
Private and Robust Federated Learning using Private
Information Retrieval and Norm Bounding

Hamid Mozaffari∗
University of Massachusetts Amherst

hamid@cs.umass.edu

Virendra J. Marathe
Oracle Labs

virendra.marathe@oracle.com

Dave Dice
Oracle Labs

dave.dice@oracle.com

Abstract

Federated Learning (FL) is a distributed learning paradigm that enables mutually
untrusting clients to collaboratively train a common machine learning model. Client
data privacy is paramount in FL. At the same time, the model must be protected
from poisoning attacks from adversarial clients. Existing solutions address these
two problems in isolation. We present FedPerm, a new FL algorithm that addresses
both these problems by combining norm bounding for model robustness with
a novel intra-model parameter shuffling technique that amplifies data privacy
by means of Private Information Retrieval (PIR) based techniques that permit
cryptographic aggregation of clients’ model updates. The combination of these
techniques helps the federation server constrain parameter updates from clients so
as to curtail effects of model poisoning attacks by adversarial clients. We further
present FedPerm’s unique hyperparameters that can be used effectively to trade off
computation overheads with model utility. Our empirical evaluation on the MNIST
dataset demonstrates FedPerm’s effectiveness over existing Differential Privacy
(DP) enforcement solutions in FL.

1 Introduction
Federated Learning (FL) is a distributed learning paradigm where mutually untrusting clients collabo-
rate to train a shared model, called the global model, without explicitly sharing their local training
data. FL training involves a server that aggregates, using an aggregation rule (AGR), model updates
that the clients compute using their local private data. The aggregated global model is subsequently
broadcasted by the server to a subset of the clients. This process repeats for several rounds until
convergence or a threshold number of rounds. Though highly promising, FL faces multiple chal-
lenges [25] to its practical deployment. Two of these challenges are (i) data privacy for clients’
training data, and (ii) robustness of the global model in the presence of malicious clients.

The data privacy challenge emerges from the fact that raw model updates of federation clients are
susceptible to privacy attacks by an adversarial server as demonstrated by several recent works [28,
29, 37, 49, 54]. Two classes of approaches can address this problem in significantly different ways:
First, Local Differential Privacy [16, 26, 45, 48] in FL (LDP-FL) enforces a strict theoretical privacy
guarantee to model updates of clients. The guarantee is enforced by applying carefully calibrated noise
to the clients’ local model updates using a local randomizerR. In addition to the privacy guarantee,
LDP-FL can defend against poisoning attacks by malicious clients, thus providing robustness to the

∗The work was done while interning at the Oracle Labs.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

global model [38, 36, 43]. However, the model update perturbation needed for the LDP guarantee
significantly degrades model utility.

The other approach to enforce client data privacy is secure aggregation (sAGR), where model update
aggregation is done using cryptographic techniques such as homomorphic encryption or secure multi-
party computation [11, 53, 8, 21]. sAGR protects privacy of clients’ data from an adversarial server
because the server sees just the encrypted version of clients’ model updates. Moreover, this privacy
is enforced without compromising global model utility. However, the encrypted model updates
themselves provide the perfect cover for a malicious client to poison the global model [21, 38] – the
server cannot tell the difference between a honest model update and a poisoned one since both are
encrypted.

In this paper we answer the dual question: Can we design an efficient federated learning algorithm
that achieves local privacy for participating clients at a low utility cost, while ensuring robustness of
the global model from malicious clients? To that end, we present FedPerm, a new FL protocol that
combines LDP [16, 26, 48], model parameter shuffling [19], and computational Private Information
Retrieval (cPIR) [14, 13, 1, 2] in a novel way to achieve our dual goals.

The starting point of FedPerm’s design is privacy amplification by shuffling [19], which enables
stronger (i.e., amplified) privacy with little model perturbation (using randomizerR) at each client.
Crucially, our shuffling technique fundamentally differs from prior works in that we apply intra-model
parameter shuffling rather that the inter-model parameter shuffling done previously [19, 30, 24].

Next, each FedPerm client privately chooses its shuffling pattern uniformly at random for each FL
round. To aggregate the shuffled (and perturbed) model parameters, FedPerm client utilizes cPIR to
generate a set of PIR queries for its shuffling pattern that allows the server to retrieve each parameter
privately during aggregation. All the server observes is the shuffled parameters of the model update
for each participating client, and a series of PIR queries (i.e., the encrypted version of the shuffling
patterns). The server can aggregate the PIR queries and their corresponding shuffled parameters
for multiple clients to get the encrypted aggregated model. The aggregated model is decrypted
independently at each client.

The combination of LDP at each client and intra-model parameter shuffling achieves enough privacy
amplification to let FedPerm preserve high model utility. At the same time, availability of the shuffled
parameters at the federation server lets it control a client’s model update contribution by enforcing
norm-bounding, which is known to be highly effective against model poisoning attacks [38, 36, 43].

Since FedPerm utilizes cPIR which relies on homomorphic encryption (HE) [39, 15], it can be
computationally expensive, particularly for large models. We present computation/utility trade off
hyper-parameters in FedPerm, that enables us to achieve an interesting trade off between computa-
tional efficiency and model utility. In particular, we can adjust the computation burden for a proper
utility goal by altering the size and number of shuffling patterns for the FedPerm clients.

We empirically evaluate FedPerm on the MNIST dataset to demonstrate that it is possible to provide
LDP-FL guarantees at low model utility cost. We theoretically and numerically demonstrate a trade
off between model utility and computational efficiency. Specifically, FedPerm’s hyperparameters
create shuffling windows whose size can be reduced to drastically cut computation overheads, but
at the cost of reducing model utility due to lower privacy amplification. We experiment with two
representative shuffling window configurations in FedPerm– “light” and “heavy”. For a (4.0, 10−5)-
LDP guarantee, the light version of FedPerm, where client encryption, and server aggregation needs
52.2 seconds and 21 minutes respectively, results in a model that delivers 32.85% test accuracy on
MNIST. The heavier version of FedPerm, where client encryption and server aggregation needs 32.1
minutes and 16.4 hours respectively, results in 72.38% test accuracy. Non-private FedAvg, CDP-FL
and LDP-FL provide 91.02%, 53.50%, and 13.74% test accuracies for the same (ε, δ)-DP guarantee
respectively.

2 Preliminaries
In FL [32, 25, 27], N clients collaborate to train a global model without directly sharing their data. In
round t, the federation server samples n out of N total clients and sends them the most recent global
model θt. Each client re-trains θt on its private data using stochastic gradient descent (SGD), and
sends back the model parameter updates (xi for ith client) to the server. The server then aggregates
(e.g., averages) the collected parameter updates and updates the global model for the next round
(θt ← θt−1 + 1

n

∑n
i=1 xi).

2

Central Differential Privacy in FL (CDP-FL). In CDP-FL [12, 22], illustrated in Figure 1(a) , a
trusted server first collects all the clients’ raw model updates (xi ∈ Rd), aggregates them into the
global model, and then perturbs the model with carefully calibrated noise to enforce differential
privacy (DP) guarantees. The server provides participant-level DP by the perturbation. We defer the
definition and algorithm of CDP-FL to Appendix E.1.

