

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COUNT BRIDGES ENABLE MODELING AND DECONVOLVING TRANSCRIPTOMIC DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Many modern biological assays, including RNA sequencing, yield integer-valued counts that reflect the number of molecules detected. These measurements are often not at the desired resolution: while the unit of interest is typically a single cell, many measurement technologies produce counts aggregated over sets of cells. Although recent generative frameworks such as diffusion and flow matching have been extended to non-Euclidean and discrete settings, it remains unclear how best to model integer-valued data or how to systematically deconvolve aggregated observations. We introduce Count Bridges, a stochastic bridge process on the integers that provides an exact, tractable analogue of diffusion-style models for count data, with closed-form conditionals for efficient training and sampling. We extend this framework to enable direct training from aggregated measurements via an Expectation-Maximization-style approach that treats unit-level counts as latent variables. We demonstrate state-of-the-art performance on integer distribution matching benchmarks, comparing against flow matching and discrete flow matching baselines across various metrics. We then apply Count Bridges to two large-scale problems in biology: modeling single-cell gene expression data at the nucleotide resolution, with applications to deconvolving bulk RNA-seq, and resolving multicellular spatial transcriptomic spots into single-cell count profiles. Our methods offer a principled foundation for generative modeling and deconvolution of biological count data across scales and modalities.

1 INTRODUCTION

Integer-valued counts are a fundamental product of scientific measurements because of the discrete nature of molecules. Modern biological assays yield massive streams of count data: RNA-seq read counts, fluorescence imaging molecule counts, and mass cytometry ion counts (Klein et al., 2015; Raj et al., 2008; Bendall et al., 2011). However, these measurements are often aggregated over multiple individual units, obscuring the fine-grained patterns underlying these natural phenomena. Transcriptomics technologies exemplify this challenge, with technologies such as Visium capturing 10-50 cells per spot (Ståhl et al., 2016) and bulk RNA-seq aggregating thousands to millions of cells per readout, yielding averages rather than high-resolution details. Deconvolving these aggregates into single-cell profiles is critical for the precise mapping of cellular heterogeneity, cell-cell interactions, and tissue architecture (Moses & Pachter, 2022; Armingol et al., 2021). The challenge is twofold: building generative models that respect the integer nature of counts and extending these models to infer unit-level profiles from aggregated observations.

Recent developments in generative modelling only partially addresss the problem. Discrete diffusion models (Austin et al., 2021; Lou et al., 2023) treat counts as unordered categories through masking or uniform noise. Blackout Diffusion (Santos et al., 2023), the only count-specific approach, uses pure-death processes that cannot transport between arbitrary distributions. The biological deconvolution literature on the other hand focuses on deconvolving cell-type (cluster-level) proportions (Kleshchevnikov et al., 2022; Cable et al., 2022; Li et al., 2023), rather than unit-level count profiles. Thus, there is need for a framework that respects the integer and ordinal structure of counts, enables transport between arbitrary distributions, and can systematically deconvolve aggregated observations.

We introduce Count Bridges: a stochastic bridge process on \mathbb{Z}^d using Poisson birth-death dynamics. This yields closed-form conditionals for exact sampling and extends naturally to deconvolution via an

054 EM algorithm treating unit-level counts as latent. The birth-death mechanism allows transport between
 055 arbitrary integer-valued distributions while preserving the ordinal structure, as both increments and
 056 decrements respect the natural ordering of counts. We show that Count Bridges outperform existing
 057 methods on synthetic benchmark datasets and scale more favorably to high-dimensional settings. We
 058 then showcase Count Bridges on two real-world biological applications centered on deconvolution:
 059 nucleotide-resolution single-cell RNA-sequence modeling for bulk RNA-seq deconvolution and
 060 reference-free spatial transcriptomic deconvolution. The anonymized codebase is available here.
 061

