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Abstract

Text-to-image diffusion models particularly Stable Diffusion, have revolutionized
the field of computer vision. However, the synthesis quality often deteriorates
when asked to generate images that faithfully represent complex prompts involving
multiple attributes and objects. While previous studies suggest that blended text
embeddings lead to improper attribute binding, few have explored this in depth.
In this work, we critically examine the limitations of the CLIP text encoder in
understanding attributes and investigate how this affects diffusion models. We
discern a phenomenon of attribute bias in the text space and highlight a contextual
issue in padding embeddings that entangle different concepts. We propose Magnet,
a novel training-free approach to tackle the attribute binding problem. We introduce
positive and negative binding vectors to enhance disentanglement, further with a
neighbor strategy to increase accuracy. Extensive experiments show that Magnet
significantly improves synthesis quality and binding accuracy with negligible com-
putational cost, enabling the generation of unconventional and unnatural concepts.
Code is available at https://github.com/I2-Multimedia-Lab/Magnet.

1 Introduction

Recently, Text-to-Image (T2I) diffusion models [1, 2, 3, 4] have drawn considerable attention from
both the research community and industry. Among these models, Stable Diffusion (SD) [2] uses the
CLIP text encoder [5] to encode the given prompt, which is relatively lightweight than other diffusion
models that adopt T5 [6]. Unfortunately, generating text-aligned images is still challenging for SD
and requires multiple runs to achieve the desirable results. Several works [7, 8, 9, 10] have pointed
out that the blended context by the CLIP text encoder causes improper binding. However, few have
analyzed in detail how the text encoder affects the generation of the diffusion model.

Step back and refocus on the CLIP text encoder—an integral part of the Vision-Language Model
(VLM). Prior studies [11, 12] have observed VLMs lacking compositional understanding and investi-
gated them on image-to-text retrieval benchmarks. In this work, we are motivated to answer how
the text encoder understands attribute, and how it affects the attribute binding of T2I diffusion
models. Upon closer inspection, we observe a phenomenon of attribute bias and discern a contextual
problem in padding embeddings, leading to a well-known T2I issue—concept bleeding [10].

Based on the observation, we introduce the binding vector, which is applied to the text embedding
of each object. With positive and negative binding vectors, each object can pull target attributes
and push unrelated attributes to distinguish them from each other. We further introduce a neighbor
strategy to ensure an accurate estimation of the binding vector. Our manipulation is performed strictly
in the textual space, without training, fine-tuning, or additional datasets and inputs. Overall, the main
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Figure 1: Analysis of the CLIP text encoder for understanding attributes. There is a discrepancy
between the word and [EOT] embeddings of the attribute bias on different objects.

contributions of this work are: (1) We highlight a contextual issue in the text encoder, which impacts
diffusion-based image generation. (2) We propose a novel training-free method to address the binding
problem. (3) Extensive experiments are conducted to verify the effectiveness of Magnet.

2 Analysis of the CLIP text encoder and the diffusion model

In this section, we aim to recognize the pattern of the CLIP text encoder for understanding attributes,
then go deep into the diffusion model to analyze the underlying reason for improper attribute binding.

The CLIP text encoder uses the causal mask mechanism to produce a unidirectional context, i.e., each
word can only consider the words to their left [13, 14]. It performs contrastive learning on a specific
End of Text ([EOT]) embedding without word-level supervision, while prior studies [15, 16, 17]
suggest each word has a semantic effect on the generated image. In this case, we categorize two
types of embedding as word and [EOT] for fine-grained analysis. Consider a prompt encoded to
text embeddings c = {cSOT , cp1

, ..., cpN
, cEOT } consisting N word embeddings. Different from

the [EOT] embedding cEOT , word embeddings cp1
, ..., cpN

are unsupervised during training. We
skip the embedding of Start of Text ([SOT]) cSOT for simplicity. To study how the two types of
embedding understand attributes, we select 60 familiar objects and 7 common colors to obtain text
embeddings c = {cobject, cEOT } and c′ = {c′color, c′object, c′EOT }, i.e., without and with the color
context, respectively. We aim to compare: (1) contextualized word embedding c′object with the
original cobject ; (2) contextualized [EOT] embedding c′EOT with the original cEOT .

How do two types of embedding understand attributes? Fig. 1 (a) compares the Euclidean distance
and the cosine similarity between embeddings with and without the color context. The pattern varies
between cases or objects. As to the word embedding, the similarity curve of "chair" is relatively
smooth, but that of "sheep" has a large gap between "black" and "white". Similarly, "blue apple"
diverges from others. The above phenomenon, which we call attribute bias, describes the tendency
of an object to favor certain attributes over others. We compare the attribute bias per object for two
embedding types in Fig. 1 (b). If the object has a natural composition in human knowledge, it presents
a serious attribute bias (e.g., "yellow banana" v.s. "blue banana"). Meanwhile, the word embedding
is more volatile than the [EOT] embedding, which shows less dramatic change. Our hypothesis is the
absence of word-level supervision during CLIP training, as well as the bags-of-words behavior of
VLMs [11, 12]: the [EOT] embedding is trying to remember all important words in the given
prompt, including adjectives and nouns. However, it leads to an inaccurate textual representation
of the [EOT] embedding, affecting the interaction between the image latent and semantic word
embeddings. We have provided more analysis and examples in Appendix A.1 (see Fig. 12, 13).

How do two types of embedding affect SD? In practice, SD pads the input prompt to a fixed length
L = 77 using additional [EOT] embeddings (i.e., the padding token is initialized by the symbol
[EOT]), denoted as cpadl

, where l = 1, ..., L−N−2. To study the attribute binding during generation,
we modify the above two text embeddings c and c′ with L−N − 2 padding token embeddings, then
design 4 fine-grained cases: (1) standard generation conditioned on c′ where all text embeddings
contain the color context; (2) only replace c′object with cobject to eliminate the context on the word
embedding; (3) only replace c′EOT with cEOT , as well as padding embeddings c′padl

with cpadl
; (4)

eliminate the color context on word, [EOT], and padding embeddings. Fig. 2 (a) presents 3 examples,
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(a) Fine-grained 4 cases  

(b) Single-concept context issue (c) Multi-concept context issue 

(1)

" red chair "

(2)

(4)(3)

" blue apple "" black sheep "

(1) (2)

(4)(3)

(1) (2)

(4)(3)

Figure 2: (a) Fine-grained study through our designed embedding swapping experiment. The context
issue in padding embeddings for (b) single-concept scenario, and (c) multi-concept scenario.

including a natural concept "red chair", unnatural concepts "black sheep" and "blue apple". Cases 1-2
can be observed in all examples with less realistic and painting-like images. Note that the used SD
is trained to generate photo-realistic images. These results indicate a deviation from the learned
distribution. Conversely, cases 3-4 produce realistic images, but neglect the target color when the
concept is unnatural. This suggests that the context in [EOT] and padding embeddings do have a
significant impact on attribute generation. In Appendix A.2, we describe the above 4 cases in detail
and provide more examples, as well as 3 additional cases (see Fig. 14).

