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ABSTRACT

Artificial Intelligence (AI) is increasingly deployed in safety-critical ap-
plications, where reliability is crucial. However, these AI-based sys-
tems are vulnerable to soft errors, where even a single bit flip in a
critical model parameter can lead to complete system failure. Existing
fault-tolerant solutions typically rely on hardware redundancy or addi-
tional memory overhead, which is impractical for resource-constrained
edge devices. In order to address this, we introduce AntiFault, a novel
16-bit floating-point representation technique that approximates 32-bit
floating-point numbers while embedding fault protection within the
same bit width without incurring any additional memory overhead. An-
tiFault ensures minimal to no accuracy degradation and also enables
multiple error detection, localization, and correction without requiring
additional memory space. Our approach reduces model size by upto
50%, while guaranteeing protection and recovery from soft errors. We
have evaluated AntiFault on image and text classification tasks using
ResNet18, MobileNetV2, and MobileViT on CIFAR-100 and MNIST,
and DistilBERT and RoBERTa on Emotion and AG’s News datasets.
Experimental results show that models using AntiFault maintain their
accuracy under extensive fault injection, while standard 32-bit models
suffer severe degradation from even a single-bit flip in critical bits such
as sign and/or exponent bits.

1 INTRODUCTION

In recent years, Artificial Intelligence (AI) has been increasingly deployed in critical applications,
where precise and reliable decision-making is essential. Despite extensive training and validation,
AI models remain vulnerable to soft errors (transient faults caused by cosmic radiation or voltage
fluctuations), that can affect even high-end hardware. Although soft errors do not result in perma-
nent physical damage, they can corrupt critical data during execution, producing incorrect outputs.
During inference, model parameters are usually stored in main memory, particularly RAM, which
is highly susceptible to such faults Sridharan et al. (2015). A single bit flip in memory can propa-
gate through computations, ultimately leading to incorrect predictions. Thus, soft errors represent a
significant threat to the reliability and robustness of AI systems.

To ensure the reliability of AI systems, it is essential to first understand how soft errors manifest
and affect the overall system output. Prior studies Goldstein et al. (2020); Bosio et al. (2019);
Li et al. (2017); Xue et al. (2023b) have analyzed the behavior of various deep learning models
under different soft error rates. These analyses reveal that a model’s resilience can vary significantly
depending upon the data types, network layers, activation functions, and the specific locations where
faults occur. Figure 1 illustrates our problem motivation, demonstrating how soft errors impact
AI models across both computer vision (CV) and natural language processing (NLP) tasks under
varying bit error rates (BER). It can be observed that, as few as one to three bit flips can cause a
substantial drop in model accuracy, highlighting the high vulnerability of these AI models towards
soft errors.
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Figure 1: Impact of fault injection on classification accuracy across different deep learning models.

Figure 2: Weight values of Resnet18, MobileNetv2 and MobileVit finetuned on CIFAR100

From past work, it can be seen that the type of datatype been used significantly impacts the robust-
ness of AI models against soft errors. Goldstein et al. (2020) shows that floating-point numbers are
more sensitive to soft errors because the number explodes if the exponent bit is hit. Therefore, we
need a mechanism to make 32-bit floating-point numbers fault-tolerant without compromising accu-
racy. Several techniques have been proposed to overcome this problem, such as, Algorithm-Based
Fault Tolerance (ABFT) Huang & Abraham (1984); Zhao et al. (2021) and hardware redundancy
methods such as Dual/Triple Modular Redundancy (DMR/TMR) Li et al. (2019); Hosseinkhani &
Ghavami (2021), and neuron duplication. However, these approaches typically incur significant
memory and computational overhead, making them unsuitable for resource-constrained environ-
ments such as edge devices. Fault-aware model retraining has also been explored as a mitigation
strategy, but it is often impractical due to its intensive computational demands, long training times,
and the need for access to original training data. As a result, there is a pressing need for a lightweight,
post-training fault-tolerance solution that introduces no additional memory overhead.

