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ABSTRACT

Many modern biological assays, including RNA sequencing, yield integer-valued
counts that reflect the number of molecules detected. These measurements are
often not at the desired resolution: while the unit of interest is typically a sin-
gle cell, many measurement technologies produce counts aggregated over sets of
cells. Although recent generative frameworks such as diffusion and flow matching
have been extended to non-Euclidean and discrete settings, it remains unclear how
best to model integer-valued data or how to systematically deconvolve aggregated
observations. We introduce Count Bridges, a stochastic bridge process on the
integers that provides an exact, tractable analogue of diffusion-style models for
count data, with closed-form conditionals for efficient training and sampling. We
extend this framework to enable direct training from aggregated measurements
via an Expectation-Maximization-style approach that treats unit-level counts as
latent variables. We demonstrate state-of-the-art performance on integer distribu-
tion matching benchmarks, comparing against flow matching and discrete flow
matching baselines across various metrics. We then apply Count Bridges to two
large-scale problems in biology: modeling single-cell gene expression data at the
nucleotide resolution, with applications to deconvolving bulk RNA-seq, and resolv-
ing multicellular spatial transcriptomic spots into single-cell count profiles. Our
methods offer a principled foundation for generative modeling and deconvolution
of biological count data across scales and modalities.

1 INTRODUCTION

Integer-valued counts are a fundamental product of scientific measurements because of the discrete
nature of molecules. Modern biological assays yield massive streams of count data: RNA-seq read
counts, fluorescence imaging molecule counts, and mass cytometry ion counts (Klein et al., 2015}
Raj et al.l 2008} Bendall et al., 2011). However, these measurements are often aggregated over
multiple individual units, obscuring the fine-grained patterns underlying these natural phenomena.
Transcriptomics technologies exemplify this challenge, with technologies such as Visium capturing
10-50 cells per spot (Stahl et al., 2016) and bulk RNA-seq aggregating thousands to millions of cells
per readout, yielding averages rather than high-resolution details. Deconvolving these aggregates into
single-cell profiles is critical for the precise mapping of cellular heterogeneity, cell-cell interactions,
and tissue architecture (Moses & Pachter, 2022} |Armingol et al.,|2021). The challenge is twofold:
building generative models that respect the integer nature of counts and extending these models to
infer unit-level profiles from aggregated observations.

Recent developments in generative modelling only partially addresss the problem. Discrete diffusion
models (Austin et al.,[2021};|Lou et al.,[2023)) treat counts as unordered categories through masking
or uniform noise. Blackout Diffusion (Santos et al.| [2023)), the only count-specific approach, uses
pure-death processes that cannot transport between arbitrary distributions. The biological decon-
volution literature on the other hand focuses on deconvolving cell-type (cluster-level) proportions
(Kleshchevnikov et al.||2022; |Cable et al.l 2022 [Li et al., [2023)), rather than unit-level count profiles.
Thus, there is need for a framework that respects the integer and ordinal structure of counts, enables
transport between arbitrary distributions, and can systematically deconvolve aggregated observations.

We introduce Count Bridges: a stochastic bridge process on Z? using Poisson birth-death dynamics.
This yields closed-form conditionals for exact sampling and extends naturally to deconvolution via an
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EM algorithm treating unit-level counts as latent. The birth-death mechanism allows transport between
arbitrary integer-valued distributions while preserving the ordinal structure, as both increments and
decrements respect the natural ordering of counts. We show that Count Bridges outperform existing
methods on synthetic benchmark datasets and scale more favorably to high-dimensional settings. We
then showcase Count Bridges on two real-world biological applications centered on deconvolution:
nucleotide-resolution single-cell RNA-sequence modeling for bulk RNA-seq deconvolution and
reference-free spatial transcriptomic deconvolution. The anonymized codebase is available here,

2 BACKGROUND ON DIFFUSION MODELS

Diffusion models specify a time—indexed family of bridge kernels connecting X ~ pg to a simple
source distribution X; ~ p; (often Gaussian). There are two layers of structure: (i) an unconditional
forward process (Xt)ic(0,1) With kernels Kyjo(z¢ | w9) = Law(X; | Xo = x0); (ii) for any
0 < s <t <1,afamily of bridge kernels Ko (s | 0, 2¢) = Law (X, | Xo = z0, Xy = 24).

Diffusion models require two consistency properties. First we require a bridge consistency identity.
For any 0<s<t<uc< ]-7 Ks|u<xs | xu) = /Ks|t(xs | LEt) Kt|u(xt ‘ xu) dxy. (D
Thus multi-step sampling along any grid ©— ¢ — s matches the single-step u — s bridge.

Second, the kernel must have a projective posterior:

Kyi(ws | 1) = /QO|t(9U0 | 1) Kgjo,¢(ws | w0, 2¢) deo, 2

where qo¢(zo | #;) = Law(Xo | X¢ = x;). This identity expresses K; as a mixture over the
posterior of the py data. It is essential for denoising: during sampling, each predicted X, changes the
posterior o, so the reverse kernels must be projective under this posterior update.

Together, equation [T] and equation [2] lets us define a general diffusion approach. First we train a
denoiser gy that approximates the posterior, X ~ qg(- | x4,t) ~ Law(Xq | X;=x;), using tuples
(t, X¢, Xo) drawn from the “global” bridge: sample xg ~ pg, 1 ~ p1, t ~ Unif[0, 1] and then
X~ Kyjo,1(- | o, 71).

For sampling, pickagrid 1 =tx > --- >ty = 0, draw X; ~ p1, set Xy, < X, sampling

o (k+1 o (k+1
X(g ) ~ q&( ' | Xﬁk+1 ’ tk+1)7 th ~ Ktk|0,tk+1 ( . | X(() )a th+1)' 3)
By our consistency properties, this multi—step procedure is equivalent to sampling directly from the
(0, 1) bridge, so the model cannot drift out of the training distribution.

2.1 DIFFUSION AS A BRIDGE BETWEEN NOISE AND DATA

Let us consider the unconditional /| process (X );c[o,1] of the following form

Xt = Oé(t)XO + Bt7 (4)
where (Bt )se[o,1 is a d-dimensional Gaussian process with non-decreasing standard deviation o (t),
and «(t) a non-increasing function. Note that «(0) =1 and ¢(0) =0.

We want to define a process that interpolates smoothly between X~ py and X; given by another
distribution as in [Peluchetti| (2023)); |Albergo et al.| (2023); Delbracio & Milanfar| (2023)); |Liu et al.
(20225 2023)). We have the following proposition defining the global and local bridge.

Proposition 2.1. Let (X;):c[0,1) be given by equation For0 < s <t <1, consider (Xs)sejo,4
conditioned on X = x and Xo = x¢. Then the conditional law Ko +(- | xo, x+) is Gaussian and
can be written

X, £ a(s)(1 - r(s,1))

S5 X+ o)1 r(.0)1 22, B
where Z ~ N(0,1d) is independent of (X, X;) and r(s,t) )Qi(t)g In particular, the family
{K 0,1 }o<s<t<1 defined by equation 3] satisfies equattons@]ana’[é]ﬁ

Note that if X; ~ N(0,1d), a(1) = 0 and (1) = 1 we have X; = a( )Xo + o(t)Z. Furthermore,
our equation [5|recovers the interpolation described in|Albergo et al.|(2023) with the identification

a(t) = a(t)(1 — (), 28 r(t) — A(t) and o(t) (1 — (1)) /Z = .
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Figure 1: Left: Sample paths for several endpoint gaps d; (top). Fixing the prefix [0, t] resample
(t, 1] by the recursive kernel (bottom). Middle: Bessel slack posteriors at initial and intermediate
times. The slack M; concentrates near 0 as |d| grows. Right: ECDFs of X, from a one-step kernel
(1—s) and a two-step kernel (1 —¢— s) are indistinguishable, confirming composition.

2.2  SAMPLING THE POSTERIOR

In this paradigm the bridge is only the first of two choices that define the model. We also have to
choose how to model the posterior X|X¢,t. There are two core options: we can use differential
equations to model the posterior in the limit of small steps or we can focus more directly on modeling
the posterior. In Euclidean space, the former lets us learn a simple conditional expectation, whereas
the latter always requires a distribution model.

Infinitesimal. Consider a small backward step of size § > 0. The local bridge between times ¢ and
t — ¢ is Gaussian, so conditioned on X; = x we can write to first order in §

X, 5| Xe=2 ~ a—06b(x,t) + V&, & ~N(0,%5(z, 1)),
where b is the reverse-time drift and X is the diffusion covariance of the bridge.

The conditional law X;_s | X; is Gaussian and can be computed in closed form:
b(xz,t) = Bi(t)x + B2(t) E[Xo | Xt = ] + bo(t), S(x,t) = Bo(t).

The diffusion covariance depends only on ¢ (from the Brownian increment), and the drift depends
on the posterior Law(Xy | X;) only through its mean. This justifies learning the mean gy (x,t) ~
E[Xo | X; = z] (equivalently, a score or velocity) as in standard diffusion models (Song et al., [2020).

Distributional. Following De Bortoli et al. (2025) we can learn the conditional law gg( - | z¢,t) &~
Law(Xg | X;=x¢), using any distribution learning approach. We can then sample and directly plug
into the bridge

- (k1 o (k+1
X(g I ~ q9(' | th+1atk+1)a th ~ Ktklovtk'i»l(. ‘ X(g * )’th“)'

to sample the posterior. The distributional perspective is particularly powerful when the infinitesimal
perspective fails to admit a simplification to the conditional expectation, which motivates our use
of the distributional approach for Count Bridges (see Sec. [3.2). In categorical discrete settings, all
approaches are distributional since they are based on cross-entropy losses, see |(Campbell et al.[ (2022));
Austin et al.|(2021)); |Shi et al.|(2024)); [Sahoo et al.| (2024).

3 COUNT BRIDGES

3.1 AN INTEGER BRIDGE BETWEEN DISTRIBUTIONS

Mirroring Sec.[2] we seek a bridge for integer-valued data. Instead of a Gaussian process, we use a pair
of independent Poisson birth/death processes (B;);c0,1] and (Dy)¢¢(o,1) that increment/decrement
the counts. We define an increasing “jump-intensity” function w : [0, 1] = Rx>g with w(0) = 0,

w(1) = 1, and then write the cumulative birth/death intensities as A (t) = A+ w(t) for some Ay > 0
so By ~ Poi(A(t)) and Dy ~ Poi(A_(t)). From here we can define the unconditional kernel K:

X, = Xo+ B, — Dy. (6)
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Denoting the displacement d; = X; — X, the total number of jumps N; = B; + Dy, and the slack
variable M; = min(B;, D;). Any two of these variables determine the third:

Ny = |dq| + 2M;, By = 3(Ny +dy), D, = N, — B,. (7)

From the (N, B;) perspective, Poisson superposition and thinning imply that, conditional on (N, B;)
at time ¢, the earlier counts (N, By) for s < t can be sampled by a Binomial draw for N, and a
Hypergeometric draw for B,. Switching to (M, d;), a Poisson change of variables yields the slack
posterior M; | d;, whose pmf has Bessel form (see Prop. in App. . These two ingredients
together give a count analogue of Proposition [2.1} the full derivation is in App.

Proposition 3.1. Let (X;);¢[0,1) be given by equation(6| Now, consider (Xs),c|o,) conditioned by
X = my and Xo = xo. Then, we have the Poisson Birth-Death bridge K ¢-

X, £ X+ B, — Dy, (8)

where we condition on dy = X; — Xo and sample My | d; ~ Bes(|d|; A1 (t), A_(t)), changing
variables to Ny and By to sample B, and D4 which we can plug into equation (8

NS | Nt ~ Bil’l(Nt, u]((i))> 9 BS | (Nt7NS7Bt) ~ HYP(NtthNs)y DS = NS - BS' (9)
w

The family { K)o+ }o<s<t<1 defined by equation ES’] satisfies equations and

We visualize this process in Fig. [[| where we show the trajectories for the one- and two-step models
along with the core composition property that drives bridge models. This setup enables training and
sampling from a Count Bridge, see Algorithms|l|and[2] These results leverage our custom CUDA
kernel implementing the fast Bessel sampler of Devroye| (2002) to enable sampling at scale.

In Fig. [I] we also see that as d; grows the slack M; concentrates near zero, so there is no slack.
This means that Count Bridges are an instance of the static Schrédinger bridge problem (Léonard,
2013): they solve an entropy-regularized optimal transport. Let k = /A4 A_ be the jump intensity
and p% . (xo, 1) = po (xo)KﬁO(l’l |xo) be the joint law of (X, X;) induced by the kernel. Over the
space of couplings C(pg,p1) = {Con X x X : C(-,X) = po, C(X,-) = p1}, Count Bridges solve

Cy € i KL(C|| pfy).
arg C’E(rfnln ( ||pref)

(po,p1)

Letting x — oo yields the independent coupling py ® p1, but as x | 0 we obtain
KL(C [l p) =~ log(2) EolX1—Xo| - H(C),

so k — 0 recovers discrete OT with cost |z1—xz¢| (see App.|A.2).
This echoes the Gaussian case (Sec. [2) where we define o = (1) and pZ;, andas o | 0
KL(C || ples) = g2 Bl X1—Xo|* — H(C),
so 0 — 0 recovers quadratic OT, while ¢ — oo again gives py ® p; (Shi et al.| 2023). Thus the
bridge parameters « (count) and o (Gaussian) play the same role as entropy—regularization strengths.

3.2 DISTRIBUTIONAL SCORING LOSS FOR THE DENOISER

Training requires a distributional loss due to the discrete nature of the space. As shown by|Holderrieth
et al.[(2024), the ELBO for discrete generators (e.g., jump processes) is distributional and cannot
be reduced to expectations over point estimates. This mirrors the need for cross-entropy in discrete
diffusion and flow models. We can use cross-entropy with Count Bridges (we test this, see App.
[D.1), but it has two issues: first, it does not incorporate the lattice structure; second, cross-entropy
cannot model the joint of X | X; without exponential cost in dimension, so cross entropy is usually
factorized, modeling each coordinate of X | X; independently or autoregressively. Specializing to
count data we can go beyond cross-entropy by using a proper scoring rule that (i) incorporates the
geometry and (ii) enables modeling of the joint.