Why improper binding? We posit that the first [EOT] has a close-knit context with word embeddings.
The padding embedding, however, may deviate due to the causal attention mechanism. We then
compute the cosine similarity between [EOT] and each padding embedding l = 1, ..., L, and dive into
their cross-attention activations on single- and multi-concept scenarios. Fig. 2 (b) studies a prompt
with only one object. The curve drops more drastically on the unnatural concept "blue apple" than
the natural one "red chair". Cross-attention shows that "apple" overlaps with padding embeddings
(e.g., pad73) rather than the [EOT] embedding. It is like these padding embeddings have forgotten
part of the context remembered in the first [EOT]. Without interference from other concepts, the
inaccurate context in these padding embeddings causes out-of-distribution, or the binding of another
attribute if the model learns an underlying bias in the training dataset (e.g., "apple" prefers "red").
Fig. 2 (c) further studies the context issue on multiple concepts. For two objects "bird" and "car",
even though the activations of their word embeddings do not overlap, cross-attention shows obvious
entanglement in these padding embeddings. This multi-concept context issue in padding embeddings,
i.e., entangled concept representations, explains color leakage and object sticking. We refer the reader
to Appendix A.3 for a comprehensive analysis of this context issue.

How to disentangle different concepts? Prior studies [8, 18] prove that these padding embeddings
are essential for image quality and can not simply be removed. Also, it is impossible to manipulate
one single concept in these padding embeddings due to their entangled property. On the other hand,
these naturally separated word embeddings show editability. For instance, Fig. 2 (a) "black sheep"
from case 2 to case 1 changes only the word embedding of "sheep" while encouraging the desired
attribute. We are inspired to manipulate the word embedding of each object, therefore strengthening
the binding within each concept and enhancing the distinction between concepts.

3 Magnet: disentangling concepts with the binding vector

Our approach is based on two key observations: the context issue of the padding embedding, and the
controllability of the word embedding. We introduce the binding vector, which can be applied on the
object embedding to attract the target attribute and repulse other attributes, analogous to a Magnet.

Preliminary: Given a prompt P , we use Stanza’s dependency parsing module [19] to extract each
concept, denoted A&E, where E is the object word and its target attribute as A. The dependency
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Figure 3: Overview of the proposed Magnet. We manipulate the object embedding with the positive
and negative binding vectors, which are estimated with the guidance of neighbor objects.

set with M concepts is D = {A1&E1, ..., AM&EM}. Detailed dependency extraction is given in
Appendix B.1. Then the pre-trained CLIP text encoder E is applied to map P to the text embed-
ding c = {cSOT , cA1

, cE1
, ..., cAM

, cEM
, cEOT , cpad1

, ..., cpadL−N−2
}. For simplicity, we omit the

linking words. We treat the diffusion model as a black box and leave its background in Appendix B.2.

For each object Ei in D with the word embedding cEi
, we aim to estimate its positive binding vector

vposi to pull the target attribute Ai, and its negative binding vector vnegi to push other attributes.

3.1 Apply the binding vector on the object embedding

Instinctively, the binding vector can be estimated by the object itself. To be specific, we compose new
concepts out of the current context of P , which are: (1) unconditional concepts, P̃uc

i = {∅&Ei},
where ∅ is a blank text “”; (2) positive concepts, P̃pos

i = {Ai&Ei}; (3) negative concepts, P̃neg
i =

{Aj&Ei|j = 1, ...,M, j ̸= i}. The positive and negative binding vectors are estimated by:

vposi = F(Ei, P̃pos
i )−F(Ei, P̃uc

i ) (1)

vnegi = F(Ei, P̃neg
i )−F(Ei, P̃uc

i ) (2)

where F(·) extracts the word embedding of the object Ei in a specific decontextualized prompt. Note
each object has M − 1 negative concepts, resulting in M − 1 negative binding vectors to punish
all unrelated attributes Aj , j = 1, ...,M, j ̸= i. Note that these positive and negative attributes are
prompt-dependent 2. We introduce the unconditional concept as a pivot to avoid the need for manual
definition or semantic contrast between positive and negative attributes.

Based on our analysis of the context issue in the padding embedding in Section 2, we hypothesize an
association between the attribute bias and the strength. Intuitively, unnatural concepts (e.g., "blue
banana") suffer more attribute bias and their padding embeddings are more tend to forget the concept.
In this case, we need to manipulate the word embedding significantly to ensure strong binding. We
introduce the adaptive strength of the binding vector for each object Ei:

αi = eλ−ωi , βi = 1− ω2
i , where ωi = cos(G(P̃pos

i ),H(P̃pos
i )) (3)

where G(·), H(·) extract the first [EOT] embedding and the last padding embedding in text embed-
dings E(P̃pos

i ), respectively. λ is a positive constant. Please refer to Appendix B.3 for the inspiration
of the formula, and the statistical analysis for the choice of the hyperparameter λ.

Finally, the object embedding cEi
in the initial text embeddings c = E(P) is modified by:

ĉEi
= cEi

+ αi · vposi − βi · vnegi (4)

3.2 Neighbor-guided vector estimation

In practice, we find that using a single object to estimate the binding vector can be inaccurate and fail
to disentangle concepts (see Fig. 7 and Fig. 19). In this case, we introduce the neighbor strategy

2The same object in different prompts may have different positive and negative attributes.
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to ensure an accurate estimation. These neighbor objects should have similar representations to
the target object in the learned textual space. We define a candidate set S = {B1, ..., BR} with R
objects that has pre-processed to {cB1 , ..., cBR

}, which is the collection of the word embedding cBr

in E(Br) = {cSOT , cBr
, cEOT , ...}, r = 1, ..., R. The top-K neighbor objects for the target object

Ei are determined by d(cBr ,F(Ei, P̃uc
i )), where Br ∈ S, d(·) denotes the cosine similarity.

In Appendix B.4, we describe this neighbor strategy in detail, and further discuss a way to predict
semantic neighbors using pre-trained large language models.

With the selected neighbors of the target objectEi, denoted {B(i)
k }Kk=1, we compose the unconditional

concepts P̃uc
k = {∅&B

(i)
k }, positive concepts P̃pos

k = {Ai&B
(i)
k }, and negative concepts P̃neg

k =

{Aj&B
(i)
k |j = 1, ...,M, j ̸= i}. The estimation of the binding vector is then rewritten as:

vposi =
1

K

K∑
k=1

(F(B
(i)
k , P̃pos

k )−F(B
(i)
k , P̃uc

k )) (5)

vnegi =
1

K

K∑
k=1

(F(B
(i)
k , P̃neg

k )−F(B
(i)
k , P̃uc

k )) (6)

3.3 Overall workflow

Fig. 3 depicts the workflow of Magnet. The target text embedding ĉ can be obtained after replacing
all object embeddings cEi

with ĉEi
, i = 1, ...,M . To generate the image, the pre-trained U-Net

denoises the latent zt−1 = ϵθ(zt, t, ĉ), where timesteps t = T, ..., 1. We set the hyperparameters
λ = 0.6, K = 5. Please refer to Appendix C for implementation details.

4 Experiments

4.1 Datasets

We evaluate our proposed Magnet on two existing benchmarks:

(1) Attribute Binding Contrast set (ABC-6K) [8]. This dataset consists of natural compositional
prompts from MS-COCO [20], each prompt includes at least two concepts (e.g., "a bathroom with a
tan sink and white toilet", "a brown cow standing in a lush green field"). We randomly sample 600
prompts from this dataset and generate 5 images per prompt to compare all methods.

