
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE CODE WATERMARKING THROUGH REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Protecting intellectual property on LLM-generated code necessitates effective wa-
termarking systems that can operate within code’s highly structured, syntactically
constrained nature. In this work, we introduce CodeTracer, an innovative adaptive
code watermarking framework underpinned by a novel reinforcement learning
training paradigm. At its core, CodeTracer features a policy-driven approach that
utilizes a parameterized model to intelligently bias token choices during next-token
prediction. This strategy ensures that embedded watermarks maintain code func-
tionality while exhibiting subtle yet statistically detectable deviations from typical
token distributions. To facilitate policy learning, we devise a comprehensive reward
system that seamlessly integrates execution feedback with watermark embedding
signals, balancing process-level and outcome-level rewards. Additionally, we em-
ploy Gumbel Top-k reparameterization to enable gradient-based optimization of
discrete watermarking decisions. Extensive comparative evaluations demonstrate
CodeTracer’s significant superiority over state-of-the-art baselines in both water-
mark detectability and the preservation of generated code’s functionality. Our code
is available at https://anonymous.4open.science/r/CodeTracer-B8EE.

1 INTRODUCTION

The unprecedented capabilities of large language models (LLMs) in code generation have introduced
critical challenges for intellectual property protection and code attribution (Li et al., 2022; Achiam
et al., 2023; Guo et al., 2024; Hui et al., 2024). As AI systems produce increasingly sophisticated
code that is difficult to distinguish from human-written code, the need for reliable code tracing
approaches has become urgent (Zhao et al., 2024; Wang et al., 2024). Traditional code watermark-
ing approaches apply post-generation transformations to completed code, making them inherently
incompatible with the autoregressive generation process of LLMs. Moreover, these methods re-
quire labor-intensive, language-specific transformation rules that must be manually crafted for each
programming language (Hamilton & Danicic, 2011; Yang et al., 2023; Li et al., 2024).

Existing LLM watermarking approaches operate on the autoregressive generation process by biasing
next-token predictions toward statistically detectable patterns (Radford et al., 2019; Kirchenbauer
et al., 2023a). In natural language contexts, this approach succeeds because text generation is robust,
as most positions admit multiple semantically valid token choices, allowing watermarking to be
applied across all generated tokens (Kuditipudi et al., 2023; Dathathri et al., 2024; Liu & Bu, 2024).

However, code watermarking presents distinct challenges that arise from the structural and semantic
constraints inherent to programming languages. Code generation imposes two critical constraints.
First, syntactic dependencies severely constrain the space of valid token choices, as certain tokens
are syntactically mandatory and their modification results in compilation failures (Guan et al., 2024).
Second, code positions exhibit heterogeneous sensitivity to modifications, where indiscriminate
watermarking strategies fail to account for the varying tolerance to perturbations across different code
locations (Lee et al., 2023). Recent efforts to incorporate watermarks during LLM code generation
show promise but remain impractical in real-world scenarios, as they require access to supplementary
prompts and model information to compute critical values like entropy during detection (Lee et al.,
2023; Guan et al., 2024; Zhao et al., 2024). We argue that an effective solution requires a model-based
approach that learns the necessary programming knowledge during training, enabling intelligent
watermarking decisions that adapt to syntactic and semantic constraints with minimal context.

1

https://anonymous.4open.science/r/CodeTracer-B8EE

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Consequently, we identify the core challenge in LLM code watermarking: how can we intelligently
determine optimal watermark insertion points and select semantically reasonable token choices that
maintain statistical detectability while preserving code functionality?

In this work, we propose CodeTracer, an adaptive code watermarking framework built upon a novel
reinforcement learning (RL) training paradigm. CodeTracer employs a policy-driven approach
that leverages a parameterized model to intelligently identify optimal insertion positions and guide
token selection during the code generation process. The parameterized model collaborates with
the original LLM to form a watermarked policy, where only the parameterized model undergoes
optimization during training. At generation time, the LLM provides logits while the parameterized
model intelligently determines watermark application and token selection decisions. To train the
watermarked policy, we employ reinforcement learning through a carefully designed dual-component
reward system. This system integrates two complementary feedback signals: execution feedback
that penalizes functionally incorrect code, and watermark embedding signals that comprise both
immediate process rewards for successful watermarked token selection and statistical outcome
rewards employing metrics such as the z-score to comprehensively assess detectability performance.
To enable end-to-end gradient-based optimization, we address the non-differentiability of discrete
bias token selection by Gumbel Top-k reparameterization (Xie & Ermon, 2019) and Straight-Through
Estimation (Bengio et al., 2013), achieving differentiable watermarked policy training.

Contributions. Our work yields several key contributions: (i) We introduce CodeTracer, an adaptive
watermarking framework that intelligently embeds watermarks during LLM code generation; (ii)
We develop a novel RL pipeline for code watermarking training that combines execution feedback
with dual watermark signals and enables differentiable optimization for the entire pipeline; and
(iii) Empirically, we validate the effectiveness of CodeTracer through comprehensive evaluations,
demonstrating its superior watermark detection capabilities while maintaining code functionality.

2 RELATED WORK

LLM Watermarking. Existing LLM watermarking approaches embed imperceptible signatures
during token sampling by modifying logits or altering the sampling procedure (Kirchenbauer et al.,
2023a; Kuditipudi et al., 2023; Zhao et al., 2023; Christ et al., 2024; Dathathri et al., 2024). A
prominent example is the green-red watermarking scheme (Kirchenbauer et al., 2023a;b), which
partitions the vocabulary into “green” (preferred) and “red” (avoided) tokens, biasing generation
toward green tokens while suppressing red ones, enabling statistical detection of watermarked content.
Xu et al. (2024) propose a reinforcement learning approach for watermark embedding that requires
training the LLM, which may cause unexpected behaviors for LLMs. Critically, these methods
encounter difficulties in low-entropy scenarios typical of code generation (Lee et al., 2023).

Code Watermarking. Code watermarking presents distinct challenges due to the strict syntactic and
semantic constraints inherent in programming languages. Traditional approaches modify existing
code through formatting changes or control flow restructuring (Hamilton & Danicic, 2011; Ma
et al., 2019; Li et al., 2024; Yang et al., 2023; Liu et al., 2024; Dathathri et al., 2024). Recent
LLM-focused methods leverage entropy distributions (Lee et al., 2023; Li et al., 2023) or type
predictors (Guan et al., 2024) to guide watermark insertion. However, these techniques typically
require privileged access to LLM parameters, generation probabilities, or original prompts during
watermark detection, significantly limiting their practical deployment (Zhao et al., 2024). In contrast,
CodeTracer adaptively embeds watermarks during generation without such prerequisites.