Formally, let (X, X;) denote a training pair from Ky ; attime ¢ € [0, 1], and let gg(- | x4, ) be our
denoiser. We train gy using a strictly proper distributional scoring rule (Gneiting & Raftery, [2007;
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Require: dataset (xo,x1), w(-), A+ (") Require: z;, = 1, model gp, w(-), Ay (")
1: for each minibatch do I: fork=K K-1,...,1do
2: sample (zg, 1) ~ (X0, X1) 2: sample &g ~ qo(- | x4, , )
3: t~ Unlf[O, 1] 3: dtk S~ Ty, — Zo
4: di < x1 — g 4: M, ~ Bes(|ds, |; Ay (tr), A_(tr))
5: M1 ~ Bes(|d1|, A+(1),A7<1)) 5: Ntk — |dtk| + 2Mtk
6: Ny |d1| + 2M, 6: Btk — %(Ntk +dtk)
7. Bi 5(Ny+dy) 70 e w(tp_y)/w(ty)
8: Ny ~ Bin(Nl, w(t)) 8: Ny oy ~ Bin(Ntk, r)
9: B; ~ Hyp(Nh By, Nt) 9: By, ~ HYP(Ntk, By, , Ntk,l)
10: Tt <—.'L'1—2(Bl—Bt)+(N1—Nt> 10: Tty <_xtk:_Z(Btk_Btk:—1)+(Ntk_Ntk—l)
11: update 6 on L(6) 11: end for
12: end for 12: return x;,
Algorithm 1: Training Poisson—-BD Bridge Algorithm 2: Sampling Poisson—-BD Bridge

De Bortoli et al}[2025). Fix a negative-type semimetric p on Z (all our experiments focus on the
p(z,2") = ||z — 2'||5 with 8 = 1). For any distribution p and outcome y, the energy score is

Sp(p: ) = § Exx0mp [p(X, X)] = Exep [(X, 9)] and £(0) = Ex, x,.¢ | Sylan - | X1,1), Xo)]

which is strictly proper when p is characteristic. Taking m i.i.d. samples 0) ~gy(- | x4, t) we can

use the plugin estimator: S, = m D ity %p(a%(j),ic(j/)) -1 ’jnzl p(i(j),xo).

4 DECONVOLUTION WITH COUNT BRIDGES

We extend Count Bridges to handle unit-level generation when we only observe aggregates. Consider
G units in the one-dimensional case where the group-level state at time ¢ is a vector X, € Z¢
with entries X 4; for unit g at time ¢. Each entry evolves independently according to the bridge in
Section @ The key challenge: we observe the unit-level endpoint x; but only the aggregate at time 0,

ag = 2921 x40 € Z, not the unit-level vector xo. Our goal is to learn a count bridge gy (o | ¢, t, 2)
that generates unit-level endpoints given start data at time ¢ = 1 and side information z.

We formulate this as a generalized EM problem, similar to Rozet et al.| (2024), where X, is latent
and ag = Y X, is observed. Let A : 7% — 7 be a linear aggregate map (e.g., sums across units,
block sums). For (x4,t, z), the denoiser g (- | x¢,t, z) defines an i.i.d. product prior over Xy =
(X710, ..., Xgo). Conditioning on the aggregate yields

G
Qo(Xo | ao, 0,1, 2) o [Hqg(Xgo|xt,t,z)} 1{A(Xo) = ao}.

g=1

In the E-step we will generate “latent” x5’ using the model and in the M-step we will use these z to
train the model at the aggregate level. We summarize the overall procedure in Algorithms [3|and 4]

E-Step The ideal E—step would sample from the exact aggregate—conditional law

XO ~ QG( ‘ avatvtvz) .

We could then use the sampled x} _as latent variables to sample z; between (x§,x;) using the
unit-level kernel Ky|q; from Prop. Unfortunately, (Qy is generally intractable to sample from,
given just a unit-level model, so we approximate it through the diffusion sampling process itself.
Starting from x;, we run the sampling process as in Algorithm [2| but at each timestep ¢; we: (1)
predict Xg ~ qo(- | X¢,, tr, 2), (2) project X to satisfy the aggregate constraint (see Sec. , yielding

!The same method described here can be used with distributional diffusion on continuous space, but we focus
on counts since most often when we observe aggregates we believe they are based on discrete underlying data.
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Require: (x1, a9, z), w(-), AL ("), go, I1 Require: (x1,aq,2), w(-), AL ("), go, I1
1. fork=K K—-1,...,2do 1: for each minibatch do
2: Sample Xo ¢, ~ qo(- | X4, bk, 2) 2: E-step: Sample latent x7’ from
3: Xo,t, < (X4, @0, 2) x; conditional on ag via Alg.[3]
4 Update x;, , by running the reverse step M-step: t ~ Unif][0, 1]
5:

3
4
using steps 4-10 of Alg.2} with %, 5 Sample x; via the forward bridge on
6: end for 6: (x§,x1) using steps 4-10 of Alg.
7: x§ < sample and project X ¢, 7 Update 6 using the gradient of —L,4,(6)
8: return x;’ 8: end for

Algorithm 3: Guided Sampling to for z Algorithm 4: Training with Aggregate Supervision

CFM DFM DCB . .
Figure 2: A scaled and rounded variant

of the classic 8 gaussian to two moons
task. Here we compare the trajecto-
ries of continuous flow matching, dis-
crete flow matching, and count bridges.
CB achieves the lowest W5, MMD, and
EMD, see Table@

Xo, and (3) perform the sampling step using X as the predicted endpoint. This projection—guided
diffusion ensures the aggregate constraint is incorporated throughout the denoising trajectory (see
Alg. . This process produces latent = samples that are consistent with the aggregate constraints,
which we can then use in the M-step to train the model. We outline this in App. and prove that,
when learning from aggregates is possible, the EM approach will learn the bridge.

M-Step With these unit-level samples in hand, the M—step runs the bridge process as in Section 3]
But instead of computing the loss on the unit-level latents, we compute the loss with respect to the
aggregates. Given the ground-truth aggregate ag, we lift the same strictly proper score to aggregates:

§(p. @) = L Ep [o(A(X), ACX'))] ~ By [p(A(X). )] and Lags (6) = Eag xS an(- | Xe.1.2). 40)]
with the plug-in obtained by sampling X(()j ) qo(- | Xy, t, 2) and forming aU) = A(ng )).

Approximate Sampling from the conditional distribution Given a predicted endpoint Xy from
our diffusion model and target aggregate ag, we need to sample from the conditional distribution
Qo(- | A(Xy) = ap). While this is intractable, we can derive a principled approximation.

Proposition 4.1 (First-order aggregate projection). Let A(Xy) be the aggregate, and let Py be
the prior law w Xq. Under the regularity conditions in App. the aggregate—conditional law
Qo(- | Ao = ao) admits a first—order exponential tilt. The corresponding KL projection
I(xp) =arg  min  Dkr(yol/%o)
yo: A(yo)=ao
gives a first—order approximation to Qg(- | Ao = ag). For an elementwise sum A(xq) = Zg T g0
this projection is the simple scaling I1(z0) g = aoxqo/(3_, T40)-

The proposition shows that the natural rescaling operation is not ad hoc, but is justified as a kind
of first-order Taylor approximation to the true conditional distribution (see Appendix [B.T). When
unit-level training data exist, we can learn a projection I, (Xo, 2, ao) that actually enables sampling
conditional on the mean. See Sec. [6| where we show outline how to learn such a projetion.

5 RELATED WORKS

Stochastic interpolants. Our formulation allows us to transport any integer-valued distribution
p1 to another integer-valued distribution pg. In the case of Euclidean state space early works such
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as (De Bortoli et al.,|[2021}; [Vargas et al., 2021} |Chen et al.| 2021)) have shown how to perform such
an interpolation leveraging (Entropic) Optimal transport and the concept of Schrodinger Bridges.
In more recent works, ignoring the Optimal Transport constraints, several works have proposed to
bridge distributions in a more relaxed formulation leveraging the concept of Markov projection, see
Peluchetti| (2023)); |Albergo et al.| (2023); Delbracio & Milantar| (2023)); |Liu et al.| (20225 2023)) for
instance. Those frameworks can be shown to be strictly equivalent to diffusion models in the case
where one of the end distribution is a unit Gaussian, see |Gao et al.| (2025)). However, those works are
limited to the Euclidean setting, and extension to the integer-valued setting is required.

Discrete diffusion models. Recently, with the advent of language diffusion models such as|Ye
et al.[(2025)); Song et al.| (2025)); Sahoo et al.|(2024); [Shi et al.| (2024); |Ou et al.| (2024a)); Arriola et al.
(2025); Nie et al.| (2024)); Zheng et al.|(2023), discrete diffusion models have gained considerable
traction. Most works rely on discrete equivalents of the original formulation of diffusion models,
explicitly or implicitly replacing the continuous Gaussian noising process by a Continuous-Time
Markov Chain (CTMC) (Austin et al.| 2021} |Campbell et al., 2022} [Lou et al., 2023} |Campbell et al.,
2024; [Kitouni et al., [2024; |Sun et al., [2023). Other approaches include relying on some Euclidean
relaxation (Chen et al.,|2022)) or modelling the space of probability (Avdeyev et al., 2023} |Stark et al.}
2024). Similarly, flow matching techniques have been extended to cover this paradigm (Gat et al.|
2024). Most of these works focus on categorical data and therefore consider uninformed forward
process such as uniform or masking process. In contrast, in this work, we focus on ordinal data. To
the best of our knowledge, the only existing work that also deals with such a process is Blackout
Diffusion (Santos et al., [2023)), which considers a pure-death process where an image is taken to the
all-zero limit, as opposed to an endpoint conditioned bridge. Our approach generalizes this setup in
two ways: first, we allow births and deaths at every time, recovering their pure birth construction in
the limit as x — 0; second, we generalize the process to a bridge which can transport X to Xj.

Finally, we highlight that diffusion models have been extended to the very general setting where
only an infinitesimal generator is available Benton et al.| (2024); [Holderrieth et al.| (2024). While our
work can be seen as an instanciation of this general framework, these general frameworks do not
give any information regarding the design of the forward process for integer-valued data, the specific
parameretization in terms of slack variables and the necessity of the distributional diffusion loss.

Distributional Diffusion Models. In|De Bortoli et al.| (2025)); |Shen et al. (2025)), the authors learn
the conditional distribution po|.(2o|z¢) through the use of scoring rules, going beyond the classical
training framework of diffusion, which approximates the conditional mean E[X(|X; = x;]. The
importance of approximating the covariance was already noted by Nichol & Dhariwall (2021) and
further analyzed in (Ho et al.,|2020; Nichol & Dhariwall 2021} [Bao et al., 2022agb; |Ou et al.| [2024b)).
In a similar flavor (Xiao et al., 2022) uses a GAN to approximate poj¢(zo|¢).

Sequence-to-expression models An ambitious goal in biology is to predict gene expression from
DNA sequence information. There have been several attempts to train deep learning models for
sequence-to-expression prediction tasks (Barbadilla-Martinez et al.,2025)), including Enformer (Avsec
et al.,[2021)), a state-of-the-art transformer-based DNA sequence model. While powerful, Enformer,
like the vast majority of sequence-to-expression models, was trained on bulk gene expression data
and is not able to predict single-cell expression profiles, missing the cellular heterogeneity and
fine-grained regulatory patterns that shape tissue function.

Spatial transcriptomic deconvolution Spatial transcriptomics encompasses a family of recently
developed techniques which measure gene expression and spatial location in tissues. The majority of
these techniques are not capable of resolving individual cells, instead providing aggregate information
over small neighborhoods consisting of on the order of tens of cells (Moses & Pachter, 2022). To
address this limitation, a number of deconvolution methods have been developed to infer single-
cell level information (Li et al., [2023). The majority of these methods, including cell2location
(Kleshchevnikov et al.,[2022) and RCTD (Cable et al.,[2022), require a paired non-spatially resolved
scRNA-seq atlas, and output cluster-level mixture proportions rather than single cell counts. The
ideal deconvolution would recover full single-cell count profiles directly from spatial data without
requiring external reference atlases. DestVI (Lopez et al., [2022]), which outputs count profiles but
requires a reference, and STDeconvolve (Miller et al.| 2022) which does not require a reference but
outputs cluster-level predictions, both take steps toward this goal.
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Method Steps
—e— CFM DFM =e— Count Bridge —— NFE=8 = NFE=32 =— NFE=128
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Figure 3: CFM, DFM, and CB on our low-rank mixture of Gaussians transport experiment across
dimensions and NFE. See App. [D.2]for full details.

6 APPLICATIONS

We evaluate with three distributional metrics: the Energy score, the Wasserstein-2 distance, and the
MMD (RBF). For deconvolution, we evaluate cell-type proportion predictions using RMSE, the
Jensen-Shannon Divergence (JSD), and Spearman correlation following Li et al.|(2023)). Synthetic
tasks have std. errors over 3 training seeds; main applications have std. errors 3 over inference seeds.

6.1 SYNTHETIC DISTRIBUTIONS

Here, we benchmark count bridges (CB) against continuous flow matching (CFM) (Lipman et al.,
2022) and discrete flow matching (DFM) (Gat et al.,[2024) across a range of synthetic experiments.

Discrete 8-Gaussians to 2-Moons. We adapt this classic task to the integers. We plot the learned
trajectories in Fig[2] Qualitatively CB achieves the best performance. DFM is much more competitive
in this experiment than CFM, but DFM trajectories are decoupled from the underlying geometry,
whereas CB produces OT-like trajectories similar to CFM. These qualitative evaluations are confirmed
quantitatively: CB achieves the best performance across W5, Energy, and MMD (see App. [D.T).

Scaling in Low-Rank Gaussian Mixtures. To test scalability to higher dimensions, we construct
integer-valued datasets with fixed intrinsic dimensionality while ambient dimension d increases in
powers of two from 4 to 512. Each dataset is a 5S-component Gaussian mixture with latent rank r = 3,
projected to Z?. In Fig. [3|see that CB has the best scaling in dimensionality (see App. for more).

