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Abstract
001

The state-of-the-art models for coreference resolu-002

tion are based on independent mention pair-wise003

decisions. We propose a modelling approach that004

learns coreference at the document-level and takes005

global decisions. For this purpose, we model coref-006

erence links in a graph structure where the nodes007

are tokens in the text, and the edges represent the008

relationship between them. Our model predicts009

the graph in a non-autoregressive manner, then it-010

eratively refines it based on previous predictions,011

allowing global dependencies between decisions.012

The experimental results show improvements over013

various baselines, reinforcing the hypothesis that014

document-level information improves conference015

resolution.016

1 Introduction017

Current state-of-the-art (SOTA) solutions for coref-018

erence resolution such as (Toshniwal et al., 2020;019

Xu and Choi, 2020; Wu et al., 2020) formulate the020

problem in an end-to-end manner where the models021

jointly learn to detect mentions and link coreferent022

mentions. The objective is to predict the antecedent023

of each mention-span in a document, so the model024

performs pair-wise decisions of all mentions. After025

having the model predictions, related mentions are026

grouped into clusters. Under this scenario, each027

decision (i.e., whether two mentions are related to028

the same entity or not) is independent. Lee et al.029

(2018) proposed an iterative method to update the030

representation of a mention with information of its031

probable antecedents. However, the final decisions032

are still made locally.033

We propose a modeling approach that learns034

coreference at the document-level and takes global035

decisions. We propose to model mentions and036

coreference links in a graph structure where the037

nodes are tokens in the text, and the edges represent038

Figure 1: Example of a graph structure for coreference.
Mention spans are shown in bold, and colors represent
entity clusters. The mention heads are underlined.

Figure 2: Example of a graph in matrix representation.
The connection types are encoded as, 0: no links, 1:
mention links, 2: coreference links.

the relationships between them. Figures 1 and 2 039

show a short example taken from the CoNLL 2012 040

dataset (Pradhan et al., 2012) showing the graph in 041

two perspectives. Figure 1 shows how the token 042

nodes in a text are connected with edges drawn 043

with arrows. We differentiate the connections be- 044

tween words in a coreference mention ‘mention 045

links’, and the ones among mentions in a cluster 046

‘coreference links’ (see Sec. 4). Figure 2 shows the 047

same graph in a matrix representation, where the 048

number in a cell indicates the type of relation be- 049

tween the row and the column. Our model receives 050

a document as input then predicts and iteratively 051

refines the graph of mentions and coreference links. 052

We follow a similar approach to the Graph-to- 053

Graph Transformer (G2GT) proposed in (Moham- 054

madshahi and Henderson, 2021, 2020) for syntactic 055
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parsing, but instead of encoding sentences, we en-056