Local Differential Privacy in FL (LDP-FL). CDP-FL relies on availability of a trusted server for
collecting raw model updates. On the other hand, LDP-FL [31, 47] does not rely on this assumption
and each client perturbs its output locally using a randomizer R (Figure 1(b)). If each client
perturbs its model updates locally byR which satisfies (εℓ, δℓ)-LDP, then observing collected updates
{R(x1), . . . ,R(xn)} also implies (εℓ, δℓ)-DP [17].

Definition 2.1 (Local Differential Privacy (LDP)) A randomized mechanism R : X → Y is said
to be (εℓ, δℓ)-locally differentially private if for any two inputs x, x′ ∈ X and any output y ∈ Y , we
have Pr[R(x) = y] ≤ eεℓ Pr[R(x′) = y] + δℓ.

External Shuffler

Aggregator

(a) Centralized Privacy

(b) Local Privacy

(c) Shuffling Clients

(d) Shuffling Parameters (FedPerm)

Aggregator

Aggregator

Aggregator

Local Shuffler Local Shuffler Local Shuffler

Encryption Encryption Encryption

Figure 1: Different models of differential privacy in Feder-
ated Learning. Red dots are showing the trust boundaries.

In LDP-FL, each client perturbs its
local update (xi) with ϵℓ-LDP. Un-
fortunately, LDP hurts utility, espe-
cially for high dimensional vectors.
Its mean estimation error is bounded
by O(

√
d log d
εℓ
√
n

) meaning that for better
utility we should increase the privacy
budget or use larger number of users
in each round [9].

2.1 Privacy Amplification
by Shuffling Clients’ updates

Recent works [24, 30] utilize the pri-
vacy amplification effect by shuffling
model parameters across client model
updates from participating clients to
improve the LDP-FL utility (illus-
trated in Figure 1(c)). FL frame-
works based on shuffling clients’ up-
dates consists of three building pro-
cesses:M = A◦ S ◦R. Specifically,
they introduce a shuffler S, which
sits between the FL clients and the
FL server, and randomly shuffles pa-
rameters across clients’ locally per-
turbed updates (by randomizerR) be-
fore sending them to the server for
aggregation (A). More specifically,
given parameter index i, S randomly
shuffles the ith parameters of model
updates received from the n participant clients. The shuffler thus detaches the model updates
from their origin client (i.e. anonymizes them). Previous works [4, 5, 23] focused on shuffling
one-dimensional data x ∈ X . Corollary 2.1 shows the privacy amplification effect by shuffling.

Corollary 2.1 [6] In shuffle model, ifR is εℓ-LDP, where εℓ ≤ log (n/ log (1/δc))/2.M satisfies
(εc, δc)-DP with εc = O((1 ∧ εℓ)e

εℓ
√

log (1/δc)/n) where ’∧’ shows minimum function.

From above corollary, the privacy amplification has a direct relationship with
√
n where n is the

number of selected clients for aggregation, i.e., increasing the number of clients will increase the
privacy amplification. Note that in FedPerm, the clients are responsible for shuffling, and instead of
shuffling the n clients’ updates (inter-model shuffling), each client locally shuffles its d parameters
(intra-model shuffling). In real-world settings there is a limit on the value of n, so the amount
of amplification we can achieve is also limited. However, in FedPerm we can see much more
amplification because we are shuffling the parameters and n≪ d.

3

We present an overview of central differential privacy in FL (CDP-FL), Laplace mechanism, privacy
composition theorems, robustness to poisoning attacks, private information retrieval (PIR), and
homomorphic encryption systems in Appendix E.

3 FedPerm: Private and Robust Federated Learning by parameter
Permutation

We assume a dual threat model setting where (i) the federation server acts as an honest but curious
aggregator, and (ii) the federation clients can maliciously attempt to poison the trained model
using manipulated local parameter updates. We provide further details about the threat models in
Appendix D.

3.1 FedPerm: Design

FedPerm utilizes computational Private Information Retrieval (cPIR) [14, 42] for secure aggregation
at the federation server. In particular, FedPerm uses the cPIR algorithm by Chang [13] that leverages
the algorithm by Paillier [39]. Algorithm 1 depicts FedPerm. Figure 1(d) depicts the FedPerm
framework that consists of three components, F = A ◦ S ◦ Rd, denoting the client-side parameter
randomizer (Rd), the client-side shuffler (S), and the server-side aggregator (A).

Key Distribution Paillier is a Partial Homomorphic Encryption (PHE) algorithm that relies on a
public key encryption scheme (details of Paillier HE in Appendix E.6). Since Paillier is employed to
protect client updates from a curious federation server, FedPerm requires an independent key server
that generates a pair of public and secret homomorphic keys (Pk, Sk). This key pair is distributed
to all federation clients, and just the public key Pk is sent to the federation server (for aggregation).
The key server itself can be implemented as an independent third party server, or a leader among the
federation clients may be chosen to play that role [53].

Algorithm 1 FedPerm where green and blue colors
show execution by server and client respectively.
Input: number of FL rounds T , number of local epochs E, number of
selected users in each round n, learning rate η, local privacy budget εd,
number of model parameters d, parameter update clipping threshold C
Output: θT

g

1: θ0
g ← Initialize weights

2: for each iteration t ∈ [T] do
3: U ← set of n randomly selected clients out of N total clients

4: for u in U do
5: θt

u ← LOCALUPDATE(θt
g, η, E)

6: θ̄t
u ← CLIP(θt

u,−C,C)

7: θ̃t
u ← (θ̄t

u + C)/(2C)

8: yt
u ← RANDOMIZE(θ̃t

u, εd)

9: πu ← Shuffling pattern RANDOMPERMUTATIONS ∈ [1, d]

10: ỹt
u ← SHUFFLE(yt

u, πu)

11: btu ← BINARYMASK(πu)

12: ctu ← ENCpk(b
t
u)

13: Client u sends (ỹt
u, c

t
u) to the server

14: end for
15: norm bounding: ỹt

u ← ỹt
u ·min(1, M

||ỹt
u||

2
) for u ∈ U

16: z̄ ← 1
n

∑
u∈U

(
ctu × ỹt

u

)
17: z ← DECsk(z̄)

18: normalize z ← C · (2z − 1)

19: update model θt+1
g ← θt

g + z

20: end for
21: return θT

g

Client Local Training: In the tth round, the
server randomly samples n clients among total
N clients. Each sampled client locally retrains
a copy of the global model it receives from the
server (θtg), optimizing the model using its local
data and local learning rate η (Algorithm 1, line
5).

Randomizing Update Parameters: After com-
puting local updates θtu, client u clips the update
using threshold C and normalizes the param-
eters to the range [0, 1] (Algorithm 1, lines 6-
7). Now the client applies the randomizer (i.e.,
Rd) on its local parameters to make them (εd)-
differentially private (Algorithm 1, line 8). We
use the Laplacian Mechanism as a local random-
izer with privacy budget εd.

Shuffling: After clipping and perturbing the
local update, each client shuffles the parame-
ters ytu using the random shuffling pattern πu

(Algorithm 1, lines 9-10). Shuffling amplifies
the privacy budget εd, which we discuss in Sec-
tion 3.2.

