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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR), particularly with al-
gorithms like Group Relative Policy Optimization (GRPO), has proven highly
effective in enhancing the reasoning capabilities of large language models. How-
ever, a critical bottleneck in current pipelines lies in the limited diversity of sampled
trajectories during group rollouts. Homogeneous trajectories and their associated
rewards would diminish the return signals for policy updates, thereby hindering
effective policy learning. This lack of diversity stems primarily from token-level
stochastic sampling, where local variations are likely to collapse into near-identical
reasoning paths. To address this limitation, we propose Lookahead Tree-Based
Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-
level diversity by enforcing branching into different candidate tokens likely to yield
distinct continuations. Specifically, LATR iteratively operates in three stages: (1)
branching at high-uncertainty generation steps, (2) performing lookahead sim-
ulation for each new branch, and (3) pruning branches that exhibits prolonged
similarity during simulation. Compared with Stochastic Sampling, LATR acceler-
ates policy learning by 131% on average and improves final pass@1 performance
by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO)
algorithms across different reasoning tasks. Our code will be publicly available.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has emerged as a powerful paradigm for
enhancing the reasoning capabilities of large language models recently (DeepSeek-AI et al., 2025;
Yang et al., 2025; OpenAI, 2025). By leveraging sequence rollouts and updating policies according
to appropriate rewards, RLVR can significantly improve performance across diverse reasoning tasks,
including mathematical problem solving, code generation, and multi-step logical deduction (Pan

First, maybe addition and subtraction. 60 - 51 is 9. Then 
35 - 4 is 31 ... <answer> 60 + 35 - 51 + 4 </answer>

Let’s consider addition and subtraction first. 60 - 51 is 9. 
Then 35 - 4 is 31 ... <answer> 60 + 35 - 51 + 4 </answer>

High Similarity

First, maybe addition and subtraction. 60 - 51 is 9. Then 
35 - 4 is 31 ... <answer> 60 + 35 - 51 + 4 </answer>

First, maybe addition and subtraction. 60 - 35 = 25. 
Maybe multiplying ... <answer> (60 - 35) * 4 - 51 </answer>

Enhanced Diversity

(a) Sampling: branching, simulation & pruning (b) Generated group sequences: higher diversity (c) RLVR training dynamics: faster learning & higher score

...

...
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Figure 1: Comparison of conventional token-level stochastic sampling and our proposed method
LATR on sampling process, rollout sequence diversity, and performance on DAPO Math dataset.
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et al., 2025). Algorithms such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
have become central to this approach, enabling stable model training through in-group trajectory
comparisons to learn from high-quality responses while penalizing low-rewarded ones.

A key challenge in these methods lies in the limited diversity of trajectories sampled during the rollout
phase (Wang et al., 2025; Zhu et al., 2025). When trajectories within a group exhibit high similarity,
the estimated relative advantage and learning signals tend to diminish. As a result, the policy updates
become less informative, ultimately hindering the effective scaling. Recent efforts have sought to
mitigate this issue through various approaches, including increasing sampling temperature (Liu et al.,
2025) and dynamically filtering out groups with highly similar samples (Yu et al., 2025). However, the
former focuses on token-level variation without ensuring trajectory-level divergence, while the latter
relies on post hoc filtering that provides only limited within-group diversity at the cost of excessive
over-generation. Both methods therefore yield only modest improvements in rollout diversity under a
constrained generation budget.

We argue that such diversity limitation stems from the predominate reliance on token-level stochastic
sampling strategies, where each sequence in a group is generated independently by sampling tokens
from the model’s output distribution at each decoding step. While simple and widely adopted, this
approach ignores the contrast among sequences within the group and fails to enforce distinction or
complementarity at the trajectory level, thus exhibiting an inherently myopic limitation. Specifically,
token-level variations typically occur without lookahead ability, making local deviations (e.g., substi-
tuting “compute” with “calculate”) easily collapse back into nearly identical reasoning paths, leading
to redundant exploration and diminishing returns.

To address these limitations, we propose Lookahead Tree-Based Rollout (LATR), a strategy designed
to explicitly promote trajectory-level diversity within a group by maintaining rollouts in a tree
structure. At token positions with high model uncertainty, LATR enforces branching into different
candidate tokens that are highly likely to yield distinct continuations. To guarantee that each selected
candidate token can lead to a different reasoning path, LATR performs lookahead simulation by
continuing generation for a fixed length, and removes those candidates failing to diverge from others.
This branching, simulation and pruning procedure is iteratively repeated until the target number of
rollouts is reached, after which all surviving partial sequences continue to be extended in parallel
under standard stochastic sampling. This ensures that the generated trajectories are reasonably distinct
from each other, thereby enriching the in-group rollout diversity.

We apply LATR strategy to both GRPO and DAPO algorithms and evaluate across 5 datasets involving
mathematical and logical reasoning. Our experiments demonstrate that LATR consistently accelerates
policy learning by an average of 131%, while simultaneously improving final task performance of
pass@1 by averagely 4.2% across different tasks. Our contributions are summarized as follows:

1) We introduce a novel tree-based rollout algorithm LATR that explicitly optimizes for trajectory-
level diversity, which can be integrated seamlessly into any policy update algorithms.

2) We provide extensive empirical validation across tasks and training configurations, demonstrating
consistent improvements over existing sampling strategies in RLVR pipelines.