code documents. Our model predicts the graph in a057

non-autoregressive manner, then iteratively refines058

it based on previous predictions. This recursive059

process introduces global dependencies between060

decisions. Unlike (Mohammadshahi and Hender-061

son, 2021), we define different structures for input062

and output graphs, to reflect the different roles of063

these graphs. To ensure that locality in the input064

graph reflects all the relevant relationships, the in-065

put graph encodes relations for all mention tokens.066

This makes the encoding process easier. To pro-067

vide a unique specification of the target graph, the068

output only encodes a minimal set of connections.069

This facilitates prediction. We initialize the Trans-070

former with pre-trained language models, either071

BERT (Devlin et al., 2019), or SpanBERT (Joshi072

et al., 2020).073

Another difference with (Mohammadshahi and074

Henderson, 2021) is that our model predicts two075

levels of representation. While they predict the076

whole graph at each iteration, during the first iter-077

ation our model only predicts edges that identify078

mention-spans. This is because mention detection079

is a sentence-level phenomenon whose outputs are080

required as inputs to coreference resolution, which081

is a discourse-level phenomenon. But we do not or-082

ganise these two tasks in a pipeline. Starting at the083

second iteration, the model predicts the complete084

graph. This allows the model to refine mention de-085

cisions given coreference decisions, and vice versa.086

In this way, we propose to use iterative graph re-087

finement as an alternative to pipeline architectures088

for multi-level deep learning models. The iterative089

process finishes when there are no more changes in090

the graph or when a maximum number of iterations091

is reached.092

Ideally, the whole document should be encoded093

at once, but in practice there is a limit on the max-094

imum length. In order to deal with this issue, we095

propose two strategies: overlapping windows and096

reduced document. In the first strategy, we split097

documents into overlapping windows of the maxi-098

mum allowed size K. The segments overlap for a099

length K/2. At decoding time, segments are input100

in order, and we construct the final graph by joining101

all graphs from different segments. In the second102

strategy, we use two networks. The mention-span103

network is the previously described overlapping104

model, and we use it for predicting the first graph.105

For the second network, we reduce the document106

by including only the tokens of candidate mention- 107

spans, separated by a special token. This network 108

refines the initial graph for the following iterations. 109

The experiments show improvements over the 110

relevant baselines and state-of-the-art. They also 111

indicate that the models reach the best solution in a 112

maximum of three iterations. Given that we predict 113

the graph at once for each iteration, our model’s 114

complexity is lower than the baselines. Our contri- 115

butions are the following: 116

• We propose a novel modeling approach to 117

coreference resolution using a graph structure 118

and multi-level iterative refinement. 119

• We propose two iterative graph refinement 120

models that can predict the complete entity 121

coreference structure of a document. 122

• We show improvements over baseline models 123

and the relevant state-of-the-art. 124

2 Related Work 125

The first approaches to coreference resolution (CR) 126

were rule-based systems (Lappin and Leass, 1994; 127

Manning et al., 2014), but eventually, they were out- 128

performed by machine learning approaches (Aone 129

and William, 1995; McCarthy, 1995; Mitkov, 2002) 130

due to annotated corpora’s creation. In genral, there 131

are three coreference approaches : mention-pair, 132

entity-mention, and ranking models. Mention-pair 133

models set coreference as a binary classification 134

problem. The initial stage is the mention detection, 135

where the input is raw text, and the output is the 136

locations of each entity mention in the text. Men- 137

tion detection is done as an independent task in 138

a pipeline model (Soon et al., 2001) or as part of 139

an end-to-end model (Lee et al., 2017). The next 140

stage is the classification of mention pairs. At first, 141

the best classifiers were decision trees (Soon et al., 142

2001; McCarthy, 1995; Aone and William, 1995), 143

but later, neural networks became the SOTA. The 144

final stage is reconciling the pair-wise decisions to 145

create entity chains, usually by utilizing greedy al- 146

gorithms or clustering approaches. Entity-mention 147

models focus on maintaining single underlying en- 148

tity representation for each cluster, contrasting the 149

independent pair-wise decisions of mention-pair ap- 150

proaches (Clark and Manning, 2015, 2016). Rank- 151

ing models aim at ranking the possibles antecedent 152

of each mention instead of making binary decisions 153

(Wiseman et al., 2016). An alternative modeling 154
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approach is to perform clustering instead of classi-155