062 2 BACKGROUND ON DIFFUSION MODELS

064 Diffusion models specify a time-indexed family of *bridge kernels* connecting $X_0 \sim p_0$ to a simple
 065 source distribution $X_1 \sim p_1$ (often Gaussian). There are two layers of structure: (i) an *unconditional*
 066 *forward process* $(X_t)_{t \in [0,1]}$ with kernels $K_{t|0}(x_t \mid x_0) = \text{Law}(X_t \mid X_0 = x_0)$; (ii) for any
 067 $0 \leq s \leq t \leq 1$, a family of *bridge kernels* $K_{s|0,t}(x_s \mid x_0, x_t) = \text{Law}(X_s \mid X_0 = x_0, X_t = x_t)$.
 068

069 Diffusion models require two consistency properties. First we require a bridge consistency identity.
 070

$$070 \quad \text{For any } 0 \leq s \leq t \leq u \leq 1, \quad K_{s|u}(x_s \mid x_u) = \int K_{s|t}(x_s \mid x_t) K_{t|u}(x_t \mid x_u) dx_t. \quad (1)$$

071 Thus multi-step sampling along any grid $u \rightarrow t \rightarrow s$ matches the single-step $u \rightarrow s$ bridge.
 072

073 Second, the kernel must have a projective posterior:

$$074 \quad K_{s|t}(x_s \mid x_t) = \int q_{0|t}(x_0 \mid x_t) K_{s|0,t}(x_s \mid x_0, x_t) dx_0, \quad (2)$$

075 where $q_{0|t}(x_0 \mid x_t) = \text{Law}(X_0 \mid X_t = x_t)$. This identity expresses $K_{s|t}$ as a mixture over the
 076 posterior of the p_0 data. It is essential for denoising: during sampling, each predicted X_t changes the
 077 posterior $q_{0|t}$, so the reverse kernels must be projective under this posterior update.
 078

079 Together, equation 1 and equation 2 lets us define a general diffusion approach. First we train a
 080 denoiser q_θ that approximates the posterior, $\tilde{X}_0 \sim q_\theta(\cdot \mid x_t, t) \approx \text{Law}(X_0 \mid X_t = x_t)$, using tuples
 081 (t, X_t, X_0) drawn from the “global” bridge: sample $x_0 \sim p_0$, $x_1 \sim p_1$, $t \sim \text{Unif}[0, 1]$ and then
 082 $X_t \sim K_{t|0,1}(\cdot \mid x_0, x_1)$.
 083

084 For sampling, pick a grid $1 = t_K > \dots > t_0 = 0$, draw $X_1 \sim p_1$, set $X_{t_K} \leftarrow X_1$, sampling

$$085 \quad \tilde{X}_0^{(k+1)} \sim q_\theta(\cdot \mid X_{t_{k+1}}, t_{k+1}), \quad X_{t_k} \sim K_{t_k|0,t_{k+1}}(\cdot \mid \tilde{X}_0^{(k+1)}, X_{t_{k+1}}). \quad (3)$$

086 By our consistency properties, this multi-step procedure is equivalent to sampling directly from the
 087 $(0, 1)$ bridge, so the model cannot drift out of the training distribution.
 088

089 2.1 DIFFUSION AS A BRIDGE BETWEEN NOISE AND DATA

090 Let us consider the unconditional $K_{t|0}$ process $(X_t)_{t \in [0,1]}$ of the following form

$$091 \quad X_t = \alpha(t)X_0 + B_t, \quad (4)$$

092 where $(B_t)_{t \in [0,1]}$ is a d -dimensional Gaussian process with non-decreasing standard deviation $\sigma(t)$,
 093 and $\alpha(t)$ a non-increasing function. Note that $\alpha(0) = 1$ and $\sigma(0) = 0$.
 094

095 We want to define a process that interpolates smoothly between $X_0 \sim p_0$ and X_1 given by another
 096 distribution as in Peluchetti (2023); Albergo et al. (2023); Delbracio & Milanfar (2023); Liu et al.
 097 (2022; 2023). We have the following proposition defining the global and local bridge.
 098

