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Abstract

Motion forecasting for agents in autonomous driving is highly challenging due
to the numerous possibilities for each agent’s next action and their complex in-
teractions in space and time. In real applications, motion forecasting takes place
repeatedly and continuously as the self-driving car moves. However, existing
forecasting methods typically process each driving scene within a certain range
independently, totally ignoring the situational and contextual relationships between
successive driving scenes. This significantly simplifies the forecasting task, mak-
ing the solutions suboptimal and inefficient to use in practice. To address this
fundamental limitation, we propose a novel motion forecasting framework for
continuous driving, named RealMotion. It comprises two integral streams both
at the scene level: (1) The scene context stream progressively accumulates histor-
ical scene information until the present moment, capturing temporal interactive
relationships among scene elements. (2) The agent trajectory stream optimizes
current forecasting by sequentially relaying past predictions. Besides, a data reor-
ganization strategy is introduced to narrow the gap between existing benchmarks
and real-world applications, consistent with our network. These approaches enable
exploiting more broadly the situational and progressive insights of dynamic motion
across space and time. Extensive experiments on Argoverse series with different
settings demonstrate that our RealMotion achieves state-of-the-art performance,
along with the advantage of efficient real-world inference.

1 Introduction

Motion forecasting is a crucial element in contemporary autonomous driving systems, enabling
self-driving vehicles to predict the movement patterns of surrounding agents [43, 17]. This prediction
is vital for ensuring the safety and reliability of driving. However, numerous complex factors,
including stochastic road conditions and the diverse motion modes of traffic participants, make
resolving this task challenging. Recent developments have focused on the study of representation and
modeling [10, 52, 51], in tandem with a growing emphasis on precise trajectory predictions [6, 32,
49, 15, 50, 35]. Furthermore, the field has witnessed an increased focus on multi-agent forecasting,
a more challenging yet valuable subtask [26, 1, 14, 31]. These advancements have collectively
contributed to substantial progress in motion forecasting in recent years.

However, we realize that existing methods tackle motion forecasting tasks in an isolated manner,
i.e., they treat every individual driving scene within a limited range independently, overlooking
that in reality motion forecasting is inherently temporally interrelated while any ego-car drives on.
That means previous methods ignore the driving context across successive scenes, as well as the
corresponding potentially useful information from previous driving periods (Fig. 1).

∗Li Zhang (lizhangfd@fudan.edu.cn) is the corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/fudan-zvg/RealMotion


t

t-1

t-2

(b) RealMotion(a) Existing methods

t-3

invisible
history current

visible

(c) Comparison of prediction

Independent and our predictions Visible fieldscene and stream features

Figure 1: Comparison of (a) existing methods independently processing each scene and (b) our Real-
Motion recurrently collecting historical information. (c) For example, RealMotion can perceive the
currently invisible pedestrian and predict the giving way for the interested agent.

Under the above insight and consideration, we propose an efficient in-context motion forecasting
framework for continuous driving, named RealMotion. It comprises two streams to transit states of
scenes: (1) A scene context stream that accumulates historical scene context progressively, capturing
temporal interactions among scene elements and addressing complex driving situations. (2) An
agent trajectory stream that continually optimizes the predictions for dynamic agents like vehicles,
considering temporal consistency constraints and capturing precise motion intention. Each stream
utilizes a specially designed cross-attention mechanism to transit scene states and fulfill its function.

Our contributions are summarized as follows: (i) We solve the motion forecasting problem from a
perspective of the real-world applications, which enables the extraction and utilization of valuable
situational and progressive knowledge. (ii) We introduce RealMotion, a novel motion forecasting
approach that sequentially leverages both scene context and predicted agent motion status over
time, meanwhile maintaining a lower real-world inference latency. (iii) To support the continuous
driving setting on existing benchmarks, we implement a data reorganization strategy to generate scene
sequences, closely simulating the real-world driving scenarios. Extensive experiments on Argoverse
series with different settings demonstrate that RealMotion achieves state-of-the-art performance.

2 Related work

In autonomous driving, accurately predicting future trajectories of agents of interest relies on an
appropriate representation of scene elements. Early methods [29, 12, 2] rasterize driving scenarios
into images and utilize off-the-shelf convolutional networks for scene context encoding. However, due
to their limited ability to capture intricate structural information, recent studies [49, 15, 52, 36] have
shifted towards vectorized representations, as exemplified by the emergence of VectorNet [10]. Addi-
tionally, graph-based structures are widely adopted to model dynamics, interactions, and relationships
among agents and maps [22, 13, 44, 19, 18, 9].

