Code watermarking presents a fundamental training paradox that reinforcement learning uniquely
addresses. Traditional supervised learning requires pre-existing watermarked examples to train a
detector, but creating such examples necessitates an already-trained watermark model: a circular
dependency that renders supervised approaches infeasible. Reinforcement learning eliminates this
paradox by learning through interaction rather than predefined examples.

Code watermarking is naturally suited for RL due to two key characteristics. First, watermark
detection provides unambiguous, token-level verification signals that can be efficiently computed.
Second, code functionality offers clear binary feedback through test case execution. Our RL formula-
tion leverages these signals to offer distinct advantages: (1) it implicitly learns complex syntactic
constraints across diverse programming languages without exhaustive manual specification; (2) it
optimizes the watermarked policy to balance detectability and functionality through quantifiable
reward mechanisms; (3) it enables end-to-end training without requiring pre-watermarked data.

4.3 POLICY DESIGN

The implementation of our watermarked policy πθ⊕ϕ presents fundamental technical challenges due
to the discrete nature of the watermark components w and G in Equation equation 1. We implement
the watermark model πϕ(a|c) where a = (w,G) as a transformer that outputs continuous values, but
we need discrete outputs for watermarking decisions. Both the binary watermark decision w and the
green token list G require discrete selections that impede gradient flow during training.

Straight-Through Estimation. To enable gradient flow through the discrete decision processes for
watermark selection w, we apply straight-through estimation techniques. Specifically, our watermark
transformer outputs a (|V| + 1)-dimensional vector as (wϕ, lϕ), where wϕ ∈ R is a scalar for
watermark placement probability of and lϕ ∈ R|V| as logit bias vector. To derive our desired output
a = (w,G) from (wϕ, lϕ), we implement straight-through estimation:

w = 1wϕ>0 + σ(wϕ)− sg(σ(wϕ)), (3)

where σ(·) is the sigmoid function and sg(·) is the stop-gradient operator. During the forward
pass, this formulation behaves like the discrete operation 1wϕ>0. However, during backpropagation,
gradients flow through the continuous relaxation σ(wϕ). The stop-gradient operator ensures only the
gradient of the relaxation (and not its forward values) affects the computation. This technique enables
end-to-end training despite the discrete nature of watermarking decisions made by w.

Gumbel-Top-k. To overcome the challenges of discrete token selection for the green list G, we
develop a Gumbel-Top-k sampling approach for our token assignment process. This technique
provides a differentiable pathway from lϕ to G while preserving the discrete characteristics necessary
for effective watermarking. For a given parameter γ ∈ (0, 1), we select k = ⌊γ|V|⌋ tokens for
the green list. Given logits lϕ from the watermark model πϕ, we apply Gumbel noise to create a
continuous relaxation of the discrete selection:

g = lϕ + (− log(− log(u))), (4)

where u ∼ Uniform(0, 1)|V| represents uniform random noise across the vocabulary space. The
green list G is then determined by selecting the top-k tokens according to these perturbed logits:

G = arg top-k(g). (5)

To enable gradient flow through this discrete selection process, we implement a straight-through
estimator for the indicator variable lG ∈ {0, 1}|V| that represents membership in the green list:

lG = 1v∈G + S(g)− sg(S(g)), (6)

where S(g) represents the Gumbel-Softmax-based continuous relaxation of the top-k selection, and
sg(·) is the stop-gradient operator. During forward passes, we use hard discrete token selection 1v∈G

with Equation 5 based on token rankings from the Gumbel-perturbed logits g, while during backward
passes, the gradients flow through the softmax-based continuous relaxation S(g). This approach
allows the model to learn effective watermarking while maintaining the discrete token selection.

5
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For the reference policy in our GRPO framework, we utilize the same architecture as the training
policy πθ⊕ϕ, establishing a self-referential optimization approach. This design choice enables the wa-
termarking parameters to be refined against their own previous distributions. The approach facilitates
gradual refinement of watermarked policy while ensuring that successive iterations remain coherent
with previous behaviors, ultimately leading to more stable convergence and better performance.

4.4 REWARD FUNCTION DESIGN

Our reward system guides the watermarked policy πθ⊕ϕ in watermark placement w and green token
selection G using feedback from watermark detection and code execution. We design a multifaceted
reward system that balances code functionality and watermark detectability.