099 **Proposition 2.1.** *Let $(X_t)_{t \in [0,1]}$ be given by equation 4. For $0 < s < t \leq 1$, consider $(X_s)_{s \in [0,t]}$
 100 conditioned on $X_t = x_t$ and $X_0 = x_0$. Then the conditional law $K_{s|0,t}(\cdot \mid x_0, x_t)$ is Gaussian and
 101 can be written*

$$102 \quad X_s \stackrel{d}{=} \alpha(s)(1 - r(s, t))X_0 + \frac{\alpha(s)}{\alpha(t)}r(s, t)X_t + \sigma(s)(1 - r(s, t))^{1/2}Z, \quad (5)$$

103 where $Z \sim \mathcal{N}(0, \text{Id})$ is independent of (X_0, X_t) and $r(s, t) = \frac{\alpha(t)^2 \sigma(s)^2}{\alpha(s)^2 \sigma(t)^2}$. In particular, the family
 104 $\{K_{s|0,t}\}_{0 \leq s \leq t \leq 1}$ defined by equation 5 satisfies equations 1 and 2.
 105

106 Note that if $X_1 \sim \mathcal{N}(0, \text{Id})$, $\alpha(1) = 0$ and $\sigma(1) = 1$ we have $X_t \stackrel{d}{=} \alpha(t)X_0 + \sigma(t)Z$. Furthermore,
 107 our equation 5 recovers the interpolation described in Albergo et al. (2023) with the identification
 108 $\alpha(t) \rightarrow \alpha(t)(1 - r(t))$, $\frac{\alpha(t)}{\alpha(1)}r(t) \rightarrow \beta(t)$ and $\sigma(t)(1 - r(t))^{1/2} \rightarrow \gamma_t$.
 109

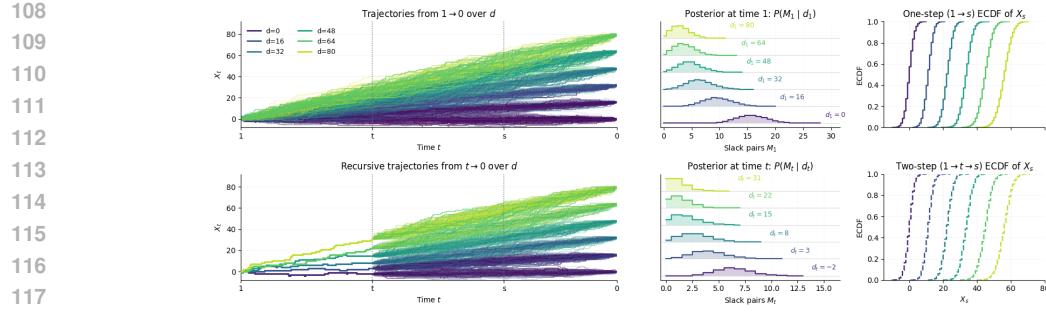


Figure 1: *Left:* Sample paths for several endpoint gaps d_1 (top). Fixing the prefix $[0, t]$ resample $(t, 1]$ by the recursive kernel (bottom). *Middle:* Bessel slack posteriors at initial and intermediate times. The slack M_t concentrates near 0 as $|d|$ grows. *Right:* ECDFs of X_s from a one-step kernel $(1 \rightarrow s)$ and a two-step kernel $(1 \rightarrow t \rightarrow s)$ are indistinguishable, confirming composition.

2.2 SAMPLING THE POSTERIOR

In this paradigm the bridge is only the first of two choices that define the model. We also have to choose how to model the posterior $X_0 | X_t, t$. There are two core options: we can use differential equations to model the posterior in the limit of small steps or we can focus more directly on modeling the posterior. In Euclidean space, the former lets us learn a simple conditional expectation, whereas the latter always requires a distribution model.

