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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR), particularly with al-
gorithms like Group Relative Policy Optimization (GRPO), has proven highly
effective in enhancing the reasoning capabilities of large language models. How-
ever, a critical bottleneck in current pipelines lies in the limited diversity of sampled
trajectories during group rollouts. Homogeneous trajectories and their associated
rewards would diminish the return signals for policy updates, thereby hindering
effective policy learning. This lack of diversity stems primarily from token-level
stochastic sampling, where local variations are likely to collapse into near-identical
reasoning paths. To address this limitation, we propose Lookahead Tree-Based
Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-
level diversity by enforcing branching into different candidate tokens likely to yield
distinct continuations. Specifically, LATR iteratively operates in three stages: (1)
branching at high-uncertainty generation steps, (2) performing lookahead sim-
ulation for each new branch, and (3) pruning branches that exhibits prolonged
similarity during simulation. Compared with Stochastic Sampling, LATR ac-
celerates policy learning by 131% and improves final pass@1 performance by
4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) al-
gorithms across different reasoning tasks. Our code and data are available at
https://github.com/starreeze/latr.

First, maybe addition and subtraction. 60 - 51 is 9. Then
35 -4 is 31 ... <answer> 60 + 35 - 51 + 4 </answer>
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Let's consider addition and subtraction first. 60 - 51 is 9.
Then 35 - 4 is 31 ... <answer> 60 + 35 - 51 + 4 </answer>
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First, maybe addition and subtraction. 60 - 51 is 9. Then
35 -4 is 31 ... <answer> 60 + 35 - 51 + 4 </answer>

ﬁ Enhanced Diversity

First, maybe addition and subtraction. 60 - 35 = 25.
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Maybe multiplying ... <answer> (60 - 35) * 4 - 51 </answer> Step
(a) Sampling: branching, simulation & pruning (b) Generated group sequences: higher diversity (c) RLVR training dynamics: faster learning & higher score
Figure 1: Comparison of conventional token-level and our proposed method

on sampling process, rollout sequence diversity, and performance on DAPO Math dataset.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has emerged as a powerful paradigm for
enhancing the reasoning capabilities of large language models recently (DeepSeek-Al et al., 2025}
Yang et al.| 2025; OpenAl 2025). By leveraging sequence rollouts and updating policies according
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to appropriate rewards, RLVR can significantly improve performance across diverse reasoning tasks,
including mathematical problem solving, code generation, and multi-step logical deduction (Pan
et al., 2025). Algorithms such as Group Relative Policy Optimization (GRPO) (Shao et al., [2024)
have become central to this approach, enabling stable model training through in-group trajectory
comparisons to learn from high-quality responses while penalizing low-rewarded ones.

A key challenge in these methods lies in the limited diversity of trajectories sampled during the rollout
phase (Wang et al., 2025} Zhu et al.| 2025). When trajectories within a group exhibit high similarity,
the estimated relative advantage and learning signals tend to diminish. As a result, the policy updates
become less informative, ultimately hindering the effective scaling. Recent efforts have sought to
mitigate this issue through various approaches, including increasing sampling temperature (Liu et al.|
20235)) and dynamically filtering out groups with highly similar samples (Yu et al.||2025). However, the
former focuses on token-level variation without ensuring trajectory-level divergence, while the latter
relies on post hoc filtering that provides only limited within-group diversity at the cost of excessive
over-generation. Both methods therefore yield only modest improvements in rollout diversity under a
constrained generation budget.

We argue that such diversity limitation stems from the predominate reliance on token-level stochastic
sampling strategies, where each sequence in a group is generated independently by sampling tokens
from the model’s output distribution at each decoding step. While simple and widely adopted, this
approach ignores the contrast among sequences within the group and fails to enforce distinction or
complementarity at the trajectory level, thus exhibiting an inherently myopic limitation. Specifically,
token-level variations typically occur without lookahead ability, making local deviations (e.g., substi-
tuting “compute” with “calculate”) easily collapse back into nearly identical reasoning paths, leading
to redundant exploration and diminishing returns.

To address these limitations, we propose Lookahead Tree-Based Rollout (LATR), a strategy designed
to explicitly promote trajectory-level diversity within a group by maintaining rollouts in a tree
structure. At token positions with high model uncertainty, LATR enforces branching into different
candidate tokens that are highly likely to yield distinct continuations. To guarantee that each selected
candidate token can lead to a different reasoning path, LATR performs lookahead simulation by
continuing generation for a fixed length, and removes those candidates failing to diverge from others.
This branching, simulation and pruning procedure is iteratively repeated until the target number of
rollouts is reached, after which all surviving partial sequences continue to be extended in parallel
under standard stochastic sampling. This ensures that the generated trajectories are reasonably distinct
from each other, thereby enriching the in-group rollout diversity.

We apply LATR strategy to both GRPO and DAPO algorithms and evaluate across 5 datasets involving
mathematical and logical reasoning. Our experiments demonstrate that LATR consistently accelerates
policy learning by an average of 131%, while simultaneously improving final task performance of
pass@1 by averagely 4.2% across different tasks. Our contributions are summarized as follows:

1) We introduce a novel tree-based rollout algorithm LATR that explicitly optimizes for trajectory-
level diversity, which can be integrated seamlessly into any policy update algorithms.

2) We provide extensive empirical validation across tasks and training configurations, demonstrating
consistent improvements over existing sampling strategies in RLVR pipelines.

2 PRELIMINARY

We adopt Group Relative Policy Optimization (GRPO) (Shao et al., |2024) as the foundational RL
algorithm for policy refinement. Unlike Proximal Policy Optimization (PPO) (Schulman et al.,
2017), which relies on a learned value function to estimate advantages, GRPO eschews explicit
value modeling and instead computes advantages directly from group-relative rewards. This design
simplifies training dynamics and enhances stability in reward-sparse or high-variance environments.

Each training iteration in GRPO consists of two phases: (1) rollout, where multiple candidate
responses are sampled per prompt, and (2) policy update, where the policy is optimized using
group-normalized advantages and a clipped surrogate objective.

Rollout. Given a prompt p drawn from the dataset D, a group of k candidate sequences {s; le are
generated via autoregressive sampling from policy 7. Each sequence is constructed token-by-token
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Prompt: Using the numbers [51, 4, 60, 35], create an expression that equals 49. Answer: 60+35-51-4
You can use basic arithmetic operations (+, -, *, /) and each number can only be used once. Reward: 0.0

51is 9. Then 35 - 4
is 31.9 + 31is 40.
Not enough ...