With the encoded scene features, various approaches are explored for estimating multi-modal future
trajectories. Early methods focus on goal-based prediction [49, 15] or use probability distribution
heatmaps for trajectory sampling [12, 13]. Recent approaches like HDGT [19], Wayformer [25], and
others [23, 26, 48, 32, 51] leverage Transformer architectures [37] to model detailed relationships
within the overall scene. Moreover, there are methods introducing novel paradigms (e.g. pre-
training [5, 4, 21, 28], post-refinement [6, 50] or Diffusion [20]) to achieve impressive performance.

To address the relevance of predicted trajectories for different agents in real-life scenarios, recent
efforts have focused on multi-agent forecasting. Some methods [14, 38, 52, 33] adopt an agent-
centric design, iteratively predicting trajectories for each agent, which can be inefficient and hinder
exploration of relationships among agents. Conversely, SceneTransformer [26] introduces a scene-
centric framework for joint forecasting of all agents, presenting a novel design. Moreover, recent
methods explore a query-centric design [51] or consider adaptations [1] to address this task.

Nevertheless, the methods mentioned above independently perform forecasting for each scene sample,
which conflicts with practical settings where driving scenarios are interconnected over time. To
overcome this limitation, pioneering work [27] first introduce a temporal motion benchmark based
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Figure 2: Illustration of our data reorganization strategy, processing (a) a given independent scene by
(b) chunking the trajectories into segments and aggregating surrounding elements, generating the (c)
continuous sub-scenes.

on tracking dataset. Instead, we design a transformed data structure to mimic real-world conditions
and propose RealMotion to effectively model the temporal relationships.

3 Methodology

3.1 Preliminary

Data reorganization. Considering the discrepancy between existing benchmarks and practical
applications, our first step is to reorganize these datasets by transforming each sample scene into
a continuous sequence, mimicking the successive real-world driving scenarios. Specifically, we
retrospectively examine each independent scene by evenly splitting agent trajectories into shorter
segments and sampling local map elements (refer to Fig. 2). Specifically, we first select several split
points Ti along historical frame steps. Next, we generate trajectory segments of identical length by
extending from these points both into the past and the future. The number of historical and future
steps is determined by the minimum split point and the length of ground-truth trajectory, respectively.
Also, surrounding agents within a certain range and a local map are aggregated for interested agents at
each split point, forming a sequence of sub-scenes. This reorganization allows freely capitalizing on
the original elements to offer valuable situational and progressive insights at the scene level for model
optimization. Hence, existing methods can also involve and benefit from the novel data structure.
We have implemented this approach within the state-of-the-art method QCNet [51], which is further
discussed in the appendix, highlighting the generality of our data structure.

Input representation. In the context of motion forecasting, the trajectories of agents and a high-
definition road map are provided in the driving scenario. Following [10], we transform these
scene elements into vectorized representations as input. The historical trajectories are denoted as
A ∈ RNa×T×Ca , where Na, T , and Ca represent the number of agents, the number of historical
frames, and the motion states (e.g., position, angle, velocity, and acceleration), respectively. The road
map is divided into several lane segments, denoted as M ∈ RNm×P×Cm , where Nm, P , and Cm

indicate the number of lane segments, the points of each segment, and the lane features (typically
represented as coordinates). All these states are normalized relative to the current position of the
agent of interest.

3.2 RealMotion for continuous forecasting

As depicted in Fig. 3, our RealMotion approach comprises an encoder, a decoder, a scene context
stream, and an agent trajectory stream. Following the encoder-decoder structure, the two streams are
designed to execute temporal modeling, focusing on context information and trajectory prediction
along the time dimension.
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Figure 3: Overview of our RealMotion architecture. RealMotion adopts an encoder-decoder structure
with two intermediate streams designed to capture interactive relationships within each scene and
across the continuous scenes. The (a) Scene context stream and (b) Agent trajectory stream
iteratively accumulate information for the scene context and rectify the prediction, respectively. The
(c) context referencing and (d) trajectory relaying modules are specially-designed cross-attention
mechanism for each stream.

