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Abstract

Recent shifts in the space of large language model (LLM) research have
shown an increasing focus on novel architectures to compete with proto-
typical Transformer-based models that have long dominated this space.
Linear recurrent models have proven to be a viable competitor due to their
computational efficiency. However, such models still demonstrate a sizable
gap compared to Transformers in terms of in-context learning among other
tasks that require recalling information from a context. In this work, we
introduce RESONA, a simple and scalable framework for augmenting lin-
ear recurrent models with retrieval. RESONA augments models with the
ability to integrate retrieved information from the provided input context,
enabling tailored behavior to diverse task requirements. Experiments on a
variety of linear recurrent models demonstrate that RESONA-augmented
models observe significant performance gains on a variety of synthetic as
well as real-world natural language tasks, highlighting its ability to act as a
general purpose method to improve the in-context learning and language
modeling abilities of linear recurrent LLMs.

1 Introduction

Improvements in building state-of-the-art large language models (LLMs) (OpenAI, 2024;
Grattafiori et al., 2024; Qwen, 2024; Gemma Team, 2024) through increased scale (Chung
et al., 2024; Kaplan et al., 2020) and downstream tuning (Ouyang et al., 2022; Dubois et al.,
2023) have enabled them to attain human-level performance on a number of complex tasks.
One feature that has enabled this is in-context learning (Brown et al., 2020), where models
can use user-provided content to provide a specific response tailed to that example. This
relies on the Transformer (Vaswani et al., 2017) backbone that underlies many of these
models, enabling for models to observe the complete past when generating content.

Recently, linear recurrent models (LRMs) (Gu et al., 2022; Peng et al., 2023; Orvieto et al.,
2023; Gu and Dao, 2024; Yang et al., 2024b) have emerged as an alternative, aiming to address
computational bottlenecks associated with attention mechanisms (Bahdanau et al., 2015).
Unlike Transformers, LRMs do not operate over all previous parts of the input. Instead they
compress prior context into a unified hidden representation/state with a recurrent structure,
similar to original recurrent neural networks (RNNs) (Rumelhart, 1989; Hochreiter and
Schmidhuber, 1997; Cho et al., 2014; Balduzzi and Ghifary, 2016; Lu et al., 2019; Martin
and Cundy, 2018), enabling more efficient inference. However, this unified representation
introduces an information bottleneck, as it limits the capacity to represent the full range
of vocabulary elements within a fixed-size state that does not scale with the combinatorial
complexity of token sequences. This has raised questions about the ability of LRMs to
effectively learn from input contexts (Jelassi et al., 2024; Park et al., 2024; Grazzi et al., 2024;
Lu et al., 2023) and perform comparably to Transformer-based LLMs in such settings.
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Figure 1: Simplified overview of RESONA. The input is separated into the example-specific
context along with a task-specific instruction. The context is chunked and encoded, after
which a retriever uses the instruction to determine which chunks are relevant to solving the
task. The retrieved context is integrated into the model’s reasoning for improved response.

Linear methods rely on fixed-size states to address limitations of traditional attention. A
trade-off, however, is that these fixed-size states cannot perfectly preserve all historical infor-
mation, making exact retrieval challenging. This manifests itself in practice in various tasks
such as language modeling; with the key-value associative memory system that underlies
such methods, adding new key-value associations leads to accumulating retrieval errors
that hinder performance. These errors may build up in a variety of data-independent (Gu
et al., 2022; Orvieto et al., 2023) or dependent (Yang et al., 2024a; Gu and Dao, 2024; Peng
et al., 2024; Zhang et al., 2024; Beck et al., 2017) manners. While recent works have proposed
strategies to mitigate such errors (Yang et al., 2024b; 2025; Sun et al., 2024), they retain a
fixed-size hidden state that remains a fundamental constraint.

In an effort to bridge this gap, we propose RESONA, a retrieval-based method designed
to improve context-based learning in LRMs (Figure 1). By introducing a retrieval mecha-
nism that facilitates information flow from the context, RESONAmitigates the hidden state
bottleneck and enables more effective in-context learning. Specifically, we augment LRM
layers within the backbone model with a contextual search component. The input context is
first chunked into passages, which are then retrieved based on the current LRM state. A
knowledge integration module subsequently incorporates the retrieved passages into the
model’s output by directly modifying its representation. This architecture allows previous
context to bypass the fixed-size hidden state constraint, improving information flow from
context to generation. These processes (chunking, retrieval, and integration) are parallelized
with the main LRM, ensuring easy adaptation and improved in-context learning across a
variety of models.

Empirical results on a range of representative tasks, spanning both synthetic and real-
world data, demonstrate that RESONA significantly improves the ability of LRMs to utilize
context-specific information with minimal or no latency overhead. We evaluate RESONA on
a diverse set of tasks, including synthetic retrieval and recall tasks, language modeling
and question-answering tasks, across multiple scenarios such as pre-training and direct
fine-tuning. Our analysis demonstrates the effectiveness of using RESONA for overall
performance improvements as well as test-time model customizations, such as balancing
the trade-off between efficiency and performance.
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2 Related Works

Linear Recurrent Models. Despite vast improvements in building language models that
solve real-world natural language tasks since the introduction of the Transformer (Vaswani
et al., 2017), significant concerns remain about their efficiency and scalability. While this
has spurred interest in rendering them more efficient (Katharopoulos et al., 2020; Dao et al.,
2022; Yang et al., 2024a), LRMs (Gu et al., 2022; Orvieto et al., 2023; Qin et al., 2023; Gu
and Dao, 2024; Dao and Gu, 2024; Peng et al., 2023; Sun et al., 2023; Lu et al., 2025; Yang
et al., 2024b) have grown as a popular alternative due to highly efficient inference costs
compared to attention-based alternatives while retaining the ability to be train on elements
of a sequence in parallel, an issue with traditional recurrent models. Further attempts at
leveraging advantages from both paradigms (Lieber et al., 2024; De et al., 2024; Dong et al.,
2025) have also garnered interest, leading to further exploration of similar models.