Infinitesimal. Consider a small backward step of size $\delta > 0$. The local bridge between times t and $t - \delta$ is Gaussian, so conditioned on $X_t = x$ we can write to first order in δ

$$X_{t-\delta} | X_t = x \approx x - \delta b(x, t) + \sqrt{\delta} \xi_t, \quad \xi_t \sim \mathcal{N}(0, \Sigma(x, t)),$$

where b is the reverse-time drift and Σ is the diffusion covariance of the bridge.

The conditional law $X_{t-\delta} | X_t$ is Gaussian and can be computed in closed form:

$$b(x, t) = B_1(t) x + B_2(t) \mathbb{E}[X_0 | X_t = x] + b_0(t), \quad \Sigma(x, t) = \Sigma_0(t).$$

The diffusion covariance depends only on t (from the Brownian increment), and the drift depends on the posterior $\text{Law}(X_0 | X_t)$ only through its mean. This justifies learning the mean $q_0(x, t) \approx \mathbb{E}[X_0 | X_t = x]$ (equivalently, a score or velocity) as in standard diffusion models (Song et al., 2020).

Distributional. Following De Bortoli et al. (2025) we can learn the conditional law $q_\theta(\cdot | x_t, t) \approx \text{Law}(X_0 | X_t = x_t)$, using any distribution learning approach. We can then sample and directly plug into the bridge

$$\tilde{X}_0^{(k+1)} \sim q_\theta(\cdot | X_{t_{k+1}}, t_{k+1}), \quad X_{t_k} \sim K_{t_k | 0, t_{k+1}}(\cdot | \tilde{X}_0^{(k+1)}, X_{t_{k+1}}).$$

to sample the posterior. The distributional perspective is particularly powerful when the infinitesimal perspective fails to admit a simplification to the conditional expectation, which motivates our use of the distributional approach for Count Bridges (see Sec. 3.2). In categorical discrete settings, all approaches are distributional since they are based on cross-entropy losses, see Campbell et al. (2022); Austin et al. (2021); Shi et al. (2024); Sahoo et al. (2024).

3 COUNT BRIDGES

3.1 AN INTEGER BRIDGE BETWEEN DISTRIBUTIONS

Mirroring Sec. 2, we seek a bridge for integer-valued data. Instead of a Gaussian process, we use a pair of independent Poisson birth/death processes $(B_t)_{t \in [0, 1]}$ and $(D_t)_{t \in [0, 1]}$ that increment/decrement the counts. We define an increasing ‘‘jump-intensity’’ function $w : [0, 1] \rightarrow \mathbb{R}_{\geq 0}$ with $w(0) = 0$, $w(1) = 1$, and then write the cumulative birth/death intensities as $\Lambda_\pm(t) = \lambda_\pm w(t)$ for some $\lambda_\pm > 0$ so $B_t \sim \text{Poi}(\Lambda_+(t))$ and $D_t \sim \text{Poi}(\Lambda_-(t))$. From here we can define the unconditional kernel $K_{t|0}$:

$$X_t = X_0 + B_t - D_t. \quad (6)$$

162 Denoting the displacement $d_t = X_t - X_0$, the total number of jumps $N_t = B_t + D_t$, and the slack
 163 variable $M_t = \min(B_t, D_t)$. Any two of these variables determine the third:

$$164 \quad 165 \quad N_t = |d_t| + 2M_t, \quad B_t = \frac{1}{2}(N_t + d_t), \quad D_t = N_t - B_t. \quad (7)$$

166 From the (N_t, B_t) perspective, Poisson superposition and thinning imply that, conditional on (N_t, B_t)
 167 at time t , the earlier counts (N_s, B_s) for $s < t$ can be sampled by a Binomial draw for N_s and a
 168 Hypergeometric draw for B_s . Switching to (M_t, d_t) , a Poisson change of variables yields the slack
 169 posterior $M_t \mid d_t$, whose pmf has Bessel form (see Prop. A.5 in App. A). These two ingredients
 170 together give a count analogue of Proposition 2.1; the full derivation is in App. A.