2 PRELIMINARY

We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as the foundational RL
algorithm for policy refinement. Unlike Proximal Policy Optimization (PPO) (Schulman et al.,
2017), which relies on a learned value function to estimate advantages, GRPO eschews explicit
value modeling and instead computes advantages directly from group-relative rewards. This design
simplifies training dynamics and enhances stability in reward-sparse or high-variance environments.

Each training iteration in GRPO consists of two phases: (1) rollout, where multiple candidate
responses are sampled per prompt, and (2) policy update, where the policy is optimized using
group-normalized advantages and a clipped surrogate objective.

Rollout. Given a prompt p drawn from the dataset D, a group of k candidate sequences {si}ki=1 are
generated via autoregressive sampling from policy πθ. Each sequence is constructed token-by-token
through stochastic sampling from the model’s predicted next-token distribution. This process is
identical to inference-time generation.
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Token probability distribution

Prompt: Using the numbers [51, 4, 60, 35], create an expression that equals 49.
You can use basic arithmetic operations (+, -, *, /) and each number can only be used once.

51 is 9. Then 35 - 4 
is 31. 9 + 31 is 40. 

Not enough ...

35 is 25. Then 51 -
25 is 26. Then 26 + 4 

is 30. Not enough. 

0

0.2

0.4

0.6

"Let" "Maybe" "Hmm" "Wait"

Let’s try multiplying. 
25 * 4 = 100. Then 

subtract 51 ...  

Maybe multiplying. 
25 * 4 = 100. Then 

subtract 51 ... 

...

high similarity

...

Answer: 60+35-51-4
Reward: 0.0

Branching on high probability tokens Simulating & Pruning branches with high similarities

Answer: (60-35)*4-51
Reward: 1.0

Answer: [INVALID]
Reward: 0.0

Answer: \left(60 –
35\right) \times 4 - 51
Reward: 1.0

Diverse answers & CoT

...

Figure 2: An overview of LATR. A dynamic search tree is built by branching on model uncertainty,
simulating and pruning similar branches, resulting in diverse answers and reasoning paths.

Formally, let Sl denote the set of partial sequences of length l generated for prompt p. The rollout
process is recursively defined as:

S0 = {ϵ}, Sl+1 =
⋃
s∈Sl

{s⊕ t | t ∼ πθ(· | p⊕ s)} , (1)

where ϵ is the empty sequence, ⊕ denotes token concatenation, and sampling terminates when all
sequences reach an end-of-sequence token or a maximum length n. The final output is the group
S = {s1, . . . , sk}. This group-based sampling enables direct comparison of responses under the
same prompt, forming the basis for relative advantage estimation.

Policy Update. Policy update aims to refine policy π by maximizing expected cumulative rewards.
Similar to PPO, GRPO adopts a clipped objective, together with a directly imposed KL penalty term:

JGRPO(θ) = Ep∼D,{si}k
i=1∼πθold (·|p)1

k

k∑
i=1

1

|si|

|si|∑
l=1

(
min

(
ri,l(θ)Âi,l, clip (ri,l(θ), 1− ε, 1 + ε) Âi,l

)
− βDKL(πθ||πref)

) , (2)

where the advantage Â is calculated by normalizing the group-level rewards {Ri}ki=1, and the ratio r
compares the likelihood of token si,l under the current and old policies:

Âi,l =
Ri −mean({Ri}ki=1)

std({Ri}ki=1)
, ri,l(θ) =

πθ(si,l | p, si,<l)

πθold(si,l | p, si,<l)
. (3)

Variations of GRPO. Building upon this, DAPO (Yu et al., 2025) improves GRPO in several
aspects. In rollout stage, DAPO oversamples data batches and filters out groups with identical
rewards. If the retained groups are insufficient to fill a batch, additional rollouts are iteratively
sampled. This mechanism trades computational efficiency for higher response diversity and more
informative gradients. In policy update stage, DAPO addresses GRPO’s limitations in long-form
generation tasks by implementing token-level loss calculation to mitigate length bias, and employs
decoupled clipping without RL penalty to encourage exploration. Formally, the objective is

JDAPO(θ) = Ep∼D,{si}k
i=1∼πθold (·|p) 1∑k

i=1 |si|

k∑
i=1

|si|∑
l=1

min
(
ri,l(θ)Âi,l, clip (ri,l(θ), 1− εlow, 1 + εhigh) Âi,l

) . (4)

These enhancements make DAPO a more robust and effective algorithm for complex reasoning tasks.
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3 LOOKAHEAD TREE-BASED ROLLOUT

To address the limited diversity of conventional token-level sampling during the rollout phase, we
introduce Lookahead Tree-Based Rollout (LATR), a structured exploration strategy inspired by
Monte Carlo Tree Search (Silver et al., 2016). LATR achieves diverse trajectory generation by
enforcing branching at candidate tokens that are highly likely to yield distinct continuations.

Algorithm 1 Lookahead Tree-Based Rollouts

Require: Policy model π, rollout number k,
prompt p, absolute branching threshold τabs,
relative threshold τrel, pruning threshold τed,
lookahead step r, max length n.