Deconvolution of Gaussian Mixtures. We extend the low-  s«0:[ 5 prcnerass
rank mixture task to evaluate deconvolution capabilities. In this ...~ brcret eciono
experiment, each observation is an aggregate constructed by ..~
summing a group of GG samples. For each group, the G samples 3
are drawn from a group-specific Gaussian mixture whose com-
ponent weights are sampled from a Dirichlet distribution with
concentration parameters (a1, ...,as). The labels of the G il
source components are provided as unit-level side information. Group Size (n)
We then vary the size of the group G and the extent of variation
between groups by changing the concentration parameter «
(see Appendix [D.3]for details). In Fig. @] we see performance
degrades as groups become more uniform and larger. We ex-
plore the theoretical limits to deconvolution in Apps. [B.4.3]and
[B.3] which confirm that deconvolution requires between-group heterogeneity to enable identification,
which is inherently lost as groups become large. Despite these limits, we demonstrate practical
deconvolution on moderately-sized groups in our spatial transcriptomics application (Section [6.3).

Figure 4: Deconvolution of the low-
rank Gaussian mixture across dif-
ferent group sizes and levels of
between-group heterogeneity.

6.2 MODELLING GENE EXPRESSION AT SINGLE-CELL AND SINGLE-NUCLEOTIDE RESOLUTION

A central goal in biology is to understand the relationship between DNA sequence and gene expression.
Many models relate sequence and expression, the most prominent of which, such as Enformer (Avsec
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Method Bulk MSE CT MSE || Comparison MMD W,  Energy
Fine-tuned Enformer 2.590 3.142 || Bulk mean 0.515 0.208 56.800
Count Bridge 0.601 1.410 Count Bridge 0.446 0.182  28.583

+0.000 +0.002 +0.000 +0.001 +0.003

Table 1: Nucleotide-level MSE for bulk and Table 2: Gene expression count profile deconvo-
bulked cell-type (CT) specific predictions. lution error for bulk RNA sequencing data.

et al., 2021)), are Transformer-based models that predict expression from sequence. More recent
work has explored fine-tuning Enformer on single-cell data (Hingerl et al.,[2024). On the other hand,
there is a mature literature on deconvolving bulk RNA-seq (Newman et al.,|2019; |Wang et al.,2019).
These methods operate at the gene (rather than nucleotide) level, leveraging bulk cell-type profiles or
single-cell references to deconvolve bulk profiles into cell-type proportions (not count profiles).

We use CBs to jointly model sequence and Method JSD RMSE Spearman
single-cell expression counts in sSCRNA-seq

data, and to enable nucleotide-level decon- E/IIBSEESORTX 8 é?g 8 }gg 8(1);2
volution of bulk profiles. To validate CBs C st Brid 0'113 0'073 0.267
in this setting, we demonstrate two key re- ount Bridge £0.001____ +0.000 £0.005

sults. First, we show that CBs trained on

single-cell data produce meaningful count Table 3: Cell-type proportion deconvolution error for
proﬁ]es and outperform a fine-tuned En- nucleotide level bulk RNA sequencing data.

former model on sequence-to-expression prediction. Second, we show that conditioning CBs on
bulk profiles enables deconvolution of bulk gene expression into inferred single-cell gene expres-
sion profiles. We validate these deconvolved profiles distributionally and show that they achieve
state-of-the-art performance relative to cell-type proportion deconvolution models.

Modeling sequence and single-cell counts We train CBs on PBMC scRNA-seq counts at nucleotide
resolution using 10° cells across 10% donors (Yazar et al.,[2022). Each training example corresponds
to a nucleotide position in a single cell, and is represented by the noisy count x; and diffusion
time ¢ from the CB forward process, a cell-type embedding, a local genomic context z obtained
by encoding the surrounding DNA sequence with Enformer, and i.i.d. noise ( for the distributional
loss. These features are concatenated and passed through residual multi—head attention blocks and a
final softplus head that parameterizes the conditional count distribution X¢| X4, ¢, z. The model is
trained directly on unit-level (single-cell) expression profiles rather than only on aggregated counts.
During training we randomly mask cell-type labels so that the model supports both unconditional and
cell-type-conditional sampling at test time.

Learned projection for deconvolution Since we have unit-level data we can learn a better projection
operator than the simple rescaling function in Prop. We augment the CB with a small projection
module 11, an attention block operating on each nucleotide (represented by z) across cells in the
batch. Given an initial CB prediction Z(, an observed aggregate ag, and the noisy state x;, the
module outputs Xo = II, (%o, ag, X, ), we train this using the distributional loss to learn to sample
Xo | A(Xo)=ag, X}, t. To support both unconditional and aggregate-conditioned inference, we
apply the projection module only on a random 10% of training examples where ag is provided.

Bulk gene expression We first evaluate the ability of our model to predict expression from sequence,
both unconditionally and conditional on cell type. As a baseline, we use an Enformer model fine-
tuned directly on the PBMC dataset. We find that Count Bridge predictions outperform fine-tuned
Enformer (Table([T] for results by cell type and further details see App. [E).

Deconvolved profiles We can use this unit-level model for deconvolution tasks: we can condition
on an aggregate (bulk profile) to sample single-cell profiles from the model while matching that
aggregate. We next evaluate the ability of CBs to deconvolve mixtures of cell types from held-
out individuals. We held out 10% of patients from our training set and synthetically bulked these
patients. Since we have the ground truth data, we can then evaluate deconvolution quality. We
first evaluate the distributional quality of these predictions against the bulk mean, further validating
the CB count profiles (Table[2). As a more robust set of baselines, we compare to CIBERSORTx
(Newman et al.l 2019) and MuSiC (Wang et al., 2019). To facilitate comparison, we aggregate our
nucleotide-level predictions into gene counts and assign each of our deconvolved cells to the closest
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cell type. CBs achieve better performance on JSD, RMSE, and Spearman correlation while providing
nucleotide-level counts (Table[3). In App. [E|we plot the UMAP for qualitative comparison.

6.3 DECONVOLVING SPATIAL TRANSCRIPTOMIC SPOTS INTO SINGLE-CELL COUNTS

Next, we show how CBs can be used to infer single cell gene expression profiles from spot-level
aggregates in spatial transcriptomic data. In spatial transcriptomic data generated by Visium (Stahl
et al.}2016), it is common to have access to side information beyond the spot-level count aggregates.
In particular, many datasets include images of the cells with a nuclear stain (Palla et al.||2022). CBs
provide a natural way to leverage this cell-level side information to deconvolve aggregate count data.

Modeling spatial aggregates We train CBs on a MERFISH mouse brain dataset (Vizgen, [2021)),
which is resolved at the single-cell level, and artificially aggregate neighborhoods of cells to simulate
spot-level Visium data. This synthetic dataset gives us access to spot-level aggregates and their
corresponding single-cell ground truth, as well as single-cell nuclear images. Following the notation
in Sec. [] the spot-level counts can be treated as aggregates ao, and single-cell images can be treated
as unit-level side information z. In this application, we never observe single-cell count profiles, only
spot-level aggregates and the single-cell images. We leverage a UViT (Bao et al., [2023)) extended to
incorporate count and noise patches (see App. . We use a simple source distribution X; ~ Poi(10).

Cell type proportions We benchmark CBs
against STDeconvolve (Miller et al., |2022), a Method JSD  RMSE Spearman
widely used spatial transcriptomic deconvolu- ~ STDeconvolve  0.288  0.177 0.255

tion method which is state-of-the-art among  Count Bridge 2.231 0.110 0.332

reference-free approaches|Li et al.| (2023) (see 002 - =000 %0‘001
Appendix [F]for comparisons to reference-based ~Table 4: Cell-type proportion deconvolution error
methods). STDeconvolve outputs cell type (clus- for spatial transcriptomics.

ter identity) proportions for each spot rather than single cell counts. As such, we evalute the quality of
deconvolution by comparing the predicted cell type proportions to the true cell type proportions per
spot. For CBs, which provide single-cell count profile predictions rather than cell type proportions,
we assign each predicted count profile its nearest neighbor cell type in order to compare against
STDeconvolve. CBs outperforms STDeconvolve on both the JSD and the RMSE (Table ).

Count profiles We next evaluate the quality of the -
count profiles inferred by CBs. Here, because STDe- _Comparison  MMD W,  Energy

convolve does not provide these predictions, we  Spot mean 0409 0.030 41.717
instead consider a simple baseline: predicting the  Count Bridge 0.203  0.017  8.903
spot-level mean (ag/G) for each cell. This baseline, £0.000  £0.000  +0.014

while seemingly naive, is actually biologically well-
motivated. In spatial transcriptomics, cells within a
spot represent local tissue organization where neigh-
boring cells coordinate their functions (Armingol et al.| 2021). As such, we expect cells in spatial
neighborhoods to have correlated gene expression profiles, making the spot mean a reasonable
baseline. Nonetheless, CBs outperform the spot-level mean baseline (see Table 3, showing CBs can
learn meaningful unit-level distributions from real-world aggregate data. In App. [ we provide a
more detailed biological evaluation of the cell types and pathways in our generated data, alongside
the UMAP to facilitate qualitative comparison.

Table 5: Gene expression count profile decon-
volution error for spatial transcriptomics

7 CONCLUSION

Count Bridges offer a tractable, discrete-native alternative to continuous diffusion models, unifying
direct count generation with deconvolution from aggregates. We demonstrate the power of Count
Bridges for nucleotide-level deconvolution of bulk RNA-seq and spatial transcriptomic deconvolution.

Limitations (i) When counts are well-approximated as continuous, Euclidean models may match
or exceed performance. (ii) Identifiability in pure deconvolution degrades as group sizes grow or
between-group heterogeneity shrinks, so our EM procedure is most reliable at moderate aggregation.
(iii) The projection step we use is a first-order surrogate and lacks serious theoretical support.

Despite these caveats, Count Bridges lay the groundwork for rigorous discrete generative mod-
eling and invite future work on deeper understanding of the projection-guided sampler, sharper
identifiability bounds, and generally stronger guarantees for projection-guided EM.
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Ethics Statement. This study uses publicly released, de-identified single-cell and spatial tran-
scriptomics datasets under their respective licenses; no new human subject data were collected, and
institutional review board (IRB) approval was therefore not required. We do not foresee serious
ethical implications to Count Bridges beyond the risks already posed by standard diffusion/flow
matching models. Our deconvolution methods could possibly pose some additional privacy risks. We
used LLMs to help draft portions of the code used in our experiments and to edit portions of this
manuscript. All our models are intended for research use only, not clinical use. LLMs were not used
in any way significantly outside the current norms of academic research.

Reproducibility Statement. We have taken significant steps to ensure that all results presented
in this work are reproducible. An anonymous source code repository is provided herel containing
complete implementations of the Count Bridge framework, including model architectures, training
procedures, projection-based deconvolution, and evaluation pipelines. The appendix includes full
mathematical derivations and proofs of all theoretical claims. We also provide descriptions of all data
preprocessing steps for synthetic benchmarks, PBMC sequence-to-expression prediction, and spatial
transcriptomic aggregation, as well as architectural and hyperparameter specifications. Together,
these materials are intended to allow independent researchers to fully reproduce our theoretical and
empirical findings.
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A COUNT BRIDGES

A.1 POISSON BIRTH-DEATH BRIDGE ON Z

We start by showing where the Binomial and Hypergeoemtric distributions emerge in our framework.
Then we will prove that if we condition on the amount of slack these distributions compose. Finally
we will show that using the Bessel slack law we have composition while mixing over the slack
distribution.

A.1.1 SAMPLING PROCESS

We now formalize where the Binomial and Hypergeometric terms in equation [9]come from. We work
directly with the birth—death representation introduced above.

Let A, A_ > Oandlet w : [0,1] — R>( be an increasing “jump—intensity” shape function with
w(0) = 0 and w(1) = 1. Define the cumulative birth/death intensities

Ap(t) = Apw(t),  A() = A w(t),

and let (By);e[0,1) and (Dy)¢e(o,1) be independent (non-homogeneous) Poisson processes with these
cumulants. Set
Xt = Xo+ By — Dy,
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so that the unconditional forward kernel Ky is the same as in equation @

Write the total jump count as
N; = By + Dy, t €[0,1].

Standard properties of Poisson superposition imply that (V) is a (non-homogeneous) Poisson process
with cumulative intensity

A=A () +A_(t) = Ay + 22)w(t).
Conditional on N7 = n, the n unordered jump times are i.i.d. with cdf
P(T<t|N>1) = w(t), t €10,1],
so w is precisely the time-rescaling that makes the jump times uniform on [0, 1].
We now condition on endpoints Xy = xg, X7 = z; and define
di = x1 — xy, Ny = B;1 + Dy, Blzé(Nl +dy), Dy =N, — B;.

Given (N1, By), we can view the N7 jumps as a set of N7 points on [0, 1], each labelled +1 (birth)
or —1 (death). The superposition and thinning properties give two key facts:

We now record the Binomial and Hypergeometric structure of the jump counts.

Lemma A.1 (Binomial-Hypergeometric structure of the birth—death bridge). Fix ¢ € (0, 1]. Condi-
tional on Ny = nand By = b, let 0 <T{(1y < -+ <T(y,) < 1 denote the ordered jump times and let

(L1,...,Ly) € {+1,—1}" be the corresponding jump labels, with Y ;_ 1{Lj, = +1} = b. Then:

1. Binomial structure. The unordered jump times are i.i.d. on (0, 1] with cdf w, so

Ny | Ny =n ~ Bin(n, w(t)).

2. Hypergeometric structure.  Conditional on (N1,B1,N;) = (n,b,m), the labels
(Ly,...,Ly) are exchangeable given By = b, and the m jumps with times in (0,t] corre-
spond to a uniformly random m~subset of {1,...,n}. Hence

By | (vaBlaNt) - (n,b,m) ~ Hyp(n, ba m)a
and therefore D, = Ny — Bj.
More generally, for 0 < s < t < 1 define r = w(s)/w(t). Conditional on (N, B;) = (n,b), the n
jumps in (0, ¢] form a non-homogeneous Poisson process with cumulative intensity A(-)/A(t), so the

N, jumps in (0, s] satisfy
Ny | Ny=n ~ Bin(n, 7")7

and, by the same exchangeability argument applied within (0, ¢],
Bs | (N¢, B, N;) = (n,b,m) ~ Hyp(n7 b, m), D, = N, — B,.