171 **Proposition 3.1.** *Let $(X_t)_{t \in [0,1]}$ be given by equation 6. Now, consider $(X_s)_{s \in [0,t]}$ conditioned by
 172 $X_t = x_t$ and $X_0 = x_0$. Then, we have the Poisson Birth-Death bridge $K_{s|0,t}$:*

$$174 \quad 175 \quad X_s \stackrel{d}{=} X_0 + B_s - D_s, \quad (8)$$

176 where we condition on $d_t = X_t - X_0$ and sample $M_t \mid d_t \sim \text{Bes}(|d_t|; \Lambda_+(t), \Lambda_-(t))$, changing
 177 variables to N_t and B_t to sample B_s , and D_s which we can plug into equation 8:

$$178 \quad 179 \quad N_s \mid N_t \sim \text{Bin}\left(N_t, \frac{w(s)}{w(t)}\right), \quad B_s \mid (N_t, N_s, B_t) \sim \text{Hyp}(N_t, B_t, N_s), \quad D_s = N_s - B_s. \quad (9)$$

180 The family $\{K_{s|0,t}\}_{0 \leq s \leq t \leq 1}$ defined by equation 8 satisfies equations 1 and 2.

182 We visualize this process in Fig. 1 where we show the trajectories for the one- and two-step models
 183 along with the core composition property that drives bridge models. This setup enables training and
 184 sampling from a Count Bridge, see Algorithms 1 and 2. These results leverage our custom CUDA
 185 kernel implementing the fast Bessel sampler of Devroye (2002) to enable sampling at scale.

186 In Fig. 1 we also see that as d_t grows the slack M_t concentrates near zero, so there is no slack.
 187 This means that Count Bridges are an instance of the static Schrödinger bridge problem (Léonard,
 188 2013): they solve an entropy-regularized optimal transport. Let $\kappa = \sqrt{\lambda_+ \lambda_-}$ be the jump intensity
 189 and $p_{\text{ref}}^\kappa(x_0, x_1) = p_0(x_0) K_{1|0}^\kappa(x_1|x_0)$ be the joint law of (X_0, X_1) induced by the kernel. Over the
 190 space of couplings $\mathcal{C}(p_0, p_1) = \{C \text{ on } \mathcal{X} \times \mathcal{X} : C(\cdot, \mathcal{X}) = p_0, C(\mathcal{X}, \cdot) = p_1\}$, Count Bridges solve

$$191 \quad 192 \quad C_\kappa \in \arg \min_{C \in \mathcal{C}(p_0, p_1)} \text{KL}(C \parallel p_{\text{ref}}^\kappa).$$

193 Letting $\kappa \rightarrow \infty$ yields the independent coupling $p_0 \otimes p_1$, but as $\kappa \downarrow 0$ we obtain

$$195 \quad 196 \quad \text{KL}(C \parallel p_{\text{ref}}^\kappa) \approx \log\left(\frac{2}{\kappa}\right) \mathbb{E}_C |X_1 - X_0| - H(C),$$

197 so $\kappa \rightarrow 0$ recovers discrete OT with cost $|x_1 - x_0|$ (see App. A.2).

198 This echoes the Gaussian case (Sec. 2) where we define $\sigma = \sigma(1)$ and p_{ref}^σ , and as $\sigma \downarrow 0$

$$200 \quad 201 \quad \text{KL}(C \parallel p_{\text{ref}}^\sigma) \approx \frac{1}{2\sigma^2} \mathbb{E}_C \|X_1 - X_0\|^2 - H(C),$$

202 so $\sigma \rightarrow 0$ recovers quadratic OT, while $\sigma \rightarrow \infty$ again gives $p_0 \otimes p_1$ (Shi et al., 2023). Thus the
 203 bridge parameters κ (count) and σ (Gaussian) play the same role as entropy-regularization strengths.