(2) Concept Conjunction 500 (CC-500) [8]. The dataset contains prompts that conjunct two
concepts, each with one color attribute. Following [7], objects are divided into two types: living
(i.e., animals and plants) and other non-living nouns. Prompts type is categorized into (1) two living
objects, (2) one living object and one non-living object, and (3) two non-living objects. We adopt 80
prompts for each case to avoid bias and maintain fairness. In total, we have used 240 prompts and
generated 10 images for each prompt to compare all methods.

Both datasets are augmented using contrast settings [21]. The position of attribute words for different
objects is swapped (e.g., "a red chair and a blue cup" ↔ "a blue chair and a red cup").

4.2 Metrics

We mainly rely on human evaluation since the common metrics (e.g. CLIP text-image similarity) are
unreliable for assessing attribute binding, which is discussed in Appendix D.

Coarse-grained comparison. We assess the generated image for image quality and concept disentan-
glement on two adopted datasets. To measure image quality, human evaluators were asked "Which
image is more realistic or visually appealing?". The evaluation of concept disentanglement is divided
into two types: (1) object disentanglement by asking "Which image shows different objects more
clearly?"; (2) attribute disentanglement by asking "Which image shows different attributes more
clearly?". If all images are equally good or bad, evaluators can indicate "no winner". We randomly
sample one image for each prompt from ABC-6K and two images for each prompt from CC-500 to
conduct this coarse-grained comparison.
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Table 1: Coarse-grained comparison on the ABC-6k and CC-500 datasets for image quality, object
disentanglement, and attribute disentanglement. Values are normalized to sum to 100.

ABC-6K CC-500

Image Disentanglement Image Disentanglement
Quality Object Attribute Quality Object Attribute

Magnet (Ours) 26.57 25.71 27.14 25.43 24.86 29.43
Attend-and-Excite 15.43 21.43 19.71 22.86 26.29 18.57
Structure Diffusion 12.28 7.14 10.29 12.29 6.86 11.14
Stable Diffusion 10.29 6.57 8.57 11.14 7.71 13.42
No Winner 35.43 39.15 34.29 28.28 34.28 27.44

Table 2: Fine-grained comparison on the CC-500 dataset. For reference, we provide the average
confidence (Conf.) of GroundingDINO [22] to detect the object (Det.). Manual evaluation concerns
the object existence (Obj.) and the attribute alignment (Attr.).

Automatic Manual Runtime Memory Usage

Method Det. Conf. Obj. Attr. (s) (GB)

Stable Diffusion 71.5 56.4 65.8 59.1 6.62 6.1
Structure Diffusion 72.1 56.0 64.0 63.9 7.94 (+20.0%) 7.0 (+14.7%)
Attend-and-Excite 84.3 62.6 84.6 66.2 13.4 (+102.4%) 15.6 (+155.7%)
Magnet (Ours) 76.5 59.8 68.6 74.0 6.81 (+2.9%) 6.5 (+6.5%)

Fine-grained comparison. This comparison is conducted on the CC-500 dataset based on two
key criteria: (1) object existence, counting the target objects in the generated images; (2) attribute
alignment, concerning the correct binding between the object and its attribute. We ask annotators
to identify the object mentioned in the prompt per generated image. Take prompt "a red car and a
yellow cat" as an example, each image will be indicated the number two (show both objects), one
(show either "car" or "cat"), or zero (no distinct object). Attribute alignment is assessed by counting
whether the generated object presents the desired attribute (maximum to the number of the generated
objects). All generated images on CC-500 are used for this fine-grained comparison. In addition,
we adopt the phrase grounding model GrondingDINO [22] to detect the target objects automatically.
Note that this automatic detection can not reflect the proper binding.

4.3 Quantitative comparison

Coarse-grained comparison. In Tab. 1, we present the human evaluation results of Magnet compared
to three baseline methods: SD V1.4 [23], Structure Diffusion [8] and Attend-and-Excite [7]. Note
that Magnet and Structure Diffusion are both training-free. The ABC-6K benchmark has more
complicated and challenging prompts. In this case, all methods may fail to include all objects and
attributes, resulting in a higher number of no winner. Overall, Magnet achieves the best scores in
terms of image quality and attribute disentanglement on both datasets.

Fine-grained comparison. As shown in Tab. 2, Magnet alleviates the missing problem more than
Structure Diffusion on both automatic and manual evaluation, with 3.8% (Det.) and 4.6% (Obj.)
improvement. We are inferior to the optimization method, Attend-and-Excite in object existence.
In attribute alignment (Manual Attr.), Magnet outperforms all baseline methods. In addition, we
compare the runtime and memory used for generation. The data is obtained by generating 100
prompts each with two images. Obviously, Attend-and-Excite requires more resources which affects
efficiency. Conversely, Magnet only adds 2.9% to runtime and 6.5% to memory.

Evaluation on image quality metric. We also evaluate Magnet on the commonly used metric FID
[24] for two SD versions (V1.4 [23] and V2.1 [25]). We follow the standard evaluation process and
generate 10k images from randomly sampled MS-COCO [20] captions. SD V1.4 gets 19.04, with
Magnet 18.92; SD V2.1 gets 19.76, with Magnet 19.20, the lower the better. This shows that Magnet
will not deteriorate the image quality while improving the text alignment.
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Figure 4: Qualitative comparison using prompts from ABC-6K and CC-500 datasets. For each
prompt, we show the image generated by each method under the same seed.
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Figure 5: Prompts with unnatural concepts. Baselines generate exchanged colors (row 1) or unwanted
artifacts (row 2) while Magnet demonstrates the anti-prior ability with high-quality outputs.

4.4 Qualitative comparison

Fig. 4 shows the qualitative comparison of the ABC-6K and CC-500 datasets. The results demonstrate
that baselines suffer from the entanglement of objects and attributes.

Object entanglement includes the neglect of the object or sticking structures. In columns 1-2,
baselines struggle to be faithful to the complex prompt with 4 objects, missing "fries" or "tile".
In columns 5-6, the objects "banana" and "stickers" are indistinguishable. Similarly, SD presents
blended objects "dog" and "chair" in columns 7-8 and neglects the target object "green apple"
in columns 9-10. Note that the results of Structure Diffusion resemble that of SD. On the other
hand, the optimization of Attend-and-Excite encourages the attendance of objects but leads to
out-of-distribution results, showing strong artifacts (e.g., "green apple" in columns 9-10).

Attribute entanglement includes the generation of incorrect attributes or the leakage of attributes.
For instance, for the prompt "a pink cake with white roses on silver plate" with three colors in
columns 3-4, SD and Structure Diffusion generate "white cake" and "pink roses". In columns 7-8,
they generate "chair" with mixed colors "yellow" and "red". On the other hand, Attend-and-Excite
may produce less aesthetic images, which can be attributed to the over-optimized image latent.

Notice that baselines fail to produce unnatural concepts like "blue banana" in columns 5-6 in Fig.
4. Instead, they generate "yellow banana", which is a natural concept learned as the prior knowledge.
Conversely, Magnet is capable of disentangling different concepts and hence generating unnatural
concepts, which we call the anti-prior ability. Fig. 5 displays the results on prompts with anti-prior
concepts. We skip Structure Diffusion for its limited improvement over SD.