Retrieval-Augmented Generation (RAG). RAG-based methods augment the input of an
LM with passages retrieved from an outside source (Guu et al., 2020; Lewis et al., 2020). Such
methods have significantly improved performance on knowledge-intensive tasks, where it
is difficult to store the information required for strong performance explicitly within the
model’s parametric knowledge (Roberts et al., 2020). Further improvements have come
under the form of improved filtering of retrieved passages (Asai et al., 2024; Ma et al.,
2025), robustness to irrelevant passages (Yoran et al., 2024; Xu et al., 2024) or tuning of more
components (Lin et al., 2024). However, RAG is not directly applicable to learning from
contexts, as such methods do not search within the input-specific query but rather from an
external database, leading to a critical failure point of such methods.

Linear Recurrent Models and Context Usage. Despite their practical benefits, questions
have arisen regarding the ability of LRMs to learn from input contexts (Akyürek et al., 2024).
Jelassi et al. (2024) show that they struggle to directly copy information from contexts due
to their fixed-sized latent state. Park et al. (2024) further show that they can struggle at
retrieval-based (Arora et al., 2024) in-context learning, only solving such tasks through
the addition of attention. Such observations have extended to real-world data, where
LRMs have been shown to exhibit similar difficulties as Transformer LLMs (Wang et al.,
2024; Huang, 2025; Liu et al., 2024; Huang et al., 2025) for long contexts (Ivgi et al., 2023;
Hsieh et al., 2024). Accordingly, we introduce RESONA as a potential solution that provides
additional information flow paths from the context to the generated input, enabling better
utilization of the context for problem-solving.

Memory-enhanced Transformers. Due to the quadratic complexity of self-attention with
respect to the length of a sequence, Transformer models face significant computational
challenges when processing long inputs. Numerous approaches have been proposed to
enhance Transformers for long sequential data, both to reduce the time/space complexity of
the models as well as to improve performance. Dai et al. (2019); Munkhdalai et al. (2024)
segment long inputs into shorter sequences and process them recurrently. Mohtashami
and Jaggi (2023) append landmark tokens to represent each block of input and uses group
attention to select relevant information. Borgeaud et al. (2022) enhance Transformer perfor-
mance with external data by leveraging a separated retriever module. Nunez et al. (2024)
develop a Span-Expanded Attention for the hybridized attention model to retrieve the most
relevant block and integrate it with the recent context for attention computation. However,
it remains unclear whether and how retrieval-based modules can enhance the performance
of generalized linear recurrent models such as GLA (Mao, 2022; Yang et al., 2024a; Lu
et al., 2025), Mamba (Gu and Dao, 2024; Dao and Gu, 2024), RWKV (Peng et al., 2023), and
DeltaNet (Schlag et al., 2021; Yang et al., 2024b).

3 RESONA

We introduce RESONA (Figure 2 and Algorithm 1) as a framework to enhance the context-
copying ability of LRMs through retrieval, without sacrificing original performance and
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versatility. Our end-to-end training enables models to utilize the context as a retrieval
base from which information can be extracted. This helps the model to first overcome the
fixed-size latent space bottleneck by integrating information from the context directly into
the hidden state. This is in contrast to traditional LRMs, where the information from the
context must flow through the hidden state.

Algorithm 1 RESONA Algorithm.
Require: Model M
1: Input: Input s ∈ RT and LRM hidden

states H ∈ RL×T×H ,
2: Output: Y ∈ RT×D

3: Embed sequence s into X ∈ RT×D.
4: for l ← 1 to L do
5: H ← Hl ▷ Hidden state of layer l
6: if Layer l is an RESONA layer then
7: (H, Ym) = MLRM

l (X, H)
8: ▷ LRM Output
9: M = MC-and-S

l (X, H)
10: ▷ Chunk-and-Search
11: Yr = MKI

l (X, H, M)
12: ▷ Knowledge Integration
13: α = f (X)
14: Y = α · Ym + (1− α)Yr

15: else
16: (H, Y) = Ml (X, H)

17: X = Y
18: return Y

LRM Layer Knowledge
Integration

ModelResona Layer

LRM Layer

Network
Output

Network Input

Contextual
Search

LRM Layer

Resona Layer

Figure 2: Primary components of RESONA: 1)
Contextual Search which searches the context
for relevant information and 2) Knowledge In-
tegration which re-integrates the retrieved in-
formation into the model state. These enable
information from the original network input to
flow to arbitrary depths in the model, overcom-
ing information decay within the model.