RLVR and GRPO. Reinforcement Learning with Verifiable Rewards (RLVR) enhances LLMs by
integrating verifiable reward signals into the training process, demonstrating improved robustness
against reward hacking and superior performance (Lambert et al., 2024; Guo et al., 2025; Team et al.,
2025). However, RLVR is constrained by scarcity of reliably verifiable signals, with most applications
limited to mathematical problems and code execution tasks. DeepSeek-R1 (Guo et al., 2025) combines
verifiable rewards with Group Relative Policy Optimization (GRPO), which improves computational
efficiency over traditional policy optimization methods. Code watermarking emerges as a natural fit
for RLVR, as watermark detection provides unambiguous, token-level verification signals that can be
efficiently computed. We exploit this natural alignment by employing GRPO with watermark-based
verifiable rewards to achieve both computational efficiency and robust watermarking.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 CODETRACER: A POLICY-DRIVEN WATERMARKING FRAMEWORK

Problem Setting. In code generation tasks, a large language model takes a sequence of input tokens
representing the prompt x = [x1, x2, . . . , xn] and generates an output sequence y = [y1, y2, . . . , ym]
containing the generated code. At each generation step t, the LLM πθ processes the input prompt
x and previously generated tokens to compute a logit vector l = [l1, l2, . . . , l|V|] over the entire
vocabulary V . Each value lj represents the model’s preference for token vj ∈ V . This logit vector is
transformed into a probability distribution using the softmax function, from which token yt is sampled.
To enable detection of LLM-generated code, in-generation watermarking techniques, such as the
approach by Kirchenbauer et al. (2023a), modify the LLM’s original logits l to form watermarked
logits l̃. This modification is achieved by adding biases to the logits of a specific subset (green list)
G ⊂ V of the vocabulary, selected using a pseudorandom function (PRF). This process yields a
watermarked code sequence ỹ = [ỹ1, ỹ2, . . . , ỹm′]. The presence of watermark is then statistically
inferred by analyzing frequency difference of tokens appearing within the biased vocabulary subset.

Challenges in LLM Code Watermarking. LLM watermarking faces severe performance degra-
dation in code generation due to unique challenges distinct from natural text watermarking. Unlike
natural language, code is highly structured with precise syntax where small modifications can dras-
tically alter functionality or render the code inoperable. This inherent rigidity creates significant
constraints for watermarking techniques. First, watermark position selection is critical, as many
positions in code are immutable. Unlike natural text where alterations rarely affect meaning, code
contains structural elements that cannot be modified. For example, changing def to func in Python
function definitions breaks syntax. Any watermarking approach must avoid these critical positions.
Second, watermark token choice must respect contextual constraints. Even at modifiable positions,
replacement tokens must maintain syntactic validity. For instance, if status = “active” is wa-
termarked by replacing “active” with class, the result causes a syntax error. This contextual
sensitivity severely limits the available vocabulary for watermarking. Consequently, effective code
watermarking requires a deeper understanding of code structure and semantics.

3.1 CODETRACER

To address the aforementioned challenges, CodeTracer introduces a policy-driven framework that
integrates a watermark model πϕ with an LLM πθ, yielding a composite watermarked policy πθ⊕ϕ

capable of generating watermarked code. At each generation step t, the watermark model πϕ(a|c)
operates conditioned on the current context c, defined as the concatenation of a segment of the input
x and the sequence of previously generated tokens y<t within a fixed-length window. The output
of this policy is an action a = (w,G), where w ∈ {0, 1} is a binary variable indicating whether to
apply watermarking at the current position, and G ⊂ V represents a set of preferred “green” tokens.

The generation of a token is then achieved by sampling from a modified logit vector from the
watermarked policy πθ⊕ϕ as:

l̃j = lj + w · δ · 1vj∈G, (1)
where δ is a hyperparameter controlling the bias applied to the logits of tokens in the green list
G when watermarking is active (w = 1), and 1vj∈G is an indicator function equaling 1 if token
vj ∈ G and 0 otherwise. The watermark strength is governed by the size of the green token set,
|G| = γ|V| for a predefined ratio γ ∈ (0, 1), and the bias magnitude δ. The complement of the green
set, R = V \G constitutes the “red” token set. This policy-driven and context-aware approach allows
for dynamic control over both the placement of the watermark and the vocabulary subset used for
biasing the generation process. In essence, this formulation empowers the policy to strategically
influence the token sampling process by preferentially selecting tokens from the green set G, while
simultaneously regulating the watermark through the binary decision w.

Consequently, during generation, CodeTracer applies the watermarked policy πθ⊕ϕ(ỹ|x) that takes
the same input as the LLM πθ but generates biased outputs ỹ = [ỹ1, ỹ2, . . .] via modified logits l̃j .

Detection. During detection, given an output sequence s = [s1, s2, . . . , sT ′] of length T ′, Code-
Tracer reconstructs the watermarking decisions independently using only the watermark model πϕ,
without requiring access to the LLM πθ. This reconstruction determines, for each token, whether
watermarking was applied (w = 1 or w = 0) and, if so, the composition of the corresponding

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Watermarked Policy

Prompt
LLM

Watermark
Model

!❄

 Watermarked Code

 Watermarked Code

 Watermarked Code

Execution
Environment

Watermark Detector

Watermark
Model

R1

R2

R3

Watermark Model Reward System

def calculate_result(numbers):
 if len(numbers) == 0:
 return 0
 total = | # cursor position

w
Add Watermark

No Watermark

G

Vocabulary

Green
List

Red
List

total = sum(numbers)

R1

R2

Process R3

A1

+

Per Token Advantage

A1

A2

Figure 1: CodeTracer: A framework for LLM code watermarking through selective token biasing.
The diagram shows our end-to-end pipeline where a trainable watermark model collaborates with
an LLM to embed detectable statistical patterns in generated code. A reward system optimizes the
dual objectives of preserving code functionality while maximizing watermark detectability. The
watermark model operates as a plug-in module, enabling deployment beyond those used during
training. Importantly, watermark detection requires only the watermark model, not the original LLM.

green token set G. We identify the subset of tokens where watermarking was active, denoted as
{sw=1}, and count the total number of watermarked positions T = |{sw=1}|. We then count
how many of watermarked tokens belong to their respective reconstructed green sets, denoted as
NG = |{s : s ∈ {sw=1}∧s ∈ G}|. To assess the statistical significance, we employ a one-proportion
z-test for the proportion of watermarked tokens belonging to their predicted green sets:

z =
NG − Tγ√
Tγ(1− γ)

. (2)

Under the null hypothesis of no watermarking, we expect NG to follow a binomial distribution with
success probability γ. A sufficiently large positive z-score provides strong statistical evidence for
watermark presence, indicating that watermarked tokens appear in their predicted green sets with
frequency significantly higher than the expected random baseline of γ. The complete algorithms for
watermark generation and detection are formalized in Algorithm 1 and Algorithm 2, respectively.

4 LEARNING TO WATERMARK IN CODETRACER

We formulate training of watermarked policy πθ⊕ϕ within a reinforcement learning framework. This
section first gives an overview of the training pipeline, then discusses the reason to use RL for policy
learning, and finally addresses specific design challenges along with our proposed approach.