7



Stable 
Diffusion (Ours)

Figure 6: Ablation study on the hyperparameter λ given the prompt "a pink cake with white roses
on silver plate". A small value of λ can not well disentangle different concepts, while a large value
causes artifacts in the generated image (best viewed zoomed in). We empirically set λ = 0.6.

a red chair and a blue cup

w/o neighbor w/ neighbor
(a) attribute disentanglement

w/o neighbor w/ neighbor
(b) object disentanglement

a blue apple and a green backpack

Figure 7: Ablation study. The neighbor strategy im-
proves the binding vector estimation, separating dif-
ferent attributes ("cup" is purely "blue") and objects
("backpack" and "apple" are distinguishable).

Table 3: Ablation study. Human evalua-
tors were asked to indicate which image
can better separate attributes or objects.

Disentanglement
Object Attribute

w/ neighbor 27.1 28.6
w/o neighbor 9.1 6.4
Stable Diffusion 2.3 2.1
No winner 61.5 62.9

4.5 Ablation study

Hyperparameter λ. We study the effect of λ in Fig. 6. When setting λ = 0, α, β are still positive
numbers but the manipulation is in relatively low strength. In this case, concepts are still entangled:
"roses" appear in shades of "white" and "pink". When setting λ = 1, the result presents artifacts:
distorted "plate" and watermarked background. We find using λ = 0.6 can achieve the balance
between concept disentanglement and image quality based on the statistic analysis in Fig. 16.

Selection strategy of the neighbor strategy. The effectiveness of the neighbor strategy is shown in
Fig. 7. The neighbors improve the estimation accuracy and the disentanglement of concepts. In Tab.
3, we ask human evaluators to evaluate both settings using the disentanglement criteria. Evaluators
indicate the generated images using the neighbor strategy more disentanglement. This verifies the
effectiveness of the neighbor-guided vector estimation.

Effectiveness of the binding vector. In Fig. 8, we verify the effectiveness of the binding vector by
manually changing α, β instead of adaptively calculating by Eq. (3). The value of α, β changed from
positive to negative shows a swapped binding between objects and attributes. This is because that
the context problem in padding embeddings has caused the entanglement of concepts. Our proposed
binding vectors can improve the discrimination between objects and lead to designated attributes.

We have conducted additional ablation experiments for the hyperparameter K (Appendix E.1, Fig.
19), and the importance of using both positive and negative binding vectors (Appendix E.2, Fig. 20).

4.6 Extensions

Incorporate with optimization-based methods. Manipulated in the textual space, Magnet can be
readily integrated with Attend-and-Excite. Fig. 9 (a) compares the optimization loss of Attend-and-
Excite with and without Magnet. The loss can start at a lower value with Magnet to strengthen the
distinction between concepts. Fig. 9 (b) shows vanilla Attend-and-Excite with strong artifacts or
inaccurate colors, which should be attributed to the entangled concept representations in padding
embeddings. More examples are displayed in Fig. 23 in the Appendix.

Different text encoders. In Fig. 10 (a) and (b), we assess Magnet on three T2I models with different
text encoders to SD V1.4. Specifically, SD V2.1 [25] adopts CLIP ViT-H/14, SDXL [10] combines
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a yellow           towel           and a white           bowl

Figure 8: Ablation study on the effectiveness of the binding vector.

Attend-and-Excite +Magnet

a green bench and a yellow cat a blue apple and a green vase

Attend-and-Excite +Magnet

(a) Loss Comparison (b) Qualitative Comparison

Figure 9: Magnet can be combined with the optimization method, Attend-and-Excite [7]. (a) Magnet
improves the loss during optimization. (b) Magnet improves the disentanglement of concepts.

multiple CLIP text encoders, and PixArt [26] uses the T5 encoder [6]. We use the same setting of all
hyperparameters and equations for all CLIP-based models while using fixed strength for PixArt. The
redesign of the strength formula for the adaptation of T5 is a matter for future work.

Incorporate with T2I controlling modules. In Fig. 10 (c) and (d), we investigate the plug-and-play
nature of Magnet. Magnet shows compatibility when integrated with existing controlling modules:
(1) layout-guidance [27], which constrains the image layout by bounding boxes and intervenes
cross-attention layer, and (2) ControlNet [28] conditioned on Depth Map [29] to add spatial control.

Image editing. In Fig. 11, we compare the image editing ability of Magnet to Prompt-to-Prompt
(P2P) [15], which edits the generated image by manipulating the cross-attention layers. Given the
source prompt "a car on the side of the street", we aim to change the attribute of the object "car" or
"street". In column 1, Magnet applies a positive binding vector vpos (here, the strength α is stated
manually) on the word embedding cEcar toward the attribute "old". With no control of the attention
maps, Magnet surprisingly edits the image with fewer changes in the background than P2P.

5 Related work

Text-to-image diffusion models. Diffusion models that [30] pioneered, have emerged with great
improvement in both unconditional [31, 32] or conditional [28, 33] image generation, together with
the advance in synthesis quality [34, 35] and sampling speed [36, 37, 38]. However, the semantic
flaw of the text encoder affects the performance of the diffusion models [7, 10, 39]. In this work, we
discern the attribute bias and the context issue, providing novel insights about attribute binding.
Attribute binding. The binding problem occurs when the model blends improper concepts. To
tackle complicated prompts, [9] collaborates different pre-trained diffusion models. [8] suggests word
embeddings with blended context and manipulate cross-attention features. In contrast, we highlight
the entanglement of the padding embedding and modify solely the text embedding. [7] optimizes the
latent to guarantee the attendance of each object. Yet, the optimization may lead to out-of-distribution
and require more resources to generate images. Other works [40, 41, 42] introduce layout constraints
in the attention layers. Magnet differs from the above approaches in that it can be executed entirely in
the textual space. This distinguishes it as a more efficient solution.
It is noteworthy that a line of works [15, 43] achieves image editing on specific visual aspects.
However, none have gone as far as this paper in exploring the contextual influences on SD from the
perspective of text embedding. Most are subject to a subset of attributes (e.g., texture [44]), control
the global object rather than fine-grained attributes [45, 46], or depend on a predefined text pair [47],
requiring a learning process or additional datasets. Conversely, our method enhances binding towards
arbitrary attributes without the need for new inputs to the standard pipeline.
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Figure 10: Magnet can be integrated into other T2I models and with existing controlling modules.

Source Prompt: 
"a car on the side of  

the street"

Stable Diffusion

Prom
pt-to-Prom

pt
M

agnet (O
urs)

"... old car ..." "... crushed car ..." "... sport car ..." "... snowy street ""... flooded street" "... forest street"

Figure 11: Image editing comparison using prompts from Prompt-to-Prompt [15].

6 Limitations

While we have demonstrated improvement in the synthesis quality and text alignment, Magnet is still
subject to a few limitations (see Fig. 21). First, it still suffers from the missing problem. In some
cases, the manipulation may be overstrength and cause artifacts. An interesting phenomenon is that
Magnet generates the correct concepts while rendering errors in positional relations. Finally, it is still
challenging to generate an unnatural concept when the object is strongly biased towards one specific
attribute. (e.g., "broccoli"). We have described the limitations of Magnet in detail in Appendix F.