3.1 Problem Formulation and Overview

Let V be a vocabulary, i.e. a set of discrete elements, of size |V|. A model M applies
a function f : V∗ → V∗, taking as input a sequence of tokens from the vocabulary (of
arbitrary length) while outputting a sequence of tokens from the vocabulary. We denote
the input sequence as x = [x1, . . . , xT], which we refer to as the model’s prompt. The
corresponding output sequence y = f (x) is referred to as the model’s answer or generated
response. Furthermore, a sequence-to-token mapping is a function g : V∗ → V used to
define f through auto-regressive inference. Specifically, given an input sequence x ∈ V∗,
the output tokens are generated one at a time using the recurrence: xi+j = g(x1, . . . , xi+j−1)
and f (x1:i) = (xi+1, xi+2, . . . ), where 1 ≤ i ≤ T and j ∈N.

An LRM is defined by a state update rule u : S × V → S and an output function r : S → V ,
where S is a finite set of states and a state is a representation of the system after processing a
sequence from V∗. Let s0 ∈ S be some initial state. Given some sequence x of length L, the
state of the model at iteration i is denoted by Si(x1, . . . , xi) and the output token is denoted
by Ri(x1, . . . , xi). These are defined recursively as:

1) S0 (∅) = s0,
2) hi = Si(x1, . . . , xi) = u (Si−1(x1, . . . , xi−1), xi),
3) yi = Ri(x1, . . . , xi) = r (Si(x1, . . . , xi)).

Information from x flows to y through a state h ∈ Rdh where dh is fixed and finite. Thus
for increasing sequence length or information dense settings, LRMs can struggle from the
limited size of h.

We observe that the LRM is directly limited by the size of its hidden state, which can be
insufficient for modeling problems with many possible states, unless the hidden size grows
with the size of the possible set of states. RESONA introduces two flexible components to
overcome this constraint without sacrificing the primary benefits of LRMs (namely parallel
training and inference time efficiency): 1) a contextual search operation that operates on the
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input to retrieve context-specific information and 2) a knowledge integration component
that mixes the retrieved information with the LRM output.
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Algorithm 2 Chunk-and-Search Algorithm.
Require: Context and Query Encoders C, Q
1: Input: Input X ∈ RT×D and LRM hidden

state H ∈ RT×H .
2: Output: Attention mask M ∈ RT×T

3: Chunk X into X′ ∈ RN×U×D

4: Use C to encode each context chunk {X ′i}
N
i=1 ∈

X′ into context embeddings C̄ ∈ RN×E

5: Use Q to encode H into query embeddings
Q̄ ∈ RT×E.

6: Compute chunk index sets for each Q̄j:
{Ij}T

j=1 = {Top-k(Q̄j, C̄)}T
j=1

7: With {Ij}T
j=1, compute a mask M ∈ RT×T

such that Mji = 1 ⇐⇒
(

i ∈ {Ij}
)

.

Figure 3: A breakdown of our Chunk-and-Search implementation. The initial input context
is chunked while the hidden state of the LRM layer is used as a query. Corresponding
indices are retrieved for each query, creating a mask that is used for Knowledge Integration.

Contextual Search. In order to retrieve relevant context, RESONA implements contextual
search as a chunk-and-search mechanism (Algorithm 2). The initial input X is first split
into N chunks, each consisting of U tokens, to create X′ ∈ RN×U×D, where D is the model
input dimension. First, each of these chunks Ci is encoded using a context encoder C
into a context embedding C̄i. Simultaneously, the hidden state H ∈ RT×H of the adjacent
linear-recurrent layer, is used to encode a number of queries into query embeddings Q̄1:T
using a query encoder Q. For each query, we search for the top-k similar contexts using
a cosine-similarity search, which produces chunk indices that we can then use to retrieve
the relevant input token positions. These are used to create a mask, which is passed to the
Knowledge-Integration module.

Knowledge Integration. To integrate knowledge from the retrieved chunks, RESONA does
as follows (Figure 4 and Algorithm 3). The knowledge integration module is a cross-
attention module that can directly integrate information from the initial embedding into
the LRM layer representation. To do so, the queries Q are directly computed from the
hidden state of the prior LRM layer1, while the keys K and values V are computed directly
from the input embeddings X that directly follow after the initial embedding matrix E.
Within the cross-attention module, we use a mask computed from our Chunk-and-Search
implementation of the contextual search. This ensures that the cross attention module can
mix in only the most relevant information from the input back into the cross-attention
module, producing an output Yr ∈ RT×D, which is then integrated with the output of the
adjacent LRM layer Ym, computed as

Y = α · Ym + (1− α) · Yr.

α can be computed on an input-dependent basis for each element of Y or can alternatively
be set as fixed hyper-parameter value. Because only the chunk-and-search design, each
query attends to at most kU elements from the initial input in k contiguous blocks, enabling
us to compute Yr efficiently using existing sparse attention mechanisms. For simplicity, we
maintain the use of a fixed constant α for the experiments that follow.

1In the event that the first layer is augmented with RESONA, the queries are generated directly
from the initial embeddings.
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Algorithm 3 Knowledge Integration.
Require: Attention weights WQ, WK , WV and

output weights Wout
1: Input: Input X ∈ RT×D and LRM hidden

state h ∈ RT×H , mask M ∈ RT×T

2: Output: Yr ∈ RT×D

3: From h, compute queries Q ∈ RT×dk using
WQ. In parallel, compute K, V ∈ RT×dk from
X with WK , WV .