In order to address the above-mentioned challenges, we introduce AntiFault, a novel fault-tolerant
approximation technique that compresses a 32-bit floating-point number into a 16-bit representation
while preserving computational integrity under soft errors. To the best of our knowledge, this is the
first approach that employs an approximation technique to enable full fault tolerance in floating-
point representation.. AntiFault works by identifying the most essential and non-redundant bits
from the original 32-bit float, along with using parity bits within the 16-bit format. These parity bits
enable real-time detection and correction of faults at any bit position without the need to reload pa-
rameters from memory. Unlike traditional fault-tolerance methods that increase memory overhead,
AntiFault achieves full fault tolerance with a 50% reduction in model size. Moreover, AntiFault
is a post-training solution, enabling models to be made fault-tolerant without requiring retraining.
Experimental results show that AntiFault achieves 100% resilience to single-bit errors and also pro-
tects and detects double-bit flips in the most critical part, with minimal to no accuracy loss due to
approximation.

In particular, the following are the key novel contributions of our paper:

• We conducted parameter value analysis and average bit value analysis across multiple deep
learning models to identify commonly used value ranges and determine the most significant
bits.

• We proposed an approximation technique that compresses model parameters by 50%, while
also introducing parity bits, and preserving the classification accuracy of AI models.

• We developed a dual recovery mechanism that protects all bits in the 16-bit datatype and
enables full recovery from single-bit errors and partial recovery in case of double-bit errors.

• We performed extensive fault injection analysis across multiple components of the floating-
point format (sign, exponent, and mantissa) for both image and text classification tasks.
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Figure 3: Average bit values of weights and biases of Resnet18, MobileNetv2 and MobileVit pre-
trained on CIFAR-100

• We compared the performance of all models using standard 32-bit floating-point represen-
tations against our proposed AntiFault format.

2 RELATED WORK

Dual Modular Redundancy (DMR) and Triple Modular Redundancy (TMR) are classic hardware-
level fault-tolerant techniques that are adopted to improve AI-based system reliability. Li et al.
(2019) proposed selectively duplicating the critical layers of a neural network. By comparing the
outputs of these duplicated layers, soft errors can be effectively detected with reduced computa-
tional and memory costs. Similarly, Hosseinkhani & Ghavami (2021) proposes an approximated
triple modular redundancy method to provide varying levels of protection across different layers.
However, the effectiveness of these methods depends on the accurate identification of the most vul-
nerable layers. So far, redundancy-based approaches such as TMR and DMR pose additional hard-
ware overhead in terms of both memory and computation. This limitation make redundancy-based
techniques less suitable for resource-constrained or high-efficiency AI systems.

Algorithm-based fault tolerance (ABFT) is a software-level technique proposed by Huang & Abra-
ham (1984) for detecting and correcting soft errors. It utilizes additional checksum rows and
columns for detecting and localizing errors. This concept is further extended to non-linear and
high-dimensional computations of convolutional neural networks in Zhao et al. (2021), which in-
corporates a lightweight checksum scheme into convolutional operations to enable efficient fault
correction with minimal overhead. Xue et al. (2023a) further optimized ABFT for vision transform-
ers by applying selective error correction by ignoring low-impact faults. While ABFT is generally
more efficient than redundancy-based techniques, it requires additional memory to store checksums
for all parameters and offers no protection for the checksum data itself, hence remains prone to soft
errors.

Wang et al. (2021) proposed FTApprox, a 16-bit fault-tolerant data format that leverages approxi-
mate computing for integers and fixed-point numbers. FTApprox cannot locate or correct the fault in
data bits, it only detects if a fault has occurred. This work is further extended by Mishra et al. (2023),
by making fixed-point approximation more configurable and efficient. It also lacks the ability to cor-
rect soft errors in data bits. These methods can not perform well with floating-point numbers due to
their complex format; a single bit flip in sensitive parts of a floating-point number, such as the expo-
nent or mantissa, can lead to severe corruption and significant accuracy loss. Moreover, while these
formats can detect faults in data bits, they cannot localize or correct them, limiting their effectiveness
in fault-sensitive applications.