Answer: (60-35)*4-51
Reward: 1.0

<think> ... First, maybe T
can try addition and
subtraction. 60 -

Let's try multiplying.
25 * 4 = 100. Then
subtract 51 ...

35 is 25. Then 51 -
25is 26. Then 26 + 4
is 30. Not enough.

Answer: [INVALID]
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06
0.6

Maybe multiplying.
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Figure 2: An overview of LATR. A dynamic search tree is built by branching on model uncertainty,
simulating and pruning similar branches, resulting in diverse answers and reasoning paths.

through stochastic sampling from the model’s predicted next-token distribution. This process is
identical to inference-time generation.

Formally, let .S; denote the multiset of partial sequences of length [ generated for prompt p. The
rollout process is recursively defined as:

502{676,...,6}, Sl+1:U{3@t|t’\’ﬂ'0('|p€Bs)}a (1)
——

L sES;

where € is the empty sequence, & denotes token concatenation, and sampling terminates when all
sequences reach an end-of-sequence token or a maximum length n. The final output is the group
S = {s1,...,8k}. This group-based sampling enables direct comparison of responses under the
same prompt, forming the basis for relative advantage estimation.

Policy Update. Policy update aims to refine policy m by maximizing expected cumulative rewards.
Similar to PPO, GRPO adopts a clipped objective, together with a directly imposed KL penalty term:
Jareo(0) = Epop (5,35 ~moy, (1)
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where the advantage A is calculated by normalizing the group-level rewards { R; }¥_,, and the ratio r
compares the likelihood of token s, ; under the current and old policies:
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Variations of GRPO. Building upon this, DAPO (Yu et al.,|2025) improves GRPO in several aspects.
In rollout stage, DAPO oversamples data batches and filters out groups with identical rewards. If
the retained groups are insufficient to fill a batch, additional rollouts are iteratively sampled. This
mechanism trades computational efficiency for higher response diversity and more informative
gradients. In policy update stage, DAPO addresses GRPO’s limitations in long-form generation tasks
by implementing token-level loss calculation to mitigate length bias, and employs decoupled clipping
without RL penalty to encourage exploration. Formally, the objective is

Iparo(0) = Epup (535~ (1p)
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These enhancements make DAPO a more robust and effective algorithm for complex reasoning tasks.
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3 LOOKAHEAD TREE-BASED ROLLOUT

To address the limited diversity of conven- -
tional token-level sampling during the roll- Algorithm 1 Lookahead Tree-Based Rollouts

out phase, we introduce Lookahead Tree- Require: Policy model 7, rollout number %,

Based Rollout (LATR), a structured explo- prompt p, absolute branching threshold T,ps,
ration strategy inspired by Monte Carlo Tree relative threshold 7, pruning threshold 74,
Search (Silver et al., 2016). LATR achieves lookahead step r, max length n.
diverse trajectory generation by enforcing  Ensure: Set of rollouts S = {s1,..., sk}
branching at candidate tokens that are highly 1: Initialize S < {e} > Single root branch
likely to yield distinct continuations. 2: forl =1tondo
Specifically, LATR operates through three it- i Shext ¢ 0
erative stages: (1) Branching, which creates ) . .
) . . L 500 {------ Branching logic - - - - - - }
new trajectories at token positions with high
S . 6:  for branch s; € S do
model uncertainty; (2) Lookahead Simula- T
. . 7: Pi < m(-|p®s;) b Prob distribution
tion, where the new branch is extended for K .
. ) 8: ¢f + argmax,_ P;[c] > Top candidate
a fixed lookahead window of r tokens; and ¢ tend . .
. . 9: s¢ — s, Dc > Extend main
(3) Pruning, where simulated sequences that . ¢ b oxtend
fail to diverge from others are removed. This 10: Shext 4= 5 “e’“*U {577}
process repeats until the target number of roll- 1 Cie{c# fi | Pile] > Tups and
outs is reached, ensuring their diversity. We . g Pilei] = Pile] < T}
provide the complete algorithm in Algorithm ig or fc|§ C73|d2 I th
Tand an illustration in Figure [2 : 1 1onext en
[T)and an illustration in Figure 2] " P TN > New branch
15: Spew-parent <— s;
3.1 BRANCHING 16: Snew-birth <1
17: Sn.exl — Shext U {snew}
LATR begins with a root node corresponding 18 end if
19: end for

to the input prompt. At each generation step [,
every active branch is extended by its highest- ~ 20:  end for

probability token to ensure progress along the 21 ) _

most likely trajectory. These branches are re- 22 {------ Prunlng 10glc. ------ }
graded as parent branches. Simultaneously, if 23 fo‘: 5j € Snext With s;.birth =1 —r do
other candidate tokens satisfy both the abso- 2% if EditDist(s;, Sj .pa}rent) < Teq then
lute probability threshold 7,5 and the relative 25: R(?IIIOVC s; with its descendants
probability threshold 7;;, new child branches 26: end if

are instantiated. This dual-threshold mecha-  27:  end for

nism targets reasoning crossroads where the 28:

model is genuinely uncertain between seman- 29: S ¢ Shext

tically distinct continuations, while prevent- 30 end for

ing the branches diverging too far from the ~ 31: return Pad 5 to exactly & sequences
policy distribution. Branching allows LATR

to maintain multiple distinct reasoning paths

in parallel, significantly increasing the probability of discovering high-quality, diverse solutions.

Formally, let S; denote the set of active branches at step [, and for each branch s € S, let P,
denote its next-token distribution, the most likely token ¢} = arg max,_ Ps[c], and C; is the set of all
remaining candidates excluding c}. A new child branch s @ c is created if:

Pslc] > mas and  Pgck] — Psle] < Trel- 3)

The set of branches after expansion is the union of the parent branches with their new children:

S = U {s®cttu{s®c|ceCls, conditions of (B) hold, |S]| < k}). (6)
SES]

If the rollout budget  is reached, candidate branches are prioritized by descending probability Ps|c].
This ensures that more plausible alternatives are more likely to be explored.
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3.2 SIMULATION & PRUNING

While the above branching strategy effectively enables structured parallel exploration, it faces two
challenges: (1) unconstrained branching leads to exponential growth, quickly exhausting the rollout
budget and limiting exploration sequentially; (2) branches started from token-level variations easily
collapse back into nearly identical reasoning paths, struggling to ensure trajectory-level diversity.