4.1 HOW TO LEARN THE WATERMARKED POLICY?

As shown in Figure 1, we employ the GRPO algorithm (Shao et al., 2024) as our RL framework to
train the watermark model πϕ(a|c) within the watermarked policy πθ⊕ϕ. GRPO offers computational
efficiency and has demonstrated effectiveness in integrating rule-based rewards for coding and
mathematical tasks (Guo et al., 2025). Our training pipeline requires three key components from the
standard GRPO framework: a training policy, a reference policy, and reward functions. We use the
integrated watermarked policy πθ⊕ϕ as the training policy rather than solely πϕ, as the complete code
generation process requires coordinated operation of both the LLM and watermark model. Crucially,
we freeze the LLM parameters θ during training and optimize only the watermark model parameters
ϕ. This design ensures a portable and efficient watermarking solution that trained watermark model
can be applied to other pre-trained LLMs without requiring fine-tuning or additional training data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 WHY USE RL FOR LEARNING?

Code watermarking presents a fundamental training paradox that reinforcement learning uniquely
addresses. Traditional supervised learning requires pre-existing watermarked examples to train a
detector, but creating such examples necessitates an already-trained watermark model: a circular
dependency that renders supervised approaches infeasible. Reinforcement learning eliminates this
paradox by learning through interaction rather than predefined examples.

Code watermarking is naturally suited for RL due to two key characteristics. First, watermark
detection provides unambiguous, token-level verification signals that can be efficiently computed.
Second, code functionality offers clear binary feedback through test case execution. Our RL formula-
tion leverages these signals to offer distinct advantages: (1) it implicitly learns complex syntactic
constraints across diverse programming languages without exhaustive manual specification; (2) it
optimizes the watermarked policy to balance detectability and functionality through quantifiable
reward mechanisms; (3) it enables end-to-end training without requiring pre-watermarked data.

4.3 POLICY DESIGN

The implementation of our watermarked policy πθ⊕ϕ presents fundamental technical challenges due
to the discrete nature of the watermark components w and G in Equation equation 1. We implement
the watermark model πϕ(a|c) where a = (w,G) as a transformer that outputs continuous values, but
we need discrete outputs for watermarking decisions. Both the binary watermark decision w and the
green token list G require discrete selections that impede gradient flow during training.

Straight-Through Estimation. To enable gradient flow through the discrete decision processes for
watermark selection w, we apply straight-through estimation techniques. Specifically, our watermark
transformer outputs a (|V| + 1)-dimensional vector as (wϕ, lϕ), where wϕ ∈ R is a scalar for
watermark placement probability of and lϕ ∈ R|V| as logit bias vector. To derive our desired output
a = (w,G) from (wϕ, lϕ), we implement straight-through estimation:

w = 1wϕ>0 + σ(wϕ)− sg(σ(wϕ)), (3)

where σ(·) is the sigmoid function and sg(·) is the stop-gradient operator. During the forward
pass, this formulation behaves like the discrete operation 1wϕ>0. However, during backpropagation,
gradients flow through the continuous relaxation σ(wϕ). The stop-gradient operator ensures only the
gradient of the relaxation (and not its forward values) affects the computation. This technique enables
end-to-end training despite the discrete nature of watermarking decisions made by w.

Gumbel-Top-k. To overcome the challenges of discrete token selection for the green list G, we
develop a Gumbel-Top-k sampling approach for our token assignment process. This technique
provides a differentiable pathway from lϕ to G while preserving the discrete characteristics necessary
for effective watermarking. For a given parameter γ ∈ (0, 1), we select k = ⌊γ|V|⌋ tokens for
the green list. Given logits lϕ from the watermark model πϕ, we apply Gumbel noise to create a
continuous relaxation of the discrete selection:

g = lϕ + (− log(− log(u))), (4)

where u ∼ Uniform(0, 1)|V| represents uniform random noise across the vocabulary space. The
green list G is then determined by selecting the top-k tokens according to these perturbed logits:

G = arg top-k(g). (5)

To enable gradient flow through this discrete selection process, we implement a straight-through
estimator for the indicator variable lG ∈ {0, 1}|V| that represents membership in the green list:

lG = 1v∈G + S(g)− sg(S(g)), (6)

where S(g) represents the Gumbel-Softmax-based continuous relaxation of the top-k selection, and
sg(·) is the stop-gradient operator. During forward passes, we use hard discrete token selection 1v∈G

with Equation 5 based on token rankings from the Gumbel-perturbed logits g, while during backward
passes, the gradients flow through the softmax-based continuous relaxation S(g). This approach
allows the model to learn effective watermarking while maintaining the discrete token selection.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For the reference policy in our GRPO framework, we utilize the same architecture as the training
policy πθ⊕ϕ, establishing a self-referential optimization approach. This design choice enables the wa-
termarking parameters to be refined against their own previous distributions. The approach facilitates
gradual refinement of watermarked policy while ensuring that successive iterations remain coherent
with previous behaviors, ultimately leading to more stable convergence and better performance.

4.4 REWARD FUNCTION DESIGN

Our reward system guides the watermarked policy πθ⊕ϕ in watermark placement w and green token
selection G using feedback from watermark detection and code execution. We design a multifaceted
reward system that balances code functionality and watermark detectability.

Outcome-Based Execution Reward R1. Our execution reward R1 evaluates code functional
correctness through binary assessment based on the performance on passing test cases:

R1 =

{
1, if all test cases pass
0, otherwise

(7)

This binary formulation provides unambiguous feedback on code correctness, where successful
execution across all test cases yields a positive reward, while any compilation error, runtime failure,
or test failure results in zero reward. By incorporating this strict binary signal into our reward
function, we enforce functional preservation as a hard constraint, ensuring that the watermarked
policy maintains code correctness while learning watermarking strategies.

Outcome-Based Watermark Reward R2. The watermark detection reward R2 quantifies the
statistical detectability of the watermark by employing a saturated function of the statistical z-score:

R2(s) =


1, if z(s) ≥ 4
z(s)
4 , if 0 < z(s) < 4

0, if z(s) ≤ 0

(8)

where z(s) is the statistical z-score obtained from the detection algorithm as a holistic measurement
of watermark performance. This saturated reward formulation establishes clear boundaries: a z-score
of 3 or higher (indicating strong statistical significance) receives the maximum reward of 1, while
non-positive z-scores receive no reward. Between these thresholds, the reward scales linearly with
the z-score. This design incentivizes our policy to achieve statistically significant detection levels.

Process-Based Watermark Reward R3. We observed that relying solely on outcome-based rewards
can be insufficient for effective policy learning, as they provide the identical reward for tokens in a
sequence. To provide more granular guidance, we introduce a process-based reward R3 that evaluates
individual generated tokens, offering immediate feedback on token selection decisions. This reward
is straightforward to implement, as we can directly assess whether each generated token st is green,
red, or non-watermarked based on the policy’s action at = (wt, Gt) at time t:

R3(st, at) =


1, if wt = 1 and st ∈ Gt

−1, if wt = 1 and st ∈ Rt

0, if wt = 0

(9)

This reward structure explicitly encourages green token selection during watermarking while penal-
izing red token selection. Non-watermarked positions receive neutral rewards, concentrating the
learning signal on watermarked tokens. By providing immediate feedback at each generation step,
R3 delivers more granular guidance than sequence-level rewards alone, significantly accelerating
policy convergence and improving watermarking performance through direct token-level supervision.