Ensure: Set of rollouts S = {s1, . . . , sk}.
1: Initialize S ← {ϵ} {Single root branch}
2: for l = 1 to n do
3: Snext ← ∅
4:
5: {- - - - - - Branching logic - - - - - -}
6: for branch si ∈ S do
7: Pi ← π(· | p⊕ si) {Prob distribution}
8: c⋆i ← argmaxc Pi[c] {Top candidate}
9: sextend

i ← si ⊕ c⋆i {Extend main}
10: Snext ← Snext ∪ {sextend

i }
11: Ci ← {c ̸= c⋆i | Pi[c] > τabs and

Pi[c
⋆
i ]− Pi[c] < τrel}

12: for c ∈ Ci do
13: if |Snext| < k then
14: snew ← si ⊕ c {New branch}
15: snew.parent← si
16: snew.birth← l
17: Snext ← Snext ∪ {snew}
18: end if
19: end for
20: end for
21:
22: {- - - - - - Pruning logic - - - - - -}
23: for sj ∈ Snext with sj .birth = l − r do
24: if EditDist(sj , sj .parent) < τed then
25: Remove sj with its descendants
26: end if
27: end for
28:
29: S ← Snext
30: end for
31: return Pad S to exactly k sequences

Specifically, LATR operates through three it-
erative stages: (1) Branching, which creates
new trajectories at token positions with high
model uncertainty; (2) Lookahead Simula-
tion, where the new branch is extended for
a fixed lookahead window of r tokens; and
(3) Pruning, where simulated sequences that
fail to diverge from others are removed. This
process repeats until the target number of roll-
outs is reached, ensuring their diversity. We
provide the complete algorithm in Algorithm
1 and an illustration in Figure 2.

3.1 BRANCHING

LATR begins with a root node corresponding
to the input prompt. At each generation step l,
every active branch is extended by its highest-
probability token to ensure progress along the
most likely trajectory. These branches are re-
graded as parent branches. Simultaneously,
if alternative tokens satisfy both the abso-
lute probability threshold τabs and the relative
probability threshold τrel, new child branches
are instantiated. This dual-threshold mecha-
nism targets reasoning crossroads where the
model is genuinely uncertain between seman-
tically distinct continuations, while prevent-
ing the branches diverging too far from the
model’s internal distribution. Branching al-
lows LATR to maintain multiple semantically
distinct reasoning paths in parallel, signifi-
cantly increasing the probability of discover-
ing high-quality, diverse solutions.

Formally, let Sl denote the set of active
branches at step l, and for each branch s ∈ Sl,
let Ps denote its next-token distribution, the
most likely token c⋆s = argmaxc Ps[c], and
Cs is the set of all remaining candidates ex-
cluding c⋆s . A new child branch s⊕ c is cre-
ated if:

Ps[c] > τabs and Ps[c
⋆
s]− Ps[c] < τrel. (5)

The set of branches after expansion is the union of the parent branches with their new children:

S′
l =

⋃
s∈Sl

({s⊕ c⋆s} ∪ {s⊕ c | c ∈ Cs, conditions of (5) hold, |S′
l | < k}) . (6)

If the rollout budget k is reached, candidate branches are prioritized by descending probability Ps[c].
This ensures that more plausible alternatives are more likely to be explored.
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3.2 SIMULATION & PRUNING

While the above branching strategy effectively enables structured parallel exploration, it faces two
challenges: (1) unconstrained branching leads to exponential growth, quickly exhausting the rollout
budget and limiting exploration sequentially; (2) branches started from token-level variations easily
collapse back into nearly identical reasoning paths, struggling to ensure trajectory-level diversity.

To address these issues, LATR incorporates a lookahead simulation and pruning phase. After
branching, each new trajectory continues generation for a fixed lookahead window of r tokens. These
continuations are then evaluated for semantic divergence using normalized edit distance, and branches
exhibiting insufficient divergence from their parents are pruned.

Specifically, at each step l, LATR identifies all branches s created at step l − r and computes the
normalized edit distance over their most recent r tokens relative to their parents’ corresponding
segment. If the distance falls below a threshold τed, the branch and all its descendants are removed:

Sprune
l = {s | s ∈ S′

l , s.birth = l − r, EditDist(s[−r :], s.parent[−r :]) < τed} , (7)

Sl+1 =
{
s
∣∣ s ∈ S′

l , s /∈ Sprune
l

}
, (8)

Where EditDist() indicates normalized edit distance, i.e., the Levenshtein distance between token
ID sequences, divided by sequence length. This ensures that only branches exhibiting meaningful
semantic divergence within the lookahead window are preserved. Notably, LATR is backtracking-free,
so the number of forward passes required by a group rollout is bounded by O(nk), where k is the
rollout number (tree width) and n is the maximum completion length (tree depth).

Through lookahead simulation and pruning, LATR preserves only diverse branches that are more
likely to yield distinct reasoning paths. The final output consists of k surviving branches, padded
if necessary to meet the rollout number requirements. The entire procedure is compatible with
any autoregressive language model and can be integrated seamlessly into existing policy update
algorithms and RLVR frameworks without modifications.

3.3 FURTHER OPTIMIZATIONS

Early Stopping. When the tree width reaches the rollout number k, LATR has already produced k
sequences that are likely to lead to diverse reasoning paths. At this point, the generation process is
switched to standard stochastic sampling for all remaining steps. This allows surviving branches to
continue exploring the solution space stochastically while maintaining the diversity benefits from
LATR. Analyses on the stopping length is in Appendix C.3.