To address these issues, LATR incorporates a lookahead simulation and pruning phase. After
branching, each new trajectory continues generation for a fixed lookahead window of r tokens.
These continuations are then evaluated for divergence using normalized edit distance, and branches
exhibiting insufficient divergence from their parents are pruned.

Specifically, at each step [, LATR identifies all branches s created at step [ — r and computes the
normalized edit distance over their most recent r tokens relative to their parents’ corresponding
segment. If the distance falls below a threshold 7.4, the branch and all its descendants are removed:
S = {s| s €9, s.birth = — r, EditDist(s[—r :], s.parent[—r :]) < Tea}, 7
Siyr={s|seS], s¢ S}, (8)
where EditDist() indicates normalized edit distance, i.e., the Levenshtein distance between token
ID sequences, divided by sequence length. This ensures that only branches exhibiting meaningful
divergence within the lookahead window are preserved. We also explore similarity measures other
than edit distance in Appendix [C.2] and find that their performance are very close. Notably, LATR is
backtracking-free, so the number of forward passes required by a group rollout is bounded by O(nk),
where k is the rollout number (tree width) and n is the maximum completion length (tree depth).

Through lookahead simulation and pruning, LATR preserves only diverse branches that are more
likely to yield distinct reasoning paths. The final output consists of k surviving branches, padded
if necessary to meet the rollout number requirements. The entire procedure is compatible with
any autoregressive language model and can be integrated seamlessly into existing policy update
algorithms and RLVR frameworks without modifications.

3.3 FURTHER OPTIMIZATIONS

Early Stopping. When the tree width reaches the rollout number %k, LATR has already produced &
sequences that are likely to lead to diverse reasoning paths. At this point, the generation process is
switched to standard stochastic sampling for all remaining steps. This allows surviving branches to
continue exploring the solution space stochastically while maintaining the diversity benefits from
LATR. Analyses on the stopping length is in Appendix

Hybrid Rollout for RL Training. While LATR excels at promoting diverse exploration during RL
training, its explicit divergence objective can create a mismatch with test-time behavior. At real-
world inference, models typically generate a single trajectory using greedy or stochastic decoding,
prioritizing correctness and coherence over diversity. However, policy updates with LATR tries to
maximize the reward from the LATR-generated diverse rollout group. Training exclusively with
LATR throughout the entire process may thus bias the policy toward over-exploration patterns that do
not generalize. To bridge this gap, we adopt a hybrid sampling strategy during RL training. At each
training step, we allocate a fraction 7 of rollouts to LATR and the remainder to standard Stochastic
Sampling:

kLaTR = Lﬂlﬂ, ksa = k — kratr, 9)
where | -] denotes rounding to the nearest integer. We anneal 7 exponentially over training step
n=10-7 (10)

with decay rate v < 1. This ensures early-stage exploration benefits from LATR’s diversity, while
later stages increasingly mimic test-time behavior to reduce train-test discrepancy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To rigorously assess LATR’s performance in reasoning-intensive environments, we evaluate it on two
canonical domains suited for RLVR: logical reasoning and mathematical problem solving.
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Table 1: Performance comparison of test correctness and average completion length on the Count-
down dataset. 1 indicates higher is better, while | indicates lower is better. Relative improvement of
LATR to Stochastic Sampling with the same policy update algorithm is marked in the parentheses,
where green indicates positive improvements and red otherwise. Best results are in bold.

Correctness (%) T Average Length |
Method Pass@1 Pass@8 Pass@1 Pass@8
Qwen2.5-3B 1.1 55 543 975
+ GRPO w Stochastic 65.9 73.9 473 610
+ DAPO w Stochastic 70.7 78.0 483 630
+ GRPO w LATR 709 (+5.0) 774 (+3.5) 378 (-20%) 469 (-23%)
+ DAPO w LATR 74.7 (+4.0) 81.5(+3.5) 367 (-24%) 453 (-28%)

Table 2: Performance comparison on DAPO Math and AMC 2023 dataset.

DAPO-Math (val) AMC-2023
Method Correctness (%) 1 Average Length | Correctness (%) 1 Average Length |
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8
Qwen2.5-3B 5.6 20.1 938 2203 59 20.7 963 2255
+ GRPO w Stoch. 24.1 51.3 880 1732 32.8 59.7 833 1622
+ DAPO w Stoch. 26.8 53.1 1024 2022 37.8 62.7 1075 2116
+GRPO w LATR 284 (+4.3) 519 (+0.6) 853 (-3%) 1556 (-10%) 35.6 (+2.8) 60.3 (+0.6) 838 (+1%) 1537 (-5%)
+DAPO w LATR  32.5(+5.7) 54.1(+2.8) 896 (-13%) 1880 (-7%) 453 (+7.5) 65.0 (+2.3) 883 (-18%) 1920 (-9%)

Logical Reasoning. We adopt the Countdown dataset for both training and evaluation. Following
prior work (Pan et al.| 2025), we use reward R = 0.1 - Rgormat + 0.9 + Reorrectness, Where Rormat
encourages outputs with proper form and R orrectness @ssigns full reward for logically correct solutions.

Mathematical Problem Solving. Models are trained on the DAPO-Math dataset and evaluated on
three additional benchmarks: MATH-500 (Hendrycks et al.| 2021), AMC-2023 (MAA|[2023)), and
Olympiad-Bench (He et al.;2024). Consistent with|Yu et al.[(2025)), the reward is binary: R = 1.0
for correct final answers, and 0 otherwise.