Outcome-Based Execution Reward R1. Our execution reward R1 evaluates code functional
correctness through binary assessment based on the performance on passing test cases:

R1 =

{
1, if all test cases pass
0, otherwise

(7)

This binary formulation provides unambiguous feedback on code correctness, where successful
execution across all test cases yields a positive reward, while any compilation error, runtime failure,
or test failure results in zero reward. By incorporating this strict binary signal into our reward
function, we enforce functional preservation as a hard constraint, ensuring that the watermarked
policy maintains code correctness while learning watermarking strategies.

Outcome-Based Watermark Reward R2. The watermark detection reward R2 quantifies the
statistical detectability of the watermark by employing a saturated function of the statistical z-score:

R2(s) =


1, if z(s) ≥ 4
z(s)
4 , if 0 < z(s) < 4

0, if z(s) ≤ 0

(8)

where z(s) is the statistical z-score obtained from the detection algorithm as a holistic measurement
of watermark performance. This saturated reward formulation establishes clear boundaries: a z-score
of 3 or higher (indicating strong statistical significance) receives the maximum reward of 1, while
non-positive z-scores receive no reward. Between these thresholds, the reward scales linearly with
the z-score. This design incentivizes our policy to achieve statistically significant detection levels.

Process-Based Watermark Reward R3. We observed that relying solely on outcome-based rewards
can be insufficient for effective policy learning, as they provide the identical reward for tokens in a
sequence. To provide more granular guidance, we introduce a process-based reward R3 that evaluates
individual generated tokens, offering immediate feedback on token selection decisions. This reward
is straightforward to implement, as we can directly assess whether each generated token st is green,
red, or non-watermarked based on the policy’s action at = (wt, Gt) at time t:

R3(st, at) =


1, if wt = 1 and st ∈ Gt

−1, if wt = 1 and st ∈ Rt

0, if wt = 0

(9)

This reward structure explicitly encourages green token selection during watermarking while penal-
izing red token selection. Non-watermarked positions receive neutral rewards, concentrating the
learning signal on watermarked tokens. By providing immediate feedback at each generation step,
R3 delivers more granular guidance than sequence-level rewards alone, significantly accelerating
policy convergence and improving watermarking performance through direct token-level supervision.

Integration into Advantage Computation. Our approach calculates advantages at two comple-
mentary levels to optimize the watermarked policy. First, we compute outcome advantages A1 from
the execution reward R1 and watermark detection reward R2 using GRPO’s outcome-based group
normalization mechanism. Second, we derive process advantages A2 from the token-level watermark
reward R3, normalizing these values across all tokens in all rollouts for each prompt. We categorize
generated tokens into four distinct types: green tokens (watermarked and belonging to set G), red

6
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tokens (watermarked but falling in set R), non-watermarked tokens (where w = 0), and non-code
text tokens. To maintain a specific focus on code watermarking, we exclude non-code tokens entirely.

The final advantage function for each token st at time t integrates these signals directly:

Atotal(st, at) = A1 +A2(st, at), (10)

where A1 represents outcome-based advantage and A2 represents process-based advantage for token
st with action at. We then apply a binary mask to eliminate advantage values for non-code tokens:

Â(st, at) = Atotal(st, at) · 1is_code(st). (11)

This integrated advantage function balances sequence-level feedback with token-specific guidance.
A1 provides sequence-level guidance from watermark effectiveness and functional correctness, while
A2 delivers immediate, token-level feedback for watermark positioning and green token selection.

Intuitively, our integrated reward system assigns high advantages to tokens that simultaneously
maintain code functionality, contribute to effective watermark detection, and are selected from the
green set. This approach guides our watermarked policy to identify optimal positions and select
tokens that preserve functionality while introducing subtle, statistically detectable deviations.

KL Regularization. To ensure that the watermarked policy πθ⊕ϕ does not deviate excessively
from natural code generation patterns, thereby maintaining code stealth and linguistic quality, we
incorporate a Kullback-Leibler (KL) divergence penalty into the overall GRPO loss function. This
term, DKL(πθ⊕ϕ ∥ πref), regularizes the watermarked policy against the reference policy πref.

Objective of GRPO. Combining all components discussed above, the final GRPO objective for
our watermarked policy can be concisely expressed as:

max
ϕ

Es∼D

[
1

|s|

|s|∑
t=1

min

[
πθ⊕ϕ(st|s<t)

πref(st|s<t)
Â(st, at),clip

(
πθ⊕ϕ(st|s<t)

πref(st|s<t)
, 1− ε, 1 + ε

)
Â(st, at)

]]
− βDKL(πθ⊕ϕ ∥ πref), (12)

where D represents rollout data from watermarked policy, Â(st, at) is our masked advantage function
incorporating both outcome-based and process-based rewards, ε is a clipping parameter that limits
policy updates, and β controls KL regularization. This objective balances watermark detectability,
code functionality, and natural generation patterns while only optimizing watermark parameters ϕ.