A.1.2 COMPOSITION CONDITIONAL ON THE SLACK

We now show that the Binomial-Hypergeometric construction is closed under composition when we
condition on a fixed slack value.

Conditional on (X, X7, M;) (equivalently on (N7, By)), the total number of jumps N; and the
number of births B, at any intermediate time ¢ are governed by the Binomial-Hypergeometric
structure in Lemma[A.T} We now record two elementary composition facts which we will use with

_ _w(s)
p=w(t), Ok 0<s<t<l.

Lemma A.2 (Binomial composition). Let K ~ Bin(N, p) and, conditional on K, let L ~ Bin(K, q).
Then L ~ Bin(N, pq). Moreover, (K, L) has joint pmf

P{K =k L=10}= (JZ) (pa)“(L —pq)N“*@[_f) (p(l _q))H( S )Nﬁk.

1—pq 1—pq
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Proof. We begin by writing the joint distribution directly from the model:

P(K=k L=0=P(K=k)P(L=0|K=Fk) = (‘:)pk(l_p)Nk <’;)qe(1_q)k4

Apply the standard combinatorial identity

N\ (k\ (N\(N-/
k ¢)  \¢ kE—t)’
to obtain the factorization

s (om0 ()

To get the marginal law of L, sum the joint pmf over all £ > £. Let m = k — ¢; then m ranges from 0
to N — ¢, and

_ :N—Z N B o N =8\ (pa—q\™ 1 (N—£)—m
P(L = ) m}_:()(»(pq)f(l p)N f( - >(1_pq) (1_pq) :

All terms not depending on m factor out:

P(L = () = (JZ ) o0 (- )" (N - g) amHN-0-m,

m=0 m
where
1-— 1-—
¢ q)7 po 1P
1—pq 1—-pq

Since a + b = 1, the inner sum is exactly the Binomial theorem,

N—¢
Z <N g)amb(]vf)m _ (a+b)N7£ = 1.
m=0 m

Thus ~
P(L={()= (5 ) (pg)*(1 = pg)™~*,
which is the pmf of Bin(N, pq). O

Lemma A.3 (Hypergeometric composition). Fix an urn with N balls of which B are marked
“success”. Draw N = k balls without replacement and record By = b successes. From the k drawn
balls, draw Ng = j < k without replacement and record Bs; = a successes. Then the marginal law
of (N, Bs) satisfies

P{N;=j, B;=a|N,B} = (]]V)_l(f) (Z\]]_GB)

which is the pmf of the single hypergeometric draw Hyp(N, B, j).

Proof. Fix the total population of N items with B successes. The first draw selects a subset
Sy C {1,...,N} of size k = N; uniformly among all (') such subsets. From S, the second draw

selects a subset Sy C Sy of size j = Ny uniformly among all (’;) subsets of .S;.
Every subset S of size j can be formed in at least one two—step sequence of the form S, C .S, C

{1,..., N}. Moreover, under simple sampling without replacement, all such two-step sequences
occur with equal probability:

11 ()
P(S; = A) = Z [ —— kfj, for any size-j subset A.
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The right-hand side does not depend on A, so conditional on N = j every j—subset of {1,..., N}
is equally likely. There are (N ) such subsets.

(2)(5-2)

subsets contain a successes and j — a failures. Hence

Among these (j ) subsets, exactly

() (5=)
5

which is the pmf of the hypergeometric distribution Hyp(N, B, j). O

P(B,=a|N, =j) =

We can now state composition of the birth—death bridge at fixed slack.

Theorem A.4 (Bridge composition conditional on slack). Fix 0 < s < t < 1 and endpoints Xo = x,
Xy = a1, and slack My = m (equivalently, fix (N1, By) via equation[7). Let w : [0,1] — [0,1] be
the time—rescaling function from the birth—death construction.

Define the fixed—slack bridge kernels

Km

a|0b(x“ | ®o,xp) = ]P’(Xa :xa|X0 =20, Xp = xp, M1 = m), 0<a<b<l.

Then the two—stage rule (1 — t — s) yields the same law for (N, Bs) as the single—stage rule
(1 — s), and the fixed—slack kernels satisfy the bridge—consistency identity

Ké\o 1(@s [ wo,21) ZKth xs | o, Tt) Kt(‘?g)l(a:t | zo,x1). (10)
Proof. Working conditional on (N, By) (equivalently on (xzo,z1,M; = m)), the Bino-

mial-Hypergeometric structure of Lemma[A.T] gives
Ni | N1 ~ Bin(Ny,w(t)), Ny | Ny ~ Bin(Ng, w(s)/w(t)).
Applying Lemma|A.2|with p = w(t) and ¢ = w(s)/w(t) yields
Ng | Ny ~ Bin(Nl,w(s)),
which coincides with the direct (1 — s) rule.

For the colour counts, conditional on (N7, By) and Ny, the N; jumps in (0, ¢] form a finite population
with B; births (successes) and N; — B; deaths (failures). Within this population, the two—stage
sampling (t — s) is exactly the nested hypergeometric scheme of Lemma so the marginal law
of (N, Bs) coincides with that of a single hypergeometric draw Hyp(N1, By, ;) from the original
Nj jumps. This is the direct (1 — s) rule.

Thus, at fixed (zg, 21, M1 = m), the two—step transition (1 — ¢ — s) and the one—step transition
(1 — s) agree in law for (g, Bs), and hence for X = x¢ + Bs — D;. Equivalently, the conditional
distributions P(X, = xs | Xo = w0, X1 = 21, Mq = m) obey the kernel identity equation [10]

which is exactly the fixed—slack bridge consistency for K\~ (m al0] b [

A.1.3 INTEGRATING OVER THE SLACK: THE OBSERVABLE BRIDGE

In the previous section we established that, conditional on a fixed slack value, the birth—death (BD)
bridge satisfies exact composition: for fixed (Xo, X¢, My) the (t — s) transition coincides with the
direct (¢ — s) rule defined by the Binomial-Hypergeometric structure. However, our generative
model does not include a latent slack variable: at time ¢ we observe only X; = Xy + By — Dy, not
the pair (B¢, D;) or their slack M; = min(B;, D;).

To obtain an observable Markov bridge we therefore resample the slack at each time from its posterior
distribution
m|dt P(Mt m|dt:Xt—X0),
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and then apply the conditional BH transition at that m. This subsection derives the explicit form of
m¢(m | dy) and, crucially, proves its closure under the time-rescaling w(t) of the BD reference. This
closure ensures that the mixture over M, interacts correctly with the BH transitions, enabling the
observable process to satisfy the bridge consistency equation [I]

The Slack Posterior
Recall from the BD reference that
Bt ~ POI(AJ,_(t)), Dt ~ POI(A_(t)), Ai(t) = )\i’u)(t), Bt L Dt.

Proposition A.5 (Bessel slack posterior and closure under time-rescaling). Fix ¢t € (0, 1] and let
d; = Xy — Xo = By — D,. Conditional on d, the pair (By, D;) lies on the lattice

m+dy, m), di >0,
(B¢, Dy) = ( & m) ‘ m e N,
(m7m+|dt\), dt<07
and the induced posterior pmf of the slack My = min(By, Dy) is
AL(OA_(E)™
me(m | dy) = P(M; =m | dy) o (A A )™ m=0,1,2,... (11)

(m + |d¢|)!m!
with normalizer

Zy(de) = (A A () "1, (2 AL (DA (1))
where 1, is the modified Bessel function of the first kind.
Moreover—closure under time-rescaling: for any 0 < s < t,

ws( | ds) has the same functional form as (- | dy),

with parameters obtained by replacing (A1 (t), A_(t)) by (A4 (s), A_(s)). Since AL (s) = Arw(s),

this closure depends only on the rescaling of w(-) and not on any other properties of the process.

Proof. We treat d; > 0, the other case being symmetric. If d; = By — Dy > 0 then By = Dy + d;
and thus
(Bt, D) = (m+diy,m) <= My=m

The joint pmf at (m + d;, m) is

CA A A @A™ .

]P’(Bt:erdt,Dt:m):e (m—|—dt)| ml

Conditioning on d; amounts to normalizing over m:

A+(t)7n+df ( )m/( m+dt)lm|)
S ) A A (1) /(I T dr)

Factor A (t)% from numerator and denominator to obtain

(AL (OA_@)™
Wt(m‘dt) (m+dt'm' Z T+dt'7"'

which is exactly equation [[1] The denominator is the standard Skellam normalizer, given by the
stated Bessel expression.

TI't(m | dt) =

’I”

For closure, note that for any s < ¢ we have independent thinning
B, ~ Poi(A4(s)), D, ~ Poi(A_(s)), As(s) = drw(s).

Repeating the same conditioning argument with (Bs, D) and d; yields the same functional family
as equation [11] with parameters (A (s), A_(s)) replacing (A (t), A_(t)). Thus 7 is closed under
the time-rescaling w(-). O
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Mixing Over the Slack

This proposition shows that the slack posterior depends on the state only through the observable
displacement d; = X; — X and the posterior family 7;(- | d;) is closed under passing to earlier
times s < t.

Using these properties, combined with the composition in a fixed slack, we can prove the general
Markovanity after mixing over the slack. We now mix the fixed—slack bridges over the Bessel slack
posterior to obtain an observable bridge that depends only on the counts X; and satisfies the same
bridge consistency identity as in equation

Recall the fixed—slack bridge kernels from Theorem[A.4}
Ki%?b(ma | 2o, xp) = IP’(Xa =z, |X0 =0, Xp = xp, M1 = m), 0<a<b<l
For each m € N these satisfy fixed—slack bridge consistency: forall 0 < s <t < 1,

K (s | w0, 21) = > Ko, (s | 20, 20) Koy (2 | o, 21). (12)

Tt

At the terminal time 1, define the observable (0, 1) bridge by

oo

Ko (zs | wo, 1) = Z mi(m | dl)Ki‘Tgy)l(IEs | To, 21), dy = 1 — o.

m=0
At an intermediate time ¢, define the observable (0, ¢) bridge by

oo

Ks|0,t(33s | 2o, 7¢) = Z m(m | dt)Kér&)t(a:S | 20, 2t), dy = xy — wo,
m=0
and similarly
Kijo,1 (e | xo, 1) = Z mi(m | dl)Kt(ﬁ)l(It | zo,1).
m=0

Theorem A.6 (Bridge consistency of the observable count bridge). Under the Poisson birth—-death
reference and Bessel slack mixing, the observable bridge kernels satisfy the discrete form of equation|[I}
forall 0 < s <t <1 and endpoints xg, x1,

Kgo,1(xs | o, 21) = Zsz,t(ﬂfs | 2o, 2¢) Kyjo,1(w¢ | 0, 21)- (13)

Tt
Proof. Fix x¢, 1 and a bounded test function ¢ on the state space. We prove equation[I3]in weak
form by comparing E[p(X;) | Xo = xo, X1 = 1] computed in two ways.
First, by definition of Ko, and the slack posterior at time 1,

E[CP(XS) | XO = xo,Xl = 561] = Z ’7Tl(m | dl)E[gO(XS) | Xo = l'o,Xl = l'l,M = m],

m=0

with d; = x1 — z¢. For each fixed m, the bridge with slack M = m satisfies the fixed—slack bridge
consistency equation[I2] so

Elp(Xs) | Xo = 2o, X1 = 21, M = m]

= > Elp(X.) | Xo = 20, X¢ = 20, M = m] K[, (3 | 20, 1)

Substitute into the previous display and interchange the sums over z; and m:

Elp(Xs) | Xo = x0, X1 = 1]

=3 m(m | d)Elp(X.) | Xo = 20, X, = 20, M = m] K (2 | 20, 21).

zy m=0

20



Under review as a conference paper at ICLR 2026

Now condition on the intermediate state X; = z; and use Bayes’ rule. By Proposition[A.3] the
posterior over M given (Xo = o, Xy = x¢) is exactly 7 (- | dy) with dy = 2y — o, i.e.

Ft(m ‘ dt) = P(M =m | XO = J,‘o,Xt = a?t).

Hence we can rewrite the inner sum over m as
o0

> mi(m | dy) Blp(X) | Xo =20, Xp = 2, M = m] = E[p(X,) | Xo = 20, X; = 2],
m=0

and the definition of Ko ; then gives

E[SD(XS) | Xo =120, Xy = mit Z‘P xs s|0t xs | anmt)

Putting everything together,

E[p(Xs) | Xo = 0, X1 = 21] Z(Z@ zs) Ksjo,1(s | xOvmt))KﬂO,l(ft | 2o, 21)

= ZW(%)(Z Kjo,e(xs | 20, 2t) Kijo,1 (21 | 500@1))-

On the other hand, by the definition of K s[0,15

Elp(Xs) | Xo =20, X1 = 1] Z@ zs) Ksjo1(2s | w0, 1).
Since ¢ is arbitrary, the coefficients of ¢ (zs) must agree for all x, which yields equation O

This theorem shows that after mixing over the Bessel slack posterior at each time, the observable
birth—death bridge has the same bridge consistency property equation[I]as the Gaussian diffusion
bridge in Proposition[2.1}

A.2 LINK WITH SCHRODINGER BRIDGES

We now justify the Schrodinger-bridge interpretation stated in Sec. [3] Recall the unconditional
birth—death construction

Xt = Xo+ By — Dy,
where (Bi);c0,1] and (D¢).e[o,1] are independent Poisson processes with cumulative intensities
AL(t) = Aiw(t), A_(t) = A_w(t),and w(0) = 0,w(1) = 1. Let & = /A1 A_ denote the (scalar)
jump intensity. Then for each x¢ € X, the forward kernel at time ¢ = 1 has Skellam pmf

x]1—TQ
” Ap(1 2
Kfjg(er | 20) = exp[ = Ar () = A (] ($58) 7 T a(20),
where I, is the modified Bessel function of the first kind.
Let
Preg(@o,21) = polzo) Kijo(z1 | 20)

be the reference joint law of (X, X1) induced by the birth—death process and the data prior py. Over
the space of couplings

C(pOapl) = {C onX x & : C(aX) = Po, C(X, ) :p1}7
we consider the entropic projection

Cy €ar min  KL(C'|| ply).
gCGC(po’Pl) ( ”pef)

Fix any C' € C(po, p1) and write expectations with respect to C' as E¢[-]. By definition,

dc
KL (C H p?ef) EC log dp
ref

=-H(C) - EC[logKf\o()Q | Xo)| + Ci(po, p1),

(X(]7 Xl)
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where H(C) is the Shannon entropy of C and C,;(pg, p1) collects all terms depending only on the
marginals (including A4 (1) and E¢[X;—X,], which are fixed across all couplings with marginals

Po, P1)-
Using the explicit Skellam form, we can isolate the Bessel contribution:

KL(C || pig) = Cu(po, p1) — Eo[log I1x, - x,|(2k)] — H(C).