Integration into Advantage Computation. Our approach calculates advantages at two comple-
mentary levels to optimize the watermarked policy. First, we compute outcome advantages A1 from
the execution reward R1 and watermark detection reward R2 using GRPO’s outcome-based group
normalization mechanism. Second, we derive process advantages A2 from the token-level watermark
reward R3, normalizing these values across all tokens in all rollouts for each prompt. We categorize
generated tokens into four distinct types: green tokens (watermarked and belonging to set G), red

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

tokens (watermarked but falling in set R), non-watermarked tokens (where w = 0), and non-code
text tokens. To maintain a specific focus on code watermarking, we exclude non-code tokens entirely.

The final advantage function for each token st at time t integrates these signals directly:

Atotal(st, at) = A1 +A2(st, at), (10)

where A1 represents outcome-based advantage and A2 represents process-based advantage for token
st with action at. We then apply a binary mask to eliminate advantage values for non-code tokens:

Â(st, at) = Atotal(st, at) · 1is_code(st). (11)

This integrated advantage function balances sequence-level feedback with token-specific guidance.
A1 provides sequence-level guidance from watermark effectiveness and functional correctness, while
A2 delivers immediate, token-level feedback for watermark positioning and green token selection.

Intuitively, our integrated reward system assigns high advantages to tokens that simultaneously
maintain code functionality, contribute to effective watermark detection, and are selected from the
green set. This approach guides our watermarked policy to identify optimal positions and select
tokens that preserve functionality while introducing subtle, statistically detectable deviations.

KL Regularization. To ensure that the watermarked policy πθ⊕ϕ does not deviate excessively
from natural code generation patterns, thereby maintaining code stealth and linguistic quality, we
incorporate a Kullback-Leibler (KL) divergence penalty into the overall GRPO loss function. This
term, DKL(πθ⊕ϕ ∥ πref), regularizes the watermarked policy against the reference policy πref.

Objective of GRPO. Combining all components discussed above, the final GRPO objective for
our watermarked policy can be concisely expressed as:

max
ϕ

Es∼D

[
1

|s|

|s|∑
t=1

min

[
πθ⊕ϕ(st|s<t)

πref(st|s<t)
Â(st, at),clip

(
πθ⊕ϕ(st|s<t)

πref(st|s<t)
, 1− ε, 1 + ε

)
Â(st, at)

]]
− βDKL(πθ⊕ϕ ∥ πref), (12)

where D represents rollout data from watermarked policy, Â(st, at) is our masked advantage function
incorporating both outcome-based and process-based rewards, ε is a clipping parameter that limits
policy updates, and β controls KL regularization. This objective balances watermark detectability,
code functionality, and natural generation patterns while only optimizing watermark parameters ϕ.

5 EXPERIMENTS

Evaluation Overview. We evaluate CodeTracer across five critical dimensions: (i) code functional-
ity, (ii) watermark detectability, (iii) robustness against attacks, (iv) efficiency and (v) transferability.
Following Lee et al. (2023), we employ two primary metrics: Pass@k for functionality assessment
and AUROC and TPR@5%FPR for detection performance measurement (Chen et al., 2021).

Models and Datasets. We employ OpenCoder-1.5B-Instruct (Huang et al., 2024) as our primary
backbone LLM and validate our findings on OpenCoder-8B-Instruct. We evaluate performance
on three established benchmarks: HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for
Python evaluation, and HumanEvalPack (Muennighoff et al., 2023) for cross-language evaluation.

Baselines. We compare CodeTracer against two categories of baselines. For post-hoc detection
methods, we evaluate against logp(x), LogRank (Gehrmann et al., 2019), DetectGPT (Mitchell
et al., 2023), and GPTZero (Tian et al., 2023). For active watermarking approaches, we compare with
WLLM (Kirchenbauer et al., 2023a), EXP-edit (Kuditipudi et al., 2023) and SWEET (Lee et al., 2023).

Technical Implementation. Detailed implementation specifications, including dataset details, base-
line configurations, model architectures, and training details are provided in Appendix C. We mainly
follow the experiment settings of Lee et al. (2023) to adapt it to our setting. In accordance with
established reinforcement learning practices, we initially apply supervised fine-tuning to πϕ using
proxy signals to establish code distribution knowledge through next token prediction. The training
process only needs to be performed once and can be completed in 1 day on a single A100 GPU.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance (%) comparison of detection methods. Bold: best performance for watermarks.

Category Dataset HumanEval MBPP

Method Pass@1 Pass@10 AUROC TPR Pass@1 Pass@10 AUROC TPR

No Watermark Base 65.42 79.17 - - 43.35 51.65 - -

Post-hoc

logp(x) 65.42 79.17 47.59 4.27 43.35 51.65 47.77 6.40
LogRank 65.42 79.17 47.66 1.82 43.35 51.65 48.76 7.80
DetectGPT 65.42 79.17 51.12 9.15 43.35 51.65 46.15 3.60
GPTZero 65.42 79.17 52.00 5.50 43.35 51.65 41.10 2.80

Watermarks

WLLM 58.05 70.35 70.17 20.73 39.66 47.22 76.44 27.80
EXP-edit 59.29 72.41 66.50 25.61 40.16 50.25 51.22 10.60
SWEET† 60.46 74.11 76.24 27.44 39.64 47.47 77.24 24.80
SWEET‡ 61.65 76.73 71.19 17.07 42.06 49.22 76.57 28.40
CodeTracer 62.65 77.11 77.71 32.32 42.10 52.01 78.42 31.60

Base
WLLM

EXP-edit

CodeTracer
Method

0

20

40

60

80

100

Pa
ss

@
1

72.04 71.79 73.50 71.77

WLLM
EXP-edit

CodeTracer
Method

0

20

40

60

80

100

AU
R

O
C 65.90

54.21

78.69

Figure 2: Training on 1.5B LLM and evaluating
on 8B OpenCoder-8B-Instruct LLM.

Table 2: Relative computational overhead of
CodeTracer with a 1.5B base LLM. Our water-
mark model runs in parallel, so inference delay
is only tensor slicing operation delay.

Component Parameters Memory Delay

CodeTracer πϕ 118M < 0.5GB < 100 µs
1.5B LLM πθ 1,500M 3-6GB 500-800ms
Relative Overhead < 10% < 15% < 0.02%

5.1 MAIN RESULTS ON BENCHMARK DATASETS.

We present experiments evaluating CodeTracer’s performance on code functionality and watermark
detection with HumanEval and MBPP in Table 1. We observe a clear improvement over other baselines.