5 EXPERIMENTS

Evaluation Overview. We evaluate CodeTracer across five critical dimensions: (i) code functional-
ity, (ii) watermark detectability, (iii) robustness against attacks, (iv) efficiency and (v) transferability.
Following Lee et al. (2023), we employ two primary metrics: Pass@k for functionality assessment
and AUROC and TPR@5%FPR for detection performance measurement (Chen et al., 2021).

Models and Datasets. We employ OpenCoder-1.5B-Instruct (Huang et al., 2024) as our primary
backbone LLM and validate our findings on OpenCoder-8B-Instruct. We evaluate performance
on three established benchmarks: HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for
Python evaluation, and HumanEvalPack (Muennighoff et al., 2023) for cross-language evaluation.

Baselines. We compare CodeTracer against two categories of baselines. For post-hoc detection
methods, we evaluate against logp(x), LogRank (Gehrmann et al., 2019), DetectGPT (Mitchell
et al., 2023), and GPTZero (Tian et al., 2023). For active watermarking approaches, we compare with
WLLM (Kirchenbauer et al., 2023a), EXP-edit (Kuditipudi et al., 2023) and SWEET (Lee et al., 2023).

Technical Implementation. Detailed implementation specifications, including dataset details, base-
line configurations, model architectures, and training details are provided in Appendix C. We mainly
follow the experiment settings of Lee et al. (2023) to adapt it to our setting. In accordance with
established reinforcement learning practices, we initially apply supervised fine-tuning to πϕ using
proxy signals to establish code distribution knowledge through next token prediction. The training
process only needs to be performed once and can be completed in 1 day on a single A100 GPU.

7
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Table 1: Performance (%) comparison of detection methods. Bold: best performance for watermarks.

Category Dataset HumanEval MBPP

Method Pass@1 Pass@10 AUROC TPR Pass@1 Pass@10 AUROC TPR

No Watermark Base 65.42 79.17 - - 43.35 51.65 - -

Post-hoc

logp(x) 65.42 79.17 47.59 4.27 43.35 51.65 47.77 6.40
LogRank 65.42 79.17 47.66 1.82 43.35 51.65 48.76 7.80
DetectGPT 65.42 79.17 51.12 9.15 43.35 51.65 46.15 3.60
GPTZero 65.42 79.17 52.00 5.50 43.35 51.65 41.10 2.80

Watermarks

WLLM 58.05 70.35 70.17 20.73 39.66 47.22 76.44 27.80
EXP-edit 59.29 72.41 66.50 25.61 40.16 50.25 51.22 10.60
SWEET† 60.46 74.11 76.24 27.44 39.64 47.47 77.24 24.80
SWEET‡ 61.65 76.73 71.19 17.07 42.06 49.22 76.57 28.40
CodeTracer 62.65 77.11 77.71 32.32 42.10 52.01 78.42 31.60
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Figure 2: Training on 1.5B LLM and evaluating
on 8B OpenCoder-8B-Instruct LLM.

Table 2: Relative computational overhead of
CodeTracer with a 1.5B base LLM. Our water-
mark model runs in parallel, so inference delay
is only tensor slicing operation delay.

Component Parameters Memory Delay

CodeTracer πϕ 118M < 0.5GB < 100 µs
1.5B LLM πθ 1,500M 3-6GB 500-800ms
Relative Overhead < 10% < 15% < 0.02%

5.1 MAIN RESULTS ON BENCHMARK DATASETS.

We present experiments evaluating CodeTracer’s performance on code functionality and watermark
detection with HumanEval and MBPP in Table 1. We observe a clear improvement over other baselines.

Post-hoc vs. Watermarks. Post-hoc detection methods, including logp(x), LogRank, DetectGPT,
and GPTZero, preserve original generation but demonstrate consistently poor discrimination perfor-
mance. Their AUROC values range from 47.59% to 52.00% on HumanEval and 41.10% to 48.76%
on MBPP, close to random guessing (50%). This indicates that with the advancement of LLMs,
post-hoc detection methods struggle to distinguish AI-generated code from human-written code.