3.2.1 Multimodal feature encoding and trajectory decoding

For scalability and simplicity, we adopt the plain encoder and decoder design following [5, 32].
Specifically, we encode the map features Fm ∈ RNm×D by a PointNet-like encoder [30], where D
refers to the embedding dimension. As [5], we extract the agent features Fa ∈ RNa×D by stacked
neighborhood attention blocks [16]. Given the agent and map features, we concatenate them to derive
the scene features Fs ∈ R(Na+Nm)×D. We then employ a Transformer [37] encoder to learn the
interrelationships of these features.

For trajectory prediction along with the probability, we utilize two Multilayer Perceptron (MLP)
modules. Additionally, we forecast a singular trajectory for auxiliary training purposes, focusing on
the movement patterns of other agents.

3.2.2 Scene context stream

The scene context stream is meticulously designed to progressively gather information about the
surrounding environment, thereby enhancing trajectory prediction. Positioned after the encoder, this
component plays a crucial role as the historical scene profoundly influences the understanding of
temporal motion behaviors exhibited by agents. For instance, the ability to estimate the trajectory in
complex scenes or evaluate currently occluded agents can be greatly improved by taking into account
the previous situation and context.

At the current time t, we denote the current and historical scene features as F t
s and F t−1

s , respectively,
extracted from the respective local coordinate systems. The process begins by projecting F t−1

s onto
the current system. To achieve this, the two features must be aligned, considering the gap of motion
between them. Motion-aware Layer Normalization (MLN) [40] is employed for this purpose:

F̃ t−1
s = MLN(F t−1

s , PE([∆x,∆y,∆θ,∆t]), (1)

where ∆θ denotes the heading angles, ∆t refers to the timestamps, and (∆x,∆y) represents the
difference between their positions. PE indicates the position encoding function. Subsequently,
we repartition the scene features F̃ t−1

s and F t
s into the agent and map parts for following process.

To incorporate the historical information into the current, we employ map-map and agent-scene
cross-attention modules with Multi-Head Attention (MHA) blocks for map and agent features,
respectively:
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F t
m = MHA(Q = F t

m, K = F̃ t−1
m , V = F̃ t−1

m ),

F t
a = MHA(Q = F t

a , K = F̃ t−1
s , V = F̃ t−1

s ),

F t
s = Concatenate(F t

a , F
t
m),

(2)

where map features only interact with each other across time to enrich map elements, while agent
features aggregate the overall historical scene context for comprehensive scene understanding.

Given the sequential nature, this past context-referenced feature will be further propagated to future
timestamps. Simultaneously, it serves as the input to the decoder for trajectory prediction at the
current timestamp.

3.2.3 Agent trajectory stream

In addition to referencing scene context, we enhance trajectory forecasting by establishing temporal
relationships to achieve further improvement. This involves leveraging the inherent temporal continu-
ity and smoothing nature of trajectories. This is accomplished through the agent trajectory stream,
which is equipped with a memory bank for storing historical trajectories, enabling temporal relaying.

To maintain a set of n historical trajectories for each agent of interest, we design the trajectory
memory bank as M(a) = {(y1, f1), (y2, f2), ..., (yn, fn)}, where yi denotes predicted trajectories
projected onto the global coordinate system, and fi represents corresponding mode features recording
historical motion information. Unlike the detection or tracking tasks, where position changes of
objects typically remain relatively consistent, the future motion patterns (under local system) involves
significant changes due to variations in road conditions. Therefore, directly decoding with historical
memory query features is inappropriate. Considering that the simple decoder can provide satisfactory
predictions in practice, modifying initial predictions using the memory bank proves more effective.

Before refinement, we align the saved trajectories and mode features with the current coordinate
system. While handling features consistently with the above, it is crucial to align trajectories in
Euclidean space for more precise comparisons. Concerning the trajectory yi ∈ RK×2 (with K being
the frame steps of the trajectories), we compute the transformed trajectory ỹi as

ỹi = R(θ) · (yi − yorii )T, where yorii = yi[∆t · q]. (3)

Here, R(θ) is the rotation matrix for the current heading angle, and yorii denotes the trajectory
origin chosen based on the time difference ∆t and sampling frequency q. Recognizing that memory
trajectories may originate from different historical times, their origins also differ.