Evaluation Protocol. For each test instance, we sample 8 independent completions. We report
Pass@1 and Pass@8 correctness scores along with the average completion length to assess solution
conciseness. All implementation details, including dataset descriptions, hyperparameters, and
environment configurations, are provided in Appendix

4.2 TERMINATING PERFORMANCE

We provide a comprehensive comparison between LATR and Stochastic Sampling in Table|[T] 2] and 3]
for Countdown and Math tasks, reporting their performance and completion length on test datasets
after the complete 500 steps of training. Observations are summarized as follows:

LATR delivers consistent gains in correctness across various benchmarks on both GRPO
and DAPO. Across all task-policy combinations, LATR outperforms Stochastic Sampling in final
Pass@1 scores. On the Countdown dataset, LATR improves accuracy by an average of 4.5% under
both GRPO and DAPO. On the Math dataset, gains are averagely 3.8%. Notably, GRPO + LATR
achieves comparable or even higher performance than DAPO + Stochastic Sampling despite DAPO’s
computationally intensive mechanisms such as group filtering. Moreover, DAPO + LATR achieves
state-of-the-art performance on both benchmarks, reinforcing that trajectory diversity during rollout is
the primary driver of performance gains. This finding aligns with ablation studies in DAPO (Yu et al.|
2025)), which identified rollout group filtering as the most effective component of their framework.

LATR consistently reduces inference cost while enhancing performance. Beyond accuracy,
LATR significantly reduces the average length of generated reasoning trajectories at test time. On
Countdown, completion length decreases by 22% under both GRPO and DAPO; on math datasets, we
observe a 8.3% reduction. We attribute this dual benefit to LATR’s core mechanism: by encouraging
exploration of diverse reasoning paths during training, it exposes the policy to a broader distribution
of solutions, guiding the model to internalize efficient reasoning strategies. In contrast, Stochastic
Sampling tends to traverse the reasoning space sequentially within independent trajectories due to its
insufficient parallel exploration, often resulting in verbose, redundant, or over-elaborated chains.
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Table 3: Performance comparison on MATH-500 and Olympiad-Bench dataset.

MATH-500 Olympiad-Bench
Method Correctness (%) 1 Average Length | Correctness (%) T Average Length |
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8
Qwen2.5-3B 24.7 54.4 748 1690 8.5 25.8 1088 2413
+ GRPO w Stoch. 58.4 76.7 657 1207 27.2 47.4 1058 2014
+ DAPO w Stoch. 60.4 79.2 700 1283 28.1 47.0 1162 2193

+GRPOwLATR 619 (+3.5) 77.5(+0.8) 594 (-10%) 952 (-25%) 29.5(+2.3) 482 (+0.8) 954 (-10%) 1728 (-14%)
+DAPO w LATR  62.6 (+2.2) 79.0(-0.2) 653 (-7%) 1217 (-5%) 30.4 (+2.3) 47.8(+0.8) 1105 (-5%) 2354 (+7%)
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Figure 3: Learning curve comparison on Countdown (left) and DAPO-Math (right) datasets.

4.3 TRAINING DYNAMICS

To further investigate the RL training process with LATR and Stochastic Sampling, we analyze
training dynamics by plotting validation accuracy against training step in Figure[3] The results reveal
that LATR not only converges to a better solution, but does so considerably faster.

Under DAPO, Stochastic Sampling requires 450 steps to reach peak performance on the Countdown
task, whereas LATR achieves the same level of accuracy by step 150, resulting in a 3x acceleration in
training efficiency. On the math task, compared to step 500 for Stochastic Sampling, DAPO + LATR
reaches same performance at step 240, yielding a 2x speedup. Crucially, the acceleration provided
by LATR exceeds that gained by upgrading from GRPO to DAPO, despite DAPO’s heavier data
requirements and computational overhead per step. This suggests that LATR’s enhanced exploration
of diverse trajectories is able to translate into more informative policy updates per training iteration.
In effect, LATR increases the sample efficiency of the RL process, enabling faster learning without
architectural changes or additional data.

5 DISCUSSIONS

To evaluate the behavior and advantages of LATR under varying conditions, we conduct a compre-
hensive set of controlled experiments. Unless otherwise specified, all analyses in this section are
performed using the DAPO algorithm on the Countdown dataset, with all other hyperparameters and
architectural settings held consistent with the main experiments. Comparison with other rollout strate-
gies, impact of different similarity metrics for pruning, impact of branching and pruning thresholds,
analyses on efficiency, and key statistics of LATR are provided in Appendix

5.1 DIVERSITY COMPARISON

To empirically validate that LATR promotes greater diversity among reasoning trajectories within
each rollout group, we conduct a comparative analysis between LATR and the baseline method
Stochastic Sampling. We evaluate three variants of the Qwen2.5-3B architecture: Qwen2.5-3B,
Qwen2.5-3B-Instruct, and Qwen2.5-3B trained with GRPO + LATR, which we name it Qwen2.5-
LATR. This progression, from a raw pretrained model to an instruction-tuned variant and finally to a
policy-optimized model incorporating LATR, enables a nuanced assessment of how LATR influences
diversity across different stages of model development. In addition to standard performance metrics
(Pass@1 and Pass@8), we also evaluate the average number of distinct final answers per rollout
group. Two answer expressions of Countdown are considered distinct if their evaluated numerical
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outcomes differ. This ensures that diversity is measured in terms of semantic rather than syntactic
variation.

As shown in Table Al LATR consis- Table 4: Diversity comparison between Stochastic Sam-

tently yields higher Pass@8 scores and pling and LATR.

a greater number of distinct answers per Mothod Pass@l Pass@8 % Ams.
rollout group across all three model vari-

ants compared to Stochastic Sampling. Qwen2.5-3B + Stoch. 58 28.9 6.3
These results support our claim that Qwen2.5-3B + LATR 61 30.7 69
LATR enhances intra-group trajectory Qwen2.5-3B-Instruct + Stoch. 9.4 35.2 6.4
diversity, thereby facilitating more ef- Qwen2.5-3B-Instruct + LATR 109 406 6.9
fective policy learning through broader Qwen2.5-3B-LATR + Stoch. 70.9 774 2.6
exploration of the solution space. Qwen2.5-3B-LATR + LATR 68.9 9.9 3.0

5.2 EFFECT OF DIFFERENT COMPONENTS

We dissect the contributions of LATR’s
core components through an ablation study.

Specifically, we evaluate four variants of
LATR: (1) random branching, (2) random

Table 5: Performance comparison on Stochastic
Sampling and variants of LATR.