7 Conclusion

In this work, we propose a novel training-free method, Magnet, to tackle the attribute binding issue.
First, we conduct a fine-grained analysis of the CLIP text encoder. We observe the phenomenon of
attribute bias and point out the context issue of padding embeddings, where the representations of
different concepts are entangled, and hence provide potential explanations for existing T2I issues.
Second, we introduce the positive and negative binding vectors to enhance the binding within the
concept and strengthen the distinction between concepts. Further with the neighbor strategy, the
vector estimation can be more accurate. Evaluated in various ways, Magnet shows the ability to
disentangle different attributes and generate anti-prior concepts. Performed in the textual space,
Magnet improves the synthesis quality and text alignment, with an impressively low increase in
computational cost. We sincerely hope that this work will motivate the exploration of generative
diffusion models and the discovery of other interesting phenomena.
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(a) CLIP ViT-L/14

Word embeddings
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(b) CLIP ViT-H/14
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Figure 12: Principal Component Analysis (PCA) analysis of CLIP ViT-H/14 and CLIP ViT-L/14.
The word embedding and the [EOT] embedding have a different understanding of the attribute.

A Additional analysis of the CLIP text encoder and the diffusion model

A.1 Analysis of the CLIP text encoder

Principal Component Analysis (PCA). We study two types of text embedding through the PCA
technique in Fig. 12 for a low-dimensional comparison. We analyze two CLIP text encoders,
which are (a) ViT-L/14 (here, the dimension of embedding is d = 768), and (b) ViT-H/14 (here,
d = 1024). We obtain text embedding c = {cSOT , cobject, cEOT } without the context of the attribute
from 60 object nouns (including animals, plants, and non-living entities). We have extended the
number of attributes to 16 (including colors and materials), and ended up with 960 text embeddings
c′ = {c′SOT , c

′
attribute, c

′
object, c

′
EOT }. We use 60 object embeddings cobject or cEOT without the

attribute context to fit the model, and then transform contextualized embeddings c′object or c′EOT

to the same space. This setting allows us to observe how two types of text embedding understand
different attributes. The result indicates that the word and [EOT] embeddings produce different
feature spaces with the attribute context. Overall, the distribution of the word embedding is denser,
while the [EOT] embedding with attribute context is distributed dispersedly.

Attribute bias analysis. Fig. 13 investigates the phenomenon we call attribute bias on two types of
text embedding, obtained from the text encoder of CLIP ViT-L/14 and ViT-H/14, respectively. The
word embedding without supervision during training has shown severe attribute bias. For example,
the word embedding of the object "tiger" indicates an extreme preference for the color "yellow".
Conversely, the [EOT] embedding produces a relatively small variation in the similarity curve. In
the main paper, we conjecture that VLMs’ poor compositional understanding and the behavior of
bags-of-words [12, 11] on [EOT] lead to an inaccurate textual representation, which affects the
interaction between the image latent and semantic word embeddings.

Interestingly, we find that the learned representations of two text encoders are quite different. For
example, to encode "car" and "vase" with the context of different attributes, CLIP ViT-L/14 gets the
cosine similarity around 0.6 v.s. 0.7, while CLIP ViT-H/14 gets 0.2 v.s. 0.5, showing a discrepancy.
We conjecture that ViT-L/14 in a large-sized network and dimension may have exacerbated the bias.
Yet, it is beyond the scope of our research and we may leave it for future study.

Despite the above difference, both encoders demonstrate the discrepancy between the word and [EOT]
embeddings. The stability of the [EOT] embedding can also be explained by entangled context. In
contrast, the word embedding without supervision during training may suffer less from entanglement.

A.2 Fine-grained cases analysis

Take the concept "red chair" as an example. The CLIP text encoder maps it into em-
beddings c′ = {c′SOT , c

′
red, c

′
chair, c

′
EOT , c

′
pad1

, ..., c′pad73
} (here, 73 for L − 4, L = 77).

The counterpart text embedding of the concept "chair" without the color modifier is c =
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Figure 13: The attribute bias of different objects encoded by CLIP ViT-H/14 and CLIP ViT-L/14.
The word and [EOT] embeddings show large discrepancies of attribute bias for the objects "banana",
"broccoli", etc. Observe that the extracted embeddings by different text encoders differ significantly.

(1)
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(2)
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" blue banana "" red cat "
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Figure 14: Fine-grained 4 cases described in the main paper, as well as 3 additional cases.

{cSOT , cchair, cEOT , cpad1 , ..., cpad74} (here, 74 for L − 3). The designed 4 cases are de-
fined as: (1) standard generation conditioned on vanilla embeddings of the concept, i.e.,
ccase1 = c′; (2) replace the contextualized word embedding in c′, i.e., ccase2 = {c′SOT , c

′
red,

cchair, c′EOT , c
′
pad1

, ..., c′pad73
}; (3) replace all [EOT] and padding embeddings, i.e., ccase3 =

{c′SOT , c
′
red, c

′
chair, cEOT , cpad1

, ..., cpad73
}; (4) replace the contextualized word, [EOT] and

padding embeddings, i.e., ccase4 = {c′SOT , c
′
red, cchair, cEOT , cpad1

, ..., cpad73
}. Note that we

maintain the attribute word embedding c′color to observe whether the model can capture the color
information without contextual information in other text embeddings. The results are displayed in
Fig. 14. As we discussed in the main paper, cases 1-2 where padding embeddings with the color
context are still realistic when the concept is natural (i.e., "green car"). However, they generate
out-of-distribution images for the examples "red cat" and "blue banana".

In addition, we have designed 3 new cases to verify that the color information has been gradually
forgotten in the padding embedding. We divide all [EOT] and padding embeddings into 3 groups: cX
= {cEOT , ..., cpad23}, cY = {cpad24 , ..., cpad49}, cZ = {cpad50 , ..., cpad73} (here, these embeddings do
not have the color context), and their counterparts c′X , c

′
Y , c

′
Z (here, these embeddings with the color

context). The results in Fig. 14 (bottom) are consistent with our hypothesis. To be specific, cases
A and B show light "green" or invisible "red" compared to the successful binding results in case C,
where embeddings {cEOT , ..., cpad23

} are contextualized with the target color.
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(a) Single-concept context issue (b) Multi-concept context issue

Figure 15: Several effects of the context issue in padding embeddings under the scenarios of (a)
single-concept and (b) multi-concept. We refer to the detailed analysis in Appendix A.3.

NOTICE: we propose Magnet based on two key observations on the word embedding. First, the
target color is invisible in case 4 for concepts "green car", "red cat". However, these colors can be
observed in case 3 (arrive at Eq. (1) for computing vpos). Second, cases 1-2 and cases 3-4 for the
concept "blue banana" both generate catastrophic images. This indicates the vector estimated by the
object itself can be inaccurate. In this case, we introduce the neighbor-guided vector estimation.

A.3 Visualization-based analysis of the context issue

Recall our hypothesis that [EOT] and padding embeddings are trying to remember all important
information (e.g., attributes, objects, and positions) in the given prompt due to the contrastive learning
and bags-of-words behavior of CLIP. In Fig. 15, we investigate the entangled context in the padding
embeddings under two scenarios for prompts with a single object or multiple objects.

Single-concept scenario aims to generate one object with specific attributes. Fig. 15 (a) shows
that the context issue in padding embeddings leads to (1) out-of-distribution and inaccurate
object structures, e.g., "cat" is painting-like in row 1, "banana" is unrecognizable in row 2, though
presenting correct attributes. Or (2) generate the object with another attribute that can compose
a natural concept, e.g., "broccoli" binds to the prior attribute "green" rather than "black" in row 3.
One potential explanation is the image latent is contaminated by inaccurate representation in padding
embeddings, as evidenced by the overlapped activation of latter padding embeddings with the word
embedding of each object. The generation of natural concepts proves our hypothesis that latter
padding embeddings forget attribute context if the object has a preference for certain attributes based
on the training dataset. In row 4, we present an interesting observation that padding embeddings are
aligned with the attribute word rather than the object "strawberry". It seems that the word "gold" is
interpreted as an entity instead of a visual feature, leading to (3) a split of the target object.