3 OUR NOVEL ANTIFAULT METHODOLOGY

To generate AntiFault, important data bits are identified from a 32-bit floating-point number for
approximation. For the protection of data bits, parity bits are calculated that help in the localization
and correction of soft errors in data bits. Furthermore, a dual fault detection and recovery mechanism
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(a) 32-bit IEEE 754 Floating Point Format (b) AntiFault Data Format

Figure 4: Binary representations of 32-bit IEEE 754 floating point number and AntiFault

(a) Generating AntiFault data format (b) Reconstruction to a computable number

Figure 5: Workflow of converting a 32-bit float to Antifault and constructing a computable number
from AntiFault

is proposed that can protect and correct all 16 bits of AntiFault. Then, an executable number is
constructed from the data bits, and operations are performed, ensuring minimal to no accuracy
degradation. Detailed methodology is explained in the following subsections.

3.1 IDENTIFYING DATA BITS FOR ANTIFAULT

As shown in the Figure 4a, 32-bit float has 3 components ie. sign, exponent, and mantissa. Let
S = {s0}, E = {e0, e1, e2, e3, e4, e5, e6, e7},M = {m0,m1,m2,m3,m4, .....,m22} be the set of
sign, exponent and mantissa bits respectively, indexing is done from left to right. For approximating
a 32-bit float in a 16-bit data format, we analyzed the values of different parameters in DNNs to
identify the bits that are constant throughout all the parameters θ. Parameters of DNNs follow a
normal distribution, which can be seen in Figure 2. Weight values across all networks follow a
normal distribution having sharp peaks near zero with thin, long tails, indicating that most values
are concentrated around zero, but a small number extend farther out.

If the parameters follow a particular distribution, then the bits of these parameters must also follow a
certain pattern. Therefore, we plotted the average bit values for weight and bias of all the models. We
denote the first four bits of the exponent of a parameter θi as MCB(θi), which represents the most
critical block. It can be seen in Figure 3, that most parameters have MCB(θi) = [0, 1, 1, 1], but in
Figure 3f, it can be seen that there is a portion of values that have different values for MCB(θi).
Futhermore, it has been observed that MCB(θi) for all the parameters is either 0, 1, 1, 1 or 1, 0, 0, 0.
Therefore, we divided the parameters in two ranges depending on their binary representation.

As we know that the MCB(θi) can have only two sets of bits, we exempt it from our proposed data
type, as we can add it later in the reconstruction part. Whereas, Sign bits and mantissa bits have
a 50% chance of being 0 or 1. So the sign bit and the first 4 mantissa bits from the 32-bit float.
s0, e4, e5, e6, e7,m0,m1,m2, and m3 are a part of our proposed datatype and act as data bits.

3.2 GENERATING 16-BIT ANTIFLOAT FROM 32-BIT FLOAT

Conversion of parameters of a model from floating-point numbers to AntiFault doesn’t require
any additional training. Once a model is fully trained and ready to deploy, its parameters can
be converted to AntiFloat. Let the trained 32-bit AI model be fθ with θ as its parameters and
AntiFault model be f

′

θ′ with θ′ as protected parameters. To suppress numerical noise in fθ,
∀θi such that 0 < |θi| → 0, θi were explicitly set to 0. Main components of AntiFault is data
bits and parity bits. Data bits consist of a sign bit, exponent bits, mantissa bits, and an indicator
bit. While identifying the important data bits from a 32-bit floating point number, we discarded
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(a) Two-way fault detection and correction mechanism (b) All possible fault scenarios in AntiFault

Figure 6: Workflow of fault detection and correction mechanism of AntiFault

MCB(θi), so the indicator bit I helps in identifying these bits during the reconstruction phase. I is
calculated by equation (1).