4: Compute multi-head attention output O =

CrossAttn (Q, K, V , M), where O ∈ RT×dk .
5: Project O using Wout into Yr ∈ RT×D.

Figure 4: Knowledge Integration portion of RESONA. The hidden state is used as a query
while the initial network input is used as the query and keys. A mask constructed from the
contextual search is used to determine which information needs to be mixed back into the
LRM representation, which is then used to compute an attention output that is integrated
into the adjacent LRM output.

3.2 Training and Inference

When training RESONA, an important consideration is the auto-regressive nature of the
model that therefore requires a causal mask. Specific to our implementation, to maintain
this during the parallel nature of training, we ensure that for the query at index i, only
chunks that solely contain information prior to this position in the input are considered
within the Chunk-and-Search process. This ensures that the mask M allows no information
from a given token to affect the representation of those ahead of it in the sequence.

During inference, tokens are dynamically chunked based on a predefined size and embed-
ded into a chunked cache in parallel with the main model’s embedding, introducing no
extra latency. For long prompts, chunking is integrated into the pre-filling stage, aligning
with the token embedding pipeline and minimizing computation overhead.

4 Experiments, Results and Analysis

4.1 Tasks and Datasets

To test our method, we evaluate RESONA on both a number of synthetic benchmarks as well
as real-world language benchmarks. In Section 4, we explain the experimental setting as
well as evaluation methods for each. For each setting, we report a standard baseline where
a backbone model is not augmented with RESONA. These baselines vary based on which
backbones are capable of adequately learning the task without RESONA.

4.2 Main Results

4.2.1 Results on Synthetic Benchmarks.

We first evaluate on synthetic benchmarks, namely multi-query associative recall
(MQAR) (Arora et al., 2024) and the Mechanistic Architecture Design (MAD) suite of
tasks (Poli et al., 2024). For each, we report accuracy on a held-out test set, where a correct
answer requires the entire output is being correctly predicted. We initialize models from
scratch and train them on the task of interest, in particular a 4 layer model with a vocabulary
size of 8192. Each model uses a hidden size of 128 and a context chunk size of 64 for those
augmented with RESONA. Models are trained using 20K and evaluated on 1K examples.

Figure 5 and Table 1 demonstrate that RESONA augmentations improves performance across
all baselines, some by wide margins. Baseline models are often able to perfectly solve MQAR
for shorter sequence lengths or a smaller number of KV-pairs, but fail catastrophically upon
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Figure 5: Results on MQAR tasks on varying sequence lengths. Baseline models remain
limited in their ability to model increasingly long sequences even with increasing hidden
size, whereas augmentation with RESONA perfect performance on arbitrary lengths.

Table 1: Performance on synthetic MAD (Poli et al., 2024) tasks. The best result for each
metric is highlighted in bold. RESONA consistently boosts retrieval performance and shows
gains even on compression and memorization tasks.

Model Comp. ICR Noisy ICR Fuzzy ICR SC Mem. Average

Transformer 53.4 96.7 99.7 69.4 98.7 89.4 84.1

Mamba 38.3 76.7 74.9 9.3 33.2 88.5 53.5
+RESONA 38.2 (↓ 0.1) 99.9 (↑ 23.2) 100.0 (↑ 25.1) 63.4 (↑ 54.1) 42.7 (↑ 9.5) 88.8 (↑ 0.3) 72.1 (↑ 18.6)

Mamba2 43.6 96.4 96.7 21.1 93.3 86.9 73.0
+RESONA 46.6 (↑ 3.0) 100.0 (↑ 3.6) 100.0 (↑ 3.3) 62.9 (↑ 41.8) 93.6 (↑ 0.3) 88.1 (↑ 1.2) 81.9 (↑ 8.9)

RWKV5 36.8 96.4 96.6 12.1 52.7 55.0 58.3
+RESONA 40.4 (↑ 3.6) 99.7 (↑ 3.3) 99.8 (↑ 3.2) 59.7 (↑ 47.6) 58.0 (↑ 5.3) 70.6 (↑ 15.6) 71.5 (↑ 13.2)

Hyena 42.2 79.3 77.4 9.96 72.8 88.9 61.7
+RESONA 42.6 (↑ 0.4) 99.9 (↑ 20.6) 99.9 (↑ 22.5) 66.2 (↑ 56.2) 74.3 (↑ 1.5) 89.0 (↑ 0.1) 78.7 (↑ 17.0)

increasing either of these values. RESONAmeanwhile retains near perfect accuracy even
after these values. Similarly, models can struggle at specific tasks within the MAD suite, but
RESONA achieves a significant improvement in performance. On tasks in which the base
LRM models show strong performance, no degradation is observed through the addition
of RESONA, highlighting its flexibility. We observe that this is consistent across multiple
models (Poli et al., 2023; Fu et al., 2023), which are incapable of learning on some of the
simpler settings but upon the addition of RESONA layers are able of maintaining nearly
perfect accuracy for arbitrarily long sequences, showcasing its specific benefits in context-
recall intensive settings.