Hybrid Rollout for RL Training. While LATR excels at promoting diverse exploration during
RL training, its explicit divergence objective can create a mismatch with test-time behavior. At real-
world inference, models typically generate a single trajectory using greedy or stochastic decoding,
prioritizing correctness and coherence over diversity. However, Policy updates with LATR tries to
maximize the reward from the LATR-generated diverse rollout group. Training exclusively with
LATR throughout the entire process may thus bias the policy toward over-exploration patterns that do
not generalize. To bridge this gap, we adopt a hybrid sampling strategy during RL training. At each
training step, we allocate a fraction η of rollouts to LATR and the remainder to standard Stochastic
Sampling:

kLATR = ⌊ηk⌉, kstd = k − kLATR, (9)
where ⌊·⌉ denotes rounding to the nearest integer. We anneal η exponentially over training:

η = η0 · γl, (10)
with decay rate γ < 1. This ensures early-stage exploration benefits from LATR’s diversity, while
later stages increasingly mimic test-time behavior to reduce train-test discrepancy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To rigorously assess LATR’s performance in reasoning-intensive environments, we evaluate it on two
canonical domains suited for RLVR: logical reasoning and mathematical problem solving.

5
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Table 1: Performance comparison of test correctness and average completion length on the Count-
down dataset. ↑ indicates higher is better, while ↓ indicates lower is better. Relative improvement of
LATR to Stochastic Sampling with the same policy update algorithm is marked in the parentheses,
where green indicates positive improvements and red otherwise. Best results are in bold.

Method Correctness (%) ↑ Average Length ↓
Pass@1 Pass@8 Pass@1 Pass@8

Qwen2.5-3B 1.1 5.5 543 975
+ GRPO w Stochastic 65.9 73.9 473 610
+ DAPO w Stochastic 70.7 78.0 483 630
+ GRPO w LATR 70.9 (+5.0) 77.4 (+3.5) 378 (-20%) 469 (-23%)
+ DAPO w LATR 74.7 (+4.0) 81.5 (+3.5) 367 (-24%) 453 (-28%)

Table 2: Performance comparison on DAPO Math and AMC 2023 dataset.

Method
DAPO-Math (val) AMC-2023

Correctness (%) ↑ Average Length ↓ Correctness (%) ↑ Average Length ↓
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

Qwen2.5-3B 5.6 20.1 938 2203 5.9 20.7 963 2255
+ GRPO w Stoch. 24.1 51.3 880 1732 32.8 59.7 833 1622
+ DAPO w Stoch. 26.8 53.1 1024 2022 37.8 62.7 1075 2116
+ GRPO w LATR 28.4 (+4.3) 51.9 (+0.6) 853 (-3%) 1556 (-10%) 35.6 (+2.8) 60.3 (+0.6) 838 (+1%) 1537 (-5%)
+ DAPO w LATR 32.5 (+5.7) 54.1 (+2.8) 896 (-13%) 1880 (-7%) 45.3 (+7.5) 65.0 (+2.3) 883 (-18%) 1920 (-9%)

Logical Reasoning. We adopt the Countdown dataset for both training and evaluation. Following
prior work (Pan et al., 2025), we use reward R = 0.1 · Rformat + 0.9 · Rcorrectness, where Rformat
encourages outputs with proper form and Rcorrectness assigns full reward for logically correct solutions.

Mathematical Problem Solving. Models are trained on the DAPO-Math dataset and evaluated on
three additional benchmarks: MATH-500 (Hendrycks et al., 2021), AMC-2023 (MAA, 2023), and
Olympiad-Bench (He et al., 2024). Consistent with Yu et al. (2025), the reward is binary: R = 1.0
for correct final answers, and 0 otherwise.

Evaluation Protocol. For each test instance, we sample 8 independent completions. We report
Pass@1 and Pass@8 correctness scores along with the average completion length to assess solution
conciseness. All implementation details, including dataset descriptions, hyperparameters, and
environment configurations, are provided in Appendix B.

4.2 TERMINATING PERFORMANCE

We provide a comprehensive comparison between LATR and Stochastic Sampling in Table 1, 2 and 3
for Countdown and Math tasks, reporting their performance and completion length on test datasets
after the complete 500 steps of training. Observations are summarized as follows:

LATR delivers consistent gains in correctness across various benchmarks on both GRPO and
DAPO. Across all task-policy combinations, LATR outperforms Stochastic Sampling in final
Pass@1 scores. On the Countdown dataset, LATR improves accuracy by an average of 4.5% under
both GRPO and DAPO. On the Math dataset, gains are averagely 3.8%. Notably, GRPO + LATR
achieves comparable or even higher performance than DAPO + Stochastic Sampling despite DAPO’s
computationally intensive mechanisms such as group filtering. Moreover, DAPO + LATR achieves
state-of-the-art performance on both benchmarks, reinforcing that trajectory diversity during rollout is
the primary driver of performance gains. This finding aligns with ablation studies in DAPO (Yu et al.,
2025), which identified rollout group filtering as the most effective component of their framework.

LATR consistently reduces inference cost while enhancing performance. Beyond accuracy,
LATR significantly reduces the average length of generated reasoning trajectories at test time. On
Countdown, completion length decreases by 22% under both GRPO and DAPO; on math datasets, we
observe a 8.3% reduction. We attribute this dual benefit to LATR’s core mechanism: by encouraging
exploration of diverse reasoning paths during training, it exposes the policy to a broader distribution

6
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Table 3: Performance comparison on MATH-500 and Olympiad-Bench dataset.