Generating PIR queries: Now the client en-
codes the shuffle indices πu using a PIR pro-
tocol. This process comprises two steps: first
creating a binary mask of the shuffled index, and
then encrypting it using the public key of HE
that the client received in first step (Algorithm 1
line 11-12). Generally, a PIR client needs access
to the jth record privately from an untrusted PIR
server that holds a dataset θ with d records; i.e.
the PIR server cannot know that the client re-

4

quested the jth record. To do so, the PIR client
creates a unit vector (binary mask) b⃗j of size d where all the bits are set to zero except the jth position
being set to one (i.e., b⃗j = [0 0 . . . 1 . . . 0 0]).

If the PIR client does not care about privacy, it would send b⃗j to the PIR server, and the server would
generate the client’s response by multiplying the binary mask into the database matrix θ (θj = b⃗j×θ).
A PIR technique allows the client to obtain this response without revealing b⃗j to the PIR server. For
example in [13], the PIR client uses HE to encrypt b⃗j element by element before sending it to the
PIR server. During the data recovery phase, the client extracts its target record by decrypting the
component of ENC(⃗bj)× θ. Equation 1 shows retrieving the jth record by this PIR query. Note that
an HE system has a property that m1 ×m2 ← DEC (ENC[m1]×m2).

DEC(ENC(⃗bj)× θ) = DEC (ENC[0] · θ1 + · · ·+ ENC[1] · θj + · · ·+ ENC[0] · θd) = DEC (ENC[θj]) = θj
(1)

A FedPerm client creates d PIR queries to retrieve each parameter privately. (In Section 3.2, we
discuss additional parameters to reduce the number of PIR queries.) In this case, the shuffled
parameters (ỹtu) are the dataset located at the PIR server and each shuffled index in πu is the secret
record row number (i.e. jth in above) that the PIR client is interested in. Client u first creates btu
which is a collection of d binary masks of shuffled indices in πu, similar to PIR query b⃗j . Then the
client encrypts the binary masks and sends the shuffled parameters and the PIR query (encrypted
binary masks) to the server for aggregation.

Server: norm bounding After collecting all the local updates (ỹtu, c
t
u) for selected clients in round

t, the FedPerm server first applies ℓ2-norm bounding to the threshold M on the shuffled parameters
ỹtu (Algorithm 1, line 15). Note that unlike other robust AGRs, norm bounding is the only robust
AGR scheme that does not require the true position of the parameters because it works by calculating
the ℓ2 norm of the parameter updates as a whole irrespective of their order (i.e. ℓ2(ỹtu) = ℓ2(y

t
u)).

Prior works [38, 36, 43] have shown the effectiveness of norm bounding in defense against poisoning
attacks by malicious clients.

Server: Aggregation Then the server aggregates all the updates into global update z̄ (Algorithm 1,
line 16). This aggregation is averaging the update parameters for n collected updates by calculating
1
n

∑
u∈U (ctu × ỹtu). The expression ctu × ỹtu has the effect of “unshuffling” client u’s parameters. At

the same time, the resulting vector is encrypted, thus kept hidden from the server. In Appendix B, we
show the correctness of FedPerm.

Updating Global Model The server aggregates local updates (ỹtu, c
t
u) without knowing the

true position of the parameters as they are detached from their positions. Result of aggregation
1
n

∑
u∈U (ctu × ỹtu) is vector of encrypted parameters, and they need to be decrypted to be used for

updating the global model (Algorithm 1 lines 17-19). This decryption is done at each client using
Paillier’s secret key.

3.2 Computation/Communication and Utility Tradeoff in FedPerm
Each FedPerm client perturbs its local update (vector xi containing d parameters) with randomizer
Rd which is εd-LDP, and then shuffles its parameters. We use the Laplacian mechanism as the
randomizer. Based on the näive composition theorem from Lemma E.1, the client perturbs each
parameter value withR which satisfies εwd-LDP where εwd = εd

d (Appendix E.2 contains additional
details). Corollary 3.1 shows the privacy amplification from εd-LDP to (εℓ, δℓ)-DP after the parameter
shuffling. Corollary 3.1 is derived from Corollary 2.1, by substituting the number of participating
clients n by the number of parameters d in the model.

Corollary 3.1 If R is εwd-LDP, where εwd ≤ log (d/ log (1/δℓ))/2, FedPerm F = A ◦ Sd ◦ Rd

satisfies (εℓ, δℓ)-DP with εℓ = O((1 ∧ εwd)e
εwd
√

log (1/δℓ)/d).

Thus, larger the number of parameters in the model, greater is the privacy amplification. With large
models containing millions or billions of parameters, the privacy amplification can be immense.
However, the model dimensionality also affects the computation (and communication) cost in
FedPerm. Each FedPerm client generates a d-dimensional PIR query for every parameter in the model,
resulting in a PIR query matrix containing d2 entries. This results in a quadratic increase in client
encryption time, server aggregation time, and client-server communication bandwidth consumption.

5

This increase in communication, and more importantly computation, resources is simply infeasible
for large models containing billions of parameters. To address this problem, FedPerm introduces
following hyperparameters that present an interesting trade off between computation/communication
overheads and model utility:

• FedPerm with Smaller Shuffling Pattern (k1): Instead of shuffling all the d parameters, the
FedPerm client can partition its parameters into several identically sized windows, and shuffle
the parameters in each window with the same shuffling pattern. Thus, instead of creating a very
large random shuffling pattern π with d indices (i.e., π = RANDOMPERMUTATIONS[1, d]), each
client creates a shuffling pattern with k1 indices (i.e., π = RANDOMPERMUTATIONS[1, k1]), and
shuffles (Sk1

) each window with these random indices. The window size k1 is a new FedPerm
hyperparameter that can be used to control the computation/communication and model utility trade
off. Once we set the size of shuffling pattern to k1, each client needs to perform d · k1 encryptions
and consumes O(d · k1) network bandwidth to send its PIR queries to the server.

• FedPerm with Multiple Shuffling Patterns (k2): An additional way to adjust the computa-
tion/communication vs. utility trade off is by using multiple shuffling patterns. Each Fed-
Perm client chooses k2 shuffling patterns {π1, . . . , πk2

} uniformly at random where each
πi = RANDOMPERMUTATIONS[1, k1] for 1 ≤ i ≤ k2. Then, each FedPerm client partitions the
d parameters into d/k1 windows, where it permutes the parameters of window k (1 ≤ k ≤ d/k1)
with shuffling pattern πi s.t. i = k mod k2. In this case, each FedPerm client needs k2 · k21
encryptions to generate the PIR queries.

Due to space limitation, we defer the computation/communication and privacy analysis of these
hyperparameters to Appendix A.

4 Experiments

In this section, we investigate the utility and computation trade offs in FedPerm. We use MNIST
dataset and a logistic regression model with d = 7850 parameters to evaluate these trade offs. We
compare our results with following baselines: (a) FedAvg [32] with no privacy, (b) CDP-FL [12, 22],
(c) LDP-FL [31, 47] with Gaussian Mechanism.

Figure 2: Test accuracy for different FL algo-
rithms for MNIST over 15 clients.

Figure 2 shows the test accuracy of the model trained
using different FL algorithms running for T = 50
rounds. The MNIST dataset is divided across n = 15
clients with a Dirichlet distribution. We compared
two versions of FedPerm in these experiments: (a)
FedPerm with k1 = 400 and k2 = 1 which is a
“light” version where encryption and decryption time
at clients takes around 52.2 and 2.4 seconds respec-
tively. It also imposes 21 minutes computation time at
the server. (b) FedPerm with k1 = 800 and k2 = 10
which is a “heavy” version where client encryption,
decryption, and server aggregation time takes around
32.1 minutes, 2.4 seconds and 16.4 hours respectively.