4.2.2 Language Modeling

To assess language modeling, we compare a baseline models with one augmented with
RESONA layers. Here, we train on the WIKITEXT-103 dataset (Merity et al., 2016). In order
to train models augmented with RESONA, we also augment the dataset. Specifically, we
first consolidate all samples from the same Wikipedia entry into single sample, eliminating
excessively short title lines or empty lines. We then use a LLaMA3.1-70B (Grattafiori et al.,
2024) model to augment each sample such that we can make use of the RESONA retrieval
mechanism. We then conduct the Chunk-and-Search process offline to create masks, in order
to save computation during training. To account for the additional parameters introduced
by RESONA, we present results in the baseline settings for two version, one where each
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Table 3: Results on QA benchmarks, where augmentation with RESONA improves perfor-
mance over all evaluation metrics. Hymba indicates RESONA is added as a third branch
with both the Hymba’s original linear and attention branches, while Hymba(256) indicates
where we reduce the window size of Hymba’s sliding window attention from 1024 to 256,
in order to create a fair comparison with our chunk size of 256.

Model TRIVIAQA COQA NARRATIVEQA
BLEU Rouge-L Meteor F1 BLEU Rouge-L Meteor F1 BLEU Rouge-L Meteor F1

Mamba 28.3 66.0 44.8 40.2 35.5 73.0 49.3 60.6 12.6 47.0 34.7 34.7
+RESONA 30.7 68.0 45.6 41.8 44.3 75.0 52.2 61.2 13.2 50.0 36.9 36.2

Hymba(256) 15.3 58.0 41.4 34.3 31.8 62.0 42.1 50.0 10.7 39.0 29.1 28.4
W/RETRIEVAL 2.9 57.0 39.0 33.9 4.6 52.0 38.2 41.3 3.9 36.0 30.8 27.6
W/RAG 12.9 66.0 46.0 38.8 23.2 67.0 47.9 54.5 12.5 49.0 38.4 35.2

+RESONA 25.6 61.0 43.4 41.5 36.5 69.0 48.8 57.2 13.1 46.0 33.9 35.1

Hymba 16.5 64.0 44.8 36.9 40.0 77.0 53.3 63.1 20.5 59.0 44.2 43.1
+RESONA 29.3 69.0 48.4 45.4 51.7 82.0 59.3 68.9 20.9 60.0 45.2 44.0

LRM layer matches exactly that of the augmented model as well as a version where the
hidden size of the layer has been increased to match the parameter count of the augmented
counterpart. Results in Table 2 demonstrates that integrating RESONA consistently achieves
lower perplexity than baseline counterparts and their parameter-aligned variants, highlight-
ing its applicability for language modeling. Notably, modifying Hymba’s sliding window
mask to our retrieval-based mask significantly improves performance. Furthermore, results
on short-context tasks (Table 8) demonstrate no performance degradation, suggesting the
ability to maintain performance on tasks that are not recall intensive.

4.2.3 Direct Fine-Tuning

Table 2: Comparison of pre-training
perplexity (PPL) on WikiText-103
across base LRM architectures, their
parameter-aligned variants, and RES-
ONA-enhanced versions.

Model Param PPL

GLA 131M 14.265
GLA (SP) 142M 14.223
+RESONA 145M 13.892

DeltaNet 131M 13.044
DeltaNet (SP) 142M 12.946
+RESONA 145M 12.541

RetNet 132M 15.471
RetNet (SP) 146M 15.431
+RESONA 142M 14.742

Mamba 140M 16.261
Mamba (SP) 157M 16.173
+RESONA 154M 15.943

Hymba(64) 133M 16.688
+RESONA(SP) 135M 15.887

To understand how well the addition of RES-
ONA modules can improve performance on context-
dependent tasks, we make use of pre-trained models
in which we insert RESONA layers. The models are
then fine-tuned directly, as described in Section 4.1,
and we record performance using task-specific met-
rics. Due to some computational limitations, we
provide results only for models where the baseline
model is capable of performance above random on
all benchmarks. In these settings, we choose 3 layers
of the model to augment with RESONA. The mod-
els are then tuned using the corresponding training
dataset of the task, before being tested on a held-out
test set.

Under this direct-fine-tuning setting, we evaluate on
question answering benchmarks including NARRA-
TIVEQA (Kociský et al., 2018), the Conversational
Question Answering (COQA) challenge (Reddy
et al., 2019) and TRIVIAQA (Joshi et al., 2017). For
each task, we report results in terms of BLEU,
ROUGE-L, Meteor (Banerjee and Lavie, 2005) and F1
scores. Table 3 presents these results, where we can
observe improvements on both pre-trained Mamba
and Hymba (with a sliding window of 256) models
through the addition of RESONA layers. This is particularly evident with improvements
across all metrics for all datasets, showing the general benefits that RESONA provides
towards better context-dependent reasoning skills.

8



Published as a conference paper at COLM 2025

5 Analysis and Discussion

RESONA vs. RAG-like methods. A natural comparison to make with RESONA is typical
RAG-like methods, which append the retrieved passages directly to the input prior to
applying the model. To compare with such methods, we design the following methods
with RESONA: 1) Using the input context directly as the data-store from which a pre-trained
retriever can retrieve passages directly that are used as context (RETRIEVAL) and 2) we
remove the Knowledge Integration component and instead directly append all (decoded)
retrieved passages from the Chunk-and-Search procedure to the initial input (RAG). Rows 5
and 6 in Table 3 shows these results on a Hymba model, again on the tested QA datasets.
The RESONA-augmented variant remains significantly more performant than the other
alternatives, demonstrating the benefits that acting directly on the representations can have.