Multi-concept scenario aims to generate multiple objects with the desired attributes. Fig. 15 (b)
shows that the context issue in padding embeddings leads to (4) color leakage, i.e., one object
presents the attribute belonging to another object in row 1. Or (5) objects stick together, e.g.,
a strange creature with the head of a "horse" but the body of a "bag" in row 2. All the above
phenomena can be attributed to the evident entanglement in padding embeddings with overlapped
cross-attention activations, which provides inaccurate object representation and indistinguishable
binding relationships for each concept. Note that the above effects can occur simultaneously on a
single instance: row 3 indicates an inaccurate "sheep" structure, a binding between "banana" and
the prior color "yellow", a split of the object "banana", as well as a sticking problem between two
objects "banana" and "sheep". In row 4, we find that the context issue of padding embeddings also
explains (6) the issue of missing objects, i.e., the context loses the object "sheep" and contains a
dominant representation of the object "car".

[18] also discussed the semantic information in padded [EOT] embeddings. While their main concern
is to remove one specific object content, our focus is the understanding of attribute.
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Figure 16: Statistical analysis of ω = cos(G(P̃pos
i ),H(P̃pos

i )) obtained from 19648 samples (614
objects and 32 attributes). We set λ = 0.6 where the count drops.

B Detail of the proposed method

B.1 Dependency parser

To extract the dependency set D = {A1&E1, ..., AM&EM} in the given prompt, we adopt an off-
the-shelf dependency parsing module in Stanza Library [19] and construct syntax trees using NLTK.
Following [8], the pair is searched by noun phrases (NPs) in the syntax tree and their corresponding
adjective words. For instance, given the prompt "a black cat sitting in a white bowl", the object
"cat" is extracted according to the label NN or NNs, then allocated its attribute "black" in the subtree.
Similarly, the object "bowl" and its attribute "white" can be obtained. However, the parser may fail
to extract the concepts out of the "[attribute] [object]" format. For instance, it can not process the
prompt "a photo of a streetlight that is green" with dependency "green"&"streetlight", or "apples of
green are in white baskets" with dependency "green"&"apples". We leave this for future work.

B.2 Background of diffusion models

The conventional diffusion model [30] works in two steps: (1) forward diffusion that gradually adds
noise to the image x; (2) reverse diffusion that removes noise from noisy image xt step-by-step.

Latent Diffusion Models (LDMs) [2] perform the denoising in the latent space. The pre-trained
encoder ϕ compresses the image x to the latent z = ϕ(x), and the pre-trained decoder ψ reconstructs
the latent as ψ(z) ≈ x. The forward diffusion produces the noisy latent zt for the step t =
1, ..., T . The denoising network ϵθ is trained to remove the added noise at each step by minimizing
||ϵθ(zt, t)− ϵ||2, where zt is the noisy latent at timestep t, ϵ ∼ N (0, 1) is the added Gaussian noise.
The noisy latent zT is sampled from Gaussian noise N (0, 1) during inference. Finally, the reversed
latent z0 is decoded to produce the image x = ψ(z0).

The proposed Magnet is applied over Stable Diffusion (SD) conditioned on text prompts. The
pre-trained CLIP text encoder E maps the prompt to the text embedding c = E(P). SD appends
several cross-attention layers to inject the text condition into the latent zt. The loss function of the
text-image latent diffusion model can be rewritten as ||ϵθ(zt, t, v)− ϵ||2.

B.3 Strength of the binding vector

The use of the exponential function is inspired by [18]. But in a different way, Eq. (3) that determines
the strength αi, βi is based on our observation in Fig. 2 (b) and (c) in Section 2.

The formula ω = cos(G(P̃pos
i ),H(P̃pos

i )) calculates the cosine similarity between the first [EOT]
embedding and the last padding embedding of the concept P̃pos

i . In Fig. 16, we have conducted a
statistical analysis using Numpy’s histogram to bin the data. Different values ω are obtained from
19648 samples encoded by CLIP ViT-L/14. The highest counts are at the values 0.66 and 0.71.
Observe that the count drops when ω < 0.6 or ω > 0.82. Intuitively, smaller ω indicates a larger
deviation from the target context. Empirically, we set λ = 0.6 in Eq. (3) to enhance the weak binding
(i.e., αi > 1 when ωi < 0.6 in eλ−ωi). We have conducted an ablation study of the value ω in Fig.
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6. For the strength βi of the negative binding vector, we suggest a relatively slight control to avoid
strong deviation when the concept number M is large, i.e., βi = 1− ω2.

B.4 Neighbor-guided vector estimation

Feature Neighbors. The candidate set S = {B1, ..., BR} used for the feature neighbor strategy
includes R words. In practice, we gathered 614 object nouns generated from ChatGPT [13] and
checked manually. We extract the word embedding cBR

of each candidate object. For example, the
candidate "truck" is mapped into P(“truck”) = {cSOT , ctruck, cEOT , ...}. The embedding ctruck
is extracted and used in the formula d(cBr ,F(Ei), P̃uc

i ). Notice the [EOT] embedding is not used.
This procedure of extracting candidates’ embeddings is one-for-all, i.e., we compute 641 embeddings
once for each new text encoder and save them to the local path.

Semantic Neighbors. These neighbor objects are semantically related to the target object. We adopt
ChatGPT [13] to predict the semantic neighbors. The instruction follows the sentence pattern of
"Which objects are highly related to the word <*> ?". Optionally, the large language model BERT
[48] for fill-mask is considered. We mask the object in the prompt to get its neighbors. For example,
to predict the neighbor object for "brown bear", the masked prompt is composed as "brown bear and
a [MASK].". We hypothesize the conjecture "and" can implicitly restrict the close relation. The first
two nouns output by BERT are “wolf " and “lion", which are similar objects to “bear".

C Implementation details

Configure. All experiments are conducted on RTX 3090 in a single GPU. Our proposed Magnet is
built upon SD V1.4 [23] with the pre-trained text encoder of CLIP ViT-L/14 [5].

Hyperparameters. The choice of λ = 0.6 is explained in Appendix B.3 and verified by the ablation
study in Fig. 6. We set K = 5 to conduct qualitative and quantitative experiments. We have discussed
other choices of K in Appendix E.1. We generate images with 50 diffusion steps with a fixed
classifier-free guidance scale of 7.5.

Baselines. We compare Magnet to SD V1.4 [2], the training-free method, Structure Diffusion [49],
and the optimization method, Attend-and-Excite [7]. Since the official Attend-and-Excite does
not provide an automatic parsing process, we extract the required object words (in bold) using the
Stanza’s package (same to Magnet, see Appendix B.1).

Datasets. We have conducted statistics on the CC-500 dataset based on the three types of classification.
We find the number of valid prompts for each type are 84, 212, and 136, respectively. This data bias
may lead to unfair comparisons. In this case, we randomly select 80 prompts per type and obtain 240
prompts in total.