As we mentioned earlier, FedPerm provides a trade-off between privacy amplification and compute
resources – larger the values of k1 and k2, greater are the compute resources for training, which in
turn provides higher privacy amplification that results in better model utility. The heavy version of
FedPerm needs more resources to be as fast as the lighter version, but it can provide much more
utility (because the privacy amplification is larger so the amount of noise added is smaller). For
instance, after T = 50, and total privacy budget (4.0, 1e−5), the heavy version provides 72.38%
test accuracy while the light version provides 32.85% test accuracy. From these figures we can see
if we invest enough computation resources in FedPerm, we can provide higher utility compared
to CDP-FL, without trusting the FedPerm server. Non-private FedAvg, CDP-FL and LDP-FL also
provides 91.02%, 53.50%, and 13.74% test accuracies for the same total (ε, δ) respectively.

Miscellaneous Discussions Due to space limitations, we defer detailed discussion of ablation studies
of FedPerm to Appendix. In Appendix C.1, we evaluate the impacts of our hyperparameters k1,
k2, n, d on the encryption, decryption and server aggregation time. In Appendix A.3, we show the
relationship of our hyperparameters on the privacy amplification of FedPerm.

6

5 Conclusion
We presented FedPerm, a new FL algorithm that combines LDP, intra-model parameter shuffling
at the federation clients, and a cPIR based technique for parameter aggregation at the federation
server to deliver both client data privacy and robustness from model poisoning attacks. Our intra-
model parameter shuffling significantly amplifies the LDP guarantee for clients’ training data. The
cPIR based technique we employ allows cryptographic parameter aggregation at the server. At the
same time, the server clips the clients’ parameter updates to ensure that model poisoning attacks
by adversarial clients are effectively thwarted. We leave the study of extensions to FedPerm – (i)
an additional dimension of the hyperparameters (k3) that takes the computation-utility trade offs
to hypercube space (see Appendix F), (ii) plugging in other PIR protocols, and (iii) combining an
external client shuffler with FedPerm – to future work.

References
[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. 2016. XPIR:

Private information retrieval for everyone. Proceedings on Privacy Enhancing Technologies
2016, 2 (2016), 155–174.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with compressed queries
and amortized query processing. In 2018 IEEE symposium on security and privacy (SP). IEEE,
962–979.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020.
How To Backdoor Federated Learning. In AISTATS.

[4] Victor Balcer and Albert Cheu. 2019. Separating local & shuffled differential privacy via
histograms. arXiv preprint arXiv:1911.06879 (2019).

[5] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. 2019. Differentially private summa-
tion with multi-message shuffling. arXiv preprint arXiv:1906.09116 (2019).

[6] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. 2019. The privacy blanket of the
shuffle model. In Annual International Cryptology Conference. Springer, 638–667.

[7] Moran Baruch, Baruch Gilad, and Yoav Goldberg. 2019. A Little Is Enough: Circumventing
Defenses For Distributed Learning. In NeurIPS.

[8] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.
2020. Secure single-server aggregation with (poly) logarithmic overhead. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security. 1253–1269.

[9] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. 2018.
Protection against reconstruction and its applications in private federated learning. arXiv
preprint arXiv:1812.00984 (2018).

[10] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. 2017. Machine learning with adversaries:
Byzantine tolerant gradient descent. In NeurIPS. 119–129.

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practical Secure Aggregation
for Privacy-Preserving Machine Learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1175–1191.

[12] McMahan H Brendan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learning dif-
ferentially private recurrent language models. International Conference on Learning and
Representation (2018).

[13] Yan-Cheng Chang. 2004. Single database private information retrieval with logarithmic com-
munication. In Australasian Conference on Information Security and Privacy. Springer, 50–61.

[14] Benny Chor and Niv Gilboa. 1997. Computationally private information retrieval. In Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing. ACM, 304–313.

7

[15] Ivan Damgård and Mads Jurik. 2001. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In International workshop on public key cryptography.
Springer, 119–136.

[16] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. 2013. Local Privacy and Statistical
Minimax Rates. CoRR abs/1302.3203 (2013). http://arxiv.org/abs/1302.3203

[17] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science (2014).

[18] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. 2010. Boosting and differential privacy.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE, 51–60.

[19] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. 2019. Amplification by shuffling: From local to central differential
privacy via anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 2468–2479.

[20] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020. Local Model
Poisoning Attacks to Byzantine-Robust Federated Learning. In USENIX Security.

[21] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Helen Möllering,
Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas Schneider, Hossein Yalame,
et al. 2021. SAFELearn: secure aggregation for private federated learning. In 2021 IEEE
Security and Privacy Workshops (SPW). IEEE, 56–62.

[22] Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private federated learning:
A client level perspective. arXiv preprint arXiv:1712.07557 (2017).

[23] Badih Ghazi, Rasmus Pagh, and Ameya Velingker. 2019. Scalable and differentially private
distributed aggregation in the shuffled model. arXiv preprint arXiv:1906.08320 (2019).

[24] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
2021. Shuffled model of differential privacy in federated learning. In International Conference
on Artificial Intelligence and Statistics. PMLR, 2521–2529.

[25] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. 2019. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977
(2019).

[26] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam D. Smith. 2008. What Can We Learn Privately? CoRR abs/0803.0924 (2008). http:
//arxiv.org/abs/0803.0924

[27] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. 2016. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492 (2016).

[28] Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. 2022. Auditing Privacy Defenses in
Federated Learning via Generative Gradient Leakage. CoRR abs/2203.15696 (2022). https:
//doi.org/10.48550/arXiv.2203.15696

[29] Jia Qi Lim and Chee Seng Chan. 2021. From Gradient Leakage To Adversarial Attacks In
Federated Learning. In IEEE International Conference on Image Processing (ICIP). 3602–3606.

[30] Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa. 2021. Flame:
Differentially private federated learning in the shuffle model. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 8688–8696.

[31] Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. 2020. Fedsel: Federated sgd
under local differential privacy with top-k dimension selection. In International Conference on
Database Systems for Advanced Applications. Springer, 485–501.

8

http://arxiv.org/abs/1302.3203
http://arxiv.org/abs/0803.0924
http://arxiv.org/abs/0803.0924
https://doi.org/10.48550/arXiv.2203.15696
https://doi.org/10.48550/arXiv.2203.15696

[32] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
2017. Communication-efficient learning of deep networks from decentralized data. AISTATS
(2017).

[33] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. 2018. The Hidden Vulnerability
of Distributed Learning in Byzantium. In ICML.

[34] Hamid Mozaffari and Amir Houmansadr. 2020. Heterogeneous private information retrieval. In
Network and Distributed Systems Security (NDSS) Symposium 2020.

[35] Hamid Mozaffari, Virat Shejwalkar, and Amir Houmansadr. 2021. FSL: Federated Supermask
Learning. arXiv preprint arXiv:2110.04350 (2021).

[36] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. 2020. Local and central differen-
tial privacy for robustness and privacy in federated learning. arXiv preprint arXiv:2009.03561
(2020).