Method
MATH-500 Olympiad-Bench

Correctness (%) ↑ Average Length ↓ Correctness (%) ↑ Average Length ↓
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

Qwen2.5-3B 24.7 54.4 748 1690 8.5 25.8 1088 2413
+ GRPO w Stoch. 58.4 76.7 657 1207 27.2 47.4 1058 2014
+ DAPO w Stoch. 60.4 79.2 700 1283 28.1 47.0 1162 2193
+ GRPO w LATR 61.9 (+3.5) 77.5 (+0.8) 594 (-10%) 952 (-25%) 29.5 (+2.3) 48.2 (+0.8) 954 (-10%) 1728 (-14%)
+ DAPO w LATR 62.6 (+2.2) 79.0 (-0.2) 653 (-7%) 1217 (-5%) 30.4 (+2.3) 47.8 (+0.8) 1105 (-5%) 2354 (+7%)
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Figure 3: Learning curve comparison on Countdown (left) and DAPO-Math (right) datasets.

of solutions, guiding the model to internalize efficient reasoning strategies. In contrast, Stochastic
Sampling tends to traverse the reasoning space sequentially within independent trajectories due to its
insufficient parallel exploration, often resulting in verbose, redundant, or over-elaborated chains.

4.3 TRAINING DYNAMICS

To further investigate the RL training process with LATR and Stochastic Sampling, we analyze
training dynamics by plotting validation accuracy against training step in Figure 3. The results reveal
that LATR not only converges to a better solution, but does so considerably faster.

Under DAPO, Stochastic Sampling requires 450 steps to reach peak performance on the Countdown
task, whereas LATR achieves the same level of accuracy by step 150, resulting in a 3× acceleration in
training efficiency. On the math task, compared to step 500 for Stochastic Sampling, DAPO + LATR
reaches same performance at step 240, yielding a 2× speedup. Crucially, the acceleration provided
by LATR exceeds that gained by upgrading from GRPO to DAPO, despite DAPO’s heavier data
requirements and computational overhead per step. This suggests that LATR’s enhanced exploration
of diverse trajectories is able to translate into more informative policy updates per training iteration.
In effect, LATR increases the sample efficiency of the RL process, enabling faster learning without
architectural changes or additional data.

5 DISCUSSIONS

To rigorously evaluate the behavior and advantages of LATR under varying conditions, we conduct a
comprehensive set of controlled experiments. Unless otherwise specified, all analyses in this section
are performed using the DAPO algorithm on the Countdown dataset, with all other hyperparameters
and architectural settings held consistent with the main experiments. Scalability with rollout number,
analyses on efficiency, and key statistics of LATR are provided in Appendix C.

5.1 DIVERSITY COMPARISON

To empirically validate that LATR promotes greater diversity among reasoning trajectories within
each rollout group, we conduct a comparative analysis between LATR and the baseline method
Stochastic Sampling. We evaluate three variants of the Qwen2.5-3B architecture: Qwen2.5-3B,
Qwen2.5-3B-Instruct, and Qwen2.5-3B trained with GRPO + LATR, which we name it Qwen2.5-

7
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LATR. This progression, from a raw pretrained model to an instruction-tuned variant and finally to a
policy-optimized model incorporating LATR, enables a nuanced assessment of how LATR influences
diversity across different stages of model development. In addition to standard performance metrics
(Pass@1 and Pass@8), we also evaluate the average number of distinct final answers per rollout
group. Two answer expressions of Countdown are considered distinct if their evaluated numerical
outcomes differ. This ensures that diversity is measured in terms of semantic rather than syntactic
variation.

Table 4: Diversity comparison between Stochastic Sam-
pling and LATR.

Method Pass@1 Pass@8 # Ans.

Qwen2.5-3B + Stoch. 5.8 28.9 6.3
Qwen2.5-3B + LATR 6.1 30.7 6.9

Qwen2.5-3B-Instruct + Stoch. 9.4 35.2 6.4
Qwen2.5-3B-Instruct + LATR 10.9 40.6 6.9

Qwen2.5-3B-LATR + Stoch. 70.9 77.4 2.6
Qwen2.5-3B-LATR + LATR 68.9 79.9 3.0

As shown in Table 4, LATR consis-
tently yields higher Pass@8 scores and
a greater number of distinct answers per
rollout group across all three model vari-
ants compared to Stochastic Sampling.
These results support our claim that
LATR enhances intra-group trajectory
diversity, thereby facilitating more ef-
fective policy learning through broader
exploration of the solution space.

5.2 EFFECT OF DIFFERENT COMPONENTS

Table 5: Performance comparison of test Correctness
and average completion length across Stochastic Sam-
pling, LATR without pruning, and full LATR.

Method Correctness (%) ↑ Average Length ↓
Pass@1 Pass@8 Pass@1 Pass@8

Stochastic 70.7 78.0 483 630
LATR w/o prune 71.0 78.7 397 497
LATR 74.7 81.5 367 453

We begin by dissecting the contribution
of LATR’s core components through an
ablation study. Specifically, we evaluate
a variant of LATR that disables the dy-
namic pruning mechanism, which is de-
noted LATR w/o-prune, while retaining
the branching strategy. This allows us
to isolate the impact of similarity-based
pruning on performance.

As shown in Table 5, LATR w/o-prune
yields modest gains over Stochastic Sampling, confirming that branching alone enhances exploration
by diversifying rollout trajectories. However, LATR significantly outperforms both baselines. This
performance gap arises from two limitations of unpruned branching: (1) Budget exhaustion. Without
pruning, the fixed rollout budget k is rapidly consumed early in generation, starving later steps of
exploration capacity. (2) Redundancy: Rollout groups without pruning often contain sequences with
similar reasoning paths, diminishing the effective diversity and leading to suboptimal policy updates.