fication (Fernandes et al., 2012).156

SOTA models for CR are mostly based on Lee157

et al. (2017). They introduced the first end-to-end158

model that jointly optimizes mention detection and159

coreference resolution tasks. These neural network-160

based models also simplify the mention input rep-161

resentation to be word embedding vectors, instead162

of the traditional pipeline of different linguistic fea-163

ture extraction tools such as part-of-speech (POS)164

tagging and dependency parsing. The following165

models proposed improvements over this work.166

Later, (Lee et al., 2018) improved the previous167

model by introducing higher order inference so the168

entity’s mention representation will get iteratively169

updated with the weighted average of antecedent170

representations, where the weights are the predic-171

tions from the model at the previous iteration. This172

contrasts with our approach in that we iterate over173

the whole coreference link graph and we perform174

discrete decisions at each iteration. Fei et al. (2019)175

use reinforcement learning to directly optimize the176

model on the evaluation metrics. Joshi et al. (2019)177

uses BERT embeddings (Devlin et al., 2019) as178

input. Joshi et al. (2020) introduced a new Span-179

BERT embedding model, which is shown to outper-180

form BERT for the CR task. Xu and Choi (2020)181

showed that higher order inference has low impact182

on strong models such as SpanBert. Toshniwal183

et al. (2020) proposed a bounded memory model184

trained to manage limited memory by learning to185

forget entities. Finally, Wu et al. (2020) formulated186

the problem of coreference resolution as question-187

answering and trained a model for span prediction.188

This model has the advantage of being pretrained189

with larger data-sets from the question-answering190

task.191

3 Baseline: Neural Coreference192

Resolution193

Neural coreference resolution, as formulated in194

(Lee et al., 2017, 2018), is a mention-pair approach.195

It uses an exhaustive method defining mentions as196

any text span of any size in a document. There,197

a document D represents a sequence of tokens of198

size N . The objective is to assign an antecedent199

yi to each of the M text spans mi in D. The200

set of possible antecedents of the span mi is de-201

noted as Y(i). This set contains all text spans202

with index less than i, plus a null antecedent ϵ,203

Y(i) = {ϵ,m1, ...,mi−1}. The null antecedent is204

assigned when: (a) the span is not an entity men- 205

tion, (b) the span is the first mention of an entity 206

in the document. The final mention clusters are 207

constructed greedily by grouping connected spans 208

based on the model predictions during decoding 209

time. 210

The model is trained to learn a conditional proba- 211

bility distribution over documents p(y1, ..., yn|D), 212

assuming independence among each decision of 213

antecedent assignment yi, as follows: 214

p(y1, ..., yM |D) =

M∏
i=1

p(yi|D) (1) 215

In (Lee et al., 2018), the probability distribution 216

p(yi|D) is inferred over T iterations of the model 217

over the same input document. At each iteration 218

t, the span representations are updated with the 219

weighted average of all possible antecedents at time 220

t−1 where the weights are given by the probability 221

distribution of the model at time t− 1. They called 222

this model high-order coreference resolution since 223

each mention representation considers information 224

from its probable antecedents. 225

The training optimization is done using cross- 226

entropy. Given that a mention-span mi can have 227

more than one true antecedent, the loss considers 228

the sum of probabilities of all true antecedents in 229

the annotated data: 230

log
M∏
i=1

∑
yi∈Y(i)∩C(i)

p(yi|D) (2) 231

where C(i) indicates the cluster of mention-spans 232

that includes mi in the annotated data. If the span 233

does not belong to any cluster or all its antecedents 234

have been pruned, then the span is assigned to the 235

null cluster C(i) = {ϵ}. 236

This model’s complexity is of the order O(N4), 237

where N is the document length. The complex- 238

ity is computed by considering all possible text 239

spans M of the document, so O(M) = O(N2). 240

Then, it considers all possible combinations of 241

span-antecedents O(M2). The model prunes spans 242

and candidate antecedents to predetermined maxi- 243

mum numbers in order to maintain computational 244

efficiency. 245

4 Graph Modeling 246

We propose to model the set of coreference links 247

of a document in a graph structure where the nodes 248
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are tokens1 and the edges are links of different249