After transformation, trajectories whose latter part resembles the former part of current predictions
contribute more to the refinement process. To aggregate memory information accordingly, we update
the current mode features with a lightweight Transformer Decoder utilizing Trajectory Embedding
(TE) to measure spatial similarity and replace the original positional embedding. Then, we further
propagate updated modes into a MLP module to generate offsets and update initial predictions. This
procedure is defined as follows:

Fmo = MHA(Q = Fmo+TE(Ymo),K = F̃b +TE(Ỹb),V = F̃b),

Ymo = MLP(Fmo) + Ymo,
(4)

where Fmo and Ymo are mode features and initial predicted trajectories in the current context, F̃b and
Ỹb represent aligned features and trajectories retrieved from the memory bank. Besides, we employ a
single layer MLP to embed the flattened trajectories as the TE.

Ultimately, we save the refined trajectories (projected onto the global system) and features while
removing outdated ones (first in first out). This updated trajectory memory will be further passed
down for future timestamps. Importantly, due to the generation of only a small number of motion
modes, we do not apply any filtering to ensure the multimodality and diversity of the bank.

3.3 Model training

During the training process, we supervise the estimated trajectories using the regression loss Lreg

and the associated probabilities through the classification loss Lcls. Additionally, we introduce the
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Table 1: Performance comparison on Argoverse 2 test set in the official leaderboard. For each metric,
the best result is in bold and the second best result is underlined. “-”: Unreported results; “†”:
Methods that use model ensemble trick. RealMotion-I refers to the independent variant of our model
without data reorganization and stream modules, simply taking the original trajectory as input to
forecast the motion like previous methods.

Method minFDE1 minADE1 minFDE6 minADE6 MR6 b-minFDE6

HDGT [19] 5.37 2.08 1.60 0.84 0.21 2.24
THOMAS [14] 4.71 1.95 1.51 0.88 0.20 2.16
GoRela [7] 4.62 1.82 1.48 0.76 0.22 2.01
HPTR [48] 4.61 1.84 1.43 0.73 0.19 2.03
QML† [34] 4.98 1.84 1.39 0.69 0.19 1.95
Forecast-MAE [5] 4.36 1.74 1.39 0.71 0.17 2.03
TENET† [42] 4.69 1.84 1.38 0.70 0.19 1.90
BANet† [45] 4.61 1.79 1.36 0.71 0.19 1.92
GANet [39] 4.48 1.78 1.35 0.73 0.17 1.97
SIMPL [47] - - 1.43 0.72 0.19 2.05
Gnet† [11] 4.40 1.72 1.34 0.69 0.18 1.90
ProphNet [41] 4.74 1.80 1.33 0.68 0.18 1.88
QCNet [51] 4.30 1.69 1.29 0.65 0.16 1.91
RealMotion-I 4.42 1.73 1.38 0.70 0.18 2.01
RealMotion 3.93 1.59 1.24 0.66 0.15 1.89

refinement loss Lrefine to guide the learning of predicted trajectory offsets within our agent trajectory
stream. The overall loss L combines these individual losses with equal weights, formulated as
follows:

L = Lreg + Lcls + Lrefine, (5)
For Lreg and Lrefine, we employ the smooth-L1 loss, while the cross-entropy loss is utilized for Lcls.

4 Experiments

4.1 Experimental settings

Datasets and metrics We assess the performance of our method using the Argoverse 1 [3] and
Argoverse 2 [43] motion forecasting datasets in both single-agent and multi-agent settings. The
Argoverse 1 dataset comprises 323,557 sequences from Miami and Pittsburgh, while the Argoverse 2
dataset contains 250,000 scenes spanning six cities. In the Argoverse 1 dataset, predictors are tasked
with forecasting 3 seconds of future trajectories for agents based on 2 seconds of historical observa-
tions. In contrast, the Argoverse 2 dataset offers improved data diversity, higher data quality, a larger
observation window of 5 seconds, and an extended prediction horizon of 6 seconds. Additionally,
both datasets have a sampling frequency of 10 Hz.

We employ standard benchmark metrics, encompassing minimum Average Displacement Error
(minADEk), minimum Final Displacement Error (minFDEk), Miss Rate (MRk), and brier min-
imum Final Displacement Error (b − minFDEk), across six prediction modes designed for the
single-agent setting. Further details can be found in the appendix.