[37] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy Analysis
of Deep Learning: Stand-alone and Federated Learning under Passive and Active White-box
Inference Attacks. Security and Privacy (SP), 2019 IEEE Symposium on (2019).

[38] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni, et al. 2021.
FLAME: Taming Backdoors in Federated Learning. Cryptology ePrint Archive (2021).

[39] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes.
In International conference on the theory and applications of cryptographic techniques. Springer,
223–238.

[40] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine: Optimizing Model
Poisoning Attacks and Defenses for Federated Learning. In NDSS.

[41] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. 2021. Back to the
Drawing Board: A Critical Evaluation of Poisoning Attacks on Federated Learning. In Security
and Privacy (SP).

[42] Julien P Stern. 1998. A new and efficient all-or-nothing disclosure of secrets protocol. In
International Conference on the Theory and Application of Cryptology and Information Security.
Springer, 357–371.

[43] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. 2019. Can you
really backdoor federated learning?. In NeurIPS FL Workshop.

[44] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and
Yi Zhou. 2019. A hybrid approach to privacy-preserving federated learning. In Proceedings of
the 12th ACM workshop on artificial intelligence and security. 1–11.

[45] Stacey Truex, Ling Liu, Ka Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. 2020. LDP-Fed:
Federated Learning with Local Differential Privacy. In Proceedings of the 3rd International
Workshop on Edge Systems, Analytics and Networking, EdgeSys@EuroSys 2020, Heraklion,
Greece, April 27, 2020. ACM, 61–66.

[46] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. 2020. Attack of the tails: Yes, you
really can backdoor federated learning. In NeurIPS.

[47] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin, Junbum Shin,
and Ge Yu. 2019. Collecting and analyzing multidimensional data with local differential privacy.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 638–649.

[48] Stanley L. Warner. 1965. Randomized response: A survey tech-nique for eliminating evasive
answer bias. Journal ofthe American Statistical Association 60, 309 (1965), 63–69.

9

[49] Wenqi Wei, Ling Liu, Margaret Loper, Ka Ho Chow, Mehmet Emre Gursoy, Stacey Truex,
and Yanzhao Wu. 2020. A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning. CoRR abs/2004.10397 (2020). https://arxiv.org/abs/2004.10397

[50] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed backdoor attacks
against federated learning. In ICLR.

[51] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. 2019. Hybridalpha:
An efficient approach for privacy-preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security. 13–23.

[52] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. 2018. Byzantine-Robust
Distributed Learning: Towards Optimal Statistical Rates. In ICML.

[53] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. 2020.
{BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated learning. In
2020 USENIX annual technical conference (USENIX ATC 20). 493–506.

[54] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In Advances in
Neural Information Processing Systems. 14747–14756.

A Computation/Communication and Utility Tradeoff in FedPerm

In Section 3.2, we show the quadratic increase in client encryption time, server aggregation time
for larger number of model parameters d. This increase in communication, and more importantly
computation, resources is simply infeasible for large models containing billions of parameters. To
address this problem FedPerm introduces additional hyperparameters that present an interesting trade
off between computation/communication overheads and model utility.

A.1 FedPerm with Smaller Shuffling Pattern

Instead of shuffling all the d parameters, the FedPerm client can partition its parameters into several
identically sized windows, and shuffle the parameters in each window with the same shuffling
pattern. Thus, instead of creating a very large random shuffling pattern π with d indices (i.e.,
π = RANDOMPERMUTATIONS[1, d]), each client creates a shuffling pattern with k1 indices (i.e.,
π = RANDOMPERMUTATIONS[1, k1]), and shuffles (Sk1

) each window with these random indices.

The window size k1 is a new FedPerm hyperparameter that can be used to control the computa-
tion/communication and model utility trade off. Once we set the size of shuffling pattern to k1, each
client needs to perform d · k1 encryptions and consumes O(d · k1) network bandwidth to send its PIR
queries to the server.

Superwindow: A shuffling window size of k1, partitions each FedPerm client u’s local update
xu (d parameters) into w = d/k1 windows, each containing k1 parameters. Each FedPerm client,
independently from other FedPerm clients, chooses its shuffling pattern π uniformly at random with
indices ∈ [1, k1], and shuffles each window with this pattern. This means that every position j
(1 ≤ j ≤ k1) in each window k (1 ≤ k ≤ w) will have the same permutation index (πj). Thus all
of the jth positioned parameters (x(k,j)

u for 1 ≤ k ≤ w) will contain the value from the πth
j slot

in window k. For a given index j (1 ≤ j ≤ k1), we define a superwindow as the set of all of the
parameters x(k,j)

u for 1 ≤ k ≤ w. If we structure the parameter vector xu (with d parameters) as
Rk1×w (a matrix with k1 rows and w columns), each row of this matrix is a superwindow.

Figure 3 depicts an example model containing 12 parameters θ = [θ1, θ2, ..., θ12]. The original
FedPerm algorithm mandates a shuffling pattern π with 12 indices ∈ [1, 12], where the PIR query
generates 12× 12 = 144 encryptions. However, a shuffling pattern π of three indices k1 = 3 (π =
[3, 1, 2] in the figure) requires only 3× 3 = 9 encryptions. This shuffling pattern creates 4 windows
of size 3 (red boxes in the 2-D matrix in the figure), and each row in the 2-D matrix, represented more
succinctly by [ΘA,ΘB ,ΘC], itself constitutes a superwindow. The shuffling pattern π = [3, 1, 2]
applied to θ = [ΘA,ΘB ,ΘC] swaps entire superwindows to give Sk1

(θ) = [ΘC ,ΘA,ΘB].

10

https://arxiv.org/abs/2004.10397

where

Figure 3: FedPerm example with k1 = 3 and d = 12. The red boxes are showing the windows that
the parameters inside them are going to be shuffled with the same shuffling pattern π.

Shuffling of superwindows, instead of individual parameters, leads to a significant reduction in
the computation (and communication) overheads for FedPerm clients. However, this comes at the
cost of smaller privacy amplification. Corollary A.1 shows the privacy amplification of FedPerm
from εd-LDP to (εℓ, δℓ)-DP after superwindow shuffling (with window size k1). After applying
the randomizer R that is εd-LDP on the local parameters, each superwindow is εw-LDP where
εw = w ·εwd = d

k1
·εwd = εd

k1
. Since we are shuffling the superwindows, we can derive Corollary A.1

for FedPerm by setting the shuffling pattern size to k1 from Corollary 2.1.

Corollary A.1 For FedPerm F = A ◦ Sk1
◦ Rw with window size k1, where Rw is εw-LDP and

εw ≤ log (k1/ log (1/δℓ))/2, the amplified privacy is εℓ = O((1 ∧ εw)e
εw
√
log (1/δℓ)/k1.

A.2 FedPerm with Multiple Shuffling Patterns

An additional way to adjust the computation/communication vs. utility trade off is by using multiple
shuffling patterns. Each FedPerm client chooses k2 shuffling patterns {π1, . . . , πk2

} uniformly at
random where each πi = RANDOMPERMUTATIONS[1, k1] for 1 ≤ i ≤ k2. Then, each FedPerm
client partitions the d parameters into d/k1 windows, where it permutes the parameters of window k
(1 ≤ k ≤ d/k1) with shuffling pattern πi s.t. i = k mod k2. In this case, each FedPerm client needs
k2 · k21 encryptions to generate the PIR queries.