Resource. The runtime to generate an image and the required maximum GPU resources for each
method are listed in Tab. 2. The data of each method is obtained by generating 200 images (randomly
sampling 50 prompts from each dataset and generating 2 images per prompt). Each method is tested
under the same setting to maintain fairness.

D Metric discussion

We rely on human evaluation since the commonly used metrics for text-to-image synthesis are
unreliable for our concern about attribute binding. We discuss three models as the automatic
evaluation metrics, which are retrieval models CLIP [5] and BLIP [50], as well as the phrase
grounding model GroundingDINO [22].

Fig. 17 (a) shows the drawback of CLIP score, which computes the cosine similarity between the
text and the image embeddings. Failure and success cases present relatively equal values. The [EOT]
embedding suffers from attribute bias and can not measure the unnatural concept "blue apple".

Similar to CLIP, the metric of BLIP score in Fig. 17 (b) diverges from the human evaluator. Given
the target prompt with multiple concepts, the image of SD (top) presents entangled attributes and
objects. In this case, human evaluators indicate no instance of object existence and attribute alignment.
However, BLIP text-image similarity can not align with the assessment of human evaluators.
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Match
Prob. 99.97%

Text-Image
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Object Model Human

bird ✔ ✘

cat ✔ ✘

Object Model Human

cake ✘ ✔

clock ✘ ✔

 a brown brid and a yellow cat 

 a gold cake and a blue clock 

Figure 17: Failure cases of three automatic metrics: (a) CLIP text-image similarity can not assess the
binding of unnatural concepts. (b) BLIP text-image similarity fails to capture the entanglement of
concepts. (c) The detection of GroundingDINO diverges from human annotators.

Table 4: Quantitative comparison following Attend-and-Excite [7].

Type Method
CLIP BLIP

Full Prompt Min. Object Full Prompt Min. Object
Stable Diffusion 32.40 22.40 45.32 30.35

Training-free
StructureDiffusion 32.24 22.38 44.68 30.28
Magnet(Ours) 33.11 22.79 46.53 30.84

Optimization Attend-and-Excite 34.12 24.63 49.65 34.83

In the main paper, we adopt GrondingDINO [22] to detect the object in the generated image. However,
it fails to capture the structural deviation and suffers from attribute bias. As shown in Fig. 17 (c),
the entangled concepts "bird" and "cat" are detected by GroundingDINO, which diverges from the
human evaluator. Conversely, the model can not detect "gold cake". This may be attributed to the
attribute bias, which we have discussed in the main paper.

Additionally, we follow Attend-and-Excite [7] and compare the full prompt similarity and minimum
object similarity using CLIP and BLIP. The quantitative comparison is listed in Tab. 4. Magnet shows
improvement on all metrics compared to SD and Structure Diffusion. Meanwhile, we compare the
text-text similarity [7] using the BLIP model for image captioning, resulting in SD (66.08), Structure
Diffusion (65.71), Magnet (68.22), and Attend-and-Excite (71.22) as the highest. However, we do
emphasize that the above quantitative metrics can not reflect the disentanglement of objects and
attributes that we are concerned about.

In conclusion, we refer to the human evaluation to ensure a fair and reliable comparison. A screenshot
example of the coarse-grained comparison is given in Fig. 18.

E Additional ablation experiments

E.1 Hyperparameter K

In Fig. 19, we have conducted an ablation study on the hyperparameter K to select neighbor objects.
Note that the positive and negative vectors are estimated by each object Ei itself when K = 1 as
Eq. (1). The difference is slight if concepts in the target prompt are relatively natural. For example,
in row 2, using K = 1, 3, 5 (column 2-4) can generate the correct concept "red ball" compared to
"white ball" in SD. However, the results of K = 1 (column 2) in rows 3-4 present a catastrophic
structure of "blue bananas". This verifies the effectiveness of the neighbor strategy. On the other
hand, K in a large number can lead to inaccurate binding vectors. For example, in rows 1-2, results
of K ≥ 10 are similar to SD. This can be attributed to the introduction of a multitude of unrelated
objects that have an impact on the estimation accuracy. Similarly, "stickers" are indistinguishable in
row 3, columns 7-8 using K = 20, 50.
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Figure 18: A screenshot of the human evaluation for assessing image quality, disentanglement of
objects and attributes. For each question, the order of images generated by Magnet and other methods
is randomized to maintain fairness.

a brown teddy bear sitting on a wooden table next to a red ball

seed 
A

seed 
B

some blue bananas with little yellow stickers on them

seed 
A

seed 
B

(0.18s) (0.25s) (0.33s) (0.44s) (0.81s) (1.9s)(0.14s)
Stable 

Diffusion

Figure 19: Ablation study on the hyperparameter K. We emphasize that K = 5 may not always be
the best choice because of the randomly initialized latent. For example, the result of K = 3 is more
appealing than K = 5. We choose K = 5 which can stabilize the generate of unnatural concepts
(e.g., "blue bananas" and "yellow stickers" can be more distinguishable in K = 5 than K = 3), as
well as balance the processing time.

Interestingly, when using different seeds, the most visually appealing image may not always come
from the same K. For example, we subjectively prefer the result of K = 3 in row 1, but in row 2 the
result of K = 5 is more appealing. This is due to the randomly initialized latent. Since Magnet’s
resource requirements are relatively low, we believe it is possible to use different K for the same
prompt and generate images simultaneously for freedom of choice to the user.

In conclusion, the reason for the use of K = 5 is the balance between synthesis quality and pre-
processing time for manipulation. Here, we obtain the data of time by processing 20 prompts, i.e.,
adding 0.25s to SD to generate an image using K = 5. Meanwhile, our code can be improved to
shorten the time, which is left for future work.
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positive 
only

negative 
only both

a brown cat and a red cup

(a)

(b)  

a brown purse is sitting on a green bench

(c)

a orange dog wearing an gray bow tie laying on a sofa

Stable 
Diffusion

Figure 20: Ablation study on negative and positive bind-
ing vectors. (a) depicts similar results. (b) verifies using
both vectors can alleviate the missing object (i.e.,"green
bench"). (c) verifies using both vectors can enhance the
binding ("orange dog" and "gray bow tie").

Table 5: Ablation study on negative and
positive binding vectors. In most cases,
the images generated by three cases are
equally good or bad, resulting in a high
number of no winner.

Disentanglement
Object Attribute

both 13.8 9.4
positive only 3.9 3.0
negative only 5.1 1.3
Stable Diffusion 1.4 0.2
no winner 75.8 86.1

E.2 Importance of both positive and negative vectors

In Fig. 20 and Tab. 5, we conduct an ablation study on the proposed positive and negative vectors. The
object disentanglement is assessed by asking "Which image shows different objects more clearly?",
and the attribute disentanglement by asking "Which image shows different attributes more clearly?".
We randomly select 12 prompts from CC-500 and 20 prompts from ABC-6K, generating 25 images
per prompt (800 images in total) for three settings.

Both qualitative and quantitative comparisons verify the importance of both vectors. For instance,
the concept "green bench" is interpreted to "green grass" when using only one type of the binding
vectors. This occurs because of the entanglement of two objects. For the attribute disentanglement,
using both vectors is capable of generating objects with desired attributes. Notice that the negative
vector improves the object disentanglement (presents "bench" in column 5), while the positive vector
improves the attribute disentanglement (presents "orange dog" in column 3). The human evaluation
results are consistent with the above analysis, i.e., negative only (5.1) overpasses positive only (3.9)
in terms of object disentanglement, and positive only (3.0) overpasses negative only (1.3) in terms of
attribute disentanglement. In conclusion, using both vectors significantly improves text alignment.