Implementation details We train our models using the AdamW [24] Optimizer with a batch size
of 32 per GPU for 60 epochs. Our model is trained end-to-end with a learning rate of 0.001 and a
weight decay of 0.01. The latent feature dimension is set to 128. Following [5, 32], we consider only
agents and lane segments within a 150-meter radius of the focal agent. For the samples in Argoverse
2, we split the whole scene into 3 segments, each with a historical observation window of 3s and a
same prediction horizon of 6s as the original. As for the Argoverse 1, we set the historical window of
1s. To fully utilize historical information, we compute gradients and perform back propagation for all
segments. Moreover, the RealMotion-I is trained and evaluated with a common configuration without
dataset reorganization and stream modules.
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Table 2: Performance comparison on Argoverse 1 validation set.
Method minADE6 minFDE6 MR6

LaneRCNN [44] 0.77 1.19 0.08
DenseTNT [15] 0.73 1.05 0.10
mmTransformer [23] 0.71 1.15 0.11
LaneGCN [22] 0.71 1.08 -
PAGA [8] 0.69 1.02 -
DSP [46] 0.69 0.98 0.09
ADAPT [1] 0.67 0.95 0.08
HiVT [52] 0.66 0.96 0.09
R-Pred [6] 0.66 0.95 0.09
HPNet [35] 0.64 0.87 0.07
RealMotion 0.61 0.91 0.07

Table 3: Performance comparison on Argoverse 2 Multi-agent test set in the official leaderboard.
Method avgMinFDE1 avgMinADE1 avgMinFDE6 avgMinADE6 actorMR6

FJMP [31] 4.00 1.52 1.89 0.81 0.23
Forecast-MAE [5] 3.33 1.30 1.55 0.69 0.19
Gnet [11] 3.05 1.23 1.46 0.69 0.19
RealMotion 2.87 1.14 1.32 0.62 0.18

4.2 Comparison with state of the art

We first compare the performance of our RealMotion with several top-ranked models on the Ar-
goverse 2 [43] motion forecasting benchmark. The results on the test split are presented in Tab. 1.
RealMotion has far outperformed most of previous approaches. Concretely, our method stands
distinctly ahead of other methods in terms of minFDE1 and minADE1, showing performance
enhancements of 8.60% and 5.91% relative to QCNet, respectively. We also get the almost top 2
place for other metrics. Compared to our independent variant RealMotion-I, the proposed method
exhibits significant performance improvements across all metrics, which conclusively demonstrates
the effectiveness of our designs. Then, we compare the performance of RealMotion on the Argoverse
1 benchmark, with the results of the validation split presented in Tab. 2. It is shown that our method
also achieves a decent performance, especially for minADE6. We also provide our ensemble and
multi-agent results in Appendix B.

4.3 Multi-agent quantitative results

In the multi-agent setting, predictors are required to jointly estimate the future trajectories of all
interested agents, which is crucial for the comprehensive perception of the driving scenario. Therefore,
we also evaluate our RealMotion on the Argoverse 2 Multi-agent test set to prove the effectiveness,
and provide simple results as shown in Tab. 3. Although not integrated with specialized designs for
multi-agent forecasting like [26, 1], our model also demonstrates superior performance compared to
recent works owing to our sequential techniques.

4.4 Ablation study

We conduct ablation studies on the Argoverse 2 validation split for the single-agent setting to examine
the effectiveness of each component in RealMotion. We adopt the default experiment settings
following Sec. 4.1 to perform ablation in this section.

Effects of components. As shown in Tab. 4, we assess the effectiveness of each component in
our network. The first row (ID-1) represents the independent framework RealMotion-I, which is
the same as reported in Tab. 1. First, our data reorganization approach extends dataset at no extra
cost and enables the exhaustive utilization of temporally continuous motion, resulting in a noticeable
improvement as shown in the second row. Then, our proposed two streams can better learn temporal
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Table 4: Ablation study on the core components of RealMotion on the Argoverse 2 validation set.
“Con. Data” indicates the processed continuous scenes. “SC Strm” and “AT Strm” indicate our
proposed scene context stream and agent trajectory stream, respectively.

ID Con. SC AT minFDE1 minADE1 minFDE6 minADE6 MR6 b-minFDE6Data Strm Strm
1 4.499 1.793 1.423 0.721 0.185 2.054
2 ✓ 4.397 1.722 1.357 0.687 0.169 2.001
3 ✓ ✓ 4.129 1.648 1.344 0.678 0.160 1.987
4 ✓ ✓ 4.194 1.667 1.331 0.673 0.164 1.976
5 ✓ ✓ ✓ 4.091 1.620 1.312 0.664 0.156 1.961

Table 5: Ablation study on (a) (left) the Feature Alignment and Trajectory Embedding and (b) (right)
the gradient steps and split points. For (a), “C.A.” and “T.A.” represent the feature alignment modules
used in the Context Referencing and the Trajectory Relaying blocks. “T.E.” represents the Trajectory
Embedding. For (b), “Grad Steps” indicates the number of steps we take to compute the gradient.
“Split Pts” indicates the split points used to divide the trajectory.