I =

{
0 if θi > −2 and θi < 2

1 if θi ≥ 2 or θi ≤ −2
(1)

The primary goal of this methodology is to protect the data bits, to make the model parameters
resilient to soft errors. For this purpose, we have used hamming code Hamming (1950) to calculate
parity bits. These parity bits are capable of both detecting faults and identifying the exact bit location
of the error, which then can be corrected accordingly. To use this method we need four parity bits
to protect an 10-bit sequence, which is determined by equation (2), where np is the number of
parity bits and nd is the number of data bits. Let parity bits be p0, p1, p2, and p3 and bit sets be
s0 = [0, 2, 4, 5, 7, 9],s1 = [0, 3, 4, 6, 7, 10], s2 = [2, 3, 4, 8, 9, 10],s3 = [5, 6, 7, 8, 9, 10]. p0, p1, p2,
and p3 can be calculated using equation (3),where θ

′(j)
i denotes the j-th bit of i-th parameter of f ′

θ .

2np ≥ nd + np + 1 (2)

pn(θ
′
i) =

⊕
j∈sn

θ
′(j)
i , n ∈ {0, 1, 2, 3} (3)

These parity bits are responsible for the detection and correction of single bit flips. To enable our
data type to detect and correct double bit-flips, we used Pc, which will calculate the overall parity
of the databits and parity bits. Pc can be calculated using equation (4.

Pc(θ
′
i) =

14⊕
j=0

θ
′(j)
i , j ̸= 1 (4)

In θ′i, the most critical bit is the I as it stores the information of MCB(θi). Therefore, we saved a
redundant copy of I as Ic. Ic is not considered a data bit and was excluded during the calculation
of the parity bits. In Figure 4b, it can be seen that the AntiFault has a sign bit s0, a parity-check bit
Pc, indicator bit I , four exponent bits (e4, e5, e6, e7,), four mantissa bits (m0,m1,m2,m3), parity
bits(p0, p1, p2, p3) and Ic. These bits are arranged in such a way that they prevent overflow in the
exponent part. The workflow for the generation of AntiFault data type can be seen in Figure 5a

3.3 DUAL FAULT DETECTION AND CORRECTION

Every bit in AntiFault is protected by other bits and can also be recovered. For the recovery of the
data bits and parity bits, we calculated p′0, p

′
1, p

′
2, p

′
3 using equation (5). Let l be an unnormalized

location of fault calculated by equation(7), where p′0, p
′
1, p

′
2 and p′3 are concatenated and the result is

interpreted as an integer. Values of l and P ′
c are used to identify whether there is a single or double

bit flip. If l ̸= 0&P ′
c ̸= 0, it indicates there is a single bit flip in data or parity bits. For data bits, the

fault location is normalized using equation (8). For a fault in parity bits, if l = 2n, then the fault is
in pn. If l ̸= 0&P ′

c = 0, it indicates there is a double bit flip. We considered all scenarios of double
bit flips that can affect I , given in figure 6b. In all possible cases, we can identify whether there is a
fault in Pc, I , or Ic. In case of a double-bit fault affecting I , I can fully be recovered using Ic. If we
have identified a double-bit fault in I , then the other bit location can be identified using l, as there is
a unique l for all combinations of faults if one fault position is known.

p′n(θ
′
i) =

⊕
j∈sn

θ
′(j)
i ⊕ pn, n ∈ {0, 1, 2, 3} (5)
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(a) Memory size compression of different fault protec-
tion algorithms

(b) Computational overhead compression of different
fault protection algorithms

Figure 7: Comparison of memory size and computational overhead of AntiFault with existing fault
protection methods

Figure 8: Qualitative comparison of AntiFault with existing methods

P ′
c(θ

′
i) =

14⊕
j=0

θ
′(j)
i , (6)

l = int(concat[p3′, p2′, p1′, p0′]) (7)

faultLocation =

{
l − 4 if l > 8

l − 3 l ≤ 8
(8)

In order to correct the error in data bits, the bit at which the fault has occurred is flipped back to its
original value. In AntiFault, data bits are protected and recovered by parity bits, and parity bits, pc
and Ic can also be recovered. Hence, providing a dual protection mechanism, shown in Figure 6a.