To study the limits 5 — oo and x — 01, we use standard asymptotics for I,, (NIS,[2025, §10.41(ii)):

I(2) = \/% (1+0(1)) asz— oo, I(z) = I(‘?zfi)ly) (1+0(1)) asz—07.

High-noise limit x — oo. For fixed v, the large-z expansion shows that log I,,(2x) depends on v
only through O(1/x) terms. Hence, as k — oo,

Ec[log I x, - x,|(26)] = Cr(po, p1) + 0x(1),
where C’.(po, p1) does not depend on the choice of coupling C. It follows that
KL(C || pis) = C — H(C) + 0x(1), K — 00,

for some constant C' that is independent of C. Maximizing H(C') over C(po, p1) yields the indepen-
dent coupling py ® p1, so in the high-noise limit C; — pg & p1.

Low-noise limit x — 07. For small z, we have
logI,(2k) = ylog(%) +0(1) ask— 0T,
uniformly for integer v in any fixed finite range. Applying this with v = | X; — X[ gives
—Eo[log Iy, _x,(2)] = log(%> Ec|X:—Xo| + O(1), & — 0.
Substituting into the expression for the KL divergence, we obtain
KL(C | pli) = C +log(2) Be|Xi—Xo| = H(C) + 0c(1), 1= 0%,

for some constant C' independent of C.

Thus, in the low-noise limit the dominant term in KL(C || pi;) is proportional to E¢|X;—Xo|;
minimizing the KL over C(py, p1) therefore recovers discrete optimal transport with cost |21 —zo|,
while the entropy term — H (C') corresponds to the usual entropic regularization. This proves the
characterization stated in Sec.

B LIFTING COUNT BRIDGES TO AGGREGATES

We make two central assumptions that enable deconvolution.
Assumption B.1 (Realizability and recoverability). There exists 0* such that for all t € [0,1]:

1. Realizability: Qg (ao | X¢,t, 2) = Paaa(ao | X¢, t, 2) almost surely
2. Recoverability: The aggregate-to-unit map has local modulus r,.(t): for 0 near 6%,

DKL(pdam(XO ‘ Xtataz) || QQ(’ ‘ Xtat7'z)) < Hloc(t)'DKL(pdam(aO ‘ Xtataz) || QO( | Xtat7z))

Recoverability means that the aggregate distribution uniquely determines the unit-level distribu-
tion—if we know the sum perfectly, we can deduce the summands. This is not always possible.
Consider the simplest case: if X7, Xo ~ Poisson(A;), Poisson(\y) are independent, their sum
is Poisson(A; + Az). Observing only the sum, we cannot distinguish (A; = 3, 2 = 2) from
(A = 4,y = 1)—both yield Poisson(5). Now if we had side information that identified the
“component” each Poisson was drawn from we could identify this, but it illustrates the difficulties we
will face here.
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Recoverability holds when units have sufficient diversity. Formally, it requires that units are condition-
ally independent given (x1, z) and have distinct factorial cumulant signatures—essentially, different
statistical fingerprints that survive aggregation. For count data, this means units must have different
parameters (e.g., different Poisson rates or negative binomial dispersions) that are distinguishable
through the covariates z.

Theorem [B.10|in Appendix[B.4.3|provides precise conditions: when the factorial cumulant generating
functions C'x, (t) = F'(t;1),) form an identifiable system and covariates provide sufficient labeling
to distinguish units. In practice, this means units should have heterogeneous characteristics captured
by z—for example, different images associated with the transciptomics is spatial single cell data.

Recoverability faces fundamental limits as the number of units G grows. By the central limit theorem,
when G — oo, the standardized aggregate (A — pg)/oc converges to a Gaussian regardless of the
unit-level distributions. The higher-order cumulants that distinguish different unit configurations
vanish at rate O(G~"*/2) for order k > 2, leaving only the mean and variance (Appendix

This CLT collapse means our method is most powerful for moderate GG (tens to hundreds of units)
where unit heterogeneity is preserved in aggregates. For very large (G, additional structure is
needed—either parametric constraints (e.g., unit parameters follow a low-dimensional model), mul-
tiple aggregate observations under different conditions, or direct observation of some unit-level
data.

We illustrate these issues in Fig. []in the main text: as the dirichlet concentration increases the
group-level mixture weights concentrate. When combined with large group sizes this forces all
groups to become identical. This gives a clear empirical sense for the limits of deconvolution.

B.1 APPROXIMATELY SAMPLING CONDITIONAL ON THE SUM

The most central part of our deconvolution approach is our projection operation. Here we sketch a
formal characterization of this operation and justify it based on a Taylor expansion around the true
conditional distribution.

We first give a completely formal statement of our theorem:

Theorem B.2 (Rescaling emerges from first-order conditional). Let pgq¢, be the prior law of Xy and
write the aggregate Ay = A(Xg0) with p = Ep,[Ao] and ¥ = Covp,(Ao) (finite, p.d.). For a target
aggregate aq, set 0 := ag — p. Then the aggregate-conditional law Qq( - | Ag = ag) admits the
Radon—Nikodym form

d
dipz(xo) ZeXIO{)\T Zgaﬁgo _A()‘)}, A=x710+O([l0]),

where A(\) = logEp, [e’\T 2, Xg"]. The KL projection forms a first-order approximation:

T*(z0) = arg min Dk (yol|zo),
Yo: Doy Ygo=ao

which for non-overlapping groups yields the simple scaling update

d
a(() :

* (d)
T (‘TO)_S]d) = ng : 7@) )
Zg’ Lgr0

d=1,...,D.

We prove Theorem (Section 3.2) under explicit regularity, giving a first-order expansion for the
tilt parameter and O([[§||?) control of the KL gap.

Assumption B.3 (Cramér regularity and nondegenerate covariance). Let Py be the prior law of X
and Ag =) 9 Xg0 € Zgo. The cumulant generating function

AN = logEp,[e} 0]

exists and is finite on an open neighborhood N of A\ = 0, is twice continuously differentiable on N,
and Y .= V2 A(0) = Covp, (Ay) is positive definite. We also assume NV* A is locally Lipschitz on a
smaller neighborhood Ny C N.
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Definition B.4 (Exponential tilt and I-projection). For A € N, define the tilted law on Xg:
dPp
dPy
Let ag € RP be a feasible aggregate and § := ag — p with j1 := VA(0) = Ep,[A¢]. The I-projection
of Py onto the affine moment set {Q : Eq[Ao] = ao} is P 5 with X the unique solution of

(z0) = exp{AT Ag(zo) — A(N)}.

VAR = ao.

Lemma B.5 (Duality and uniqueness). Under Assumption the map A — VA()\) is a local
diffeomorphism at 0, hence for ||ag — pl| sufficiently small there exists a unique A € Ny such that
VA(X) = ag. Moreover,

KL (Pe,;\ H Pe) = A ~ATay and Ep, [Ag] = ap.

Proof. V2A(0) = ¥ = 0 implies invertibility of the Jacobian at 0. The inverse function theorem

yields a local inverse i) of V A near u, with A= 1 (ag). The KL identity is standard for exponential
families; the moment identity is by construction. O

Lemma B.6 (First-order expansion of the dual parameter). Let L be a Lipschitz constant for V* A on
No. Then, for § small enough,

A=357 +r(0),  Ir@) < FIETHP 00
Proof. Taylor expand VA at 0: VA(X) = p+ ZA + R(A) with | R(A)|| < Z[|A||. Solve p + SA+
R(\) = ju+ 6 to obtain A = £~1(§ — R())), hence the bound. O
Lemma B.7 (KL and expectation errors). As § — 0,
KL(Pys [ 7o) = 567275+ 0(61F),  [[Ee, ,[F(Xo)|~Bay (as=an F(X)]]| = OUISI2),
Sforany fwithEp,[|f(Xo0)|] < oo whenever the exact conditional Qg(- | Ao = ag) exists.

Proof. Expand A(j\) to second order using Lemma and standard cumulant properties. For
expectations, note that both P, 5 and Qy(- | Ao = ao) are I-projections onto the same affine

moment set; the latter is the exact conditional when it exists. Bregman (KL) Pythagorean identities
give that their KL gap is O(||§|?), which implies the stated expectation difference by Pinsker and

boundedness-by-integrability. O
Theorem B.8 (Proof of Theorem[B.2). Under Assumption[B.3} for § = ag — p small,

d A . N

T () = exp{A Ao(wo) ~ AN}, A=+ 0(52)

and KL(Qo|| P, 5) = O(||8||?). For per-coordinate column constraints, the I-projection is the
multiplicative scaling

(@)
T*(20) @ = 2l . 20 d=1,...,D.

g (d) ?
2 Ty0

Proof. Combine Lemmas|B.5HB.7| The explicit scaling is the closed-form I-projection onto the

linear constraints » 9 yé‘é) = a(()d with KL geometry (“IPF step”); it follows from separability across

d. O

B.2 CONDITIONS FOR REALIZABILITY AND RECOVERABILITY

We provide concrete conditions under which the key assumptions of recoverability and realizability
hold for count data.
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B.2.1 FACTORIAL CUMULANT FRAMEWORK

For nonnegative integer-valued X, define the factorial moment generating function (FMGF):
Mx(t) =E[(1+t)*], t& Rnear0,

and the factorial cumulant generating function (FCGF):

Oxlt) = log Mx (1) = Y2
k>1 ’

where k(X)) are the factorial cumulants.

Lemma B.9 (Properties of factorial cumulants). (a) If X, Y are independent nonnegative integer-
valued, then Cx 1y (t) = Cx(t) + Cy (t).

(b) If { fy = ¥ € Y} are real-analytic near 0 with injective 1) — fy, and Zle fo, = Zle fus
then the multisets {1y} and {1, } coincide.

B.2.2 SUFFICIENT CONDITIONS FOR RECOVERABILITY
Theorem B.10 (Recoverability via factorial cuamulants). Assume:
1. Conditionally on C = 0(X1, Z), the units (X109, - .., Xco) are independent.

2. Each unit’s FCGF has the form Cx (t) = F(t;v,) where F(-;1) is real-analytic near
t =0and v — F(-;4) is injective.

3. The covariates provide labeling: distinct units with distinct 1p, have distinct labels Ay =
AX1, Z, g) almost surely.

Then the aggregate map Ac is injective, ensuring recoverability.

Proof. By independence and Lemma a), Cy,(t) = Z g=1 F(t;1g). If two specifications yield
the same aggregate law, their FCGF sums agree. By Lemma [B.9|b), the multisets coincide. The
labeling removes permutation ambiguity, yielding ¢, = v, for each g. O

B.3 LARGE-G LiMITS: CLT-INDUCED NON-IDENTIFIABILITY

We show that even when recoverability holds for finite G, the deconvolution problem can become
ill-posed as G — oo due to central limit phenomena.

B.3.1 THE FUNDAMENTAL TENSION

As G grows, a fundamental statistical phenomenon emerges: the aggregate distribution converges
to a Gaussian regardless of the specific unit-level distributions, losing the fine-grained information
needed for deconvolution.

B.3.2 CLT COLLAPSE OF AGGREGATE INFORMATION

Theorem B.11 (Loss of identifiability under CLT scaling). Ler { X\ : 1 < g < G} be conditionally
independent given C = 0(X1, Z), with

G
e
MG—Z}E qO |C o2 ZarX,gO>|C

Under Lindeberg conditions, any two sequences of unit-level distributions that produce the same
(ua, 0%) yield asymptotically identical aggregate distributions:

A — pe

= N(0,1) asG — oco.
oG
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Proof. The Lindeberg-Feller CLT applies to both sequences. Since they share the same first two
moments, their standardized aggregates converge to the same Gaussian limit, making them indistin-
guishable through aggregate observations. O

B.3.3 IMPLICATIONS FOR FACTORIAL CUMULANTS

Recall from Section that recoverability relies on the factorial cumulants iy, (Ao) = >, kk(Xg0)
determining the individual unit parameters. Under CLT scaling:
Corollary B.12 (Vanishing higher-order cumulants). For standardized aggregates, the k-th factorial
cumulant scales as 0(05k+2)f0r k > 3. Thus:
G
rr(A57)

k
e

Only the first two cumulants (mean and variance) survive in the limit.

-0 asG — o0, k>3

This means the factorial cumulant signature that enables recoverability for finite G becomes asymp-
totically uninformative—all unit-level configurations with the same total mean and variance are
indistinguishable.

B.4 GRADIENT BOUNDS FOR DECONVOLUTION

A subtle issue arises in the theoretical analysis of the EM algorithm we present in the main text: if we
always generate training pairs by running the full reverse trajectory from x; to Xg, errors in early
predictions can compound. Each reverse step conditions on the previous prediction, so mistakes
propagate and potentially amplify. The model could learn from its own errors, leading to distribution
shift.

We resolve this through a simple but crucial observation: at time ¢ = 1 (the noisy endpoint), we are
training on the actual data, so as long as we can learn unit-level distributions from aggregates this can
serve as a “backstop” from a theoretical point of view.

Our modified training strategy exploits this guarantee while allowing the model to benefit from
iterative refinement when possible. At each epoch, we evaluate the aggregate prediction quality at
different reverse trajectory endpoints 7 € {t; = 1,¢a,...,tx }. For each minibatch, we run Alg.
(note, not the guided sampling) and compute the aggregate score for the sampled & ; for each
timepoint and use the lowest scoring timepoint to form our “latent” 7. We cannot use the guided
sampling since it is guaranteed to match the aggregates at late times. But once we choose the end
time we can then sample using Alg. [3|stopping at time 7* and projecting to incorporate the aggregate
constraints.

If there is significant compounding error, the score will be worse for smaller 7 (longer trajectories),
and the procedure naturally falls back to 7 = 1 where convergence is guaranteed. However, when the
model is well-calibrated, earlier times often achieve better scores because they benefit from multiple
rounds of refinement.