204 3.2 DISTRIBUTIONAL SCORING LOSS FOR THE DENOISER

206 Training requires a distributional loss due to the discrete nature of the space. As shown by Holderrieth
 207 et al. (2024), the ELBO for discrete generators (e.g., jump processes) is distributional and cannot
 208 be reduced to expectations over point estimates. This mirrors the need for cross-entropy in discrete
 209 diffusion and flow models. We can use cross-entropy with Count Bridges (we test this, see App.
 210 D.1), but it has two issues: first, it does not incorporate the lattice structure; second, cross-entropy
 211 cannot model the joint of $X_s \mid X_t$ without exponential cost in dimension, so cross entropy is usually
 212 factorized, modeling each coordinate of $X_s \mid X_t$ independently or autoregressively. Specializing to
 213 count data we can go beyond cross-entropy by using a proper scoring rule that (i) incorporates the
 214 geometry and (ii) enables modeling of the joint.

215 Formally, let (X_0, X_t) denote a training pair from $K_{t|0,1}$ at time $t \in [0, 1]$, and let $q_\theta(\cdot \mid x_t, t)$ be our
 216 denoiser. We train q_θ using a strictly proper distributional scoring rule (Gneiting & Raftery, 2007;

```

216 Require: dataset  $(\mathbf{x}_0, \mathbf{x}_1), w(\cdot), \Lambda_{\pm}(\cdot)$ 
217 1: for each minibatch do
218 2:   sample  $(x_0, x_1) \sim (\mathbf{x}_0, \mathbf{x}_1)$ 
219 3:    $t \sim \text{Unif}[0, 1]$ 
220 4:    $d_1 \leftarrow x_1 - x_0$ 
221 5:    $M_1 \sim \text{Bes}(|d_1|; \Lambda_+(1), \Lambda_-(1))$ 
222 6:    $N_1 \leftarrow |d_1| + 2M_1$ 
223 7:    $B_1 \leftarrow \frac{1}{2}(N_1 + d_1)$ 
224 8:    $N_t \sim \text{Bin}(N_1, w(t))$ 
225 9:    $B_t \sim \text{Hyp}(N_1, B_1, N_t)$ 
226 10:   $x_t \leftarrow x_1 - 2(B_1 - B_t) + (N_1 - N_t)$ 
227 11:  update  $\theta$  on  $\mathcal{L}(\theta)$ 
228 12: end for
229 12: return  $x_{t_0}$ 
230
231

```

Algorithm 1: Training Poisson–BD Bridge

```

Require:  $x_{t_K} = x_1$ , model  $q_{\theta}, w(\cdot), \Lambda_{\pm}(\cdot)$ 
1: for  $k = K, K-1, \dots, 1$  do
2:   sample  $\hat{x}_0 \sim q_{\theta}(\cdot \mid x_{t_k}, t_k)$ 
3:    $d_{t_k} \leftarrow x_{t_k} - \hat{x}_0$ 
4:    $M_{t_k} \sim \text{Bes}(|d_{t_k}|; \Lambda_+(t_k), \Lambda_-(t_k))$ 
5:    $N_{t_k} \leftarrow |d_{t_k}| + 2M_{t_k}$ 
6:    $B_{t_k} \leftarrow \frac{1}{2}(N_{t_k} + d_{t_k})$ 
7:    $r \leftarrow w(t_{k-1})/w(t_k)$ 
8:    $N_{t_{k-1}} \sim \text{Bin}(N_{t_k}, r)$ 
9:    $B_{t_{k-1}} \sim \text{Hyp}(N_{t_k}, B_{t_k}, N_{t_{k-1}})$ 
10:   $x_{t_{k-1}} \leftarrow x_{t_k} - 2(B_{t_k} - B_{t_{k-1}}) + (N_{t_k} - N_{t_{k-1}})$ 
11: end for
12: return  $x_{t_0}$ 