Figure 4 shows FedPerm for d = 12, k1 = 3 and k2 = 2, i.e., there are two shuffling patterns π1

(shown with red box) and π2 (shown with blue box) and each one has 3 shuffling indices. In this
example, the client partitions the 12 parameters into 4 windows that it shuffles with π1 (1st and
3rd windows) and π2 (2nd and 4th windows). This example is equivalent to an FL scenario with
two external inter-model shufflers (with shuffling patterns π1, π2) and three FL clients (A,B,C).
Each client sends 2 (w = d/(k1k2)) parameters to each shuffler for shuffling with other clients.
Two different shuffling patterns π1 and π2 are applied on [ΘA1,ΘB1,ΘC1] and [ΘA2,ΘB2,ΘC2]
respectively.

where

Figure 4: FedPerm example with k1 = 3 and k2 = 2. We have two shuffling patterns π1 and π2

shown with red and blue boxes.

When we have k2 shuffling patterns and each shuffling pattern has k1 indices, the size of each
superwindow is w = d/(k1k2). Therefore, each client perturbs each superwindow with a randomizer
Rw that satisfies εw-LDP where εw = w · εwd = d

k1k2
· εwd = εd

k1k2
. Take εw to Corollary 2.1 on the

superwindows to find the amplified local privacy and then using strong composition in Lemma E.2
we can easily derive the Theorem A.2 for FedPerm with Sk2

k1
.

11

Theorem A.2 For FedPerm F = A ◦ Sk2

k1
◦ Rw with window size k1, and k2 shuffling patterns,

whereRw is εw-LDP and εw ≤ log (k1/ log ((k2 + 1)/δℓ))/2, the amplified privacy is εℓ = O((1∧
εw)e

εw log (k2/δℓ)
√
k2/k1).

A.3 Privacy Analysis

In Figure 5, we show the relationship of our introduced variables k1, k2, εd and d on the privacy
amplification in FedPerm. Figure 5a shows the privacy amplification effect from εd-LDP to (εℓ, δℓ)-
DP for the local model updates after shuffling with k2 shuffling patterns each with size of k1. We can
see that each client can use larger shuffling patterns (i.e. , increasing k1) or more shuffling patterns
(i.e., increasing k2) and get larger privacy amplification. However, this comes with a price where this
imposes more computation/communication burden on the clients to create the PIR queries as they
need to encrypt k2 × k21 values and send them to the server, and it also imposes higher computation
on the server as it should multiply larger matrices. Figure 5b shows the amplification of privacy for
fixed value of k1 = 100, k2 = 10 for various model sizes. From this figure we can see that if we want
to provide same privacy level for larger models, we need to increase values of k1 or k2 (i.e. more
computation/communication cost).

(a) Impact of k1 and k2, (b) Impact of d and εwd.

Figure 5: Privacy amplification of FedPerm from εd-LDP to (εℓ, δℓ)-DP. We illustrate the overall
amplification with Bennett inequality for the Laplace Mechanism.

B Missing Details of FedPerm Correctness

Note that for every client u and every round t, decrypting the multiplication of the encrypted binary
masks to the shuffled parameters produces the original unshuffled parameters. It means that for
ytu = DEC (ctu × ỹtu). So for any (ỹ, c,) we have:

DEC (c× ỹ) =

DEC

ENC(⃗bπ1)

ENC(⃗bπ2)
. . .

ENC(⃗bπd)

×

 ỹ1
ỹ2
. . .
ỹd

 =

DEC

ENC[0] . . . ENC[1] . . . ENC[0]

ENC[0] . . . ENC[1] . . . ENC[0]
.

ENC[0] . . . ENC[1] . . . ENC[0]

×

y
π
1

yπ
2

. . .
yπ
d

 =

DEC
([

ENC[y1] ENC[y2] . . . ENC[yd]
])

=[
y1 y2 . . . yd

]

(2)

Correctness of Aggregation: In Equation 2, we show that ∀t ∈ [T], u ∈ U ytu = DEC (ctu × ỹtu).
Based on the two main properties of a HE system (a) m1 × m2 ← DEC (ENC[m1]×m2), (b)
m1 +m2 ← DEC (ENC[m1] + ENC[m2]), and Equation 2, we can derive the Equation 3:

12

DEC

(
1

n

∑
u∈U

(ctu × ỹtu)

)
=

1

n

∑
u∈U

ytu (3)

C Missing Experiments

C.1 Time Analysis

We evaluate the impacts of our hyperparameters k1, k2, n, and ds on the encryption, decryption
and sever aggregation time in Figure 6. We use Paillier encryption system and we use a key size
of 2048 bits in our experiments. For measuring time, we use 64CPUs and 64GB memory for the
client and server simulations. Note that we opt to not use GPU as model training is not a bottleneck
in our system compared to HE operations. Also note that these figures are data independent as we
are working with encryption and decryption and homomorphic multiplication with plaintext and
homomorphic addition.

(a) Impact of k1. (b) Impact of k2.

(c) Impact of d. (d) Impact of n.

Figure 6: Client encryption, decryption, and server aggregation time in FedPerm.

Client encryption time: In FedPerm, each client must do k21 · k2 encryptions for its query, therefore
client encryption time has a quadratic and linear relationship with window size (k1) and number of
shuffling patterns (k2) respectively (Figures 6a and 6b). We also show in Figure 5 that increasing the
k1 has more impact (close to quadratic impact) compared to increasing k2 on the privacy amplification.
This means that if we invest more computation resources on the clients and are able to do more
encryption, we get greater privacy amplification by parameter shuffling. For instance, when we
increase the k1 from 100 to 200 (while fixing k2 = 1), the average client encryption time increases
from 3.4 to 13.1 seconds for d = 7850 parameters. And while fixing the k1 = 100, if we increase the
number of shuffling patterns from 1 to 10, the encryption time goes from 3.4 to 32.7 seconds. When
we fix the value of k1 and k2, the number of encryption is fixed at the clients, so the encryption time
would be constant if we increase the number of parameters (d) each round (Figure 6c).

Client decryption time: Changing k1, k2, and n does not have any impact on decryption time,
as each client should decrypt d parameters (Figures 6a and 6b). In figure 6c, we show the linear

13

relationship of decryption time and number of parameters. For instance by increasing the number of
parameters from 105 to 106, the decryption time increases from 1.01 to 9.91 seconds.

Server aggregation time: In FedPerm, the server first multiplies the encrypted binary mask to the
corresponding shuffled model parameters for each client participating in the training round, and then
sums the encrypted unshuffled parameters to compute the encrypted global model. We employ joblib
to parallelize matrix multiplication over superwindows. Thus, larger the superwindows greater is the
parallelism. However, as we increase k1 and/or k2 the superwindow size goes down, and hence the
parallelism, which leads to increase in running time as observed in Figures 6a and 6b. Moreover,
increasing n, d has a linear relationship with server aggregation time (Figure 6c and 6d). For instance,
when we increase the n from 5 to 10 the server aggregation time increases from 157.47 to 326.72
seconds for d = 7850, k1 = 100, and k2 = 1.

Figure 7: Test accuracy per FL round for different FL algorithms for MNIST over 15 clients.

C.2 Accuracy per FL round

In Figure 7, we show the test accuracy for different algorithms per FL round when the total privacy
budget is fixed to ε = 4.0.