Thus, while branching provides the foundation for exploration, dynamic pruning acts as the regulator,
which ensures that exploration budget is meaningfully distributed and mitigates redundancy.

5.3 IMPACT OF DIFFERENT SAMPLING TEMPERATURES

t=0.8 t=1.0 t=1.2 t=1.5
40

50

60

70

80

Stochastic Pass@1
Stochastic Pass@8
LATR Pass@1
LATR Pass@8

Figure 4: Comparison of test correctness with
different temperature t (%).

In standard RL frameworks with Stochastic Sam-
pling, the sampling temperature t governs the
exploration-exploitation trade-off: higher t in-
creases stochasticity and thus exploration, but
risks degrading rollout quality. In contrast, LATR
delegates exploration primarily to its branching-
and-pruning mechanism, using t only to modulate
stochastic fallback and hybrid rollouts, which is
described in Section 3.3.

We evaluate performance across t ∈
{0.8, 1.0, 1.2, 1.5, 2.0} . As shown in Fig-
ure 4, both methods peak near t = 1.2, suggesting
this is optimal for the base policy. Notably, LATR
achieves superior performance at every t, and
exhibits lower variance across temperatures.
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This robustness stems from LATR’s architectural decoupling: exploration is driven by structural
diversity (branching + pruning), not sampling noise. Consequently, LATR is less sensitive to
suboptimal temperature tuning.

6 RELATED WORK

6.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Recently, Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful
alternative for tasks with verifiable outcomes, such as mathematical problem-solving and logical
reasoning (Lambert et al., 2024). In RLVR, the reward signal is derived from an external oracle
(e.g., a unit test or a final answer check), providing a clear and objective measure of a trajectory’s
success. Within RLVR, GRPO (Shao et al., 2024) have become the state-of-the-art solution. Rather
than relying on a learned value model, it compares trajectories within a sampling group and update
the policy based on their relative success. Following this line of research, many recent works seek to
improve the performance of GRPO, mainly in two different directions:

1. Improving rollout diversity to obtain better reward signal for policy learning. DAPO (Yu
et al., 2025) proposes a group filtering strategy to oversample and discard groups with identical
rewards. ProRL (Liu et al., 2025) increases the sampling temperature to obtain more diverse rollout
sequences. Despite these advancements, these methods only address diversity indirectly. Their
reliance on token-level stochastic sampling is prone to generating semantically redundant reasoning
paths, a limitation our work directly confronts.

2. Enhancing policy updates with better utilization of reward signal. DAPO introduces clip
higher technique and removes RL constraints to enable more aggressive policy updates towards the
correct reasoning trajectories. GSPO (Zheng et al., 2025) introduces sequence-level rewards to smooth
and stabilize policy learning. These algorithmic innovations are orthogonal to the rollout strategy,
so LATR is fully compatible with these methods. Replacing vanilla rollouts with LATR-generated
trajectories yields additive performance improvements, as we demonstrate empirically.

6.2 TREE SEARCH FOR RLVR

Tree-search algorithms, such as Monte Carlo Tree Search (MCTS) (Silver et al., 2016), have a
rich history in sequential decision-making problems that require planning and lookahead, famously
demonstrated in AlphaGo (Silver et al., 2017).

In the context of RLVR for LLMs, two contemporaneous works also explore the tree-search methods.
TreeRL (Hou et al., 2025) employs MCTS to estimate intermediate rewards for reasoning segments
by propagating sparse binary outcome rewards backward through the tree. TreePO (Li et al., 2025)
improves generation efficiency by reusing shared prefixes and pruning flawed branches early; it
further introduces fine-grained, subgroup reward signals derived from the tree structure.

While both approaches exploit tree-based representations, their objectives differ fundamentally from
ours. TreeRL and TreePO employ tree search primarily to improve reward estimation granularity or
rollout efficiency, but neither explicitly models or optimizes for intra-group trajectory diversity. In
contrast, our primary motivation for adopting a tree structure is to explicitly compare and encourage
diverse reasoning paths for the rollout group. This diversity enriches the reward signal by capturing a
broader spectrum of potential outcomes, thereby improving the quality of policy learning.

7 CONCLUSION

In this work, we present Lookahead Tree-Based Rollout, a novel rollout strategy that explicitly
promotes trajectory-level diversity in RLVR by dynamically branching at high-uncertainty tokens
and pruning non-divergent paths via lookahead simulation. By moving beyond token-level sampling
heuristics, LATR enriches policy learning signals, accelerating training convergence while improving
final performance by a large margin across different benchmarks. Our work demonstrates that
trajectory-level rollout diversity is key to scaling RLVR effectively and efficiently.

9
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REPRODUCIBILITY STATEMENT

To better support reproducibility, we detail all the details to reproduce our results in Section B.3,
including the parameters for our methods, training details, environment and framework versions.
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A LLM USAGE

In the course of preparing this manuscript and supporting materials, we leveraged large language
models (LLMs) as auxiliary tools to enhance the efficiency and quality of non-core research tasks.
Specifically, LLMs were employed in two primary capacities:

1. Language polishing: We used LLMs to assist in proofreading, grammatical correction, and
stylistic refinement of the manuscript’s prose.

2. Boilerplate and utility code generation: For ancillary implementation tasks, such as file I/O
wrappers, format converters, or logging utilities, we used LLMs to accelerate prototyping.