Code Functionality and Watermark Detectability. Watermarking methods demonstrate superior
detection performance compared to post-hoc approaches, achieving AUROC values of 66.50-77.71%
versus 47.59-52.00%. However, existing watermarking baselines suffer from noticeable code quality
degradation, with Pass@1 scores dropping to 58.05-61.65% on HumanEval, representing a substantial
trade-off between detection capability and functionality. CodeTracer achieves considerably better
balance in this trade-off with the highest Pass@1 scores (62.65% on HumanEval, 42.10% on MBPP)
and superior detection capability (AUROC of 77.71% and 78.42%), consistently outperforming
SWEET and other baselines across both functionality and watermark detectability metrics.

Computation Efficiency. As in Table 2, CodeTracer introduces negligible computational overhead
with less than 10% parameter increase, minimal memory usage (<15%), and inference delay below
0.02%. The watermark model adds only 118M parameters while requiring minimal additional memory
(less than 0.5GB). The actual inference delay is dominated by efficient tensor slicing operations,
introducing less than 100 µs, which is orders of magnitude smaller than typical LLM latency.

Transferability to Larger Models. To verify the scalability of our approach, we train the wa-
termark model on a smaller 1.5B LLM and directly apply it as a plug-in module to the larger
OpenCoder-8B-Instruct without retraining. Results are shown in Figure 2. CodeTracer achieves
minimal code functionality degradation (71.77% Pass@1 vs. 72.04% for Base) while significantly
outperforming other watermarking methods in detection capability (78.69% AUROC compared to

0SWEET† and SWEET‡ use different entropy thresholds to explore detectability-functionality trade-offs.
We adapt SWEET to use fixed context windows (vs. full generation history and original LLM) for practical and
fair comparison with other baselines. See Appendix C.2 for details about entropy threshold setup.
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Table 3: Robustness evaluation (%) under code
modification attacks. Bold values indicate best
performance. Settings follow Lee et al. (2023).

Attack Metric WLLM EXP-edit CodeTracer

Original AUROC 70.17 66.50 82.95
TPR 20.73 25.61 46.34

DIPPER AUROC 55.92 51.21 58.42
TPR 12.81 8.54 14.31

Rename AUROC 70.91 62.02 73.36
TPR 20.12 9.76 29.11

Table 4: Ablation study on different reward
components for CodeTracer training.

Method Pass@1 (%) AUROC (%) TPR (%)

CodeTracer 60.82 82.95 46.34
w/o A2 61.15 (+0.33) 75.11 (-7.84) 30.29 (-16.05)
w/o A1 60.34 (-0.48) 79.52 (-3.43) 34.91 (-11.43)

Table 5: Performance of model variants.
Method Pass@1 (%) AUROC (%) TPR (%)

CodeTracer-1 62.65 77.71 32.32
CodeTracer-2 60.82 82.95 46.34
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Figure 3: Cross-language evaluation on Java and C++.
CodeTracer achieves consistent cross-language performance.
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Figure 4: Training dynamics for
CodeTracer-1 with RL training.

65.90% for WLLM and 54.21% for EXP-edit). This demonstrates that our watermark model can serve
as an effective plug-in module for larger models without requiring model-specific retraining.

Robustness Analysis. Table 3 evaluates CodeTracer’s robustness against DIPPER (Krishna et al.,
2024) paraphrasing and variable renaming attacks (Lee et al., 2023). While all methods degrade under
attacks, CodeTracer consistently outperforms baselines. Against DIPPER attacks, CodeTracer
maintains superior detection (AUROC 58.42%, TPR 14.31%), and under renaming attacks demon-
strates resilience (AUROC 73.36%, TPR 29.11%), indicating effectiveness in real-world scenarios.

Cross-Language Capabilities. Figure 3 shows CodeTracer’s cross-language performance on Java
and C++. CodeTracer achieves strong detection while maintaining functionality comparable to
baselines across languages, showing consistent effectiveness across different programming languages.

5.2 FURTHER ANALYSIS

Reward Components. Table 4 evaluates the impact of different reward components on
CodeTracer’s performance. CodeTracer achieves optimal performance with both process and
outcome rewards. Ablating either component leads to notable degradation, with removing the process
reward causing larger detection drops while removing the outcome reward affects both performance.

Performance Tradeoff. Table 5 demonstrates the controllable trade-off between code functionality
and watermark detectability. CodeTracer-1 uses solely RL training without supervised fine-tuning
initialization, achieving higher functionality (Pass@1 62.65%) but lower detection performance
(AUROC 77.71%). Figure 4 shows the training dynamics of CodeTracer-1, demonstrating consis-
tent improvement throughout RL training. In contrast, CodeTracer-2 incorporates both supervised
fine-tuning and RL, trading some functionality for significantly improved detection capability.