Table 4: A comparison of RESONA and
Hymba (Dong et al., 2025). Three consecu-
tive layers are un-freezed for fine-tuning. In
the RESONA-augmented setup, the attention
branch of the selected layers is modified to
the RESONA retrieval mechanism. A sliding
window size of 256 is used while the corre-
sponding number indicates the start index of
the replaced layers.

Model Layer COQA
BLEU Rouge-L Meteor F1

Hymba 0 31.8 62.0 42.1 50.0
+RESONA 36.5 69.0 48.8 57.2

Hymba 8 25.1 62.0 42.5 48.8
+RESONA 41.2 73.0 51.5 61.4

Hymba 15 21.8 60.0 41.5 48.0
+RESONA 37.1 70.0 48.9 57.7

Hymba 23 5.9 41.0 27.8 32.3
+RESONA 29.1 62.0 42.8 50.1

Hymba 29 5.8 40.0 27.6 30.3
+RESONA 31.2 57.0 39.2 44.5

Relationship with Hybrid Methods.
Some previous works have suggested meth-
ods that enable linear recurrent models to
improve their in-context learning abilities.
Park et al. (2024) introduce a MambaFormer
architecture which interleaves self-attention
and Mamba layers, improving the ability
to learn in-context on tasks in which pure
Mamba models struggle. Similarly, RES-
ONA can be interpreted as a form of hybrid
mixture of attention and recurrence, similar
to Dong et al. (2025), with the difference
lying in the frequency of attention and its
sparsity within different layers. To better
compare these two methods, we provide
an ablation (Table 4) where we replace
Hymba layers with RESONA. In this setting,
3 consecutive layers are trained in either
setup. We observe a meaningful increase
in performance on COQA, indicating that
for such types of tasks, the mechanism
presented by RESONA could be more robust and suitable on a number of real world tasks.

Ablating on the position of layers. Due to its nature, a natural question that emerges re-
lates to the ease and effectiveness of determining the layers at which RESONA augmentations
need to be made. The same results (Table 4) show that the placement of the 3 RESONA layers
do not have a significant impact on the performance improvement relative to the baseline,
which can be improved upon in nearly all ways in which the layers are selected. This
highlights a level of robustness of the framework and method, hinting towards an ability to
be used for a variety of additional tasks. This robustness suggests that the method is not
overly sensitive to architectural fine-tuning, reducing the need for extensive hyperparameter
optimization when integrating RESONA into existing models. Such flexibility is particularly
advantageous in practical applications, where manual layer selection may be non-trivial or
computationally expensive.

Efficiency Evaluation. Given the architectural modifications that following from the
RESONA augmentations, we provide a comparison between the efficiency tradeoffs with
backbone models. We conducted ablation experiments using Mamba, DeltaNet and GLA,
comparing both backbone models and those augmented with RESONA to demonstrate these
tradeoffs in Table 5-7. While the RESONA augmentations do lead to a marginal increase
in each factor, the plug-in remains lightweight and does not add significant overhead
in computation, particularly for longer sequences. Furthermore, direct comparison with
a Transformer shows this method to be significantly more lightweight while retaining
Transformer-like performance on our tasks.
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Pre-filling Length Transformer Mamba Mamba + Resona DeltaNet DeltaNet + Resona GLA GLA + Resona

2k 29 45 52 53 64 37 46
4k 34 77 88 59 78 43 64
8k 71 149 170 72 103 62 104

16k 173 294 349 106 181 109 202
32k 503 571 653 208 338 202 386
64k 1665 1118 1285 412 652 407 757

128k 6094 2257 2412 807 1289 806 1518

Table 5: The time (in milliseconds) used to pre-fill a context of a pre-specified length.
Numbers are rounded to the nearest millisecond.

Pre-filling Length Transformer Mamba Mamba + Resona DeltaNet DeltaNet + Resona GLA GLA + Resona

2k 2679 2972 3329 2945 3686 2749 3528
4k 2758 3044 3360 3042 3772 2777 3543
8k 2866 3155 3499 3023 3789 2774 3523
16k 3389 3164 3613 3057 3829 2869 3689
32k 5759 3491 3910 3080 4207 2912 4044
64k 11144 4119 4656 3171 4404 3145 4352

128k 24050 4747 5601 3611 5278 3509 5076

Table 6: The time (in milliseconds) taken to generate 128 tokens following a prespecified
pre-filling length. Numbers are rounded to the nearest millisecond.

Pre-filling Length Transformer Mamba Mamba + Resona DeltaNet DeltaNet + Resona GLA GLA + Resona

2k 3.1 2.8 4.0 2.9 4.8 2.9 3.6
4k 3.5 2.8 4.1 3.0 4.9 3.0 3.7
8k 4.5 3.1 4.4 3.3 5.2 3.2 3.9
16k 6.4 3.7 5.1 3.7 5.5 3.6 4.4
32k 10.2 4.9 6.5 4.6 6.6 4.3 5.4
64k 17.7 7.2 9.2 6.4 8.4 5.9 7.5

128k 32.9 11.9 14.7 10.2 12.3 9.1 11.7

Table 7: The total memory consumption (in GB) given a pre-specified pre-filling length.