types. Given a document D = [x1, ..., xN ] of size250

N , the coreference graph is defined as the matrix251

G ⊂ NN×N of links between tokens. Here, the252

relation type between two tokens, xi and xj , is253

encoded with integers and is denoted as gi,j ∈254

{0, 1, 2}. We define three relation types: (0) no255

link, (1) mention link, and (2) coreference link, as256

illustrated in Figure 2.257

Mention links This type of link serves to identify258

mentions. We define mention links in two different259

manners depending on whether the graph is an260

input or output of the model for functional reasons.261

When the graph is an input Gin, there is a directed262

link from each mention’s token to the mention head,263

including the head to itself. When the graph is the264

model’s output Gout, there is only one directed link265

from the last token of the mention-span to the first266

token. Both encoding methods define a mention-267

span uniquely, even when having nested mentions;268

every mention has a unique start-end combination269

and a unique head. The model utilizes the output270

for prediction, so it is simpler to predict one single271

link, whereas, in the input, the model uses links to272

all tokens to provide a more direct representation273

of the role of every token in the mention.274

Mention heads We simplified the head identifi-275

cation process by considering the first token of a276

mention span as the head. Although this method277

is naive, experiments show that this approximation278

works well enough in practice. However, as some279

spans can potentially have the same first token in280

case of nested mentions, we fix this issue by assign-281

ing the next token as the head if the first is already282

the head of any other mention.283

Coreference links This type of link defines the284

relationship between a mention and each of its an-285

tecedents. We also define coreference links in two286

different manners depending on whether the graph287

is an input or output of the model. When the graph288

is input, there is a link from a mention head token to289

the head of each mention in the same cluster. When290

the graph is a model’s output, the mention should291

be connected to at least one of its antecedents. If292

the mention has no antecedent, or corresponds to293

the first mention of an entity in the text, then it is294

connected to a null antecedent ϵ. We use all pos-295

1The tokenization of the words in the document, and thus
the nodes of the graph, are defined by the input format of the
relevant pre-trained Transformer model.

sible connections between mentions in an entity 296

cluster for the input so that the model receives a di- 297

rect input for each coreference relationship. On the 298

other hand, we consider that predicting at least one 299

connection of the mention to its cluster is sufficient 300

to specify the output graph. 301

The objective is to learn the conditional prob- 302

ability distribution p(G|D). This distribution is 303

initially approximated by assuming independence 304

among each relation gi,j as: 305

p(G|D) =

N∏
i=1

i∏
j=1

p(gi,j |D) (3) 306

The probability p(gi,j |D) is split in two cases: one 307

for mention links pm and the other for coreference 308

links pc. The mention link probability is defined as: 309

310

pm(gi,j=1|D) = σ(Wm · [hi, hj ]) (4) 311

where Wm is a parameter matrix, and hi and hj 312

are the hidden state representations of the tokens 313

xi and xj respectively. This probability indicates 314

whether there is a mention starting at position j 315

and ending at position i of the document D. The 316

optimization is done using binary-cross-entropy 317

lossm. 318

The coreference link probability is defined as: 319

pc(gi,j=2|D) =
exp(Wc · [hi, hj ])∑

j′∈A(i) exp(Wc · [hi, hj′ ])
(5) 320

where Wc is a parameter matrix, and hi and hj are 321

the hidden state representations of the tokens xi 322

and xj respectively. Similar to the baseline, we 323

denote A(i) as the set of all candidate antecedents 324

of xi. This set contains all mention heads with 325

an index less than i, plus a null head ϵ, A(i) = 326

{ϵ, xk|k < i and xk ∈ H(D) }, and H(D) is the 327

set of all candidate mention heads in the document. 328

The optimization is done with cross-entropy loss. 329

Given that a mention-span mi can have more than 330

one true antecedent, the loss considers the sum of 331

probabilities of all true antecedents in the annotated 332

data (as in Equation(2)): 333

lossc = log
∏

i∈H(D)

∑
j∈Y(i)∩Ĉ(i)

pc(gi,j |D) (6) 334

where Ĉ(i) indicates the annotated cluster of 335

mention-spans that includes mi in the annotated 336

data. If the mention does not belong to any clus- 337

ter, then the span is assigned to the null cluster 338
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Ĉ(i) = {ϵ}. The final loss is the sum of lossm and339