6 CONCLUSION

In this paper, we presented CodeTracer, a novel adaptive code watermarking framework that addresses
the challenges of watermarking LLM-generated code while preserving functionality. Our policy-
driven approach integrates a watermark model with the base LLM to form a composite policy that
dynamically decides when to watermark and which tokens to select. By leveraging reinforcement
learning through GRPO, our approach intelligently navigates programming language constraints
without requiring pre-existing watermarked examples. Our multi-component reward system balances
statistical detectability with code integrity through execution feedback and token-level guidance.
Evaluations demonstrate that CodeTracer significantly outperforms existing approaches, offering a
promising solution for identifying AI-generated code while maintaining the code functionality.
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A WATERMARK GENERATION AND DETECTION ALGORITHM OF
CODETRACER

A.1 WATERMARK GENERATION

Algorithm 1 presents our watermark generation process. The algorithm embeds watermarks into code
sequences while preserving their functionality. It takes as input a prompt x, context window size c,
and watermarking hyperparameters including green list ratio γ and bias δ that control the strength
and detectability of the embedded watermark.

At each timestep t, the watermark model processes the context window to determine whether to apply
watermarking (w) and which tokens to include in the green list (G). The algorithm modifies logits
selectively based on these decisions, applying bias δ to green list tokens when w = 1.

Algorithm 1 CodeTracer Watermark Generation

Require: Prompt x, Context window size c, Green list ratio γ, Bias strength δ
Ensure: Watermarked code sequence s̃

1: Initialize empty sequence s̃ = []
2: for each generation step t do
3: Compute base LLM logits l = πθ(ctx)
4: Compute context window ctx = concat(x, s̃)[−(c) :]
5: Compute watermark model outputs (wϕ, lϕ) = πϕ(ctx)
6: Compute watermark decision w = 1wϕ>0

7: if w = 1 then
8: Select green list G = arg top-k(lϕ) and red list R = V \G, where k = ⌊γ|V|⌋
9: Compute modified logits: l̃j = lj + δ · 1vj∈G for each token vj in vocabulary V

10: else
11: Set l̃ = l (no modification)
12: Sample next token from distribution: s̃t ∼ softmax(̃l)
13: Append s̃t to s̃
14: return s̃

A.2 WATERMARK DETECTION

Algorithm 2 details our statistical watermark detection procedure. Following the framework
of Kirchenbauer et al. (2023a), we employ hypothesis testing with a key modification, where testing
is performed selectively only at positions likely to contain watermarks.

Given a code sequence s, the detector first reconstructs the vocabulary partitions and switch probabili-
ties using the same watermark model from generation. Detection employs a one-sided hypothesis test
using the z-statistic to determine whether green tokens appear more frequently than random chance
would predict, with a positive z-score above the threshold indicating watermark presence.

B ADVANCED TRAINING AND GENERATION TECHNIQUES

B.1 SFT INITIALIZATION

While our reinforcement learning (RL) algorithm can train from random initialization, we find that
supervised fine-tuning (SFT) provides a significantly more effective starting point. Since watermarked
code is unavailable for direct supervision, we instead use entropy and next-token prediction of clean
code as a proxy. During SFT, the watermark model πϕ is trained on two complementary objectives:
predicting watermark decisions wϕ to learn entropy distribution patterns across code structures,
and optimizing logits lϕ to capture the underlying token distribution in code sequences. This dual-
objective approach establishes a strong foundation that encodes both code syntax patterns and
appropriate watermarking signals before RL optimization begins.
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Algorithm 2 CodeTracer Watermark Detection

Require: Code sequence s, Context window size c, Green list ratio γ, Detection threshold τ
Ensure: Detection result (watermarked/not watermarked/insufficient data)

1: Initialize counters: watermarked_positions = 0, green_tokens = 0
2: Set positions_checked = {}
3: for each position t in s do
4: Compute context window

ctx = s[max(0, t− c) : t]
5: Compute watermark model outputs (wϕ, lϕ) = πϕ(ctx)
6: Compute watermark decision w = 1wϕ>0

7: if w = 1 then
8: Reconstruct green list G = arg top-k(lϕ), where k = ⌊γ|V|⌋
9: watermarked_positions ++