C.A. T.A. T.E. minFDE6 minADE6 MR6

1.334 0.681 0.163
✓ 1.328 0.674 0.160

✓ 1.326 0.673 0.158
✓ ✓ 1.324 0.670 0.158
✓ ✓ ✓ 1.312 0.664 0.156

Steps Split Pts minFDE6 minADE6 MR6

1 (30, 40, 50) 1.420 0.716 0.175
2 (30, 40, 50) 1.341 0.681 0.162

(30, 40, 50) 1.312 0.664 0.156
3 (20, 35, 50) 1.331 0.674 0.158

(40, 45, 50) 1.365 0.692 0.163
5 (30, 35, 40, 45, 50) 1.323 0.668 0.158

relationships at the scene level, thereby both bringing additional improvements, represented as
ID-3 and ID-4, respectively. Considering that these two streams are complementary to each other,
therefore, RealMotion that involves all these sequential techniques achieves remarkable performance
gains, as indicated in the final row. Additionally, in contrast to the consistent improvements observed
with the data processing approach, it is worth noting that our two streams demonstrate more significant
advantages in single-mode metrics compared to the six-mode metrics. As shown in Fig. 4, we attribute
this phenomenon to the enhanced capability of our streams to modify less accurate trajectories.

Effects of feature alignment and TE. The misalignment of features might have an adverse effect
on the performance when implementing feature interaction across scenes. Hence, we evaluate the
impact of the alignment modules in both the Context Referencing and the Trajectory Relaying blocks
in Tab. 5(a). As depicted in the first four rows, the removal of the alignment modules clearly results
in a performance decline. By incorporating these modules, We have, to some extent, alleviated the
negative impact of misalignment. However, executing it twice only yields marginal gains, which
might be caused by the function overlap. Besides, we also analyze the performance of our proposed
Trajectory Embedding in the 4th and 5th rows. The performance gains indicate that the Trajectory
Embedding can facilitate the selection of similar historical trajectories from the memory bank, thereby
easily constraining and refining current predictions. Despite the simplicity in the design of these
modules, they both contribute to additional benefits for our network.

Effects of split points and gradient steps. In Tab. 5(b), we investigate the performance variations
with respect to the number of gradient steps taken and the split points along historical steps. From the
1st to the 3rd row, as we progressively increase the number of steps used for gradient computation,
there is a noticeable improvement in performance. This enhancement can be attributed to the fact that
computing the gradient for specific steps allows us to better capture the trajectory distribution for
model training. From the 3rd to the 5th row, we change the interval of split points from 5 frames
to 15 frames. Accordingly, the length of historical trajectory also changes, ranging from 40 frames
to 20 frames. As observed, similar trajectories occur in the sequence when using a short interval,
which can significantly hinder the model to learn distinct motion patterns. Conversely, using a longer
interval results in fewer historical trajectory frames available in each segment, which contradicts
the optimization of one-shot forecasting. It is evident that our choices for the gradient steps and
the split points are well-suited for the Argoverse 2 benchmark. Moreover, we attempt to divide
the trajectory into 5 segments in the final row. An excessively long trajectory sequence imposes a
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(a) Step1 (T=30) (b) Step2 (T=40) (c) Step3 (T=50) (d) RealMotion-I (T=50)

①
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Predicted Trajectory GT Trajectory Agent of Interest Surrounding Agent

③

Figure 4: Qualitative results on the Argoverse 2 validation set. The panel (a)-(c) demonstrate the
progressive forecasting results of our RealMotion, where the panel (c) is the final predictions for
evaluation. The panel (d) shows the one-shot forecasting of RealMotion-I.

Table 6: Comparison of model performance, inference speed, and memory size. “Latency”: Inference
speed. “Params”: The number of parameters.

Method Latency Params minFDE6 minFDE1

HPTR (online)[48] 13ms
HPTR (offline) 28ms 15.1M 1.43 4.61

QCNet[51] 94ms 7.7M 1.29 4.30
RealMotion-I 16ms 2.0M 1.38 4.42
RealMotion (online) 20ms
RealMotion (offline) 62ms 2.9M 1.24 3.93

learning burden on our framework, preventing it from focusing on temporal relationships and yielding
limited improvements.