lossc.340

The token’s hidden state representations341

{h1, .., hN} are the last hidden layer of a Trans-342

former model. We use various pre-trained343

Transformer models to initialize the weight344

parameters, then fine-tune for the coreference task.345

5 Iterative Refinement346

The strong independence assumption made in Equa-347

tion (3) does not reflect the real scenario and could348

lead to poor performance. Therefore, we use an349

iterative refinement approach to model interdepen-350

dencies between relations, similar to G2GT (Mo-351

hammadshahi and Henderson, 2021). Under this352

approach, the model makes T iterations over the353

same document D. At each iteration t, the pre-354

dicted coreference graph Gt is conditioned on the355

previously predicted one Gt−1. The model’s con-356

ditional probability distribution is now defined as357

follows:358

p(Gt|D,Gt−1) =
N∏
i=1

i∏
j=1

p(gi,j |D,Gt−1) (7)359

This means that the graph should be input to the360

Transformer model (Vaswani et al., 2017). Follow-361

ing (Mohammadshahi and Henderson, 2021), the362

graph is encoded by inputting an embedding for the363

type of each relation into the self-attention function364

of the Transformer :365

Attention(Q,K, V, Lk, Lv) =

softmax(
Q · (K + Lk)

⊺

√
d

) · (V + Lv) (8)366

367 where Lv = E(Gt−1) ·Wv368

Lk = E(Gt−1) ·Wk369

where E is a matrix of embeddings which encode370

the types of links in the graph, as illustrated in371

Figure 2. Thus, the relationship between a pair of372

tokens is encoded as an embedding vector which373

is input when computing the attention function for374

that pair of tokens. Wk,Wv are weight matrices375

that serve to specialize E(Gt−1) to be either key or376

value vectors. The complexity of our model is of377

the order of O(N2×T ), where N is the document378

length, and T is the number of refinement iterations379

of the model.380

To illustrate the iterative refinement of a graph,381

Figure 3 shows an example of two iterations of the382

Figure 3: Example of iterations with G2GT.

Figure 4: Example of iterations with G2GT in two
stages.

model. The mention links are indicated with solid 383

line arrows and the coreference links with dotted 384

arrows. The initial graph matrix Gin
0 is full of zeros, 385

so no connections are drawn. The first predicted 386

graph Gout
1 only has mention-links because initially 387

there were no mention heads to be connected. This 388

graph is transformed to serve as input Gin
1 for the 389

next iteration. Finally, during the second iteration, 390

the model predicts the coreference graph Gout
2 . The 391

model can continue iterating for a maximum of T 392

times. 393

6 Architectures 394

There exists in practice a maximum length for en- 395

coding a document due to limited hardware mem- 396

ory. In this section, we describe two strategies to 397

manage this issue: overlapping windows and re- 398

duced document. In the experiments we also report 399

results for a naive strategy of truncating the doc- 400

uments at the maximum segment length of K for 401

both training and testing. 402

6.1 Overlapping Windows 403

Here, we split the documents into overlapping seg- 404

ments of the maximum size K, with an overlap of 405

K/2 tokens. The segments are encoded individ- 406

ually in our G2GT model. During training, each 407

segment is treated as an independent sample. How- 408

ever, during decoding, the segments are decoded in 409
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order. The subgraph corresponding to the overlap-410