Post-hoc vs. Watermarks. Post-hoc detection methods, including logp(x), LogRank, DetectGPT,
and GPTZero, preserve original generation but demonstrate consistently poor discrimination perfor-
mance. Their AUROC values range from 47.59% to 52.00% on HumanEval and 41.10% to 48.76%
on MBPP, close to random guessing (50%). This indicates that with the advancement of LLMs,
post-hoc detection methods struggle to distinguish AI-generated code from human-written code.

Code Functionality and Watermark Detectability. Watermarking methods demonstrate superior
detection performance compared to post-hoc approaches, achieving AUROC values of 66.50-77.71%
versus 47.59-52.00%. However, existing watermarking baselines suffer from noticeable code quality
degradation, with Pass@1 scores dropping to 58.05-61.65% on HumanEval, representing a substantial
trade-off between detection capability and functionality. CodeTracer achieves considerably better
balance in this trade-off with the highest Pass@1 scores (62.65% on HumanEval, 42.10% on MBPP)
and superior detection capability (AUROC of 77.71% and 78.42%), consistently outperforming
SWEET and other baselines across both functionality and watermark detectability metrics.

Computation Efficiency. As in Table 2, CodeTracer introduces negligible computational overhead
with less than 10% parameter increase, minimal memory usage (<15%), and inference delay below
0.02%. The watermark model adds only 118M parameters while requiring minimal additional memory
(less than 0.5GB). The actual inference delay is dominated by efficient tensor slicing operations,
introducing less than 100 µs, which is orders of magnitude smaller than typical LLM latency.

Transferability to Larger Models. To verify the scalability of our approach, we train the wa-
termark model on a smaller 1.5B LLM and directly apply it as a plug-in module to the larger
OpenCoder-8B-Instruct without retraining. Results are shown in Figure 2. CodeTracer achieves
minimal code functionality degradation (71.77% Pass@1 vs. 72.04% for Base) while significantly
outperforming other watermarking methods in detection capability (78.69% AUROC compared to

0SWEET† and SWEET‡ use different entropy thresholds to explore detectability-functionality trade-offs.
We adapt SWEET to use fixed context windows (vs. full generation history and original LLM) for practical and
fair comparison with other baselines. See Appendix C.2 for details about entropy threshold setup.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Robustness evaluation (%) under code
modification attacks. Bold values indicate best
performance. Settings follow Lee et al. (2023).

Attack Metric WLLM EXP-edit CodeTracer

Original AUROC 70.17 66.50 82.95
TPR 20.73 25.61 46.34

DIPPER AUROC 55.92 51.21 58.42
TPR 12.81 8.54 14.31

Rename AUROC 70.91 62.02 73.36
TPR 20.12 9.76 29.11

Table 4: Ablation study on different reward
components for CodeTracer training.

Method Pass@1 (%) AUROC (%) TPR (%)

CodeTracer 60.82 82.95 46.34
w/o A2 61.15 (+0.33) 75.11 (-7.84) 30.29 (-16.05)
w/o A1 60.34 (-0.48) 79.52 (-3.43) 34.91 (-11.43)

Table 5: Performance of model variants.
Method Pass@1 (%) AUROC (%) TPR (%)

CodeTracer-1 62.65 77.71 32.32
CodeTracer-2 60.82 82.95 46.34

Base
WLLM

EXP-edit

CodeTracer

0

5

10

15

20

25

30

Pa
ss

@
1

29.15

24.02

29.85 31.05

WLLM
EXP-edit

CodeTracer

0

20

40

60

AU
R

O
C 42.27

71.58 71.60

Base
WLLM

EXP-edit

CodeTracer

0

10

20

30

40

50
Pa

ss
@

1
49.11

44.27
49.39

44.39

WLLM
EXP-edit

CodeTracer

0

20

40

60

AU
R

O
C

65.13 68.47 71.03

(a) Java Performance (b) C++ Performance

Figure 3: Cross-language evaluation on Java and C++.
CodeTracer achieves consistent cross-language performance.

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

W
at

er
m

ar
k

D
et

ec
tio

n
R

ew
ar

d

Raw Reward
Smoothed Reward

Figure 4: Training dynamics for
CodeTracer-1 with RL training.

65.90% for WLLM and 54.21% for EXP-edit). This demonstrates that our watermark model can serve
as an effective plug-in module for larger models without requiring model-specific retraining.

Robustness Analysis. Table 3 evaluates CodeTracer’s robustness against DIPPER (Krishna et al.,
2024) paraphrasing and variable renaming attacks (Lee et al., 2023). While all methods degrade under
attacks, CodeTracer consistently outperforms baselines. Against DIPPER attacks, CodeTracer
maintains superior detection (AUROC 58.42%, TPR 14.31%), and under renaming attacks demon-
strates resilience (AUROC 73.36%, TPR 29.11%), indicating effectiveness in real-world scenarios.

Cross-Language Capabilities. Figure 3 shows CodeTracer’s cross-language performance on Java
and C++. CodeTracer achieves strong detection while maintaining functionality comparable to
baselines across languages, showing consistent effectiveness across different programming languages.

5.2 FURTHER ANALYSIS

Reward Components. Table 4 evaluates the impact of different reward components on
CodeTracer’s performance. CodeTracer achieves optimal performance with both process and
outcome rewards. Ablating either component leads to notable degradation, with removing the process
reward causing larger detection drops while removing the outcome reward affects both performance.

Performance Tradeoff. Table 5 demonstrates the controllable trade-off between code functionality
and watermark detectability. CodeTracer-1 uses solely RL training without supervised fine-tuning
initialization, achieving higher functionality (Pass@1 62.65%) but lower detection performance
(AUROC 77.71%). Figure 4 shows the training dynamics of CodeTracer-1, demonstrating consis-
tent improvement throughout RL training. In contrast, CodeTracer-2 incorporates both supervised
fine-tuning and RL, trading some functionality for significantly improved detection capability.

6 CONCLUSION

In this paper, we presented CodeTracer, a novel adaptive code watermarking framework that addresses
the challenges of watermarking LLM-generated code while preserving functionality. Our policy-
driven approach integrates a watermark model with the base LLM to form a composite policy that
dynamically decides when to watermark and which tokens to select. By leveraging reinforcement
learning through GRPO, our approach intelligently navigates programming language constraints
without requiring pre-existing watermarked examples. Our multi-component reward system balances
statistical detectability with code integrity through execution feedback and token-level guidance.
Evaluations demonstrate that CodeTracer significantly outperforms existing approaches, offering a
promising solution for identifying AI-generated code while maintaining the code functionality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/2108.07732.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde Pinto, Jared Kaplan, Harri
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on
code. In Neural Information Processing Systems, 2021.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable water-
marking for identifying large language model outputs. Nature, 634(8035):818–823, 2024.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and
visualization of generated text. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demonstrations, pp. 111–116, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/p19-3019. URL
https://aclanthology.org/P19-3019.