10: if st ∈ G then
11: green_tokens ++
12: Add t to positions_checked
13: Compute z-score:

z = green_tokens−watermarked_positions·γ√
watermarked_positions·γ·(1−γ)

14: if z > τ then
15: return “watermarked”
16: else
17: return “not watermarked”

B.2 IMPROVED SAMPLING STRATEGY

We implement a constrained sampling approach during both generation and detection phases to
enhance watermark robustness without additional training. Rather than naively selecting the top-k
tokens by logit values, we perform a deterministic sorting of logits lϕ and then apply pairwise or tuple-
based sampling constraints. This technique preserves the overall token distribution characteristics for
unwatermarked positions while creating a more distinct statistical separation between "green" and
"red" tokens for watermarked positions. The approach effectively maintains natural code generation
quality while improving watermark detection reliability.

B.3 ENTROPY REGULARIZATION

During policy optimization, we observed the watermark model occasionally converging toward
degenerate solutions where watermark signals w approach binary extremes (consistently 0 or 1). To
mitigate this issue, we incorporate an entropy regularization term in the policy optimization objective:

Lentropy = −H(πϕ(σ(wϕ)|c)), (13)

where H(πϕ) represents the entropy of the watermark decision distribution. This encourages the
model to maintain more balanced probability distributions for watermark decisions, preventing
overfitting and improving robustness across diverse code contexts. Additionally, we implement
gradient clipping to further stabilize training dynamics.

B.4 REWARD DESIGN FOR TRIVIAL SOLUTIONS

Our initial reward design occasionally led to trivial solutions where the model would either apply
watermarking too aggressively or too conservatively. To address this, we refined the process-based
watermark reward R3 with an asymmetric penalty structure:

R3(st, at) =


1, if wt = 1 and st ∈ Gt

−α, if wt = 1 and st ∈ Rt

0, if wt = 0 (non-watermarked)
(14)

where α > 1 (typically 2-5) creates a stronger penalty for red token selection when watermarking
is active. This asymmetric design incentivizes the model to be more selective about when to apply
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Table 6: Comprehensive hyperparameter settings for the CodeTracer watermarking framework. The
parameters are organized by their functional categories: watermark configuration controlling de-
tectability, model architecture defining the watermark policy network structure, training configuration
governing the optimization process, and reward configuration balancing the various objectives.

Parameter Value Description

Watermark Configuration

Watermark bias (δ) 2.0 Logit adjustment magnitude for green tokens
Green list ratio (γ) 0.5 Proportion of vocabulary in green list
Context window size (c) 2 Number of tokens used for watermark decisions
Z-score threshold 4.0 Statistical threshold for watermark detection
Switch threshold 0.5 Threshold for binary watermark decision

Model Architecture

Base model OpenCoder-1.5B-Instruct Foundation model for code generation
Model dimension (dmodel) 512 Hidden dimension for watermark policy network
Transformer layers 6 Number of transformer encoder layers
Attention heads 8 Multi-head attention heads per layer
Feed-forward dimension 2048 Intermediate dimension in feed-forward networks

Training Configuration

Learning rate 1.0e-5 Initial learning rate for optimization
LR scheduler Cosine with min rate Decay schedule with minimum rate of 0.1
Batch size 8 Sequences per device for training
Gradient accumulation 4 Steps between gradient updates
Training steps 500 Total optimization steps
Warmup ratio 0.03 Proportion of steps for learning rate warmup
KL coefficient (βKL) 0.0 Weight for KL divergence regularization
Number of generations 8 Code completions per prompt during training
Temperature 1.0 Sampling temperature for generation

watermarking (w = 1), only doing so when it has high confidence in successfully biasing toward
green tokens. For less certain positions, the model learns to disable watermarking (w = 0), which
receives a neutral reward. This approach significantly reduces false-positive detection rates while
maintaining high true-positive rates.

B.5 LIMITATIONS OF USING LLMS AS WATERMARK POLICY NETWORKS

While using pre-trained LLMs directly as watermark models might seem appealing, we identified
several critical limitations that justify our specialized architecture. First, distribution alignment
presents a fundamental challenge: LLM token distributions naturally align with the target model
distribution, causing “green” token lists to predominantly contain frequently used tokens. This
similarity makes distinguishing between unwatermarked and watermarked sequences difficult, as both
produce similarly high z-scores during detection. Second, computational efficiency concerns arise
as large-scale LLMs with billions of parameters introduce significant processing latency compared to
our specialized watermark policy, which operates with orders of magnitude fewer parameters while
maintaining task-appropriate performance.