. . Method Pass@1 Pass@8

pruning, (3) no pruning, and (4) token-level -
lookahead in place of trajectory-level looka- ]Sth";ll;aStlc dbranch 2(9)2 ;gg
head. In the random variants, the branching W rand branc : :

. L. LATR w rand prune 72.5 79.2
or pruning ratio is matched to the average LATR w/o prune 71.0 787
ratio observed in the full LATR throughout LATR w token-level lookahead ~ 72.1 80.4
training. In the token-level lookahead variant, LATR 74.7 81.5

pruning decisions are made solely based on
the next token: a branch is pruned if the next tokens across trajectories are identical. This design
enables us to isolate the effects of structured branching and similarity-based pruning on overall
performance. Our findings are summarized below.

Random branching leads to unstable training and degrades final performance. As shown in
Table[5] LATR with random branching performs even worse than Stochastic Sampling. We observe
that the KL divergence between the policy model and the base (reference) policy rises to as high as
1.0 within just 50 training steps, signaling severe off-policy behavior. This instability stems from
uncontrolled branching. Without the probability thresholds imposed by our method, the model may
generate extremely low-probability sequences that diverge significantly from the base policy, thereby
disrupting the learning process.

Both random and no pruning yield suboptimal results. The variants of LATR without pruning and
with random pruning achieve only modest improvements over Stochastic Sampling, confirming that
branching alone enhances exploration by diversifying rollout trajectories. However, the full LATR
outperforms both. This performance gap is primarily attributable to trajectory-level redundancy, as
rollout groups generated without pruning or with random pruning frequently contain sequences that
follow similar reasoning paths, reducing effective diversity and leading to inefficient policy updates.
Moreover, the comparison between the no-pruning and random-pruning variants highlights budget
exhaustion as another critical factor. Without pruning, the fixed rollout budget £ is quickly depleted
in early generation steps, leaving insufficient capacity for exploration in later stages.

Token-level lookahead underperforms trajectory-level lookahead. Although token-level looka-
head outperforms both Stochastic Sampling and the no-pruning variant, it falls significantly short
of the full LATR model. This deficit stems from its limited ability to capture trajectory divergence.
Pruning decisions based solely on the next token are often inaccurate, leading to the premature
removal of potentially valuable branches and degrading rollout quality.

In summary, while branching provides a robust mechanism for exploration, dynamic, similarity-aware
pruning serves as a crucial regulator: it ensures that the exploration budget is allocated meaningfully
across the generation process and effectively mitigates redundant trajectories.
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Figure 4: Comparison of test correctness with different rollout number k£ and temperature ¢ (%).

5.3 SCALABILITY WITH ROLLOUT NUMBER

The rollout budget k fundamentally constrains the scope of exploration in RLVR training. We evaluate
how LATR and Stochastic Sampling scale with increasing k € {4,8,12,16}. Results in Figure
reveal two critical trends:

1) LATR consistently outperforms Stochastic Sampling at every value of k, demonstrating robustness
to budget constraints.

2) While Stochastic Sampling performance plateaus at k = 8, LATR continues to improve up to
k = 12, indicating a higher effective capacity for leveraging additional rollouts.

This suggests that LATR not only uses its budget more efficiently but also raises the performance
ceiling of the system, enabling gains from larger k values that Stochastic Sampling cannot exploit.

5.4 IMPACT OF DIFFERENT SAMPLING TEMPERATURES

In standard RL frameworks with Stochastic Sampling, the sampling temperature ¢ governs the
exploration-exploitation trade-off: higher ¢ increases stochasticity and thus exploration, but risks
degrading rollout quality. In contrast, LATR delegates exploration primarily to its branching-and-
pruning mechanism, using ¢ only to modulate stochastic fallback and hybrid rollouts, which is
described in Section 3.3

We evaluate performance across ¢ € {0.8,1.0,1.2,1.5}. As shown in Figure both methods peak
near t = 1.2, suggesting this is optimal for the base policy. Notably, LATR achieves superior
performance at every ¢, and exhibits lower variance across temperatures.

This robustness stems from LATR’s architectural decoupling: exploration is driven by structural
diversity (branching + pruning), not sampling noise. Consequently, LATR is less sensitive to
suboptimal temperature tuning.

5.5 GENERALIZABILITY ACROSS DIFFERENT BASE MODELS

To evaluate the generalizability of LATR across diverse base models, we conduct additional ex-
periments using additional models from different series and scales, specifically Qwen2.5-7B and
Qwen3-1.7B-Base. As shown in Table[f] LATR consistently outperforms Stochastic Sampling across
all evaluated models, demonstrating the broad applicability and robustness of our proposed method.

Table 6: Performance comparison of LATR and Stochastic Sampling on different base models.

Correctness (%) 1 Average Length |

Method Pass@1 Pass@8 Pass@1 Pass@8
Qwen2.5-7B 1.1 54 556 997
Qwen2.5-7B + Stochastic 70.9 79.8 522 722
Qwen2.5-7B + LATR 76.0 82.1 396 508
Qwen3-1.7B-Base 2.0 9.5 542 916
Qwen3-1.7B-Base + Stochastic 66.0 75.5 521 673
Qwen3-1.7B-Base + LATR 67.8 717.6 494 662
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6 RELATED WORK

6.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful alternative for
tasks with verifiable results (Lambert et al.,|2024). In RLVR, the reward signal is derived from an
external verifier, providing an objective measure of a trajectory’s success. Within RLVR, GRPO
(Shao et al.,|2024) have become the state-of-the-art solution. Rather than relying on a learned value
model, it compares trajectories within a sampling group and updates policy based on relative success.

Following this line of research, many seek to improve the performance of GRPO. DAPO introduces
clip higher technique and removes RL constraints to enable aggressive policy updates towards correct
reasoning. GSPO (Zheng et al.l |2025) proposes sequence-level rewards to smooth and stabilize
learning. These innovations on policy update are orthogonal to the rollout strategy, so LATR is fully
compatible with these methods. Replacing vanilla rollouts with LATR-generated trajectories yields
additive performance improvements, as we demonstrate empirically.

A few works have also touched upon the rollout strategy, though typically as a secondary component.
DAPO (Yu et al., [2025) proposes a group filtering strategy to oversample and discard groups with
identical rewards. ProRL (Liu et al., 2025) increases the sampling temperature to obtain more
diverse rollout sequences. Despite these advancements, these methods only address trajectory-level
in-group diversity indirectly. Their reliance on token-level stochastic sampling is prone to generating
semantically redundant reasoning paths, a limitation our work directly confronts.