ping part is input to the next segment. The union411

of the segmented graphs forms the final graph.412

6.2 Reduced Document413

This model has two parts; one to detect mentions414

and the other to perform coreference resolution.415

The mention detection is similar to the previously416

described model. The coreference resolution part417

receives a shorter version of the document as input.418

The complete model is described in the following:419

Mention Detection This Transformer is non-420

iterative so it corresponds to the definition in Equa-421

tion (3). To encode the document, we apply over-422

lapping windows, as in the previous section. For423

prediction, we used the soft-target method pro-424

posed in (Miculicich and Henderson, 2020). This425

method enables the model to increase the recall426

of detection. Given that the candidate mentions427

will be fixed for the coreference resolution part, we428

need to detect most of them here.429

Coreference Resolution This part is a G2GT430

with iterative refinement. The input is a shorter431

version of the document obtained by concatenating432

the tokens from candidate mention-spans with a433

separation token in between and removing all other434

tokens. To maintain coherence in the document,435

we modify the token input representation to the436

sum of three vectors: (a) a token embedding, (b) an437

embedding of the token’s position in the original438

document, so we retain information of distance be-439

tween mentions, and (c) the token’s contextualized440

representation obtained from the mention detection441

part where the original document is encoded. This442

second part predicts only coreference links, but the443

input graph contains both candidate mentions and444

coreference links. The set of candidate mentions445

remains the same across all iterations of this second446

part, but the mentions are refined in the sense that447

the final output only includes the mentions which448

are involved in the final coreference links.449

Figure 4 shows an example of this architecture450

with one iteration over a document. The mention451

links are indicated with solid line arrows and the452

coreference links with dotted arrows. The first453

model predicts the graph of mention-spans Gout.454

This graph is transformed into the input format455

for the next model Gin
0 . Then, the second model456

predicts the graph of coreference Gout
1 . Note that457

this coreference resolution model can continue it-458

erating for T times. The final coreference graph459

Train Dev. Test Total
# documents 2,802 343 348 3,493
# words 1.3 M 160 K 170 K 1.6 M
Avg. length 464 466 488 458
# entity changes/clusters 35 K 4.5 K 4.5 K 44 K
# coreference links 120 K 14 K 15 K 150 K
# mentions 155 K 19 K 19 K 194 K

Table 1: Dataset statistics and splits.

Model Iter. MUC B3 CEAFϕ4 Avg. F1
G2GT T = 2 75.7 68.4 65.2 69.8
BERT-base T = 3 76.9 69.3 66.0 70.7
truncated T = 4 77.2 69.7 66.3 71.0

T = 5 77.2 69.7 66.3 71.0
G2GT T = 2 80.6 69.8 67.4 72.6
BERT-base T = 3 81.6 71.0 68.6 73.7
overlap T = 4 81.5 70.9 68.7 73.7

T = 5 81.4 70.6 68.7 73.5
G2GT T = 2 79.2 76.1 68.5 71.6
BERT-base T = 3 80.0 69.6 70.2 73.3
reduced T = 4 81.9 70.1 71.2 74.4

T = 5 81.9 70.1 71.2 74.4

Table 2: Refinement iterations T on the development
set (CoNLL 2012).

is the output after the final iteration of the second 460

model. The final set of mentions is only a sub- 461

set of the mention candidates output by the first 462

model, namely those mentions which participate in 463

coreference links. 464

7 Experimental Setting 465

7.1 Dataset 466

We use the CoNLL 2012 corpus (Pradhan et al., 467

2012). It contains data from diverse domains e.g., 468

newswire, magazines, conversations. We experi- 469

ment only with the English part. Table 1 shows the 470

statistics of the dataset; the average length per doc- 471

ument does not exceed 500 words. We pre-process 472

the text to extract sub-word units (Sennrich et al., 473

2016) with BERT tokenizer (Wu et al., 2016). We 474

map the positional annotation of mentions from 475

words to sub-words and retain this mapping for 476

back transformation during evaluation. 477

7.2 Model configuration 478

We use the implementation of Wolf et al. (2019)2 479

of ‘BERT-base’, ‘BERT-large’ (Joshi et al., 2019) 480

and ‘SpanBERT-large’ (Joshi et al., 2020). All 481

hyper-parameters follow this implementation un- 482

less specified otherwise. 483

2https://huggingface.co/transformers/
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MUC B3 CEAFϕ4