B DETAILS ON EXPERIMENT SETUP

In this section, we detail the datasets, evaluation protocols, and implementation configurations.

B.1 DATASETS AND TASK FORMULATIONS

Logical Reasoning. We adopt the Countdown dataset (Pan et al., 2025), which challenges models
to construct arithmetic expressions from a given set of integers that evaluate exactly to a target number.
Following Pan et al. (2025), we define a two-component reward function:

R = 0.1 · Iformat + 0.9 · Icorrect, (11)

where Iformat indicates syntactic validity and Icorrect indicates semantic correctness. Models are trained
on the training split and evaluated on the official test set.
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Mathematical Problem Solving. For mathematical reasoning, we train on the DAPO Math dataset
(Yu et al., 2025), a curated collection of problems drawn from diverse sources. Consistent with Yu
et al. (2025), the reward is binary:

R = Icorrect, (12)

awarding 1.0 only for exact numerical matches.

To ensure broad generalization, we evaluate not only on DAPO Math’s held-out validation set, which
is manually partitioned with 1,024 samples, but also on three established external benchmarks,
including MATH500 (Hendrycks et al., 2021), AMC2023 (MAA, 2023), and OlympiadBench (He
et al., 2024).

To maintain consistency across datasets with heterogeneous answer formats, following Yu et al.
(2025), we apply a standardized answer normalization pipeline that maps all results to integers. We
construct a comprehensive few-shot prompt that instructs Gemini-2.5-pro (Team et al., 2025) to apply
a set of deterministic heuristics according the original answer’s format. These heuristics include: (1)
for structured non-integer answers like fractions (p/q) or radicals (k+m

√
n), rephrasing the question

to ask for the sum of their components (e.g., p+ q or k+m+n); (2) for symbolic expressions, either
summing the coefficients of simple polynomials or evaluating complex functions when assigning
the variables (e.g., x = 2); and (3) for multi-part or multiple-choice answers, asking for the sum of
solutions or the 0-indexed position of the correct choice. The few shot prompt applied is provided in
Figure 7.

B.2 EVALUATION PROTOCOL

We perform stochastic sampling on the trained model for a fixed 8 times for each sample in the
evaluation datasets, and report Pass@1 (the average accuracy over a single sampled completion per
question) and Pass@8 (the accuracy of the best solution among 8 independently sampled completions
per question). In addition to correctness, we also include average completion length for both Pass@1
and Pass@8 to quantify test-time computational cost and efficiency.

B.3 IMPLEMENTATION DETAILS

Sampling and Rollout Parameters. We set our sampling parameters following Yu et al. (2025);
Pan et al. (2025). During training, we sample rollouts with temperature = 1.0, top-k = −1, and top-p
= 1.0 to encourage exploration. During evaluation, we use temperature = 0.6, top-k = 20, and top-p
= 0.95 for calibrated diversity. Each training step involves k = 8 rollouts per prompt. Maximum
completion lengths are set to 1,024 tokens for Countdown and 8,192 tokens for math problems.

Algorithmic Parameters for LATR. Hybrid rollout coefficient η0 = 1.0, decaying per-step via
ηt = η0 · γt, with γ = 0.985 (Countdown) and γ = 0.995 (Math). For branching thresholds,
absolute probability threshold tabs = 0.25, relative probability threshold trel = 0.15, and edit-distance
threshold ted = 0.4. Lookback step r is {20, 30, 50}, which means we enforce conditions on all of
the 3 lookback windows, and all should be satisfied for a branch to be kept.

Training Hyperparameters. For training parameters, global data batch size is 256, global mini
batch size is 256, local micro batch size is 8 for Countdown and 4 for DAPO Math, clip ratio is 0.2,
KL penalty β is 0.01. For DAPO, clip ratio high is 0.28, low is 0.2, and oversampled data generation
batch size is 384. We train the Qwen2.5-3B base model on both datasets for a fixed 500 steps with
AdamW optimizer and a constant learning rate of 1e-6. All our experiments are performed with
VeRL-0.5.0 framework (Sheng et al., 2024) on 8× NVIDIA H200 GPUs with mixed precision.

C ADDITIONAL ANALYSES

C.1 SCALABILITY WITH ROLLOUT NUMBER

The rollout budget k fundamentally constrains the scope of exploration in RLVR training. We evaluate
how LATR and Stochastic Sampling scale with increasing k ∈ {4, 8, 12, 16}. Results in Figure 5
reveal two critical trends:
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1) LATR consistently outperforms Stochastic Sampling at every value of k, demonstrating robustness
to budget constraints.

2) While Stochastic Sampling performance plateaus at k = 8, LATR continues to improve up to
k = 12, indicating a higher effective capacity for leveraging additional rollouts.

k=4 k=8 k=12 k=16

60

65

70

75

80

Stochastic Pass@1
Stochastic Pass@8
LATR Pass@1
LATR Pass@8

Figure 5: Comparison of test correctness with
different rollout number k (%).

This suggests that LATR not only uses its budget
more efficiently but also raises the performance
ceiling of the system, enabling gains from larger
k values that Stochastic Sampling cannot exploit.

C.2 EFFICIENCY ANALYSIS

The search tree in LATR is bounded by a maxi-
mum width corresponding to the rollout number
k. Unlike Stochastic Sampling, which perform
forward passes on each sequence independently at
each step, LATR dynamically branches and prunes
sequences, resulting in a sparser tree structure, par-
ticularly during early generation stages. Conse-
quently, the actual number of FLOPs consumed
by LATR is strictly less than that of Stochastic
Sampling for thee same settings.