More recently, two contemporaneous works integrate tree search into RLVR. TreeRL (Hou et al.,
2025) and TreePO (Li et al.l [2025) propagate sparse binary outcome rewards backward through
the reasoning tree to derive dense process rewards that guide policy updates. TreePO additionally
enhances generation efficiency by reusing shared prefixes and pruning unpromising branches early
in the rollout process. While both methods leverage tree-based structures, their objectives differ
fundamentally from ours, as they primarily aim to refine reward estimation or improve computational
efficiency. In contrast, we adopt tree-search to explicitly foster and compare diverse reasoning
trajectories within a rollout group. This trajectory-level diversity enriches the reward signal by
capturing a broader spectrum of potential outcomes, thereby enhancing policy learning.

6.2 LOOKAHEAD REASONING FOR LLMSs

Recent work has increasingly explored lookahead-based reasoning strategies in LLMs, with their
majorly focus on inference-time approaches or offline data construction. Tree-of-Thoughts (ToT)
(Yao et al.l [2023)) pioneered this direction by generating multiple reasoning branches at each step
and selecting the most promising path using an external reward model. Subsequent methods such as
MCTS-DPO (Xie et al.}[2024) and ReST-MCTS (Zhang et al.,2024) extend this idea by integrating
Monte Carlo tree search with lookahead estimation to decompose sparse, instance-level rewards into
dense, step-level supervision signals. Quiet-STaR (Zelikman et al., 2024) also leverages a lookahead
mechanism, generating token-wise rationales that anticipate future text and optimizing them based on
their contribution to correct continuations.

While these works share the common ingredient of lookahead search, their objectives differ funda-
mentally from ours. Our primary goal in employing lookahead tree search is not reward propagation
or step-level supervision, but rather to explicitly compare and promote trajectory-level diversity
among rollouts for the same problem. This explicit focus on trajectory-level diversity distinguishes
our method from prior lookahead approaches in LLMs.

7 CONCLUSION

In this work, we present Lookahead Tree-Based Rollout, a novel rollout strategy that explicitly
promotes trajectory-level diversity in RLVR by dynamically branching at high-uncertainty tokens
and pruning non-divergent paths via lookahead simulation. By moving beyond token-level sampling
heuristics, LATR enriches policy learning signals, accelerating training convergence while improving
final performance by a large margin across different benchmarks. Our work demonstrates that
trajectory-level rollout diversity is key to scaling RLVR effectively and efficiently.
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REPRODUCIBILITY STATEMENT

To better support reproducibility, we explain all the details to reproduce our results in Section[B.3]
including the parameters for our methods, training details, environment and framework versions.
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A LLM USAGE

In the course of preparing this manuscript and supporting materials, we leveraged large language
models (LLMs) as auxiliary tools to enhance the efficiency and quality of non-core research tasks.
Specifically, LLMs were employed in two primary capacities:

1) Language polishing: We used LLMs to assist in proofreading, grammatical correction, and
stylistic refinement of the manuscript’s prose.

2) Boilerplate and utility code generation: For ancillary implementation tasks, such as file /O
wrappers, format converters, or logging utilities, we used LLMs to accelerate prototyping.

B DETAILS ON EXPERIMENT SETUP
In this section, we detail the datasets, evaluation protocols, and implementation configurations.

B.1 DATASETS AND TASK FORMULATIONS

Logical Reasoning. We adopt the Countdown dataset (Pan et al.| | 2025)), which challenges models to
construct arithmetic expressions from a given set of integers that evaluate exactly to a target number.
Following [Pan et al.| (2025)), we define a two-component reward function:

R=01- I[format +0.9- ]Icorrecta (11)

where Iormy indicates syntactic validity and I oec indicates semantic correctness. Models are trained
on the training split and evaluated on the official test set.

Mathematical Problem Solving. For mathematical reasoning, we train on the DAPO Math dataset
(Yu et al., |2025), a curated collection of problems drawn from diverse sources. Consistent with |Yu
et al.[(2025), the reward is binary:

R = Teorrect, (12)

awarding 1.0 only for exact numerical matches.

To ensure broad generalization, we evaluate not only on DAPO Math’s held-out validation set, which
is manually partitioned with 1,024 samples, but also on three established external benchmarks,
including MATHS500 (Hendrycks et al.,[2021), AMC2023 (MAA,2023), and OlympiadBench (He
et al.l [2024).

To maintain consistency across datasets with heterogeneous answer formats, following [Yu et al.
(2025), we apply a standardized answer normalization pipeline that maps all results to integers. We
construct a comprehensive few-shot prompt that instructs Gemini-2.5-pro (Team et al., [2025)) to apply
a set of deterministic heuristics according the original answer’s format. These heuristics include: (1)
for structured non-integer answers like fractions (p/q) or radicals (k 4+ m./n), rephrasing the question
to ask for the sum of their components (e.g., p + g or k +m + n); (2) for symbolic expressions, either
summing the coefficients of simple polynomials or evaluating complex functions when assigning
the variables (e.g., x = 2); and (3) for multi-part or multiple-choice answers, asking for the sum of
solutions or the 0-indexed position of the correct choice. The few shot prompt applied is provided in

Figure|[6]

B.2 EVALUATION PROTOCOL

We perform stochastic sampling on the trained model for a fixed 8 times for each sample in the
evaluation datasets, and report Pass@1 (the average accuracy over a single sampled completion per
question) and Pass @8 (the accuracy of the best solution among 8 independently sampled completions

per question). In addition to correctness, we also include average completion length for both Pass@1
and Pass @8 to quantify test-time computational cost and efficiency.

B.3 IMPLEMENTATION DETAILS

Sampling and Rollout Parameters. We set our sampling parameters following |Yu et al.| (2025);
Pan et al.|(2025). During training, we sample rollouts with temperature = 1.0, top-k = —1, and top-p
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= 1.0 to encourage exploration. During evaluation, we use temperature = 0.6, top-k = 20, and top-p
= 0.95 for calibrated diversity. Each training step involves k£ = 8 rollouts per prompt. Maximum
completion lengths are set to 1,024 tokens for Countdown and 8,192 tokens for math problems.