D Threat Models

In this section, we describe two threat models that are of interest to our work, and illustrated in
Figure 8.

D.1 Honest-but-Curious Aggregator

In this threat model, we assume that the server correctly follows the aggregation algorithm, but may
try to learn clients’ private information by inspecting the model updates sent by the participants. This
is a common assumption that previous works [53, 51, 11, 44] also consider. For creating the PIR
queries, we use Paillier [39] homomorphic encryption. We explain different homomorphic encryption
systems that we use in Appendix E.6. Before starting FedPerm, we need a key server to generate and
distribute the keys for the homomorphic encryption (HE). A key server generates a pair of public and
secret homomorphic keys (Pk, Sk), sends them to the clients, and sends only the public key to the
server. Either a trusted external key server or a leader client can be responsible for this role. For the
leader client, similar to previous works [53], before the training starts, the FL server randomly selects
a client as the leader. The leader client then generates the keys and distributes them to the clients and
the server as above.

The steps of FedPerm for this threat model (Figure 8(a)) are as follows: (1) The pair of keys are
distributed by the key server to all the clients. (2) In each round of training, the clients learn their
local updates, generate encrypted PIR query and shuffled parameters, and send them to the server.

14

(a) Honest-but-Curious aggregator

Key ServerFL Server

(1)
(3) (2)

FL Server

(1)(5)(2)

(b) Curious and colluding participants

Key Server

(3) (4)

Figure 8: Different threat models.

Next, the server aggregates the updates, and sends the aggregated update to the clients. (3) Each
client can decrypt the encrypted global parameters received from the server using the private key and
updates its model.

D.2 Curious and Colluding Clients

In this threat model, we assume that some clients may collude with the FL server to get private
information about a victim client by inspecting its model update. For this threat model, we use
thresholded Paillier [15]. In the thresholded Paillier scheme, the secret key is divided to multiple
shares, and each share is given to a different client. For this threat model, we need an external key
server that generates the keys and sends (Pk, Ski) to each client, and sends the public key to the
server. Now each client can partially decrypt an encrypted message, but if less than a threshold, say t,
combine their partial decrypted values, they cannot get any information about the real message. On
the other hand, if we combine ≥ t partial decrypted values, we can recover the secret. We explain
how thresholeded Paillier scheme works in Appendix E.6.

The steps of FedPerm for this threat model (Figure 8(b)) are as follows: (1) The pairs of keys are
distributed to the clients by the key server. (2) In each round of training, the clients learn their local
updates, generate encrypted PIR query and shuffled parameters, and send them to the server. Next,
the server aggregates the local updates to produce global model update (which is encrypted). (3)
The server randomly chooses t clients to partially decrypt the global model update. The FedPerm
server sends the encrypted global update to these clients. (4) Each client decrypts the global model
with its specific partial secret key Ski, and sends the result back to the server. (5) The server first
authenticates each partial decryption that is done by the true Ski (by a zero-knowledge proof provided
by thresholded Paillier [15]). Then the FedPerm server combines the partial decrypted updates and
broadcasts plain unshuffled model updates to all the clients for the next round of FedPerm.

At present our implementation of FedPerm does not support this threat model, and we leave it for
future work.

E Background

E.1 Central Differential Privacy in FL (CDP-FL)

In CDP-FL, the server provides participant-level DP by the perturbation. Formally, consider adjacent
datasets (X,X ′ ∈ Rn×d) that differ from each other by the data of one federation client, then:

Definition E.1 (Centralized Differential Privacy (CDP)) A randomized mechanismM : X → Y
is said to be (ε, δ)-differential private if for any two adjacent datasets X,X ′ ∈ X , and any set

15

Y ⊆ Y:
Pr[M(X) ∈ Y] ≤ eε Pr[M(X ′) ∈ Y] + δ (4)

where ε is the privacy budget (lower the ε, higher the privacy), and δ is the failure probability.

Algorithm 2 shows how CDP-FL works which is also discussed in [12, 22, 36]. In CDP-FL, the
server receives model updates capped by norm C, and after averaging them, it adds i.i.d sampled
noise to the parameters θt+1

g ← θtg +
1
n

∑
u∈U θtu +N (0, σ2I) where σ ← ∆2

ε

√
2ln(1.25)/δ and

the ℓ2 sensitivity is ∆2 = C.

Algorithm 2 Central Differential Privacy in FL (CDP-FL)
Input: number of FL rounds T , number of local epochs E, number of all the clients N , number
of selected users in each round n, total privacy budget TP , probability of subsampling clients q,
learning rate η, noise scale z, bound C
Output: global model θTg

1: θ0g ← Initialize weights
2: Initialize MomentAccountant(ε, δ,N)
3: for each iteration t ∈ [T] do
4: U ← set of n randomly selected clients out of N total clients with probability of q
5: pt ←MomentAccountant.getPrivacySpent() {% privacy budget spent till this round}
6: if pt > TP then
7: return θTg {% if spent privacy budget is passed over the threshold finish FL training}
8: end if
9: for u in U do

10: θ ← θtg
11: for local eopoch e ∈ [E] do
12: for batch b ∈ [B] do
13: θ ← θ − η▽L(θ, b)
14: △← θ − θtg
15: θ ← θtg +△min (1, C

||△||2
)

16: end for
17: end for
18: Client u sends θtu = θ − θtg to the server
19: end for
20: σ ← zC/q
21: θt+1

g ← θtg +
1
n

∑
u∈U θtu +N (0, σ2I)

22: MomentAccountant.accumulateSpentBudget(z)
23: end for
24: return θTg

E.2 Laplace Mechanism

The most common mechanism for achieving pure εℓ-DP is Laplace mechanism, where

Definition E.2 Let f : Xn → Rk. The ℓ1-sensitivity of f is:

∆
(f)
1 = max

X,X′
||f(X)− f(X ′)||1 (5)

where X,X ′ ∈ Xn are neighboring datasets differing from each other by a single data record.

Sensitivity gives an upper bound on how much the output of the randomizer can change by switching
over to a neighboring dataset as the input.

Definition E.3 Let f : Xn → Rk. The Laplace mechanism is defined as:

R(X) = f(X) + [Y1, . . . , Yk] (6)

Where the Yis are drawn i.i.d from Laplace(∆(f)/ε) random variable. This distribution has density

of p(x) = 1
2b exp

(
− |x|b

)
where b is the scale and equal to ∆(f)/ε.

16

In FedPerm, each client i applies the Laplace mechanism as a randomizerR on its local model update
(xi). Each model update contains d parameters in range of [0, 1], so the sensitivity of the entire input
vector is d. It means that applying εd-DP on the vector xi is equal to applying εwd = εd/d on each
parameter independently. Therefore, applying εd-DP randomizerR on the vector xi means adding
noise from Laplace distribution with scale b = 1

εwd
= 1

εd
d

= d
εd

.

E.3 Privacy Composition

We use following naive and strong composition theorems [18] in this paper:

Lemma E.1 (Näive Composition) ∀ε ≥ 0, t ∈ N, the family of ε-DP mechanism satisfies tε-DP
under t-fold adaptive composition.