F Limitations

Although Magnet provides an efficient and effective way to address the attribute binding problem, we
acknowledge our technique is subject to a few limitations.

Fig. 21 displays the failure cases of Magnet. First, the neglect of the object (columns 1-2), may
be attributed to the model’s limited ability to foreground limited subjects. Second, the excessive
manipulation of the object embedding leads to out-of-distribution (columns 3-4). An interesting
observation is that Magnet sometimes generates images with correct concepts, but incorrect positional
relations (columns 5-6). We suspect that the color layout has been determined in the early stage. In
this case, Magnet maps the object to the position of the attribute in the image, rather than blending
the attribute with the object. Magnet inherits the well-known issue of T2I models, presenting merged
objects (columns 7-8). Finally, it is still challenging to generate an unnatural concept when the object
has a strong attribute bias (columns 9-10).
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(b) over-manipulation

a black cat 
sitting in a 

red flower pot

a red bear is nestled 
in a thicket of 

black flowered brush 

a brown and white 
horse standing in 
front of a red silo

a blue tabby 
kitten playing with 

navy grey shoe 
strings on a shoe

a few brown 
bananas that has 
a green bear in it

(a) neglect of object

a yellow cat and 
a brown sheep

a red cake and 
a blue suitcase

(c) wrong positional relation

a large blue polar 
bear swimming in a 
pool of white water

(d) concept entanglement (e) strong attribute bias

a green bowl 
filled with lots of 
white broccoli

a green and white 
zebra is eating 

some black grass

Figure 21: Limitations of the proposed Magnet. (a) shows two cases that amend the concept, while
still missing one object; (b) includes out-of-distribution results caused by the excessive value of α, β;
(c) depicts an interesting phenomenon that Magnet correctly disentangles concepts while failing to in
accordance with the location word "in". (d) shows Magnet will produce entangled concepts due to
the limited power of SD. (e) provides two fail cases to generate unnatural concepts.

a long, narrow 
yellow kitchen 

with black and white 
floor tiles

A white dog 
standing in front

of brown cabinets

a red car 
and a brown 
elephant
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Figure 22: Similar images generated by Magnet and SD.

Additionally, Fig. 22 displays examples that Magnet generates similar images with SD. Most happen
when SD has produced relatively faithful images (columns 1-2), or prompts with excessively detailed
concepts (columns 3-4), as well as the generation of two unrelated concepts (columns 5-7).

We consider combining Magnet with optimization-based methods to tackle the neglect of objects, e.g.,
the integration of Attend-and-Excite and Magnet (see Fig. 9 and Fig. 23). Magnet is also compatible
with existing T2I controlling modules to address the inability to change spatial relationships, e.g., the
integration of ControlNet [28] or layout-guidance [27] and Magnet (see Fig. 10). The excessive or
insufficient manipulation may be addressed by improving the formula in Eq. (3), or simply stating
the strength αi, βi manually. We leave these for our future work.

G Additional results

Fig. 24 provides examples that Magnet improves the image quality compared to SD.

In Fig. 25, we compare Magnet to SD by visualizing the cross-attention activation.

Fig. 26 provides examples of typical indoor scenes using prompts from the ABC-6K dataset.

Fig. 27 and Fig. 28 provide additional qualitative comparisons on the ABC-6K and CC-500 datasets,
respectively.
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Magnet 
only

two brown birds 
sitting on a 
grey stick

A&E

A&E 
+Magnet

large yellow sheets 
on a blanket with 

a white headboard

a woman riding 
a green horse 

on a lush black field 

SD

a dog chasing after 
a green frisbee on 

top of a purple lawn

a shaggy brown dog 
has a red ball 
in it's mouth

Figure 23: Additional results of extension to Attend-and-Excite. In columns 1-2, Magnet only may
neglect the object (e.g., "gray stick"). In columns 3-4, Magnet can generate images with unnatural
concepts but would be painting-like. The combination (row 4) demonstrates improvement. Column 5
displays a failure case. The parameters may need to be modified to fit Magnet.

a white dog sitting inside a red car next to 
a string of flowers hanging off the mirror

meat with bright white vegetables 
 sitting on a green plate

a yellow and brown butterfly 
sitting on top of an orange

a brown bear wearing a pair of red glasses

a large silver pot sitting on a counter 
next to a red brick wall

a black cat lying on a brown suitcase 

Stable Diffusion Magnet Stable Diffusion Magnet

Figure 24: Magnet improves the synthesis quality by disentangling different concepts. Best viewed
zoomed in.
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Prompt: some blue bananas with little yellow stickers on them

Prompt: a bowl of broccoli and red rice with a white sauce

Prompt: a red and green plate holding a pink cake with frosting

Prompt: a green fire hydrant sitting on a patch of red grass

Figure 25: Visualisation of attention maps. The activations of different object are more distinct in
Magnet compared to SD. For instance, bananas are overlapped with stickers in row 1, while row 2
indicates disentangled concepts.
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an orange kitchen with a white refrigerator stove oven and dishwasher

a furnished decorated living room with white walls, paintings and a teal sofa

a clean living area with a green sofa with brown pillows

the kitchen with white oven atop green tiled floor

Stable Diffusion Structure Diffusion Magnet (Ours)Attend-and-Excite

Figure 26: Qualitative comparison using prompts from the ABC-6K dataset. We provide some typical
indoor scene prompts and compare Magnet to baseline methods. Best viewed zoomed in.
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Stable Diffusion Structure Diffusion Magnet (Ours)Attend-and-Excite

a black train with three cars is blowing green smoke

a yellow teddy bear in a white shirt against a red wall

a white fire hydrant sitting in front of a yellow fence

a red bench in front of a stone style wall and a bush with blue flowers to the side of it

Figure 27: Additional results using prompts from the ABC-6K dataset.
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Stable Diffusion Structure Diffusion Magnet (Ours)Attend-and-Excite

a black apple and a green backpack

a blue dog and a brown suitcase

a blue sheep and a brown vase

a gold car and a red clock

Figure 28: Additional results using prompts from the CC-500 dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions and scope have been included in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work have been discussed in Section 6 and Appendix F
(see Figure 21).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Section 2 and Appendix A provide the full set of assumptions of the context
issue in the padding embedding, which is the motivation of the proposed method.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details of the proposed method are described in Section 3 and Appendix B.
We clarify that the main experimental results can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the used two datasets (ABC-6K and CC-500) and a piece of code
with sufficient instructions in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.1 describes the detail of datasets. Section 4.2 and Appendix D have
described evaluation metrics. We provide the implementation details in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The information is provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information is provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research has been conducted following the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 5, Appendix E.1 and F have discussed both potential and negative
societal impacts of the proposed method.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11. Safeguards
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Answer: [NA]
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properly respected?

Answer: [Yes]
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets introduced in the paper have been documented. In the supplemental
material, we have provided a Jupiter file with visualized results for reference.

Guidelines:

• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The instructions given to human evaluators are described in Section 4.2, and a
screenshot instance in Figure 18.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We have obtained approval from an equivalent to the Institutional Review
Board to conduct our quantitative experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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