6 Conclusion

In this work, we propose RESONA, a lightweight retrieval-based knowledge integration
mechanism that significantly improves the ability of LRMs to use example-specific context.
RESONA utilizes a novel mechanism to use the input-context as a retrieval data-store and
integrate such information with the input during training and inference, enabling models to
use it more effectively and overcome information bottleneck concerns. Across a number
of both synthetic and real-world datasets, LRMs augmented with RESONA demonstrate
significant performance gains compared to their base counterparts, demonstrating its ability
to function as a general method applicable to broader scenarios.
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A Additional Results

A.1 Detailed Pretraining Results

Table 8: Detailed lm-evaluation-harness evaluation results from pre-training.
Param Wiki. ARC-C ARC-E Hella. OBQA PIQA PM RACE Wino. AVG

ppl acc acc n acc acc n acc acc n acc acc n acc acc n acc acc acc acc

GLA 131M 14.265 0.1843 0.221 0.3683 0.3502 0.2671 0.2692 0.184 0.268 0.5392 0.5109 0.336 0.2364 0.5028 0.3259
+(SP) 142M 14.223 0.2073 0.2483 0.3409 0.3418 0.2701 0.2696 0.158 0.234 0.5321 0.5141 0.358 0.2478 0.4949 0.3243
+RESONA 145M 13.892 0.192 0.2517 0.3405 0.3253 0.2646 0.2716 0.174 0.272 0.5457 0.5261 0.352 0.2469 0.5249 0.3297

DeltaNet 131M 13.044 0.2201 0.2628 0.2849 0.2912 0.2613 0.2607 0.146 0.262 0.5234 0.5038 0.35 0.2545 0.5059 0.3174
+(SP) 142M 12.946 0.2159 0.256 0.3001 0.2845 0.2592 0.2655 0.178 0.278 0.5305 0.5125 0.34 0.266 0.4728 0.3199
+RESONA 145M 12.541 0.2073 0.2449 0.2963 0.2963 0.2686 0.2757 0.156 0.272 0.5419 0.5283 0.334 0.2517 0.5012 0.3210

A.2 Detailed Supervised Fine-Tuning Results

Table 9: Results on Needle-in-a-Haystack (NIAH) using a haystack of varying sizes. Models
are scored on performance on a continuous scale from 0 (worst) to 5 (best). In all settings,
there is a single needle placed arbitrarily within the haystack. Different variants mean that
the format of the needle or haystack changes, such as being a number, keyword or UUID
sequence. Here α× lr denotes RESONA is trained with a learning rate multiplied by α.

Model Setting 4K 8K 16K
V1 V2 V3 MV V1 V2 V3 MV V1 V2 V3 MV

Mamba
Baseline 5.00 1.80 0.75 0.898 0.65 0.45 0.15 0.458 0.00 0.35 0.20 0.494

20×lr 5.00 3.65 1.80 1.358 5.00 0.85 0.45 0.528 4.90 0.05 0.00 0.669
50×lr 5.00 3.00 1.10 1.267 4.95 0.60 0.20 0.533 4.00 0.05 0.00 0.550

DeltaNet
Baseline 2.15 2.95 1.45 1.301 1.90 1.45 0.70 0.321 1.00 0.25 0.00 0.883

20×lr 5.00 4.10 0.60 0.876 5.00 2.60 0.80 1.453 5.00 0.60 0.10 0.973
50×lr 5.00 4.40 1.45 1.676 5.00 1.25 0.35 1.312 5.00 0.45 0.05 0.885

GLA
Baseline 2.90 3.65 0.05 1.389 0.25 0.55 0.00 0.846 0.00 0.05 0.00 0.291

20×lr 2.55 3.90 0.10 1.310 0.30 0.50 0.00 0.930 0.00 0.10 0.00 0.578
50×lr 3.00 3.85 0.15 1.353 0.20 0.60 0.00 0.900 0.00 0.05 0.00 0.657

Table 10: Detailed lm-evaluation-harness evaluation results from supervised fine-tuning
of different pre-trained LRMs. After undergoing the same SFT as the backbone models,
RESONA-enhanced models achieve comparable or superior zero-shot lm-harness evalua-
tion scores to baselines. Combined with Table 9, these results demonstrate that the RES-
ONAmodule enhances the backbone’s in-context learning (ICL) capability while maintaining
its foundational language modeling performance.

ARC-C ARC-E Hella. OBQA PIQA PM RACE Wino. AVG
acc acc n acc acc n acc acc n acc acc n acc acc n acc acc acc acc

GLA 0.2381 0.2747 0.5442 0.5046 0.3852 0.4903 0.198 0.314 0.7008 0.7008 0.552 0.3110 0.5288 0.4417
+RESONA 0.2466 0.2918 0.5497 0.5227 0.3738 0.4722 0.188 0.308 0.6944 0.7010 0.550 0.3139 0.5399 0.4424

DeltaNet 0.2363 0.2637 0.5636 0.5341 0.3852 0.4893 0.198 0.316 0.7035 0.7002 0.552 0.3388 0.5375 0.4475
+RESONA 0.2440 0.2722 0.5812 0.5455 0.3909 0.4982 0.198 0.314 0.7024 0.6997 0.556 0.3292 0.5375 0.4514

Mamba 0.3558 0.3805 0.6953 0.6427 0.4958 0.6490 0.270 0.382 0.7535 0.7535 0.684 0.3598 0.6440 0.5435
+RESONA 0.3823 0.3951 0.6907 0.6904 0.4804 0.6292 0.300 0.406 0.7372 0.7383 0.690 0.3445 0.6338 0.5475

A.3 Training Details for Synthetic Benchmarks

Multi-Query Associative Recall (MQAR). We evaluate RESONA on the MQAR task by
training six base architectures: BaseConv, H3, Hyena, Mamba, Mamba2, and RWKV. All
models are trained with a 4-layer configuration and a hidden dimension (d model) ranging
from 32 to 256. The sequence lengths vary from 64 to 512, with the number of key-value
(KV) pairs corresponding to 4–32, respectively. To integrate RESONA, we insert the Resona
Layer into either the first or third layer of each model, using the same d model settings. The
learning rate is swept using the default settings from Arora et al. (2024). For the Resona
Layer, we use a chunk size of 2 and a top-k value of 1. The exact results for each model,
sequence length, and hidden dimension can be found in Table 11.