After fault detection and correction, the next step is to generate a computable number from data bits.
Therefore, we reconstructed a 16-bit float with 1 sign bit, 8 exponent bits, and 7 mantissa bits. Sign
bit in AntiFloat is directly mapped to the sign bit in the reconstructed number. AntiFault has only
4 exponent bits e4, e5, e6, e7, whereas we need 8 bits of exponent for reconstruction. Therefore,
the indicator bit I is checked to determine MCB(θi)), if I is 0, then [0, 1, 1, 1] is assigned to
MCB(θi) otherwise, [1, 0, 0, 0] is assigned to MCB(θi). Similarly, AntiFault has only 4 mantissa
bits m0,m1,m2,m3, so 0, 1, 1 are assigned to m4,m5,m6. 0, 1, 1 is added because the experiments,
in Appendix A.2, have showed it produced the least error compared to other combinations. Figure
5b shows the reconstruction of a computable number. This 16-bit computable number follows the
same method of performing the operations of multiplication and addition, similar to other floating
point numbers i.e., float16,float32, and float64.

4 EXPERIMENTS AND RESULTS

Firstly, we evaluated the approximation model to assess its compatibility with AI applications. Af-
terwards, AntiFault and the 32-bit floating-point format were evaluated on both image classification
and text classification tasks.

4.1 FAULT-INJECTION MODEL

To analyze the behavior of AI models under soft errors, we performed software-level fault injection
experiments using single-bit and double-bit flips fault model for both 32-bit float and AntiFault
data format. Models using 32-bit floating point numbers without any soft errors are considered
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Figure 9: Approximation error on range [−3,+3] with step size of 0.0001

(a) Resnet18 (b) MobileNetv2

(c) Mobilevit (d) DistilBERT and RoBERTa

Figure 10: Analyzing accuracy degradation on Resnet18, Mobilenet v2 and Mobilevit when faults
are injected on different parts (sign, exponent, mantissa) of the data type using 32-bit Float and
AntiFaults.

as the golden models and are used as a reference for comparison. Experiments were conducted
by injecting faults during the inference phase. We have evaluated the models through varying Bit
Error Rate (BER) from 10−9 to 10−6 on different parts of the data format i.e., sign, exponent and
mantissa bits, to assess the sensitivity of each component. For specific BER, new random bit-flips
were injected before the execution of each test batch for a more dynamic and random fault pattern
throughout the evaluation process in a more efficient way. BER is calculated by equation 9, where
nf is the total number of faults in the model and N is the total number of bits in the model.

BitErrorRate(BER) =
nf

N
(9)

4.2 APPROXIMATION MODEL

In AntiFault data format, the 32-bit floating point number is approximated to 16-bit AntiFault. To
evaluate the error introduced by this approximation, we conducted a controlled simulation over
the range of [-3,+3], which covers most of the dynamic range of the parameters in DNNs. This
range is sampled with a step size of 0.0001 to create a high resolution set of input values. For the
experimentation, each value is converted to 16-bit AntiFault and then reconstructed back to a 16-bit
computable floating point number. The approximation error is calculated as the average absolute
difference between the original values and reconstructed values across the entire range. The results
of this experimentation are plotted in Figure 9. As we can see, the values closer to zero have the
minimum error, and as the value moves farther, the larger the approximation error gets. So we can
say that this approximation model will guarantee performance for AI models, as in Figure 2, most
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of the parameters of AI models are centered on zero. Hence, models whose values follow a sharp
peak normal distribution centered on zero will have the least approximation error.

4.3 IMAGE CLASSIFICATION

To evaluate AntiFault on image classification, we conducted experiments on convolutional neural
networks (CNNs) and vision transformer using CIFAR100 Krizhevsky et al. (2009) and MNIST
LeCun et al. (1998) datasets. For CNN architectures, we selected ResNet18 He et al. (2016) and
MobileNetV2 Sandler et al. (2018), and for vision transformer, we have used MobileVit Mehta &
Rastegari (2021).

Results of fault injection on the classification model using 32-bit floating point numbers and An-
tiFault can be seen in Table 1. In Figure 10, it can be seen that the most critical part of a data type is
its exponent part. A single bit flip in the exponent part can significantly degrade the accuracy of the
model. A single sign bit also holds great significance; it can be seen that all the models experience
a significant dip in the accuracy if faults are injected only on the sign bit at a BER of 10−6. Unlike
the exponent and the sign bit, faults at the mantissa has the least effect on the accuracy of the model.