Batu Guan, Yao Wan, Zhangqian Bi, Zheng Wang, Hongyu Zhang, Pan Zhou, and Lichao Sun.
Codeip: A grammar-guided multi-bit watermark for large language models of code. arXiv preprint
arXiv:2404.15639, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024. URL https://arxiv.org/abs/2401.14196.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

James Hamilton and Sebastian Danicic. A survey of static software watermarking. In 2011 World
Congress on Internet Security (WorldCIS-2011), pp. 100–107. IEEE, IEEE, feb 2011. doi: 10.
1109/worldcis17046.2011.5749891. URL https://doi.org/10.1109/WorldCIS17046.2011.
5749891.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook
for top-tier code large language models. arXiv preprint arXiv:2411.04905, 2024. URL https:
//arxiv.org/pdf/2411.04905.

10

https://arxiv.org/abs/2108.07732
https://aclanthology.org/P19-3019
https://arxiv.org/abs/2401.14196
https://doi.org/10.1109/WorldCIS17046.2011.5749891
https://doi.org/10.1109/WorldCIS17046.2011.5749891
https://arxiv.org/pdf/2411.04905
https://arxiv.org/pdf/2411.04905

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, and Tom Goldstein. A watermark for
large language models. In International Conference on Machine Learning, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of watermarks
for large language models. arXiv preprint arXiv:2306.04634, 2023b.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural
Information Processing Systems, 36, 2024.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin,
and Gunhee Kim. Who wrote this code? watermarking for code generation. arXiv preprint
arXiv:2305.15060, 2023.

Boquan Li, Mengdi Zhang, Peixin Zhang, Jun Sun, Xingmei Wang, and Zirui Fu. Acw: Enhancing
traceability of ai-generated codes based on watermarking. arXiv preprint arXiv:2402.07518, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Zongjie Li, Chaozheng Wang, Shuai Wang, and Cuiyun Gao. Protecting intellectual property of large
language model-based code generation apis via watermarks. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2336–2350, 2023.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Lijie Wen, Irwin King, and Philip S. Yu. A
survey of text watermarking in the era of large language models. arXiv preprint arXiv:2312.07913,
2024.

Yepeng Liu and Yuheng Bu. Adaptive text watermark for large language models. arXiv preprint
arXiv:2401.13927, 2024.

Haoyu Ma, Chunfu Jia, Shijia Li, Wantong Zheng, and Dinghao Wu. Xmark: Dynamic software
watermarking using collatz conjecture. IEEE Transactions on Information Forensics and Security,
14(11):2859–2874, nov 2019. doi: 10.1109/tifs.2019.2908071. URL https://doi.org/10.
1109/TIFS.2019.2908071.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. arXiv preprint
arXiv:2301.11305, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
large language models. arXiv preprint arXiv:2308.07124, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

11

https://doi.org/10.1109/TIFS.2019.2908071
https://doi.org/10.1109/TIFS.2019.2908071

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Edward Tian, Yiting Wang, and Zhengyuan Dai. Gptzero: An open-source initiative for ai-generated
text detection. arXiv preprint arXiv:2303.08217, 2023.

Jiexin Wang, Xitong Luo, Liuwen Cao, Hongkui He, Hailin Huang, Jiayuan Xie, Adam Jatowt, and
Yi Cai. Is your ai-generated code really safe? evaluating large language models on secure code
generation with codeseceval. arXiv preprint arXiv:2407.02395, 2024.

Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relaxations.
In International Joint Conference on Artificial Intelligence (IJCAI), 2019. URL https://arxiv.
org/abs/1901.10517.

Xiaojun Xu, Yuanshun Yao, and Yang Liu. Learning to watermark llm-generated text via reinforce-
ment learning. arXiv preprint arXiv:2403.10553, 2024.

Borui Yang, Wei Li, Liyao Xiang, and Bo Li. Towards code watermarking with dual-channel
transformations. arXiv preprint arXiv:2309.00860, 2023.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

Xuandong Zhao, Sam Gunn, Miranda Christ, Jaiden Fairoze, Andres Fabrega, Nicholas Carlini,
Sanjam Garg, Sanghyun Hong, Milad Nasr, Florian Tramer, et al. Sok: Watermarking for ai-
generated content. arXiv preprint arXiv:2411.18479, 2024.

12

https://arxiv.org/abs/1901.10517
https://arxiv.org/abs/1901.10517

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A WATERMARK GENERATION AND DETECTION ALGORITHM OF
CODETRACER

A.1 WATERMARK GENERATION

Algorithm 1 presents our watermark generation process. The algorithm embeds watermarks into code
sequences while preserving their functionality. It takes as input a prompt x, context window size c,
and watermarking hyperparameters including green list ratio γ and bias δ that control the strength
and detectability of the embedded watermark.

At each timestep t, the watermark model processes the context window to determine whether to apply
watermarking (w) and which tokens to include in the green list (G). The algorithm modifies logits
selectively based on these decisions, applying bias δ to green list tokens when w = 1.

Algorithm 1 CodeTracer Watermark Generation

Require: Prompt x, Context window size c, Green list ratio γ, Bias strength δ
Ensure: Watermarked code sequence s̃

1: Initialize empty sequence s̃ = []
2: for each generation step t do
3: Compute base LLM logits l = πθ(ctx)
4: Compute context window ctx = concat(x, s̃)[−(c) :]
5: Compute watermark model outputs (wϕ, lϕ) = πϕ(ctx)
6: Compute watermark decision w = 1wϕ>0

7: if w = 1 then
8: Select green list G = arg top-k(lϕ) and red list R = V \G, where k = ⌊γ|V|⌋
9: Compute modified logits: l̃j = lj + δ · 1vj∈G for each token vj in vocabulary V

10: else
11: Set l̃ = l (no modification)
12: Sample next token from distribution: s̃t ∼ softmax(̃l)
13: Append s̃t to s̃
14: return s̃

A.2 WATERMARK DETECTION

Algorithm 2 details our statistical watermark detection procedure. Following the framework
of Kirchenbauer et al. (2023a), we employ hypothesis testing with a key modification, where testing
is performed selectively only at positions likely to contain watermarks.

Given a code sequence s, the detector first reconstructs the vocabulary partitions and switch probabili-
ties using the same watermark model from generation. Detection employs a one-sided hypothesis test
using the z-statistic to determine whether green tokens appear more frequently than random chance
would predict, with a positive z-score above the threshold indicating watermark presence.