Lemma E.2 (Strong Composition) ∀ε, δ, δ′ > 0, t ∈ N, the family of (ε, δ)-DP mechanism satisfies
(
√
2t ln (1/δ′) · ε+ t · ε(eε − 1), tδ + δ′)-DP under t-fold adaptive composition.

E.4 Robustness to poisoning attacks

Most of the distributed learning algorithms, including FedAvg [32], operate on mutually untrusted
clients and server. This makes distributed learning susceptible to the threat of poisoning [25, 41].
A poisoning adversary can either own or control a few of FL clients, called malicious clients, and
instruct them to share malicious updates with the central server in order to reduce the performance of
the global model. There are two approaches to poisoning FL: untargeted [7, 20, 40] attacks aim to
reduce the utility of global model on arbitrary test inputs; and backdoor [3, 46, 50] attacks aim to
reduce the utility on test inputs that contain a specific signal called the trigger.

In order to make FL robust to the presence of such malicious clients, the literature has designed
various robust aggregation rules (AGR) [10, 33, 52, 35], which aim to remove or attenuate the updates
that are more likely to be malicious according to some criterion. For instance, Multi-krum [10]
repeatedly removes updates that are far from the geometric median of all the updates, and Trimmed-
mean [52] removes the largest and smallest values of each update dimension and calculates the mean
of the remaining values. It is not possible to use these AGRs in secure aggregation as the parameters
are encrypted.

E.5 Private Information Retrieval (PIR)

Private information retrieval (PIR) is a technique to provide query privacy to users when fetching
sensitive records from untrusted database servers. That is, PIR enables users to query and retrieve
specific records from untrusted database server(s) in a way that the servers cannot identify the records
retrieved. There are two major types of PIR protocols. The first type is computational PIR (cPIR) [13]
in which the security of the protocol relies on the computational difficulty of solving a mathematical
problem in polynomial time by the servers, e.g., factorization of large numbers. Most of the cPIR
protocols are designed to be run by a single database server, and therefore to minimize privacy
leakage they perform their heavy computations on the whole database (even if a single entry has
been queried). Most of these protocols use homomorphic encryption (Section E.6) to make their
queries private. The second major class of PIR is information-theoretic PIR (ITPIR) [34]. ITPIR
protocols provide information-theoretic security, however, existing designs need to be run on more
than one database servers, and they need to assume that the servers do not collude. Our work uses
computational PIR (cPIR) protocols to make the shuffling private.

E.6 Homomorphic Encryption (HE)

Homomorphic encryption (HE) allows application of certain arithmetic operations (e.g., addition
or multiplication) on the ciphertexts without decrypting them. Many recent works [13] advocate
using partial HE, that only supports addition, to make the FL aggregation secure. In this section we
describe two important HE systems that we use in our paper.

E.6.1 Paillier

An additively homomorphic encryption system provides following property:

17

Enc(m1) ◦ Enc(m2) = Enc(m1 +m2) (7)
where ◦ is a defined function on top of the ciphertexts.

In these works, the clients encrypt their updates, send them to the server, then the server can calculate
their sum (using the ◦ operation) and sends back the encrypted results to the clients. Now, the clients
can decrypt the global model locally and update their models. Using HE in these scenario does
not produce any accuracy loss because no noise will be added to the model parameters during the
encryption and decryption process.

E.6.2 Thresholded Paillier

In [15], the authors extend the Paillier system and proposed a thresholded version. In the thresholded
Paillier scheme, the secret key is divided to multiple shares, and each share is given to a different
participant. Now each participant can partially decrypt an encrypted message, but if less than a
threshold, say t, combine their partial decrypted values, they cannot get any information about the
real message. On the other hand, if we combine ≥ t partial decrypted values, we can recover the
secret. In this system, the computations are in group Zn2 where n is an RSA modulus. The process is
as follows:

• Key generation: First find two primes p and q that satisfies p = 2p′+1 and q = 2q′+1 where
p′, q′ are also prime. Now set the n = pq and m = p′q′. Pick d such that d = 0 mod m

and d = 1 mod n2. Now the key server creates a polynomial f(x) =
∑k−1

i=0 aix
i mod n2m

where ai are chosen randomly from Z∗n2m and the secret is hidden at a0 = d. Now each
secret key share is calculated as si = f(i) for ℓ shareholders and the public key is n. For
verification of correctness of decryption another public value v is also generated where the
verification key for each shareholder is vi = v∆si mod n2 and ∆ = ℓ.

• Encryption: For message M , a random number r is chosen from Z∗n2 and the output
ciphertext is c = gM · rn2

mod n2.
• Share decryption: The ith shareholder computes ci = c2∆si for ciphertext c. And for

zero-knowledge proof, it provides logc4 (c
2
i) = logv (vi) which provides guarantee that the

shareholder really uses its secret share for decryption si.
• Share combining: After collecting k partial decryption, the server can combine them into the

original plain-text message M by c′ = Πi∈[k]c
2λS

0,i

i mod n2 where λS
0,i = ∆Πi′∈[k],i′ ̸=i

−i
i−i′ .

And use it to generate the M .

F Discussion and Future Work

Utilizing recursion in cPIR. A solution to reduce the number encryptions and upload bandwidth
at the clients would be using recursion in our cPIR. In this technique, the dataset is represented by
a k3-dimensional hypercube, and this allows the PIR client to prepare and send k3

k3
√
d encrypted

values where k3 would be another hyperparameter. For future work, we can use this technique and
reduce the number of encryptions which makes the upload bandwidth consumption lower too. For
instance, if we have one shuffling pattern k2 = 1, the number of encryption decreases from k1d to
k3

k3
√
k1d.

Plugging newer PIR protocol. FedPerm utilizes cPIR for private aggregation, and in particular
we use [13] which is based on Paillier. However, any other cPIR protocol can be used in FedPerm.
For example, SealPIR [2] can be used to reduce the number of encryptions at the client. SealPIR is
based on SEAL which is a lattice based fully HE. The authors show how to compress the PIR queries
and achieve size reduction of up to 274×. We defer analyzing FedPerm with other cPIR schemes to
future work.

Combination of an external client shuffler for more privacy amplification. For further privacy
amplification, we can use an external shuffler that shuffles the n sampled clients’ updates similar to
FLAME [30]. For future work, we can use double amplification by first shuffling the parameters
at the clients (i.e., detaching the parameter values from their position) and then shuffle the client’s
updates at the external shuffler (i.e., detaching the updates from their client’s ID).

18

	Introduction
	Preliminaries
	Privacy Amplification by Shuffling Clients' updates

	FedPerm: Private and Robust Federated Learning by parameter Permutation
	FedPerm: Design
	Computation/Communication and Utility Tradeoff in FedPerm

	Experiments
	Conclusion
	Computation/Communication and Utility Tradeoff in FedPerm
	FedPerm with Smaller Shuffling Pattern
	FedPerm with Multiple Shuffling Patterns
	Privacy Analysis

	Missing Details of FedPerm Correctness
	Missing Experiments
	Time Analysis
	Accuracy per FL round

	Threat Models
	Honest-but-Curious Aggregator
	Curious and Colluding Clients

	Background
	Central Differential Privacy in FL (CDP-FL)
	Laplace Mechanism
	Privacy Composition
	Robustness to poisoning attacks
	Private Information Retrieval (PIR)
	Homomorphic Encryption (HE)
	Paillier
	Thresholded Paillier

	Discussion and Future Work