Mechanistic Architecture Design (MAD) Suite. For the MAD tasks, we adopt a 4-hybrid
block configuration, where each block consists of a linear recurrent layer followed by a
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Table 11: Best Accuracy for Different Models with Varying Sequence Length and Model
Dimensions

Model
L = 64 L = 128 L = 256 L = 512

KV Pairs KV Pairs KV Pairs KV Pairs
32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

BaseConv 0.401 0.439 0.805 0.960 0.051 0.115 0.469 0.948 0.017 0.046 0.076 0.549 0.003 0.007 0.015 0.023
+RESONA0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+RESONA2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H3 0.861 0.892 0.991 0.991 0.225 0.477 0.974 0.965 0.094 0.409 0.303 0.896 0.003 0.007 0.038 0.078
+RESONA0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+RESONA2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hyena 0.430 0.874 0.922 0.972 0.051 0.501 0.646 0.840 0.018 0.089 0.313 0.928 0.002 0.007 0.053 0.173
+RESONA0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+RESONA2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RWKV 0.727 0.955 0.992 0.953 0.216 0.451 0.807 0.986 0.066 0.093 0.435 0.820 0.001 0.002 0.005 0.010
+RESONA0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+RESONA2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mamba 0.987 0.992 0.975 0.990 0.906 0.992 0.991 0.920 0.864 0.990 0.990 0.991 0.000 0.419 0.968 0.000
+RESONA0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+RESONA2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mamba2 0.990 0.992 0.991 0.993 0.974 0.969 0.992 0.991 0.755 0.000 0.991 0.592 0.000 0.000 0.001 0.000
+RESONA0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+RESONA2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SwiGLU layer. We follow the benchmark settings from Poli et al. (2024), using a batch size
of 128 and a learning rate range of 1e-3 to 1e-4. For the RESONA layers, we set the chunk
size to 6 and the top-k value to 1.

A.4 Training Details for Real-World Tasks

Pretraining. During pre-training, we prioritized maintaining consistent model depth
across architectures. For GLA, DeltaNet, and RetNet, we adopted the architecture imple-
mentations from FLA-Hub (Yang and Zhang, 2024), configuring them with 24 layers and a
hidden size of 600. For Hymba, we use NVIDIA’s official 150M parameter implementation
(24 layers with a hidden size of 512). For Mamba, we employed FLA-Hub’s implementation
with 48 layers and a hidden size of 600. For comparative models with equivalent parameter
counts, we adjusted the hidden size from 600 to 640. Following the methodology outlined
in the Hymba paper, we integrated RESONAmodules at the shallowest, middle, and deepest
layers to reinforce critical information flow. Each model was trained for 8,000 steps, with
model selection performed using a dedicated validation set. The training configuration
employed a cosine annealing scheduler with warmup over 5% of the training steps, the
AdamW optimizer (learning rate of 1e-3 and weight decay = 0.01), and gradient clipping of
1.0.

Finetuning. We employed a base learning rate of 1e-5 for fine-tuning on the three in-
dividual datasets, with other training configurations remaining similar to those used in
pre-training, except that RESONAmodules benefited from a higher learning rate. For CoQA,
NarrativeQA, and TriviaQA, we trained for 2K, 8K, and 10K steps, respectively. During
general supervised fine-tuning, we created a unified training set by shuffling 10K samples
from each of the three QA datasets, ensuring significant diversity in sequence length and
content. Additionally, we constructed a general test set by selecting 500 validation samples
from each dataset. We trained on this combined dataset for 4K steps.

A.5 NIAH Scoring Details

For the NIAH (Needle In A Haystack) task, we employ an automated scoring protocol
based on prefix matching. The scoring methodology operates as follows: A full score of
5 points is awarded if the model’s response contains the complete and accurate needle.
If not, we iteratively truncate the needle from the end (removing the last few characters
incrementally) and perform prefix matching. Partial credit (a proportional fraction of the
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5-point maximum) is granted when a truncated prefix matches exactly, with the remaining
character percentage determining the awarded score. Responses containing no matching
prefix of the needle receive 0 points. The final task score is obtained by averaging the scores
across 100 test samples.

20


	Introduction
	Related Works
	Resona
	Problem Formulation and Overview
	Training and Inference

	Experiments, Results and Analysis
	Tasks and Datasets
	Main Results
	Results on Synthetic Benchmarks.
	Language Modeling
	Direct Fine-Tuning


	Analysis and Discussion
	Conclusion
	Additional Results
	Detailed Pretraining Results
	Detailed Supervised Fine-Tuning Results
	Training Details for Synthetic Benchmarks
	Training Details for Real-World Tasks
	NIAH Scoring Details