Now we establish that training from aggregates with adaptive end-time selection produces gradients
that approximate the oracle unit-level gradients, with the approximation quality determined by the
best aggregate prediction achievable. This proof is essentially straightforward: we assume that we
can learn from aggregates using the model at t = 1 and then show that our EM procedure will not go
wrong given this backstop.

Empirically, we often find that using the full trajectory (7 = 0) works well without explicit adaptation,
suggesting the projection guidance effectively prevents severe compounding. An important area for
future work is developing a more satisfying theory that explains this strong performance.

Assumption B.13 (Bounded Fisher information). The aggregate Fisher information satisfies
SUP(x, 1,2) tr lo(X¢,t,2) < Cp < oo, and the unit-level score has bounded second moment

Eq, [[[Volog go(xo | x4, t, 2)[1?] < Cunir(t).
Theorem B.14 (Gradient bounds under adaptive training). Under Assumptions[B.IHB.13} define the
aggregate risk at time T:

RT(G) = E[DKL(pdafa(ao | XT,T,Z) H QQ(aO ‘ XTaTaZ))]
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where X is generated by Algorithm run up to time 7. Let g, (0) be the gradient from aggregate
scoring and g™ () the oracle unit-level gradient. Then:

l9-(0) = 9 Ol < (V21 + V2Cumi(T)r10e(7) ) V/B- (0.

For adaptive selection T = argmin, R, (6), the gradient error is controlled by the minimum
achievable risk across all times.

This theorem reveals the power of adaptive training: the gradient approximation quality depends on
the best prediction achievable at any time, not a fixed time. When the model is poorly calibrated, 7 = 1
minimizes risk (where exact aggregate-conditional sampling is possible). As training progresses,
earlier times may achieve lower risk through iterative refinement, automatically improving gradient
quality. The proof uses the Fisher identity and Pinsker’s inequality to bound the gradient gap in terms
of the aggregate KL divergence.

Combined with the recoverability assumption, this ensures that minimizing aggregate risk leads to
learning the correct unit-level model. Once correct at any time, the 6-free property of the bridge kernel
guarantees correct distributions at all times, enabling consistent training across different trajectory
endpoints.

Throughout, expectations are taken under the population law. For any time 7 € [0, 1], the state x, is
generated recursively by Algorithm |3|(reverse sampling with projection I used only to draw X as an
internal step). The loss is always pre-projection: we score Qg (ag | X, T, z), never II.

Write the aggregate score function
€9<a0; Xy T, Z) = - IOg QG(G/O | Xry T, Z)7 89(a0 ‘ Xy T, Z) = v@ IOg QQ((LO ‘ Xy T, Z)

so that the population aggregate gradient at time T is
g-(0) = E[V@K@(AO; Xr, T, Z)} = — E[SQ(AO | x-, 7, Z)} )
Define the oracle unit-level score and gradient at time 7
ug(Xo | X, 7,2) := Vglogge(xo | X-,7,2), g™y (g) = E[— ug(Xo | X7, 7, Z)}

(the gradient one would take if X were observable).

For the aggregate risk we use the KL divergence

Ro(9) = E[Dicpana( A0 | %5,7.2) || Qo( Ao | %,,7.2))].

B.4.1 TWO ELEMENTARY LEMMAS

The first lemma is the (conditional) Fisher identity plus a Cauchy—Schwarz step.
Lemma B.15 (Aggregate score bias bound). For any fixed (x., T, 2),

H E[SG(AO | XT,’T,Z) | Xy T, Z} H < V tI‘Ig(XT,T,Z) ! \/2 DKL(pdatu(AO | X7, T, Z)

where Ig(X7,7,2) = Varg,(|x, [ 50(- | Xr,7,2)].

| Qol4o | %7, 2))),

Proof. Under Qo(- | %7,7,2), Elsy] = 0. Let L = %2 (Ay | x;,7,2). Then E,,,[s9] =
Eq,[se(L — 1)]. By Cauchy-Schwarz, ||Eq,[so(L — 1)]|| < \/Eq,||ss]? - v/Eq, (L — 1)?. The
first factor is \/tr Ip(X,, 7, ). The second equals /X2 (Paaa||Q0) < /2 DKL (Pdara||Qo) in the local

regime near equalityE] which yields the claim. O

The second lemma translates aggregate misfit to unit-level misfit via the local modulus.

?Locally (when the two distributions are close), D,: < 2 Dkr; more generally, they are second-order
equivalent by standard f-divergence comparisons. This is automatically satisfied in a neighborhood of #* under

Assumption [B.T}
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Lemma B.16 (Unit-level score bias via recoverability). Fix (x,, T, z) and assume the local modulus
in Assumption Then

’ Qo(Ay | x, T, z))

| EluoXo | %772 | %77, 2] || < V2 Cumil7) m(r)-\/DKL(pdm(Ao|x7,r, 2)
Proof. With p(*) = pgaa(x0 | X-,7,2) and ¢(-) = qe(- | xr,7,2), the same step as above

gives ||E,[ug]|| < /Eql[ugl? - v/2 Dxr(pllg)- Bound Egllug||> < Cunie(r) by Assumption [B.13]
Then apply the local modulus (Assumption i to replace Dkr,(pl|q) by Kioe(T) Dx1L (pdm(Ao |

XT,T,Z)”QQ(‘ |XT,T,Z))' O

B.4.2 PROOF OF THEOREM [B.14]
Proof of Theorem By definitions,
g-(0) — g™ (9) = — E|:89(A0 | x,, 7, Z)} + E[ue(Xo | x-, T, Z)}
Apply the triangle inequality and condition on (x,, T, Z):
lg-(6) = g O)Il < B[ [|Blso(Ao | %r,7,2) | x7,7, 2] ]
+ E[ [Eluo(Xo | %7,7.2) | %7, 7, Z]]| ]

Use Lemma [B.T3|for the first term and Lemma [B.T6|for the second, then apply Jensen and Assump-
tions [B.I3HB.1}

lg-(0) = g2 (@)]| < (V2Cr + V2 Con™) fee(7)) VR0).

Finally, for the adaptive choice 7* € arg min, R, (6), monotonicity gives /R~ (6) < /R, (0) for
all 7, so the same bound with R« (6) holds, which is exactly the theorem. O

B.4.3 REMARKS ON SCOPE AND IDENTIFIABILITY

Realizability and local modulus. Assumption asks that aggregate equality implies unit-level
equality with a local modulus k. (t). Concrete sufficient conditions follow from identifiability of the
factorial-cumulant generating family of the units and diversity of covariates z (see Theorem B.10)).

Large-G limits. As G grows, higher-order cumulants in the aggregate attenuate (Appendix B.3),
SO Kioc (t) may deteriorate unless additional structure is imposed (parametric shrinkage across units,
multiple aggregates, or occasional unit-level labels).

B.4.4 WHAT ADAPTIVE END-TIME BUYS YOU

Defining R, (6) using the recursive x, makes the comparison truly training-aligned: your per-example
choice 7* = arg min, R, (9) yields the trightest bound

||g,r* (8) — g;]_rilt(g)” S (\/2 CI + \/2 Cmaxﬁmax) \/R'r* (9)7

with Cipax = sup, Cunit(7) and Kmax = SUp, Kioc(7) (finite in the realizable neighborhood). Intu-
itively, as the sampler refines its x, along the reverse path, whichever time slice permits the best
aggregate prediction also delivers the smallest gap to the oracle unit-level bridge gradient.

C PROJECTION AND ROUNDING ALGORITHMS

Group rescaling. Algorithm rescales item-level nonnegative values {x }£_, so that each group
G attains a prescribed aggregate C'y. The procedure is linear-time in the number of items and linear
in memory in the number of groups:

T= O(B)7 Meytra = O(G)7
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and is applied in parallel to each feature dimension.

Algorithm 5 Group Rescaling to Match Aggregates (scalar form)

Require: item values z;, > O forb =1, ..., B; groups G, ..., Gg; targets Cy > 0
Ensure: y;, > 0 with Zbecg yp = Cy forall g
I: forg=1,...,Gdo

2: Sg — ZbEGQ Tp

3: if S; > 0 then

4: forb € G, do

5: Yo < 25 Cy /Sy > proportional rescaling
6: end for

7: else

8: forb € G, do

9: Yy < Cy /|Gyl &> uniform split
10: end for
11: end if

12: end for

13: return {y,}

Randomized rounding. Algorithm [6]independently rounds a real value to the nearest integers,
preserving the value in expectation. It runs in constant time and memory per entry, so applying it
over B items has

T =0(B), Mextra = O(1).

Algorithm 6 Randomized Rounding (scalar form)

Require: real value x > 0
Ensure: integer y € Z>q
Da < |z
r<—z—a
sample U ~ Unif|0, 1]
if U < r then
y+—a+1
else
Yy—a
end if
return y

VRN R

Groupwise exact rounding.  Algorithm [7] converts rescaled real values {x} to integers {y;,} while
exactly preserving each group sum: » _, a, Y= Cy. Each y, differs from x;, by at most 1. The only

expensive step is weighted sampling without replacement inside each group. With Gumbel-Top-k
sampling the worst-case complexity is

G
T:O(ZG9|IOg|Gg>a Mextra = O(B),

g=1

and the algorithm is again applied independently over coordinates.
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Algorithm 7 Groupwise Randomized Rounding with Exact Aggregates (scalar form)

Require: rescaled z; > 0, groups G1, ..., G, integer targets Cy
Ensure: integers y, > 0 with 35, vy = Cg and [y, — 23| < 1
I: forg=1,...,Gdo > work inside group G|
2 forb € G, do
3: ap — lej
4: Ty < Tp — Ay
5: end for
6: Ag — ZbEGQ ap
7: Sg+— Cqg— Ay > # of increments required
8: if S; = 0 then
9: for b € G, do
10: Yp < ap
11: end for
12: else
13: sample a subset S C G, of size 9
14: without replacement with weights o 7y,
15: forb € G, do
16: if b € S then
17: yp < ap + 1
18: else
19: Yp < ap
20: end if
21: end for
22: end if
23: end for

24: return {y,}

D SYNTHETIC DISTRIBUTIONS

All synthetic tasks use the same base architecture with a 4-layer MLP with 128 dimensional hidden
layers. We scale the inputs and outputs in dimension, so for example the DFM and CE-CB have
d x 256 dimensional outputs (since we clip all datasets to use a range of 256 to make for easy
tokenization). The energy score models take inputs in d + noise_dim and we use noise_dim = 100
throughout. We ran all experiments with Adam using both [r = 1le — 3, 2e — 4 and present results
for the best performing learning rate for each method. We use a cosine warmup for the learning rate
for 100 steps. For all experiments we use gradient norm clipping to size 1, batch size 256, and train
for 500 epochs. For the energy score models, we use exponential model averaging, which is crucial
to good performance. Full details are available in the codebase.

For the flow matching we use o = 0.1 following best practices (we tested larger o but saw large
degradations in performance). For the bessel sampler we use /A A_ = 32.

D.1 DISCRETE 8-GAUSSIANS TO 2-MOONS
D.1.1 DATASET

For qualitative evaluation, we adapt the classic continuous “8-Gaussians to 2-Moons” task into a
fully discrete, integer-valued setting suitable for count-based flow matching. Each dataset consists of
50,000 paired samples (zg, x1) € Z?, constructed as follows.

Source distribution (z(). We generate samples from the standard two-moons dataset in R? using
make_moons with noise level noise = 0.1. The moons are shifted to be approximately centered
at the origin by subtracting (0.5, 0.25).

Target distribution (). We construct an 8-component Gaussian mixture arranged evenly on a
circle of radius 2.0 in R?. Each component has isotropic Gaussian noise with variance matching
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noise = 0.1. A sample is generated by first selecting one of the 8 components uniformly at random,
then drawing from the corresponding Gaussian.

Integerization. Both source and target samples are mapped to the integer lattice by
x +— round(clip(x - scale + offset, min_value, value.range — 1)),
with parameters scale = 30.0, offset = 80.0, min_value = 0, and value_range = 196.

This procedure ensures that all outputs fall in the discrete vocabulary {0, 1, ..., 195}2, but the scales
are chosen so that essentially no values are actually clipped.

D.1.2 RESULTS
We present a visualization of the learned trajectories in Fig. 2]and the full details in Table[6] Count

bridges achieve uniformly the best performance using the distributional losses, that is the cross
entropy or energy scores with the energy score uniformly best.

Table 6: Discrete Moons Results: Noise — Two Moons

Method MMD Wa Energy
CFM 0.065 = 0.019 0.049 £ 0.008 0.874 = 0.246
DFM 0.010 £ 0.002 0.010 £ 0.002 0.035+0.014

Count Bridge (CE) 0.0065 +£0.0023  0.0080 £ 0.0009  0.026 + 0.004
Count Bridge (ES) 0.0044 = 0.0018  0.0052 + 0.0007 0.0098 + 0.0029
Count Bridge (MSE)  0.030 + 0.000 0.033 £ 0.001 0.366 £ 0.015

We also run the Count Bridge across different noise levels, here we actually find that our default of
Ay = A_ = 32 is not optimized, so all results can be considered lower bounds on our performance.

Table 7: Count Bridge (Energy Score) Results Across Different A, = A_ Values

Ap = Ao MMD Wy Energy

0 0.0038 + 0.0012 0.0046 +0.0002  0.0075 = 0.0011
8 0.0039 £ 0.0015  0.0045 + 0.0006 0.0080 + 0.0022
16 0.0049 +0.0003  0.0049 +0.0003  0.0095 + 0.0004
32 0.0052 £ 0.0024 0.0055+0.0015  0.011 £ 0.006
256 0.0064 +0.0020 0.0063 +0.0009  0.015 +0.004

D.1.3 NOISE TO 2-MOONS FOR DIFFUSION COMPARISONS

Here we compare against a standard Gaussian DDIM model [Song et al.|(2020) and Discrete Diffusion
as in|Shi et al.| (2024). Since these models go from noise to a target distribution, we cannot do the
8-Gaussians to 2-Moons task, so we simply target the 2-Moons. This makes the task substantially
easier. For Count Bridges we use the same results from the previous table (the more difficult task, but
with comparable scores at the endpoint).