The golden model accuracies for ResNet18, MobileNetV2, and MobileVit are 89.81%, 90.56% and
84.65%, respectively, on the CIFAR-100 dataset. While using AntiFault ResNet18, MobileNetV2,
and MobileVit had an accuracy loss of 0.2%, 0.66%, and 2.64% respectively, due to approximation
error. However it can be seen in Table 1 and in Figure 10, the accuracy of ResNet18 and MobileVit
while using AntiFault remains constant across BER from 10−9 to 10−6 due to its robustness to all
single-bit flips and double bitflips in MCBθ. When AntiFault is tested on these models using the
MNIST dataset, very little accuracy is dropped due to approximation. ResNet18, MobileNetV2 and
MobileVit had an accuracy drop of 0.07%, 0.16% and 0.14%, respectively. In these experiments,
AntiFault maintained the accuracy of models across the whole BER range except for MobileNetv2,
which dropped the accuracy at 5× 10−6 due to heavy double-bit fault injection in the exponent

4.4 TEXT CLASSIFICATION

For text classification, AntiFault is evaluated on two state-of-the-art transformer models: Distil-
BERT Sanh et al. (2019) and RoBERTa Liu et al. (2019). DistilBERT is tested on the Hugging
Face Emotion dataset Zhu et al. (2018), and for RoBERTa, evaluation is performed on the AG News
dataset Zhang et al. (2015).

DistilBERT and RoBERTa are evaluated using both standard 32-bit floating point representation and
AntiFault. The results are summarized in Table 1 and visualized in Figure 9d. DistilBERT shows
more robustness to soft errors occurring in the sign bit compared to other models. However, it
crashes significantly when a soft error strikes the exponent part of the floating-point representation.
Whereas, with the AntiFault, DistilBERT maintains its accuracy across a wide range of Bit Error
Rates (BER), from 10−9 to 10−6, with no degradation in accuracy due to approximation.

From the results, it can also be observed that RoBERTa begins to show a drop in accuracy at a BER
of 10−9 when faults affect the exponent part. At the same BER, the sign and mantissa bits remain
relatively robust. However, as the BER increases, the accuracy degrades significantly when faults
strike the sign bit. However, the mantissa remains resilient even up to a BER of 10−6, showing a
lower sensitivity to bit flips in that region. The accuracy loss due to the approximation introduced by
the AntiFault is 0.06, making it almost negligible. AntiFault enhances DitilBERT’s and RoBERTa’s
robustness against soft errors without affecting model performance.

4.5 MEMORY AND COMPUTATIONAL OVERHEAD

Unlike existing fault-tolerant techniques that rely on redundant copies or checksum storage, An-
tiFault uses 50% less memory by embedding protection bits within the same bitwidth, shown in
Figure 7a. However it has a computation overhead due to fault detection and correction of all bits.
It has higher computation overhead than ABFT but lower than DMR and TMR. We implemented
AntiFault for both CPU and GPU. But on GPUs, it outperforms ABFT in execution time, as can be
seen in Figure 7b. Selective use of AntiFault is described in Appendix A.3.
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Table 1: Comparing results of fault injection on image and text classification models using 32-bit
float and AntiFault

Network Location Method BER
(Dataset) 3 × 10−9 3 × 10−8 3 × 10−7 7 × 10−7 5 × 10−6

ResNet18

Sign 32-bit Float 87.7 42.51 11.29 10.6 10
AntiFault 89.61 89.61 89.61 89.61 89.61

Exponent 32-bit Float 13.29 10.01 10.0 10.0 10.0
AntiFault 89.61 89.61 89.61 89.41 80.42

(CIFAR-100) Mantissa 32-bit Float 89.79 89.75 89.57 89.14 80.21
AntiFault 89.61 89.61 89.61 89.5 87.04

MobileNetV2

Sign 32-bit Float 90.57 79.37 13.43 10.71 9.54
AntiFault 89.9 89.9 89.9 89.9 89.89