Algorithmic Parameters for LATR. Hybrid rollout coefficient 9 = 1.0, decaying per-step via
N = 1o -y, with v = 0.985 (Countdown) and v = 0.995 (Math). For branching thresholds, absolute
probability threshold 7, = 0.25, relative probability threshold 7,y = 0.15, and edit-distance
threshold 7.q = 0.4. Lookback step r is {20, 30, 50}, which means we enforce conditions on all of
the 3 lookback windows, and all should be satisfied for a branch to be kept.

Training Hyperparameters. For training parameters, global data batch size is 256, global mini
batch size is 256, local micro batch size is 8 for Countdown and 4 for DAPO Math, clip ratio is 0.2,
KL penalty S is 0.01. For DAPO, clip ratio high is 0.28, low is 0.2, and oversampled data generation
batch size is 384. We train the Qwen2.5-3B base model on both datasets for a fixed 500 steps with
AdamW optimizer and a constant learning rate of le-6. All our experiments are performed with
VeRL-0.5.0 framework (Sheng et al.,2024) on 8 x NVIDIA H200 GPUs with mixed precision.

C ADDITIONAL ANALYSES

C.1 COMPARISON WITH ALTERNATIVE ROLLOUT STRATEGIES

To further demonstrate the effectiveness of LATR, we compare it against two other baseline rollout
strategies:

1) Rollout Down-sampling (RDS) (Xu et al.}2025): Similar to the group filtering in DAPO, RDS
also seeks to enhance trajectory diversity in a post-hoc manner. Specifically, it first generates
k = 16 trajectories via standard rollout and then selects the 8 most diverse trajectories for policy
updates. The selection is implemented greedy, using the average of sentence-level BLEU and
ROUGE scores as trajectory similarity measures.

2) Entropy Guided Tree Search (EPTree) (Hou et al.| |2025): Proposed in TreeRL, EPTree
constructs a rollout tree to support fine-grained reward estimation and optimization during policy
updates. After generating M complete sequences, it identifies the top-/N tokens with the highest
entropy and re-generates continuations 7' times from each of these tokens, yielding a total of
M x (N x T + 1) sequences. Following the setup in TreeRL, we use (M, N,T) = (4,2,1),
resulting in 10 sequences per rollout. To ensure a fair comparison, we randomly sample 8
trajectories from these 10 for policy updates. We directly use the official code from TreeRL and
integrates EPTree rollout into the VeRL training framework.

As shown in Table [/} LATR consis-
tently outperforms both RDS and EP-  Taple 7: Performance comparison of different rollout
Tree across both GRPO and DAPO  gtrategies on the Countdown dataset.

policy update algorithms. Notably,
while GRPO combined with RDS

Correctness (%) T Average Length |

yields improvements over Stochastic Method Pass@] Pass@8 Pass@] Pass@$
Sampling due to enhanced trajectory  — b0 g G T (50T 739 473 610
diversity, the same combination under GRPO w RDS 68.7 757 365 489
DAPO fails to surpass Stochastic Sam- GRPO w EPTree  65.3 735 471 599
pling’s performance. Further analysis GRPO w LATR 70.9 77.4 378 469
reveals that DAPO + RDS leads toun-— “p b Ugoen ™ 707 780 483 630
stable training dynamics, marked by DAPO w RDS 68.5 744 348 462
performance degradation and sharp in- DAPO w EPTree  66.3 74.6 450 595
creases in KL divergence during later DAPO w LATR 74.7 81.5 367 453

training stages. This instability likely
stems from the diversity-oriented se-
lection mechanism, which biases towards selecting low-probability trajectories, thereby increasing
off-policy risk. When combined with DAPO, which already promotes diversity through group-based
filtering, this effect is amplified, ultimately contributing to model collapse.

In contrast, the underwhelming performance of EPTree suggests that the gains reported in TreeRL
primarily arise from its novel policy update mechanism rather than its rollout strategy. Specifically,
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Table 9: Performance comparison of different similarity metrics.

Correctness (%) T Average Length |

Method Pass@1 Pass@8 Pass@]1 Pass@8
Edit Distance 74.7 81.5 367 453
ROUGE-L 73.9 80.5 390 486
Suffix Matching 74.9 81.7 388 493
Embedding-based 72.9 79.8 369 445

TreeRL employs Monte Carlo Tree Search (MCTS) to estimate fine-grained rewards for individual
tree branches by propagating sparse binary outcome rewards backward through the tree, enabling
targeted optimization of intermediate reasoning steps. By contrast, LATR improves RL performance
by enhancing trajectory-level diversity without requiring modifications to the underlying policy
update algorithm.

C.2 IMPACT OF DIFFERENT SIMILARITY METRICS

As described in Equation |/} the main experiments employ edit distance as the similarity measure to
identify and prune redundant trajectory branches. In principle, however, numerous alternative metrics
could be used to assess the divergence between partial sequences. To investigate this, we evaluate
three additional similarity measures in this section:

1) ROUGE-L: defined as the ratio of the length of the longest common subsequence to the sequence
length.

2) Suffix matching: defined as the ratio of the length of the longest suffix of one sequence that
appears anywhere in the other sequence to the sequence length.

3) Embedding-based: the cosine similarity of the sequence embeddings calculated by the model
Qwen3-Embedding-0.6B.

For each metric, we conduct experiments while tuning the pruning threshold to identify its optimal
value. The best results, summarized in Table 0] show that embedding-based similarity yields the
weakest performance, while all other token-level metrics achieve comparable and better final accuracy.
The failure of embedding-based similarity is likely to stem from the inability for embedding models to
capture fine-grained logical distinctions, since these models are usually trained to discern topic-level
differences. Therefore, Given its simplicity and competitive efficacy, we retain edit distance as our
pruning criterion.