Third, context length mismatch creates architectural incompatibilities, as LLMs are optimized for
extended contexts (thousands of tokens), while our watermark policy intentionally operates with
minimal contextual information (typically just a few tokens) to enable efficient decision-making at
each generation step. Fourth, entropy prediction calibration poses practical challenges because
LLMs produce poorly calibrated uncertainty estimates for short contexts, particularly at document
beginnings, which compromises the reliability of watermark decisions in these critical positions. Our
purpose-built watermark policy network addresses these limitations with a lightweight, specialized
architecture that achieves superior watermarking performance while maintaining the natural fluency
of generated code.
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C IMPLEMENTATION DETAILS

Table 6 presents the comprehensive hyperparameter configuration for our CodeTracer framework,
categorized by functional components to facilitate reproducibility and highlight critical design
decisions across our experimental setup.

C.1 DATASETS

We evaluate on standard code generation benchmarks that span multiple programming languages
and tasks. The primary evaluation uses HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021), which provide comprehensive Python programming challenges with associated test cases and
reference implementations.

C.2 BASELINES

We compare against two categories of methods: post-hoc detection and active watermarking. Post-
hoc detection methods preserve original generation and include zero-shot approaches: logp(x),
LogRank (Gehrmann et al., 2019), DetectGPT (Mitchell et al., 2023), and GPTZero (Tian et al., 2023).
Active watermarking methods include WLLM (Kirchenbauer et al., 2023a) and EXP-edit (Kuditipudi
et al., 2023), which operate under the practical constraints. We also include SWEET (Lee et al.,
2023), though comparisons are not fair since it requires access to the original LLM and prompts
for entropy calculation. We adapt SWEET to use a practical setting for fair comparison with other
baselines. We thoroughly tune the hyperparameters for each baseline following their setup.

DetectGPT. For the DetectGPT implementation, we used T5-3B as our model. Following the
original DetectGPT paper and SWEET (Mitchell et al., 2023; Lee et al., 2023) , we set the span length
to 2 words and applied masking to 20% of the text. For each test, we generated 100 perturbations to
ensure robust detection.

SWEET. For the SWEET baseline implementation, we conducted a systematic hyperparameter
search for the entropy threshold, exploring values from 0.3 to 1.2 with increments of 0.3. Our
experiments revealed optimal performance with an entropy threshold of 1.2 and 0.9 for the HumanEval
dataset and 0.3 and 0.6 for MBPP. In detection stage, SWEET needs to use original LLM, prompt
and complete generation sequence to compute the entropy. This requirement severely restricts their
practical applicability in real-world scenarios. For practical deployment, an ideal solution would
depend solely on the code snippet itself, as access to the generation context is typically unavailable.
Thus, we adapt SWEET to use fixed context windows (vs. full generation history and original LLM)
for practical and fair comparison with other baselines. We select two entropy thresholds for SWEET
to demonstrate the trade-off between watermark detectability and code functionality.

EXP-edit. We evaluate EXP-edit (Kuditipudi et al., 2023) following the methodology of (Lee et al.,
2023). In our experiments, we set temperature=0.2 and top-p=0.95. We systematically explore block
sizes (20 tokens), key sequence lengths (100), resample sizes (50 runs), and edit distance thresholds
(γ = 0.0). Through extensive parameter tuning, we determine the optimal configuration: key
length 100, block size 20, 50 sampling runs, and detection threshold 0.1, which balances watermark
detection reliability with code functionality.

C.3 MODEL ARCHITECTURE SPECIFICATIONS

Our model implements a transformer-based architecture optimized for code analysis and generation.
The model uses pre-norm design with layer normalization before the attention and feed-forward
computations to enhance training stability. It consists of four main components:

Embedding Layer: Combines token embeddings (Wte ∈ R|V|×dmodel ) and position embeddings
(Wpe ∈ Rc×dmodel ), where dmodel = 512 and c = 10 (context window size), processed through a
dropout layer with rate 0.2.

Transformer Encoder: 6 layers with 8 attention heads per layer.
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Feed-Forward Networks: Dimension expansion to 2048 before projection back to dmodel.

Output Layer: Final layer normalization followed by linear projection to |V|+ 1 dimensions.