B ADVANCED TRAINING AND GENERATION TECHNIQUES

B.1 SFT INITIALIZATION

While our reinforcement learning (RL) algorithm can train from random initialization, we find that
supervised fine-tuning (SFT) provides a significantly more effective starting point. Since watermarked
code is unavailable for direct supervision, we instead use entropy and next-token prediction of clean
code as a proxy. During SFT, the watermark model πϕ is trained on two complementary objectives:
predicting watermark decisions wϕ to learn entropy distribution patterns across code structures,
and optimizing logits lϕ to capture the underlying token distribution in code sequences. This dual-
objective approach establishes a strong foundation that encodes both code syntax patterns and
appropriate watermarking signals before RL optimization begins.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 2 CodeTracer Watermark Detection

Require: Code sequence s, Context window size c, Green list ratio γ, Detection threshold τ
Ensure: Detection result (watermarked/not watermarked/insufficient data)

1: Initialize counters: watermarked_positions = 0, green_tokens = 0
2: Set positions_checked = {}
3: for each position t in s do
4: Compute context window

ctx = s[max(0, t− c) : t]
5: Compute watermark model outputs (wϕ, lϕ) = πϕ(ctx)
6: Compute watermark decision w = 1wϕ>0

7: if w = 1 then
8: Reconstruct green list G = arg top-k(lϕ), where k = ⌊γ|V|⌋
9: watermarked_positions ++

10: if st ∈ G then
11: green_tokens ++
12: Add t to positions_checked
13: Compute z-score:

z = green_tokens−watermarked_positions·γ√
watermarked_positions·γ·(1−γ)

14: if z > τ then
15: return “watermarked”
16: else
17: return “not watermarked”

B.2 IMPROVED SAMPLING STRATEGY

We implement a constrained sampling approach during both generation and detection phases to
enhance watermark robustness without additional training. Rather than naively selecting the top-k
tokens by logit values, we perform a deterministic sorting of logits lϕ and then apply pairwise or tuple-
based sampling constraints. This technique preserves the overall token distribution characteristics for
unwatermarked positions while creating a more distinct statistical separation between "green" and
"red" tokens for watermarked positions. The approach effectively maintains natural code generation
quality while improving watermark detection reliability.

B.3 ENTROPY REGULARIZATION

During policy optimization, we observed the watermark model occasionally converging toward
degenerate solutions where watermark signals w approach binary extremes (consistently 0 or 1). To
mitigate this issue, we incorporate an entropy regularization term in the policy optimization objective:

Lentropy = −H(πϕ(σ(wϕ)|c)), (13)

where H(πϕ) represents the entropy of the watermark decision distribution. This encourages the
model to maintain more balanced probability distributions for watermark decisions, preventing
overfitting and improving robustness across diverse code contexts. Additionally, we implement
gradient clipping to further stabilize training dynamics.

B.4 REWARD DESIGN FOR TRIVIAL SOLUTIONS

Our initial reward design occasionally led to trivial solutions where the model would either apply
watermarking too aggressively or too conservatively. To address this, we refined the process-based
watermark reward R3 with an asymmetric penalty structure:

R3(st, at) =


1, if wt = 1 and st ∈ Gt

−α, if wt = 1 and st ∈ Rt

0, if wt = 0 (non-watermarked)
(14)

where α > 1 (typically 2-5) creates a stronger penalty for red token selection when watermarking
is active. This asymmetric design incentivizes the model to be more selective about when to apply

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comprehensive hyperparameter settings for the CodeTracer watermarking framework. The
parameters are organized by their functional categories: watermark configuration controlling de-
tectability, model architecture defining the watermark policy network structure, training configuration
governing the optimization process, and reward configuration balancing the various objectives.

Parameter Value Description

Watermark Configuration

Watermark bias (δ) 2.0 Logit adjustment magnitude for green tokens
Green list ratio (γ) 0.5 Proportion of vocabulary in green list
Context window size (c) 2 Number of tokens used for watermark decisions
Z-score threshold 4.0 Statistical threshold for watermark detection
Switch threshold 0.5 Threshold for binary watermark decision

Model Architecture

Base model OpenCoder-1.5B-Instruct Foundation model for code generation
Model dimension (dmodel) 512 Hidden dimension for watermark policy network
Transformer layers 6 Number of transformer encoder layers
Attention heads 8 Multi-head attention heads per layer
Feed-forward dimension 2048 Intermediate dimension in feed-forward networks

Training Configuration

Learning rate 1.0e-5 Initial learning rate for optimization
LR scheduler Cosine with min rate Decay schedule with minimum rate of 0.1
Batch size 8 Sequences per device for training
Gradient accumulation 4 Steps between gradient updates
Training steps 500 Total optimization steps
Warmup ratio 0.03 Proportion of steps for learning rate warmup
KL coefficient (βKL) 0.0 Weight for KL divergence regularization
Number of generations 8 Code completions per prompt during training
Temperature 1.0 Sampling temperature for generation

watermarking (w = 1), only doing so when it has high confidence in successfully biasing toward
green tokens. For less certain positions, the model learns to disable watermarking (w = 0), which
receives a neutral reward. This approach significantly reduces false-positive detection rates while
maintaining high true-positive rates.

B.5 LIMITATIONS OF USING LLMS AS WATERMARK POLICY NETWORKS

While using pre-trained LLMs directly as watermark models might seem appealing, we identified
several critical limitations that justify our specialized architecture. First, distribution alignment
presents a fundamental challenge: LLM token distributions naturally align with the target model
distribution, causing “green” token lists to predominantly contain frequently used tokens. This
similarity makes distinguishing between unwatermarked and watermarked sequences difficult, as both
produce similarly high z-scores during detection. Second, computational efficiency concerns arise
as large-scale LLMs with billions of parameters introduce significant processing latency compared to
our specialized watermark policy, which operates with orders of magnitude fewer parameters while
maintaining task-appropriate performance.

Third, context length mismatch creates architectural incompatibilities, as LLMs are optimized for
extended contexts (thousands of tokens), while our watermark policy intentionally operates with
minimal contextual information (typically just a few tokens) to enable efficient decision-making at
each generation step. Fourth, entropy prediction calibration poses practical challenges because
LLMs produce poorly calibrated uncertainty estimates for short contexts, particularly at document
beginnings, which compromises the reliability of watermark decisions in these critical positions. Our
purpose-built watermark policy network addresses these limitations with a lightweight, specialized
architecture that achieves superior watermarking performance while maintaining the natural fluency
of generated code.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

Table 6 presents the comprehensive hyperparameter configuration for our CodeTracer framework,
categorized by functional components to facilitate reproducibility and highlight critical design
decisions across our experimental setup.

C.1 DATASETS

We evaluate on standard code generation benchmarks that span multiple programming languages
and tasks. The primary evaluation uses HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021), which provide comprehensive Python programming challenges with associated test cases and
reference implementations.

C.2 BASELINES

We compare against two categories of methods: post-hoc detection and active watermarking. Post-
hoc detection methods preserve original generation and include zero-shot approaches: logp(x),
LogRank (Gehrmann et al., 2019), DetectGPT (Mitchell et al., 2023), and GPTZero (Tian et al., 2023).
Active watermarking methods include WLLM (Kirchenbauer et al., 2023a) and EXP-edit (Kuditipudi
et al., 2023), which operate under the practical constraints. We also include SWEET (Lee et al.,
2023), though comparisons are not fair since it requires access to the original LLM and prompts
for entropy calculation. We adapt SWEET to use a practical setting for fair comparison with other
baselines. We thoroughly tune the hyperparameters for each baseline following their setup.