Effects of the depth of cross-attention blocks. As shown in Tab. 7, we explore the influence
of depth variations of cross-attention unit in the Context Referencing and the Trajectory Relaying
blocks. Primarily our temporal blocks are lightweight regardless of depth to ensure the efficiency
and universality. a relatively deep cross-attention unit in the Context Referencing and the Trajectory
Relaying blocks is necessary for processing history information and current information. We use a
depth of 2 as our default setting considering its better efficiency-performance balance.

4.5 Efficiency analysis

Balancing performance, inference speed, and model size is important for the model deployment. We
compare our RealMotion with recent representative works, which include the real-time forecasting
approach HPTR [48] and the state-of-the-art approach QCNet [51]. We measure these approaches
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Table 7: Ablation on the cross-attention block depth. “Params”: The number of parameters.
depth Params minFDE6 minADE6 MR6

1 2.5M 1.348 0.679 0.165
2 2.9M 1.312 0.664 0.156
3 3.3M 1.328 0.677 0.159

and RealMotion on the Argoverse 2 test set using an NVIDIA GeForce RTX 3090 GPU, maintaining
a batch size of 1 and following an end-to-end manner. As shown in Tab. 6, RealMotion has the
competitive inference time and a competitive model size while achieving the best performance. It is
worth noting that “online” indicates the latency for practical autonomous driving systems, which is
optimized compared to the “offline” version by some efficient designs (e.g. the caching technique
in [48]). As for RealMotion, we must consider three times latency for “offline” dataset, where only
the final prediction is utilized for evaluation. In contrast, the forecasting results of each iteration is
meaningful in “online” application.

4.6 Qualitative results

In Fig. 4, we present qualitative results of our network compared to the independent version on the
Argoverse 2 validation set. Panels (a), (b), and (c) illustrate the forecasting results at 3s, 4s and 5s,
respectively. Panel (c) displays the final results used for evaluation, which are more accurate and
closer to the ground truth. By comparing panel (c) and (d), it can be seen that RealMotion remarkably
outperforms the independent version. As demonstrated in the panels from (a) to (c), our RealMotion
can progressively refine the estimated trajectories from coarse to fine as the motion progresses and
accurately capture the possible motion intention. However, the one-shot forecasting of RealMotion-I
shown in the panel (d) leads to significant estimation errors.

5 Conclusion

In this work, we anticipate to address the motion forecasting task from a more practical continuous
driving perspective. This in essence places the motion forecasting function in a wider scene context
compared to the previous setting. We further present RealMotion, a generic framework designed
particularly for supporting the successive forecasting actions over space and time. The critical
components of our framework are the scene context stream and the agent trajectory stream, both of
which function in a sequential manner and progressively capture the temporal relationships. Our
extensive experiments under several settings comprehensively demonstrate that RealMotion surpasses
the current state-of-the-art performance, thereby offering a promising direction for safe and reliable
motion forecasting in the rapidly evolving field of autonomous driving.

Limitations. A clear constraint of our data processing approach is its requirement for a sufficient
number of historical frames for serialization. Consequently, it is not applicable to short-term
benchmarks such as the Waymo Open Dataset, which provides only 10 frames of historical trajectory.
Moreover, existing datasets typically provide limited historical information distinct from real-world
settings, which inhibits our sequential designs from fully leveraging their advantages. Hence, we
anticipate to integrate our framework into a sequential autonomous driving system to maximize the
benefits of streaming designs in our future work.
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Appendix

A More experimental settings

A.1 Evaluation metrics

For single-agent evaluation, we employ standard metrics for evaluation, including minimum Average
Displacement Error (minADEk), minimum Final Displacement Error (minFDEk), Miss Rate
(MRk), and brier minimum Final Displacement Error (b−minFDEk). minADEK calculates the
L2 distance between the ground-truth trajectory of the best K predicted trajectories, averaged across
all future time steps. While minFDEk measures the difference between the predicted endpoints
and the ground truth. MRk is the ratio of scenes where minFDEk exceeds 2 meters. To further
assess uncertainty estimation performance, the metric b−minFDEk adds (1− π)2 to the final-step
error, where π denotes the best-predicted trajectory’s probability score that the model assigns. As a
common practice, K is selected as 1 and 6.