Hyperparameter Configuration. We conducted extensive hyperparameter tuning to optimize our
watermarking system’s performance. Table 6 presents our final hyperparameter configuration. For
model-specific parameters, we use the OpenCoder-1.5B-Instruct base model with BF16 precision
and flash attention 2 implementation for optimal performance. The watermark policy network
uses a context window of 2 tokens to determine watermarking decisions, which balances detection
effectiveness and computational efficiency. The watermark strength parameters include a green list
ratio γ = 0.5, establishing an equal distribution between green and red token sets. The watermark
binary decision threshold is set at 0.5, providing a balanced approach for selective watermarking.
For detection, we employ a z-score threshold of 4.0, which ensures high precision in distinguishing
watermarked code from non-watermarked code while maintaining a low false-positive rate.

C.4 TRAINING DETAILS

We implement reinforcement learning training using GRPO with several customizations for
the code watermarking task. Our training pipeline processes the mix of prompts from
open-r1/verifiable-coding-problems-python dataset, HumanEval dataset and MBPP dataset.
The motivation is to make sure model be familiar the distribution of these dataset instructions, which
are representative code examples for code generation tasks.

The watermark policy model optimization uses a learning rate of 1.0× 10−5 with a cosine scheduler
including a minimum learning rate of 0.1. We implement a short warmup period (3% of total steps)
to stabilize early training. For regularization, we set β = 0.0 for the KL divergence term, allowing
the watermark policy to explore freely while process-based rewards provide necessary constraints.
The training process runs for 500 steps with a batch size of 8 per device and gradient accumulation
every 4 steps. For each prompt, we generate 8 different code completions to provide robust training
signals. The maximum prompt length is limited to 256 tokens, while completions can extend up to
1024 tokens to accommodate various code generation tasks. During inference, we use a temperature
of 1.0 to maintain natural generation characteristics.

Computation Resources All experiments were conducted on 1 Nvidia A100 GPU with 80GB
memory each, using BF16 precision to maximize computational efficiency. The watermark policy
network training requires significantly fewer resources than full LLM training. For inference and
evaluation, a single A100 GPU is sufficient to process the benchmark test cases. The lightweight
nature of our watermark policy ensures minimal computational overhead during both training and
deployment compared to LLM-based watermarking approaches. Our implementation uses PyTorch
with flash attention 2 for optimized transformer operations. To ensure reproducibility, we set a
random seed of 42 across all experiments. The relatively modest computational requirements make
our approach practical for real-world deployment scenarios, as the watermark policy can be integrated
with various LLMs without substantial infrastructure demands.

D SECURITY DISCUSSION

The security of CodeTracer’s watermarking framework derives from the complexity of our learning-
based approach and the semantic awareness of our watermark model. This section analyzes the
security properties of our approach compared to traditional watermarking methods.

Our transformer-based watermark model provides strong security through its complex neural rep-
resentations. Unlike static watermarking schemes that apply fixed rules, our architecture learns
context-dependent watermarking decisions that adapt to the syntactic and semantic structure of code.
The high-dimensional parameter space of our 6-layer transformer model creates a complex mapping
between code contexts and watermarking decisions that resists reverse engineering. This neural com-
plexity means that even with access to watermarked outputs, attackers face significant computational
barriers to inferring the underlying decision boundaries that govern watermark placement and token
partitioning.
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The selective application of watermarking through the binary decision mechanism (w) adds another
layer of security. Our model strategically applies watermarking only in positions where it can
effectively bias toward green tokens without compromising code functionality. This selective approach
creates an irregular watermarking pattern that varies with code structure and semantics, making
statistical detection more challenging for attackers attempting to identify and remove watermarks.

In contrast, traditional watermarking approaches relying solely on hash functions or fixed vocabulary
partitioning remain vulnerable to statistical attacks. Attackers can analyze token distribution patterns
across multiple watermarked samples to eventually infer the underlying partitioning scheme. Our
framework avoids this vulnerability by creating position-specific, semantically-informed token
partitions that vary based on code context.

For a successful attack, adversaries would need to simultaneously: (1) reverse-engineer the neural
network’s complex decision boundaries, (2) understand the dynamic token partitioning strategy across
different code structures, and (3) develop a method to generate valid code that avoids watermarked
patterns without compromising functionality. This multi-faceted security approach provides robust
protection against both detection evasion and watermark forgery in practical deployment scenarios.

E USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as a general-purpose writing assistant to check
grammar and improve expression clarity throughout this paper. The LLMs did not contribute to
research ideation, methodology development, experimental design, or generation of novel content.
All technical contributions, insights, and findings presented in this work are entirely the result of the
authors’ original research.
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