Model P R F1 P R F1 P R F1 Avg. F1
Clark and Manning (2015) 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0
Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Fei et al. (2019) 85.4 77.9 81.4 77.9 66.4 71.7 70.6 66.3 68.4 73.8
Xu and Choi (2020) 85.9 85.5 85.7 79.0 78.9 79.0 76.7 75.2 75.9 80.2
Wu et al. (2020) 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1
Baseline (Lee et al., 2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
+ BERT-base (Joshi et al., 2019) 80.4 82.3 81.4 69.6 73.8 71.7 69.0 68.5 68.8 73.9
+ BERT-large (Joshi et al., 2019) 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
+ SpanBERT-large (Joshi et al., 2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
G2GT BERT-base truncated 78.4 77.9 78.1 69.6 71.0 70.3 66.8 67.3 67.0 71.8
G2GT BERT-base overlap 81.2 82.8 82.0 69.8 73.6 71.6 69.6 69.3 69.4 74.4
G2GT BERT-base reduced 83.4 83.1 83.2 70.1 73.7 71.9 72.1 70.1 71.0 75.4
G2GT BERT-large truncated 80.1 79.2 79.6 71.3 71.0 71.1 69.1 68.8 68.9 73.2
G2GT BERT-large overlap 83.5 83.2 83.3 74.5 74.1 74.3 75.2 70.1 72.6 76.7
G2GT BERT-large reduced 84.7 83.1 83.9 76.8 74.0 75.4 75.3 70.1 72.6 77.3
G2GT SpanBERT-large overlap 85.8 84.9 85.3 78.7 78.0 78.3 76.4 74.5 75.4 79.7
G2GT SpanBERT-large reduced 85.9 86.0 85.9 79.3 79.4 79.3 76.4 75.9 76.1 80.5

Table 3: Evaluation on the test set (CoNLL 2012).

Training The G2GT considers an independent484

loss for each different refinement iteration. There is485

no back-propagation between refinement iterations486

because the model makes discrete decisions when487

predicting the graph for the next refinement step.488

There are two stopping criteria for the refinement:489

(a) when a maximum number of iterations T is490

reached, or (b) when there are no more changes491

in the graph, Gt = Gt−1. This criterion is for492

both training and testing. Our models are trained493

with a maximum segment length of K = 512 and494

a batch size of 1 document. We use BertAdam495

(Kingma and Ba, 2014; Wolf et al., 2019) optimizer496

with a base learning rate of 2e−3 and no warm-up.497

As our graphs are directed, we use only the lower498

triangle of G for predictions. The components499

of the reduced models are trained independently.500

The coreference resolution follows the currently501

described training schema. The mention detection502

model has no iterative refinement step and follows503

the training schema of the span scoring soft-target504

approach described in (Miculicich and Henderson,505

2020), with ρ = 0.1.506

Evaluation At evaluation time, we map back all507

sub-word units to words and reconstruct the docu-508

ment in CoNLL 2012 format. We use the precision,509

recall, and F1 score calculated in three different510

manners: MUC that counts the number of links511

between mentions, B3 that counts the number of 512

mentions, and CEAF that counts the entity clusters. 513

8 Results Analysis 514

This section describes the results of various base- 515

lines and our models. First, we analyze the opti- 516

mum number of refinement iterations, and then we 517

show results using the best models. 518

Table 2 shows the performance of our G2GT 519

models when varying the maximum number of re- 520

finement iterations T from 2 to 5 (T=1 is mention 521

detection only). The results are in terms of the 522

F1 score of the three coreference metrics and the 523

average. All three implementations shown in the 524

table perform the best when using T=4. There 525

is a significant decrease in performance when the 526

graphs are not refined, T=2, showing the impor- 527

tance of modelling the interdependencies between 528

coreference relations. 529

Table 3 shows the evaluation results on the test 530

set in terms of precision (P), recall (R), and F1 531

score for each metric. The last column displays the 532

average F1 of the three metrics. The first section 533

of the table exhibits scores of different corefer- 534

ence resolution systems from the literature. The 535

second section shows the result of the ‘Baseline’ 536

(Lee et al., 2018) system described in Section 3. 537

This model uses ELMo (Peters et al., 2018) instead 538

of BERT to obtain word representations. Baseline 539
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plus ‘BERT-base’, ‘BERT-large’ (Joshi et al., 2019)540