Table 8: Discrete Moons Results: Eight Gaussians — Two Moons

Method MMD Wy Energy

Count Bridge (ES)  0.0044 + 0.0018  0.0052 £ 0.0007  0.0098 + 0.0029
Gaussian Diffusion  0.024 £ 0.009 0.017 £ 0.006 0.118 £ 0.064
Discrete Diffusion 0.017 £ 0.010 0.013 £ 0.006 0.072 £ 0.055
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D.2 LoOW-RANK GAUSSIAN MIXTURE

D.2.1 DATASET

For synthetic evaluation, we use a pre-sampled integer-valued Gaussian mixture dataset that scales
with the ambient dimension d while fixing the latent rank at = 3. Each dataset consists of 50,000
paired samples (g, z1) € Z% generated according to the following procedure:

Mixture construction. We define a £ = 5 component Gaussian mixture in latent space R” with
r = 3 (we hold these parameters constant as we scale in d):

» Means. Component means are drawn from N'(0, 021) with scale 0 = mean_scale/\/T,
and shifted to lie near the center of the integer range. We set mean_scale = 20.0.

» Covariances. Each covariance is constructed by sampling eigenvalues from an exponential
distribution with scale cov_scale = 10.0, clamped below min_eigenvalue = 0.1,
and conjugating by a random orthogonal matrix.

* Mixture weights. Weights are drawn from a Dirichlet(1, ..., 1) prior, yielding a random
simplex vector.

Projection to R?. Latent samples z € R> are mapped to the ambient space via a
random projection matrix P € R?*" with entries scaled by projection_scale//T,
where projection_scale = 1.0. To avoid degeneracy, isotropic Gaussian noise € ~
N(0,noise_scale®l,) withnoise_scale = 1.0 is added after projection:

y=Pz+te, z ~MoG;,, € ~ N(0,1).

Integerization. Projected samples 3y € R? are rounded to the nearest integer and reflected into the
bounded range [min_value, value_range — 1] = [0, 255] to ensure validity of DFM.

Scaling in d. The intrinsic latent structure is fixed at » = 3, while the output dimension d is varied
across experiments (e.g. d = 5,16,32,128,256,512). This construction produces datasets with
constant intrinsic complexity but increasing ambient dimension, providing a natural test of how
models scale in d.

D.2.2 RESULTS

The central scaling results are presented visually in Fig. [3] Here we also present the full experimental
details in Table[0l

D.3 DECONVOLUTION GAUSSIAN MIXTURE DATASET

We extend the low-rank Gaussian mixture task (Appendix [D.2)) to evaluate deconvolution capabilities
under controlled conditions. Each observation is formed by aggregating a group of G unit-level
samples into a single count vector.

Group construction. For each group, component proportions are drawn from a Dirichlet distri-
bution with concentration parameter «, yielding group-specific mixture weights. The G unit-level
samples are then drawn independently from the corresponding mixture components. Both the ag-
gregated sum Xy € Z% and the individual unit-level labels z € {0, 1}%*¥ are retained, enabling
evaluation of methods under both aggregate-only and aggregate+unit supervision.

Experimental variation. We vary two factors that control the difficulty of deconvolution:

* Group size: G € {4, 8, 32,128}, which determines how many unit-level samples are aggre-
gated. Larger groups yield more uniform averages and less information about component
heterogeneity.

* Dirichlet concentration: o € {1, 10, 1000}, which controls variability in group-specific
mixture weights. Small « values produce heterogeneous groups (informative for deconvolu-
tion), while large « values yield nearly uniform group proportions (uninformative).
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Table 9: Performance Comparison Across Dimensions and Methods

Dim Method NFE MMD Wy EMD
8 0.027 £0.014 0.019 £ 0.002 0.716 + 0.420
CFM 32 0.026 +0.017 0.015 £ 0.004 0.584 +0.460
128 0.026 +0.018 0.015 + 0.004 0.565 + 0.469
8 0.025 + 0.004 0.011 £ 0.001 0.245 +0.053
4 DFM 32 0.035 +0.003 0.014 £ 0.001 0.458 +0.078
128 0.046 + 0.005 0.018 + 0.002 0.759 +0.144
8 0.0053 + 0.0007 0.0040 + 0.0004 0.020 £ 0.004
Count Bridge 32 0.0054 + 0.0010 0.0042 % 0.0002 0.023 £ 0.005
128 0.0098 + 0.0008 0.0058 + 0.0003 0.055 + 0.008
8 0.041 +£0.013 0.025 £ 0.004 1.05£0.18
CFM 32 0.039 +0.012 0.014 £ 0.004 0.456 +0.147
128 0.040 +0.010 0.014 + 0.003 0.421 +0.128
8 0.026 + 0.007 0.011 £0.001 0.204 + 0.067
8 DFM 32 0.034 + 0.009 0.011 £ 0.003 0.317 £0.142
128 0.042+0.011 0.012 + 0.003 0.497 +0.228
8 0.0036 + 0.0007 0.0023 + 0.0001 0.0068 + 0.0024
Count Bridge 32 0.0038 + 0.0011 0.0026 * 0.0006 0.0077 + 0.0028
128 0.0050 + 0.0015 0.0029 + 0.0003 0.012 + 0.002
8 0.066 +0.011 0.028 £ 0.001 2.08 £0.54
CFM 32 0.053 +0.011 0.017 £ 0.001 0.788 +0.211
128 0.052+0.011 0.015 +0.001 0.647 +0.163
8 0.078 £ 0.001 0.017 £ 0.000 1.20 £ 0.06
16 DFM 32 0.100 + 0.005 0.022 + 0.002 1.92+0.28
128 0.118 +0.017 0.025 + 0.004 2.72+0.86
8 0.0067 = 0.0014 0.0035 + 0.0003 0.025 £ 0.007
Count Bridge 32 0.011  0.001 0.0045 % 0.0004 0.048 £ 0.007
128 0.017 £ 0.001 0.0057 % 0.0004 0.090 £ 0.013
8 0.145 +0.024 0.030 + 0.001 4.63+128
CFM 32 0.131 +£0.043 0.026 + 0.005 3.14+1.72
128 0.131 +0.052 0.022 + 0.006 3.09+1.97
8 0.079 £ 0.027 0.016 £ 0.008 1.23£0.76
32 DFM 32 0.089 +0.023 0.017 £ 0.006 1.55+0.85
128 0.100 + 0.027 0.018 £ 0.007 1.99 £ 1.10
8 0.0083 + 0.0008 0.0024 % 0.0003 0.021 £ 0.002
Count Bridge 32 0.010 + 0.002 0.0031 % 0.0006 0.029 £ 0.008
128 0.010 + 0.002 0.0034 % 0.0007 0.034 £ 0.007
8 0.296 + 0.077 0.042 £ 0.008 13.43+6.74
CFM 32 0.313 £0.099 0.046 £ 0.014 16.07 £9.93
128 0.326 +0.107 0.049 £ 0.017 17.94 + 11.55
8 0.105 £ 0.033 0.022 £ 0.007 1.71 £1.07
64 DFM 32 0.126 £ 0.039 0.020 + 0.005 257+1.58
128 0.147 £ 0.048 0.022 + 0.006 3.59+£2.20
8 0.020 + 0.004 0.0051 % 0.0005 0.072 £ 0.019
Count Bridge 32 0.027 + 0.002 0.0061 % 0.0002 0.112 £ 0.014
128 0.029 + 0.001 0.0065 % 0.0005 0.138 + 0.018
8 0.335 £ 0.009 0.038 £ 0.003 12.89 + 1.09
CFM 32 0.276 + 0.034 0.033 + 0.008 10.59 £3.51
128 0.260 + 0.048 0.032 + 0.008 10.55+4.74
8 0.205 +£0.036 0.042 + 0.005 6.66 +2.47
128 DFM 32 0.236 +0.031 0.043 + 0.005 9.06 £2.63
128 0.259 +0.028 0.050 + 0.011 10.90 +2.92
8 0.128 + 0.066 0.014 £ 0.006 3.30+£2.34
Count Bridge 32 0.140 £ 0.075 0.014 £ 0.006 3.89 £2.97
128 0.151 + 0.082 0.016 + 0.007 4.55 + 3.65
8 0.461 +0.007 0.049 + 0.007 28.45+4.63
CFM 32 0.402 +0.049 0.047 + 0.006 28.95+10.71
128 0.390 + 0.069 0.045 +0.012 30.57 +13.24
8 0.216 £ 0.049 0.029 + 0.008 9.75£5.07
256 DFM 32 0.228 +0.045 0.033 + 0.008 12.63 +4.81
128 0.255 +0.044 0.039 + 0.009 15.80 +4.96
8 0.087 + 0.045 0.0093 + 0.0022 1.58 £1.28
Count Bridge 32 0.092 + 0.044 0.0099 + 0.0021 1.68 +1.30
128 0.105 + 0.039 0.012 + 0.001 1.98 +1.26
8 0.569 + 0.055 0.051 + 0.006 49.32 £7.46
CFM 32 0.471 +£0.046 0.049 + 0.005 50.69 + 11.35
128 0.438 +0.034 0.048 + 0.005 53.70 + 14.23
8 0.261 +0.069 0.042 £ 0.015 30.49 +21.88
512 DFM 32 0.288 + 0.099 0.050 £ 0.019 44.53 £29.76
128 0.319+0.112 0.058 + 0.022 55.03 +35.35
8 0.081 + 0.028 0.010 + 0.002 1.46 £ 0.73
Count Bridge 32 0.085 + 0.026 0.010 + 0.001 1.79 £ 0.89
128 0.113 + 0.029 0.016 = 0.003 3.53£2.27

Dataset parameters. We fix the ambient dimension at d = 4, latent rank at » = 3, number of
mixture components £ = 5, and use the same mixture parameterization as in the low-rank dataset
(means scaled by 20.0, covariances scaled by 10.0 with minimum eigenvalue 0.1, projection scale
1.0, isotropic noise 1.0, and integerization into [0, 255]). Each dataset contains 5,000 groups, drawn
from a base pool of 50,000 pre-sampled mixture samples.
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Results. As shown in Fig. [d] deconvolution performance degrades as groups become larger and
more uniform. This matches the theoretical results in Appendices and[B.3] which establish that
deconvolution requires between-group heterogeneity for identification, a property that is inherently
lost as G grows. We present detailed results across metrics in Tables [I0} [T T} [T2]

Table 10: Deconvolution Performance: W5 vs Group Size and Dirichlet Concentration

Group Size (n) a=1 a=10 a = 1000
4 0.0091 £0.0005 0.010£0.000 0.011 =0.000
8 0.011 +0.001 0.014 £0.001 0.016 +0.000
32 0.020 £0.002  0.023 £0.002 0.025 +0.002
128 0.050 £0.008  0.053 +0.006 0.057 +0.002

Table 11: Deconvolution Performance: EMD vs Group Size and Dirichlet Concentration

Group Size (n) a=1 a=10 a = 1000
4 0.130 £0.006  0.195+0.025 0.207 £ 0.040
8 0.286 £0.023 0.363 £0.037 0.483 +0.010
32 0.530£0.051 0.657+0.095 0.921 £0.222

128 2.24 +0.58 222 +0.54 2.63+0.14

Table 12: Deconvolution Performance: MMD vs Group Size and Dirichlet Concentration

Group Size (n) a=1 a=10 a = 1000
4 0.011 £0.001 0.011 £0.002 0.012 £0.004
8 0.016 £0.001 0.017 £0.002 0.021 £0.001
32 0.014 £0.003  0.020 +£0.003 0.025 +£0.010
128 0.037 £0.005 0.045 +£0.007 0.044 £0.001

To investigate the importance of different rounding approaches in our deconvolution implementation
we run an ablation study where we substitute our preferred exact rounding approach for two alterna-
tives: first a simple deterministic rounding, and second a randomized rounding (where we simply
add zero or one with probability of the decimal value). Deterministic rounding can lead to arbitrarily
incorrect results, randomized rounding preserves the expectation, and our exact approach will ensure
we exactly match the target aggregate value. We find that although our exact approach is superior
across three replicates of the n = 128, o = 1 setting the results are very close particularly for the
randomized rounding. We believe this could justify substituting the randomized approach since it is
simpler, although in different regimes this may matter more or less.

Table 13: Performance comparison of different rounding methods with standard errors.

Method MMD Wa EMD

exact 0.037 £=0.005 0.050 £0.008 2.24 4+ 0.58
randomized  0.038 £ 0.000 0.051 £+ 0.007 2.33+£0.43
round 0.038 £ 0.003 0.052 £+ 0.007 2.32+0.44

E NUCLEOTIDE-LEVEL GENE EXPRESSION MODELLING

E.1 DATASET

Nucleotide-level data preprocessing We use the Oneklk peripheral blood mononuclear cells

(PBMC) 10X 3’ scRNA-seq dataset, originally collected by |Yazar et al.|(2022). For our analysis, as
we are interested in nucleotide-level counts rather than the gene-level counts provided with the initial
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publication, we use the preprocessed reads made available by [Hingerl et al.|(2024)). The reads are
aligned to the hg38 human reference genome. The resulting BAM files are filtered to include only
high quality, UMI-deduplicated reads. The cell type annotations were used as provided in the original
dataset.

Gene-level data preprocessing We construct the gene-level count matrices directly from our single-
cell coverage matrices rather than following the typical single-cell gene expression preprocessing
pipeline. In particular, for each annotated gene and each cell, we take the max count over the
nucleotide-level coverage matrix as the count for the gene.

E.2 ARCHITECTURE, TRAINING, AND INFERENCE
E.2.1 INPUTS AND EMBEDDINGS

We model nucleotide—level counts on a fixed window of length L=896. For each example we form
€25, te€(0,1, z2~N(0,1s), ce{l,...,C}, seq€ {a,C,G TN}
Sequence context is embedded with a frozen Enformer encoder (EleutherAl checkpoint), yielding

per—position embeddings
E(seq) € RExde dg = 3072.
We tile the scalars across positions and concatenate
HO® = [E(seq) | || ¢ |l z || emb(c) ] e REx(dptltltdatde)
with d,=100 and d.=14. A two-layer SELU MLP projects to the model width d:

XO = ¢(Wo oW1 H)) € REX4.