For multi-agent evaluation, We use standard metrics including Average Minimum Final Displacement
Error (avgMinFDE), Average Minimum Average Displacement Error (avgMinADE) and Actor
Miss Rate (actorMR). avgMinFDE is the average of the lowest FDEs for all scored actors within
a scene, reflecting the prediction accuracy of a scene outcome. avgMinADE represents the average
of the lowest ADEs for all scored actors within a scene, indicating the general accuracy of the
predicted movements. Across the evaluation set, the actorMR is the proportion of missed actor
(same as above).

B More experiments

B.1 Model ensemble

Model ensemble, a crucial technique for enhancing the accuracy of final predictions, is employed
in our approach. We utilize six sub-models trained with various random seeds and split points.
Consequently, we generate 36 predicted future trajectories for each agent, and then apply k-means
clustering to process them with 6 cluster centers. For each cluster group, we calculate the average of
all trajectories within the group to produce the final trajectories. The results with and without model
ensemble trick on the Argoverse 2 test set are shown in Tab. 8.

Table 8: Performance comparison between results with and without ensemble on Argoverse 2 test set
in the official leaderboard. For each metric, the better result is in bold.

RealMotion minFDE1 minADE1 minFDE6 minADE6 MR6 b-minFDE6

w/o ensemble 3.93 1.59 1.24 0.66 0.15 1.89
w/ ensemble 3.87 1.55 1.18 0.63 0.13 1.78

B.2 Generality evaluation with integrating RealMotion

For generality test, we integrate our RealMotion data with the state-of-the-art method QCNet [51].
Due to the big size of QCNet, the scene context and agent trajectory streams have to be excluded for
memory constraint. With minimal alterations applied to this prior model, we observe a noticeable
improvement. The results are shown in Tab. 9.

Table 9: Generality evaluation with integrating RealMotion.
Method minFDE6 minADE6 MR6

QCNet [51] 1.27 0.73 0.16
QCNet w/ RealMotion 1.24 0.71 0.15
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C More qualitative results

We provide more qualitative results of our framework in Fig. 6 and Fig. 7 on the Argoverse 2
validation set.

D Failure cases

Although our RealMotion has achieved outstanding performance on motion forecasting benchmarks,
it still has some failure cases. We analyze these typical cases and provide qualitative results to help
readers understand the circumstances under which our model may fail. This analysis will aid future
work in developing a more powerful and robust algorithm, as shown in Fig. 5.

D.1 Case 1: Complex map topology

In the first row of Fig. 5, the agent requires to navigate through a complex intersection to one of
the roads, but the model fails to predict this possible driving behavior and just anticipates the agent
to drive straight ahead. This may be caused by the lack of a comprehensive understanding of the
complex map topology and the unbalanced distribution of driving data. In most scenarios, agents
tend to exhibit only trivial behaviors, such as moving straight ahead at a nearly constant velocity.
Consequently, this raises issues regarding data balance, and the figures indicate that our model is
more likely to make mistakes when it comes to turning.

D.2 Case 2: Subjective driving behavior

In the second row of Fig. 5, the vehicle is expected to park on the side of the road, which is a kind
of subjective driving behaviors. However, the model only predicts that the vehicle will keep going
ahead. To improve the forecasting of such cases, we could enhance the interaction between the model
with additional intentions of human and incorporate more information, such as visual cues like turn
signals and parking spaces.

(a) Step1 (T=30) (b) Step2 (T=40) (c) Step3 (T=50)   (d) RealMotion-I (T=50)

②

①

Predicted Trajectory GT Trajectory Agent of Interest Surrounding Agent

Figure 5: Failure cases. In the first row, the model fails to predict the turning behavior at complex
intersections, while in the second row, it fails to predict the parking behavior.
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③

④

⑤

Predicted Trajectory GT Trajectory Agent of Interest Surrounding Agent

(a) Step1 (T=30) (b) Step2 (T=40) (c) Step3 (T=50)   (d) RealMotion-I(T=50)

Figure 6: More qualitative results.
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①
(a) Step1 (T=30) (b) Step2 (T=40) (c) Step3 (T=50)   (d) RealMotion-I (T=50)

②

③

④

⑤

Predicted Trajectory GT Trajectory Agent of Interest Surrounding Agent

Figure 7: More qualitative results.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Experiments in Sec. 4

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see Conclusion in 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Experiments in Sec. 4 and Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see experimental settings in Sec. 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No] .
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: See Experiments in Sec. 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: It is our main idea designed for real-world autonomous driving applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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