Exponent 32-bit Float 90.57 19.96 10.0 9.98 9.97
AntiFault 89.9 89.9 89.9 89.9 89.28

(CIFAR-100) Mantissa 32-bit Float 90.57 90.59 90.52 89.85 75.52
AntiFault 89.9 89.9 89.9 89.9 89.84

MobileVit

Sign 32-bit Float 84.65 84.65 12.34 10.09 10.12
AntiFault 81.97 81.97 81.97 81.97 81.97

Exponent 32-bit Float 84.65 84.65 9.97 10.0 10.0
AntiFault 81.97 81.97 81.97 81.97 72.82

(CIFAR-100) Mantissa 32-bit Float 84.65 84.65 84.58 83.87 63.26
AntiFault 81.97 81.97 81.97 81.97 81.19

ResNet18

Sign 32-bit Float 99.32 86.32 13.52 11.31 9.98
AntiFault 99.25 99.25 99.25 99.25 99.25

Exponent 32-bit Float 14.58 9.96 9.8 9.8 9.8
AntiFault 99.25 99.25 99.25 99.3 99.16

(MNIST) Mantissa 32-bit Float 99.22 99.22 99.22 99.22 98.79
AntiFault 99.25 99.25 99.25 99.25 99.21

MobileNetV2

Sign 32-bit Float 98.89 76.17 15.14 11.44 10.26
AntiFault 98.73 98.73 98.73 98.73 98.73

Exponent 32-bit Float 98.89 11.81 9.86 9.8 9.8
AntiFault 98.73 98.73 98.73 98.73 11.35

(MNIST) Mantissa 32-bit Float 98.89 98.87 98.9 98.78 97.63
AntiFault 98.73 98.73 98.73 98.73 98.72

MobileVit

Sign 32-bit Float 99.35 98.79 10.48 2.32 1.02
AntiFault 99.21 99.21 99.21 99.21 99.21

Exponent 32-bit Float 99.35 11.33 9.85 9.8 9.8
AntiFault 99.21 99.21 99.21 90.1 99.1

(MNIST) Mantissa 32-bit Float 99.35 99.35 99.33 99.1 98
AntiFault 99.21 99.21 99.21 99.21 99.21

BER
10−9 3 × 10−8 10−7 3 × 10−7 10−6

DistilBERT

Sign 32-bit Float 92.7 17.8 14.7 14.5 18.6
AntiFault 92.7 92.7 92.7 92.7 92.7

Exponent 32-bit Float 92.7 29.05 29.05 29.05 29.05
AntiFault 92.7 92.7 92.7 92.7 92.7

(Emotion) Mantissa 32-bit Float 92.7 92.45 92.55 93.05 92.85
AntiFault 92.7 92.7 92.7 92.7 92.7

RoBERTa

Sign 32-bit Float 94.6 94.03 90.9 77.02 71.45
AntiFault 94.6 94.6 94.6 94.6 94.6

Exponent 32-bit Float 40.4 29.06 28.7 28.3 28.16
AntiFault 94.6 94.6 94.6 94.6 94.6

(AG’s News) Mantissa 32-bit Float 94.69 94.69 94.69 94.67 94.65
AntiFault 94.6 94.6 94.6 94.6 94.6

5 CONCLUSION

In this paper, we propose AntiFault, a 16-bit data format, for AI models that provides full protection
against single-bit flips and partial protection against double-bit flips. AntiFault embeds parity bits
within the same 16-bit space, without needing additional memory. AntiFault uses a dual protection
mechanism where each bit is protected by other bits, enabling complete recovery from any single-
bit fault. We evaluated the robustness of AntiFault against 32-bit float under varying bit error rates.
Experimental results show that 32-bit float suffers significant accuracy degradation when faults occur
in critical bits (e.g., sign or exponent), whereas AntiFault maintains model accuracy even under
extensive fault injection. AntiFault demonstrates that a system can be fully protected from soft
errors without requiring additional memory by carefully approximating large data formats into a
smaller format and utilizing the freed-up space to protect the important bits. While the current
design has some computational overhead, we plan to optimize our approach to further minimize it.
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