E.2.2 LOCAL ATTENTION BACKBONE

We apply Ny, residual self-attention blocks (PyTorch Mult iheadAttention, batch—first) with
LayerNorm:

X0 _ MHA(XM),X(D,X(Z)), X+ — LN(X(E) —l—X(O)),

where the residual skip uses the pre-block X (*) as in the implementation We use Nyy=2 lay-
ers, d=hidden_dim, and h=4 heads. A linear projection followed by softplus produces a
nonnegative per—position prediction

To = softplus(Wou[X(N“““)) S Réo.
This parameterizes the conditional law gy (- | 2+, ¢, z, ¢, seq) used inside the count—bridge reverse
kernel (Sec. [3).

E.2.3 LEARNED PROJECTION MODULE II,

When an aggregate constraint ag= Zle Zo,; is observed, we refine £o with a lightweight attention
projector that operates across positions. We form

vy [530 | ¢ || ao | X(Nutm)] c REX(1+1+1+d)

A two-layer SELU MLP lifts to width d, then Vy,;=2 self-attention layers (sequence—first API)
with residual+LayerNorm are applied:

y(m — MHA(Y(m), y(m), y(m))7 y(m+1) — LN({/(m) + Y(O))_
A linear head produces an additive correction which we re—softplus for nonnegativity:
Tog = softplus(mejY(NP“’j)) + Zo.

At inference, when a is present we use g as the endpoint in the reverse step; otherwise we use 2.

3Code uses a “global” residual X + X + X (©) within each block. We retained this because it stabilized
training with L=896.
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E.2.4 TRAINING OBJECTIVES AND SCHEDULES

Distributional loss (energy score). We train gy with the energy score S, on the conditional
Xo | Xt=z: (Sec. . For each example we draw m i.i.d. samples :i'gj) ~ qo(- | 2,1, 2, ¢,5eq) via
ancestral decoding of the per—position parameterization and estimate the U—statistic version of S,

with p(z, #')=|lz—2’||5 (3€(0,2)). We used m=2 in practice.

Aggregate—-aware training. With probability p,.,=0.1 we attach an aggregate ay and route the
forward pass through II,, to obtain Z, then compute the same energy score. This jointly trains IT,, to
approximate sampling from the mean—conditional X | A(Xo)=ao, X¢, t while preserving the exact
reverse transition of the count bridge.

Cell-type masking. To support both conditional and unconditional generation, we randomly mask
the cell-type embedding with probability pp,sk (set to zero vector). We used ppa=0.1.

E.2.5 OPTIMIZATION AND HYPERPARAMETERS

We use Adam, learning rate {2x 10~4, cosine warmup for 100 steps, EMA with 0.999, batch size
128, gradient clipping at 1.0. See configs for exact architecture specification.

E.2.6 SAMPLING

At test time we follow Alg. [2} starting from x; we iterate ¢, | 0. Ateach step we sample X ~ gg(- |
Tty s th, 2, C, s€q); if an aggregate is provided we replace with Zo=II, (&0, ag, x¢, ). We then apply
the exact binomial-hypergeometric reverse kernel (Prop.|3.1)) to obtain x, ,. This guarantees that
trajectories remain within the discrete support while leveraging the learned distributional posterior.
We use three function evaluations for all results in this application.

E.3 ADDITIONAL RESULTS

In Tab. we provide results for gene expression prediction performance, broken down by cell type.

Cell type Baseline MSE CB MSE

CD4 ET 3.596 1.402
NK 0.415 0.364
CD4 NC 3.382 1.304
CDS8 S100B 2.619 1.002
CDS ET 1.065 0.540
B IN 2.556 1.091
CD8 NC 3.381 1.311
B Mem 6.742 3.416
NK R 1.624 0.781
Mono NC 1.485 0.752
Mono C 1.253 0.676
DC 9.302 4.475
Plasma 10763.906 10696.934
CD4 SOX4 3.428 1.323

We also analyze the unit-level profiles of the deconvolved transciptomes. We aggregate the nucleotide
level transcriptomes up to the gene level by computing the maximum count over the gene profile,
enabling us to generate a count matrix from our deconvolved profile. We then assign the cell types
and plot the UMAP of the held-out ground truth vs the deconvolved transcriptomic profiles. We can
see that the deconvolved profiles are realistically clustered mirroring the ground truth 5]
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Figure 5: Ground Truth vs Deconvovled UMAP for nucleotide level bulk deconvolution, aggregated
to the gene level and hued by cell type (as assigned by |Yazar et al.[(2022)).

F SPATIAL TRANSCRIPTOMIC DECONVOLUTION

F.1 DATASET

Preprocessing We used the publicly available mouse brain MERFISH dataset from |Vizgen| (2021)).
We subset the data to a particular slice (slice 1, replicate 2). We used the transcript puncta and nuclear
segmentation masks as provided with the dataset. For gene expression, we used the raw transcript
counts without applying standard single-cell preprocessing pipelines. For each cell, we resized the
DAPI image to 256x256 pixels by padding.

Aggregation To simulate a Visium-style spatial transcriptomics dataset, we aggregated the single-
cell MERFISH data. A grid of spots was defined with a center-to-center distance of 100um and a
spot radius of 55um. The gene expression profile for each simulated spot was then generated by
summing the transcript counts of all identified cells whose nuclei fell within the circular bounds of
that spot.

F.2 ARCHITECTURE, TRAINING, AND SAMPLING
F.2.1 INPUTS AND TOKENIZATION

We model spot-level counts while conditioning on image context and diffusion noise/time tokens.
Each training example provides

™ e Zgg, I, e ROIXW 1 c(0,1], eeR%, ye{l,.. ., Cy} (optional).
Images are patchified by a ViT-style embedder (Pat chEmbed) into
ximg GRBXNimng’ Nimg — (H/P) (W/P),

while counts are converted into a small set of count patches using a learned projector
(CountPatchEmbedding):

Xt — reshape(MLP(xgm), [B,Ncm,d]) 4 B,

with Ny learned “pseudo-patches” and E, ., learnable positional embeddings.
We form auxiliary tokens for time, noise, and (optionally) class:

7 = TimeMLP(timestep_emb(t)) € RP**¢ 5 = NoiseMLP(W.¢) € RP**4,
~ ~~

time noise

and, if labels are used, / = Emb(y) € RE*1X4_Concatenating all tokens,
X(O) — [€7 N T Ximg; Xcm] + Epos c RBX(N;,“g+Ncn|+extras)><d

9

with a single learned positional table E,os covering all tokens.
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F.2.2 U-VIT BACKBONE (FUSION AND DECODING)

We process X (9 with a U-Net—style ViT:
xM L xE2) _mid Block | X&) x®),
encoder (save skips) decoder (with skips)
where each Block is a standard MHA +MLP transformer block with LayerNorm, and decoder
blocks attend over skip connections. A final LayerNorm yields X ©"t € R (Nimg+NenFextras) xd,

We then drop the auxiliary tokens and split modalities:

Xms — xoutl: img range, 1|, Xt — X°U[:) cnt range, :].

Count decoder. Count patches are decoded back to a vector via a small MLP head with nonnega-
tivity enforced by Softplus:

o = Softplus(MLP (ﬂatten(cht))) € RB*De,

out

This parameterizes go( - | z$™, I;, t, €, y) for the distributional loss and the reverse count-bridge step.

F.2.3 TRAINING OBJECTIVE AND USAGE

We train the model to predict the distribution of X (counts) given multimodal context under the
bridge (X;):

L(0) = By x| Siao(- | X Itz ), X5 |,

using the energy score S, with p(z, 2') = |z—2'||5 (8 € (0,2)) and the standard unbiased U-statistic
estimator with m samples from gy. Time and noise tokens implement the distributional diffusion
conditioning; label tokens (if present) enable class-conditional modeling. During reverse sampling
we draw X ~ qo(- | ™, I1,t,e,y) and update ;A using the exact binomial-hypergeometric
count-bridge kernel (Prop. [3.1).

F.2.4 IMPLEMENTATION SPECIFICS

* Patchification. Pat chEmbed uses patch size P on I; (channels C), producing Nimg =
(H/P)(W/P) tokens of width d. CountPatchEmbedding projects D.-dimensional
counts to N, tokens of width d with learned positional embeddings.

* Auxiliary tokens. Time token: timestep_embedding followed by a linear or MLP
projector (t ime_dim controls concatenated components); noise token: linear to d then a
2-layer SiLU MLP; label token: lookup embedding if used. All tokens share a single learned
positional table.

* Backbone. Depth L with L/2 encoder and L/2 decoder blocks; each block uses d-
dimensional embeddings, h heads, MLP ratio r, LayerNorm, and (optionally) gradient
checkpointing. Decoder blocks accept the matching encoder skip.

* Heads. Count head: 2-layer GELU MLP over the concatenated count tokens, ending with
Softplus. Image head exists but is ignored for the loss.

* No weight decay. We exclude token positional tables and count-positional embeddings
from weight decay, following ViT practice.

F.2.5 OPTIMIZATION AND HYPERPARAMETERS

We use Adam, learning rate {2x10~%, cosine warmup for 100 steps, EMA with 0.999, batch size
128, gradient clipping at 1.0. See configs for exact architecture specification.

F.2.6 SAMPLING

At test time we follow Alg. [3|using the aggregates to ensure our sampled Z( exactly match the target
sum at each intermediate time. We then apply the exact binomial-hypergeometric reverse kernel

(Prop. to obtain x4, _,.
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JSD vs Number of Cell Types RMSE vs Number of Cell Types Spearman Correlation vs Number of Cell Types

0.16

04 —e— Count Bridge —e— Count Bridg 206 —e— Count Bridge
0.14 ]
a £
2,03 w 0.12 5 05
5 H &
g & 0.10 ﬁ 0.4
0.2 ©
o =03 /\\/'_N

0.06

0.04
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Number of cell types Number of cell types Number of cell types

(a) (b) (©)

Figure 6: Performance of RCTD, STDeconvolve and Count Bridge on MERFISH deconvolution
across number of cell types using (a) Jensen Shannon Divergence (JSD), (B) RMSE and (C) Spearman
Correlation
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Figure 7: UMAP of true vs deconvolved cell profiles using the Count Bridge.

F.3 ADDITIONAL RESULTS

Comparison with reference-based methods Count Bridges and STDeconvolve are both reference-
free methods: that is, they require only aggregate level data, and do not need a reference dataset of
unit-level measurements. Many deconvolution methods, including RCTD (Cable et al.,[2022) require
a single-cell (non-spatial) reference dataset. These methods benefit from unit-level observations, and
as such solve a more constrained problem — but require data which are not available in many settings.

Using the MERFISH benchmarking setup we also evaluate RCTD, and tabulate the results in Tab. [T4]
For evaluation, we use Jensen shannon Divergence (JSD) and RMSE metrics as described in|Li et al.
(2023)). We find that Count Bridges perform similarly to RCTD (with a higher JSD but lower RMSE),
despite the fact that Count Bridges do not have access to a reference dataset.

Method JSD RMSE Spearman
STDeconvolve 0.288  0.177 0.255
RCTD 0.161 0.113 0.580

Count Bridge  0.229  0.110 0.332

Table 14: Cell-type deconvolution error for spatial transcriptomic data. Note that RCTD requires a
single-cell reference dataset for deconvolution.

In Fig.[6] we show the performance of spatial deconvolution methods across varying numbers of cell
types. These results evaluate only the recovery of cell type proportions, and do not evaluate full count
profiles. Note that RCTD has access to the single-cell level reference data, while STDeconvolve and
Count Bridges are fit entirely using aggregate-level data and do not have access to single cell counts.

Inspection of unit-level data generated by Count Bridges In the previous section, we have shown
through quantitative metrics that Count Bridges outperform alternatives for reconstructing unit-level
gene expression vectors from spot-level aggregates. We next aim to evaluate the extent to which
reconstructed gene expression profiles are biologically meaningful. We do this by performing con-
ventional single-cell transcriptomic analysis on the synthetic unit-level expression vectors generated
by Count Bridges.
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Figure 8: Abundance of putative cell types (automatically annotated by celltypist) in synthetic unit-
level data generated by Count Bridges through deconvolution, vs. abundance of putative cell types in
true unit-level data.

First, we plot the umap of the raw expression profiles of the true and generated data in[7] We can
clearly see that, without ever seeing unit-level data, our deconvolution approach clearly learns a
realistic distribution of cells. This is visually clear in the distribution of the UMAP.

Second we will perform cell-type annotation. We preprocess by normalizing counts to 104 per
cell (row-normalizing), followed by a log-transform, then annotate cell types using celltypist
(Dominguez Conde et al., [2022). From this process, we identify 268 putative cell types in the
synthetic unit-level data. The same pipeline, when applied to the real single-cell level measurements,
identifies 278 putative cell types. And as shown in Figure 8] the cell type abundances inferred by
Count Bridges (without access to unit level data) closely align with the cell type abundances observed
in the true unit level data.

Deconvolution of a 10X Visium dataset We next evaluate the deconvolution of spots in a real
world 10X Visium dataset profiling the mouse brain. As ground truth is unavailable in this setting, we
validate model predictions by assessing the extent to which the synthetic deconvolved data reflects
known biology.

We use the 10X Visium fluorescence dataset distributed by [Palla et al.[(2022)), which profiles a coronal
section of a mouse brain. To demonstrate the generalization capabilities of Count Bridges, we apply
the model trained on MERFISH data directly to this Visium dataset without retraining.

In order to correct batch effects and align dimensionality between datasets, we employ a moment-
matching procedure. For each gene in the MERFISH data, we compute the mean and variance of
expression and identify the gene in the 10X Visium data that most closely matches these moments.
We then map the 10X Visium count matrices to the MERFISH feature space by subsetting to these
matched genes.

We deconvolve the 10X Visium data using Count Bridges with a spot-level mean constraint. To
evaluate prediction quality, we use a standard single-cell analysis pipeline (as described above) and
determine putative cell type annotations using Celltypist (Dominguez Conde et al.,[2022)). Celltypist
identifies 146 putative cell types, suggesting that the synthetic unit-level data recapitulates a significant
degree of cell-to-cell variation. Furthermore, the recovered cell types are biologically consistent:
the most abundant identified cell type is the oligodendrocyte, which matches the most abundant
annotation in the MERFISH mouse brain dataset described above.
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