and ‘ SpanBERT-large’ (Joshi et al., 2020) corre-541

spond to the baseline using those representations.542

We copy all these values from the original papers.543

The last section of the table presents scores of our544

graph-to-graph models with iterative refinement.545

‘truncated’ is our model with no special treatment546

for document length; the documents are truncated547

at the maximum segment length of K. ‘overlap’548

and ‘reduce’ are the models described in Section 6.549

As expected, pre-training with SpanBert results550

in better scores than with Bert, and Bert-large is551

better than BERT-base. Not surprisingly, ‘G2GT552

Bert-base truncated’ and ‘G2GT Bert-large trun-553

cated’ perform poorly in comparison to the base-554

line because their information is incomplete. For555

BERT-base, both the ‘overlap’ and ‘reduce’ mod-556

els have better scores than the comparable baseline.557

For BERT-large and SpanBert, the ‘overlap’ model558

has similar scores to the baseline, but the ‘reduce’559

model consistently improves over the baseline.560

Overall, our G2GT ‘reduce’ method consistently561

shows the highest scores across all the models for562

each pre-trained model. Our models do not surpass563

SOTA (Wu et al., 2020) (shown in grey), but as564

mentioned before, this SOTA model is also trained565

on the much more abundant data from the question-566

answering task, and so it is not directly comparable567

to our model. We leave the issue of incorporating568

additional data into the training of our model to569

future work.570

9 Discussion571

These results support our claim that coreference572

resolution benefits from making global coreference573

decisions using document-level information. First,574

refinement of coreference decisions using global in-575

formation about other coreference decisions clearly576

improves accuracy, as indicated by the improved577

scores for models with more than one iteration in578

Table 2. Second, the model which is able to com-579

bine information from the entire document, G2GT580

‘reduce’, is clearly better than the model which per-581

forms the task on large windows of text and then582

merges the results, G2GT ‘overlap’.583

One issue with our method is the necessity to iter-584

atively pass the input through an expensive encoder585

model more than once. However, the number of586

iterations needed is small and results in significant587

improvement.588

The length management methods would not589

be necessary if we had more efficient pre-trained 590

Transformer models or larger-memory GPU hard- 591

ware which could handle longer sequences. How- 592

ever, the computational cost of very large Trans- 593

formers will always be an issue, so in general there 594

is a need to address the issue of how to reduce 595

the number of inputs when modelling phenomena 596

which require large contexts, such as coreference 597

resolution. This paper contributes towards address- 598

ing this general issue. 599

10 Conclusion 600

We proposed a G2GT model with iterative refine- 601

ment for coreference resolution. For this purpose, 602

we define a graph structure to encode coreference 603

links contained in a document. That enables our 604

model to predict the complete coreference graph 605

at once. The graph is then refined in a recursive 606

manner, iterating the model conditioned on the 607

document and the graph prediction from the pre- 608

vious step. This allows global modelling of all 609

coreference decisions using all document-level in- 610

formation, but it introduces computational issues 611

for longer documents. We experimented with two 612

methods to manage long documents and maintain 613

computational efficiency. The first method encodes 614

the document in overlapping segments. The second 615

method reduces the set of tokens which are input. 616

The evaluation shows that both methods can out- 617

perform a comparable baseline, and that the second 618

method has better performance than the first one 619

and than all other comparable models. This exper- 620

iment shows that global decisions and document- 621

level information are useful to improve coreference 622

and thus should not be ignored. It also shows that 623

the models can benefit from increasingly powerful 624

pre-trained language models, BERT-base (Devlin 625

et al., 2019), BERT-large (Devlin et al., 2019), and 626

SpanBERT (Joshi et al., 2020). 627

By empirically showing the benefits of making 628

global decisions and using document-level informa- 629

tion in coreference resolution, this work motivates 630

further work on this topic. In addition, the model 631

designs developed in this work provide a viable 632

approach to addressing the related issues. Address- 633

ing the computational issues with modelling large 634

documents in Transformers is an area of active 635

research, and our proposed methods could be im- 636

proved in future work. 637
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