0

50

100

150

GRPO DAPO

Stochastic LATR

Figure 6: Comparison of average
consumed time per training step un-
der different settings (second).

Empirically, LATR exhibits a modest slowdown in gen-
eration speed during RL training compared to Stochastic
Sampling, as shown in Figure 6. Specifically, LATR runs
approximately 10% slower per step than Stochastic Sam-
pling with the same configuration. However, compared
with DAPO with Stochastic Sampling, GRPO with LATR is
able to achieve comparable performance in shorter training
time. Additionally, considering the averagely 2.3× training
speedup (as introduced in Section 4.3), LATR is able to
achieve higher performance in less total training time. This
suggests that the algorithmic gains of LATR outweigh its
runtime penalties in end-to-end training scenarios.

Further profiling reveals that the runtime overhead in LATR
primarily stems from suboptimal GPU memory access pat-
terns. Unlike Stochastic Sampling, which processes fixed-width, contiguous sequences, LATR
dynamically inserts and removes sequences during tree expansion and pruning. This irregular access
pattern leads to frequent cache misses and disrupts the GPU’s memory coalescing and prefetching
mechanisms, effectively stalling the memory pipeline. Targeted optimizations, similar to PagedAt-
tention (Kwon et al., 2023) for Stochastic Sampling, are likely to mitigate the overhead. While
promising, they lie outside the scope of this work and are left to future efforts.

C.3 ADDITIONAL STATISTICS FOR LATR

Table 6: Diversity comparison between Stochastic Sam-
pling and LATR.

Model Branching Ratio Saturation Length

Qwen2.5-3B 0.101 65
Qwen2.5-3B-Instruct 0.039 102
Qwen2.5-3B-LATR 0.044 132

To further elucidate the behavior of our
proposed method, we report two key
statistics: the average branching ratio,
which is the proportion of tokens at
which new reasoning branches are initi-
ated relative to the total number of gen-
erated tokens, and the average saturation
length, defined as the number of tokens
generated before early stopping is trig-
gered. Following the setup in Section 5.1, we present these metrics for the same three model variants:
Qwen2.5-3B, Qwen2.5-3B-Instruct, and Qwen2.5-LATR, enabling a consistent and comprehensive
analysis across model stages.
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You are an expert AI assistant specializing in mathematics. You must strictly return the result in 
a valid JSON format.
IMPORTANT: In all JSON strings, every literal backslash `\` for LaTeX commands must be 
escaped as `\\`. For example, `\frac` must be written as `\\frac`.

--- Task ---
Given a math problem with its non-integer answer, rephrase it into a new problem whose 
solution is a single integer.

--- Guidelines ---
1.  **For non-integer numerical answers**, convert them to a single integer in base 10 using 
the following rules:
    * **Fractions:** For a simplified fraction $\\frac{a}{b}$, ask for the value of a + b. For a mixed 
number $a\\frac{b}{c}$, ask for a + b + c.
    * **Radicals:** For an answer in the form $k + m\\sqrt{n}$, ask for the value of k + m + n. If 
k=0, ask for m + n.
    * **Complex Numbers:** For a complex number a + bi, ask for the value of a + b.
    * **Coordinate Points:** For an ordered pair $\\left( a, b\\right)$, ask for the value of a + b.
    * **Multiples of Pi:** For an answer k * pi, ask for the value of k.
    * **Other Number Bases:** For an answer d in base b (e.g., 52_8), ask for its value in base 
10.
2.  **For Symbolic Expressions and Functions**, choose the appropriate strategy based on the 
expression's type:
    * **(Strategy A) Component Analysis for Simple Polynomials and Fixed Structures:**
        For answers that are simple linear combinations, polynomials, or have a fixed symbolic 
structure, prompt for the sum of their key integer components. **This should be prioritized for 
simple expressions.**
        * **Applies to:** $a \cdot p + b \cdot q$, $n^2 + an + b$
        * **And fixed forms like:** $a^b$, $a!$, `$a! / b^c$
        * **Example Action:** For $2n + 3$, ask for the sum of coefficients and constants (`2+3`).
    * **(Strategy B) Evaluation for Complex or Non-Polynomial Functions:**
        For answers involving complex functions (e.g., binomials, floors) or defined as pairs of 
functions, prompt for the expression's numerical value at small, specified integer inputs.
        * **Applies to:** $\\binom{2n}{n}$, $mn - \\lfloor m/2 \\rfloor$, or function pairs like $f(n), 
g(n)$.
        * **Example Action:** For $\\binom{2n}{n}$, ask for its value at $n=2$.
3.  **For multiple-choice or named answers**:
    * Convert the list of possible choices into a 0-indexed list and ask for the index of the correct 
answer.

--- Requirements ---
1. Please modify the instruction of the output format if necessary. Except that, do not change 
the content of the original problem.
2. Adhere to the JSON format:
{"question": "The complete rewritten question text", "answer": The integer answer}

--- Examples ---
{{Examples}}

--- Now, please process the following problem ---
Original Problem:

Figure 7: Prompt for data transformation.

As shown in Table 6, the branching ratios are consistently low across all models, indicating conserva-
tive branching behavior. Moreover, the average saturation length is notably shorter than the maximum
completion length of 1,024 tokens. This observation aligns with prior findings (Shao et al., 2025),
which suggest that the initial segments of a reasoning chain are often most critical in determining the
final outcome.
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