C.3 IMPACT OF BRANCHING AND PRUNING THRESHOLDS

To investigate the impact of the pruning threshold  Table 8: Performance comparison of
Teds W€ conduct a series of experiments with 7.4 € different thresholds.
{0.3,0.4,0.5,0.6}. The results are summarized in Table

[§] We observe that 7.4 = 0.4 yields the best performance, Threshold Pass@] Pass@8

while both lower and higher values lead to a decline in

results. This behavior can be attributed to the trade-off Tabs = 0.2 71.4 712
Tabs = 0.25 74.7 81.5

imposed by the pruning threshold: excessively high values

result in overly similar trajectories, which consume the Tabs = 0.3 723 785
rollout budget without promoting exploration, whereas Tret = 0.1 72.0 77.7
excessively low values impose overly stringent constraints, Trer = 0.15 74.7 81.5
leading to an insufficient number of viable trajectories. Trel = 0.2 72.1 77.6
For branching thresholds 74, 71, We experiment by fix- Teq = 0.3 73.8 80.5
ing one threshold while adjusting the other one. As shown Teqa = 0.4 74.7 81.5
in Table (Tabss Trer) = (0.25,0.15) yields the best per- Ted = 0.5 74.1 81.4
formance, corroborating the suitability of our selected Ted = 0.6 73.4 79.8
hyperparameters.
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C.4 EFFICIENCY ANALYSIS

The search tree in LATR is bounded by a maximum width corresponding to the rollout number
k. Unlike Stochastic Sampling, which perform forward passes on each sequence independently at
each step, LATR dynamically branches and prunes sequences, resulting in a sparser tree structure,
particularly during early generation stages. Consequently, the actual number of FLOPs consumed by
LATR is strictly less than that of Stochastic Sampling for the same settings.

Empirically, LATR exhibits a modest slowdown in generation speed during RL training compared
to Stochastic Sampling, as shown in Figure[3] Specifically, LATR runs approximately 10% slower
per step than Stochastic Sampling with the same configuration. However, compared with DAPO
with Stochastic Sampling, GRPO with LATR is able to achieve comparable performance in shorter
training time. Additionally, considering the averagely 2.3 training speedup (as introduced in Section
[3), LATR is able to achieve higher performance in less total training time. This suggests that the
algorithmic gains of LATR outweigh its runtime penalties in end-to-end training scenarios.

Further profiling reveals that the runtime overhead in LATR 150
primarily stems from suboptimal GPU memory access pat-

terns. Unlike Stochastic Sampling, which processes fixed- 100
width, contiguous sequences, LATR dynamically inserts I I

and removes sequences during tree expansion and pruning. 50

This irregular access pattern leads to frequent cache misses

and disrupts the GPU’s memory coalescing and prefetch- 0

ing mechanisms, effectively stalling the memory pipeline. GRPO DAPO
Targeted optimizations, similar to PagedAttention (Kwon B Stochastic ® LATR

et al.| 2023) for Stochastic Sampling, are likely to mitigate
the overhead. While promising, they lie outside the scope  Fjgure 5: Comparison of average
of this work and are left to future efforts. consumed time per training step un-

der different settings (second).
C.5 ADDITIONAL STATISTICS FOR LATR

To further elucidate the behavior Table 10: Key statistics for LATR.
of our proposed method, we re-

port two key statistics: the aver-

. . L. Model B hing Rati ion L h
age branching ratio, which is the ode ranching Ratio  Saturation Lengt
proportion of tokens at which new Qwen2.5-3B 0.101 05
reasoning branches are initiated rel- Qwen2.5-3B-Instruct 0.039 102

Qwen2.5-3B-LATR 0.044 132

ative to the total number of gener-
ated tokens, and the average satu-
ration length, defined as the number of tokens generated before early stopping is triggered. Following
the setup in Section[5.1] we present these metrics for the same three model variants: Qwen2.5-3B,
Qwen2.5-3B-Instruct, and Qwen2.5-LATR, enabling a consistent and comprehensive analysis across
model stages.

As shown in Table [T0] the branching ratios are consistently low across all models, indicating
conservative branching behavior. Moreover, the average saturation length is notably shorter than
the maximum completion length of 1,024 tokens. This observation aligns with prior findings (Shao
et al.;2025), which suggest that the initial segments of a reasoning chain are often most critical in
determining the final outcome.
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/You are an expert Al assistant specializing in mathematics. You must strictly return the result in )
a valid JSON format.
IMPORTANT: In all JSON strings, every literal backslash "\" for LaTeX commands must be
escaped as "\\'. For example, “\frac’ must be written as "\\frac'.

--- Task ---
Given a math problem with its non-integer answer, rephrase it into a new problem whose
solution is a single integer.

--- Guidelines ---
1. **For non-integer numerical answers**, convert them to a single integer in base 10 using
the following rules:

* **Fractions:** For a simplified fraction $\\frac{a}{b}$, ask for the value of a + b. For a mixed
number $a\\frac{b}{c}$, ask fora + b + c.

* **Radicals:** For an answer in the form $k + m\\sqrt{n}$, ask for the value of k + m + n. If
k=0, ask for m + n.

* **Complex Numbers:** For a complex number a + bi, ask for the value of a + b.

* **Coordinate Points:** For an ordered pair $\\left( a, b\\right)$, ask for the value of a + b.

* **Multiples of Pi:** For an answer k * pi, ask for the value of k.

* **Other Number Bases:** For an answer d in base b (e.g., 52_8), ask for its value in base
10.
2. **For Symbolic Expressions and Functions**, choose the appropriate strategy based on the
expression's type:

* **(Strategy A) Component Analysis for Simple Polynomials and Fixed Structures:**

For answers that are simple linear combinations, polynomials, or have a fixed symbolic
structure, prompt for the sum of their key integer components. **This should be prioritized for
simple expressions.**

* **Applies to:** $a \cdot p + b \cdot g$, $n*2 + an + b$

***And fixed forms like:** $a”b$, $a!$, “$a! / brc$

* **Example Action:** For $2n + 3$, ask for the sum of coefficients and constants ('2+3").

* **(Strategy B) Evaluation for Complex or Non-Polynomial Functions:**

For answers involving complex functions (e.g., binomials, floors) or defined as pairs of
functions, prompt for the expression's numerical value at small, specified integer inputs.

* **Applies to:** $\\binom{2n}{n}$, $mn - \Ifloor m/2 \\rfloor$, or function pairs like $f(n),
g(n)$.

* **Example Action:** For $\\binom{2n}{n}$, ask for its value at $n=23.

3. **For multiple-choice or named answers**:
* Convert the list of possible choices into a 0-indexed list and ask for the index of the correct
answer.

--- Requirements ---

1. Please modify the instruction of the output format if necessary. Except that, do not change
the content of the original problem.

2. Adhere to the JSON format:

{"question": "The complete rewritten question text", "answer": The integer answer}

--- Examples ---
{{Examples}}

--- Now, please process the following problem ---
L Original Problem:

Figure 6: Prompt for data transformation.
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