DetectGPT. For the DetectGPT implementation, we used T5-3B as our model. Following the
original DetectGPT paper and SWEET (Mitchell et al., 2023; Lee et al., 2023) , we set the span length
to 2 words and applied masking to 20% of the text. For each test, we generated 100 perturbations to
ensure robust detection.

SWEET. For the SWEET baseline implementation, we conducted a systematic hyperparameter
search for the entropy threshold, exploring values from 0.3 to 1.2 with increments of 0.3. Our
experiments revealed optimal performance with an entropy threshold of 1.2 and 0.9 for the HumanEval
dataset and 0.3 and 0.6 for MBPP. In detection stage, SWEET needs to use original LLM, prompt
and complete generation sequence to compute the entropy. This requirement severely restricts their
practical applicability in real-world scenarios. For practical deployment, an ideal solution would
depend solely on the code snippet itself, as access to the generation context is typically unavailable.
Thus, we adapt SWEET to use fixed context windows (vs. full generation history and original LLM)
for practical and fair comparison with other baselines. We select two entropy thresholds for SWEET
to demonstrate the trade-off between watermark detectability and code functionality.

EXP-edit. We evaluate EXP-edit (Kuditipudi et al., 2023) following the methodology of (Lee et al.,
2023). In our experiments, we set temperature=0.2 and top-p=0.95. We systematically explore block
sizes (20 tokens), key sequence lengths (100), resample sizes (50 runs), and edit distance thresholds
(γ = 0.0). Through extensive parameter tuning, we determine the optimal configuration: key
length 100, block size 20, 50 sampling runs, and detection threshold 0.1, which balances watermark
detection reliability with code functionality.

C.3 MODEL ARCHITECTURE SPECIFICATIONS

Our model implements a transformer-based architecture optimized for code analysis and generation.
The model uses pre-norm design with layer normalization before the attention and feed-forward
computations to enhance training stability. It consists of four main components:

Embedding Layer: Combines token embeddings (Wte ∈ R|V|×dmodel) and position embeddings
(Wpe ∈ Rc×dmodel), where dmodel = 512 and c = 10 (context window size), processed through a
dropout layer with rate 0.2.

Transformer Encoder: 6 layers with 8 attention heads per layer.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Feed-Forward Networks: Dimension expansion to 2048 before projection back to dmodel.

Output Layer: Final layer normalization followed by linear projection to |V|+ 1 dimensions.

Hyperparameter Configuration. We conducted extensive hyperparameter tuning to optimize our
watermarking system’s performance. Table 6 presents our final hyperparameter configuration. For
model-specific parameters, we use the OpenCoder-1.5B-Instruct base model with BF16 precision
and flash attention 2 implementation for optimal performance. The watermark policy network
uses a context window of 2 tokens to determine watermarking decisions, which balances detection
effectiveness and computational efficiency. The watermark strength parameters include a green list
ratio γ = 0.5, establishing an equal distribution between green and red token sets. The watermark
binary decision threshold is set at 0.5, providing a balanced approach for selective watermarking.
For detection, we employ a z-score threshold of 4.0, which ensures high precision in distinguishing
watermarked code from non-watermarked code while maintaining a low false-positive rate.

C.4 TRAINING DETAILS

We implement reinforcement learning training using GRPO with several customizations for
the code watermarking task. Our training pipeline processes the mix of prompts from
open-r1/verifiable-coding-problems-python dataset, HumanEval dataset and MBPP dataset.
The motivation is to make sure model be familiar the distribution of these dataset instructions, which
are representative code examples for code generation tasks.

The watermark policy model optimization uses a learning rate of 1.0× 10−5 with a cosine scheduler
including a minimum learning rate of 0.1. We implement a short warmup period (3% of total steps)
to stabilize early training. For regularization, we set β = 0.0 for the KL divergence term, allowing
the watermark policy to explore freely while process-based rewards provide necessary constraints.
The training process runs for 500 steps with a batch size of 8 per device and gradient accumulation
every 4 steps. For each prompt, we generate 8 different code completions to provide robust training
signals. The maximum prompt length is limited to 256 tokens, while completions can extend up to
1024 tokens to accommodate various code generation tasks. During inference, we use a temperature
of 1.0 to maintain natural generation characteristics.

Computation Resources All experiments were conducted on 1 Nvidia A100 GPU with 80GB
memory each, using BF16 precision to maximize computational efficiency. The watermark policy
network training requires significantly fewer resources than full LLM training. For inference and
evaluation, a single A100 GPU is sufficient to process the benchmark test cases. The lightweight
nature of our watermark policy ensures minimal computational overhead during both training and
deployment compared to LLM-based watermarking approaches. Our implementation uses PyTorch
with flash attention 2 for optimized transformer operations. To ensure reproducibility, we set a
random seed of 42 across all experiments. The relatively modest computational requirements make
our approach practical for real-world deployment scenarios, as the watermark policy can be integrated
with various LLMs without substantial infrastructure demands.

D SECURITY DISCUSSION

The security of CodeTracer’s watermarking framework derives from the complexity of our learning-
based approach and the semantic awareness of our watermark model. This section analyzes the
security properties of our approach compared to traditional watermarking methods.

Our transformer-based watermark model provides strong security through its complex neural rep-
resentations. Unlike static watermarking schemes that apply fixed rules, our architecture learns
context-dependent watermarking decisions that adapt to the syntactic and semantic structure of code.
The high-dimensional parameter space of our 6-layer transformer model creates a complex mapping
between code contexts and watermarking decisions that resists reverse engineering. This neural com-
plexity means that even with access to watermarked outputs, attackers face significant computational
barriers to inferring the underlying decision boundaries that govern watermark placement and token
partitioning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The selective application of watermarking through the binary decision mechanism (w) adds another
layer of security. Our model strategically applies watermarking only in positions where it can
effectively bias toward green tokens without compromising code functionality. This selective approach
creates an irregular watermarking pattern that varies with code structure and semantics, making
statistical detection more challenging for attackers attempting to identify and remove watermarks.

In contrast, traditional watermarking approaches relying solely on hash functions or fixed vocabulary
partitioning remain vulnerable to statistical attacks. Attackers can analyze token distribution patterns
across multiple watermarked samples to eventually infer the underlying partitioning scheme. Our
framework avoids this vulnerability by creating position-specific, semantically-informed token
partitions that vary based on code context.

For a successful attack, adversaries would need to simultaneously: (1) reverse-engineer the neural
network’s complex decision boundaries, (2) understand the dynamic token partitioning strategy across
different code structures, and (3) develop a method to generate valid code that avoids watermarked
patterns without compromising functionality. This multi-faceted security approach provides robust
protection against both detection evasion and watermark forgery in practical deployment scenarios.

E USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as a general-purpose writing assistant to check
grammar and improve expression clarity throughout this paper. The LLMs did not contribute to
research ideation, methodology development, experimental design, or generation of novel content.
All technical contributions, insights, and findings presented in this work are entirely the result of the
authors’ original research.

18