```

Algorithm 2: Sampling Poisson–BD Bridge

De Bortoli et al., 2025). Fix a negative-type semimetric ρ on \mathbb{Z}^D (all our experiments focus on the $\rho(x, x') = \|x - x'\|_2^{\beta}$ with $\beta = 1$). For any distribution p and outcome y , the energy score is

$$S_{\rho}(p, y) = \frac{1}{2} \mathbb{E}_{X, X' \sim p} [\rho(X, X')] - \mathbb{E}_{X \sim p} [\rho(X, y)] \text{ and } \mathcal{L}(\theta) = \mathbb{E}_{X_0, X_t, t} [S_{\rho}(q_{\theta}(\cdot \mid X_t, t), X_0)]$$

which is strictly proper when ρ is characteristic. Taking m i.i.d. samples $\hat{x}^{(j)} \sim q_{\theta}(\cdot \mid x_t, t)$ we can use the plugin estimator: $\hat{S}_{\rho} = \frac{1}{m(m-1)} \sum_{j \neq j'} \frac{1}{2} \rho(\hat{x}^{(j)}, \hat{x}^{(j')}) - \frac{1}{m} \sum_{j=1}^m \rho(\hat{x}^{(j)}, x_0)$.

4 DECONVOLUTION WITH COUNT BRIDGES

We extend Count Bridges to handle unit–level generation when we only observe aggregates. Consider G units in the one-dimensional case where the group-level state at time t is a vector $\mathbf{X}_t \in \mathbb{Z}^G$ with entries X_{gt} for unit g at time t . Each entry evolves independently according to the bridge in Section 3. The key challenge: we observe the unit–level endpoint \mathbf{x}_1 but only the aggregate at time 0, $a_0 = \sum_{g=1}^G x_{g0} \in \mathbb{Z}$, not the unit–level vector \mathbf{x}_0 . Our goal is to learn a count bridge $q_{\theta}(x_0 \mid x_t, t, z)$ that generates unit–level endpoints given start data at time $t = 1$ and side information z .

We formulate this as a generalized EM problem, similar to Rozet et al. (2024), where \mathbf{X}_0 is latent and $a_0 = \sum_g \mathbf{X}_{g0}$ is observed. Let $A : \mathbb{Z}^G \rightarrow \mathbb{Z}$ be a linear aggregate map (e.g., sums across units, block sums). For (x_t, t, z) , the denoiser $q_{\theta}(\cdot \mid x_t, t, z)$ defines an i.i.d. product prior over $\mathbf{X}_0 = (X_{10}, \dots, X_{G0})$. Conditioning on the aggregate yields

$$Q_{\theta}(\mathbf{X}_0 \mid a_0, x_t, t, z) \propto \left[\prod_{g=1}^G q_{\theta}(X_{g0} \mid x_t, t, z) \right] \mathbf{1}\{A(\mathbf{X}_0) = a_0\}.$$

In the E-step we will generate “latent” \tilde{x}_0 using the model and in the M-step we will use these \tilde{x}_0 to train the model at the aggregate level. We summarize the overall procedure in Algorithms 3 and 4.

E-Step The ideal E–step would sample from the exact aggregate–conditional law

$$\mathbf{X}_0^* \sim Q_{\theta}(\cdot \mid a_0, x_t, t, z).$$

We could then use the sampled \mathbf{X}_0^* as latent variables to sample x_t between $(\mathbf{x}_0^*, \mathbf{x}_1)$ using the unit–level kernel $K_{t|0,1}$ from Prop. 3.1.¹ Unfortunately, Q_{θ} is generally intractable to sample from, given just a unit–level model, so we approximate it through the diffusion sampling process itself. Starting from \mathbf{x}_1 , we run the sampling process as in Algorithm 2, but at each timestep t_k we: (1) predict $\hat{\mathbf{x}}_0 \sim q_{\theta}(\cdot \mid \mathbf{x}_{t_k}, t_k, z)$, (2) project $\hat{\mathbf{x}}_0$ to satisfy the aggregate constraint (see Sec. 4), yielding

¹The same method described here can be used with distributional diffusion on continuous space, but we focus on counts since most often when we observe aggregates we believe they are based on discrete underlying data.

270 **Require:** $(\mathbf{x}_1, a_0, z), w(\cdot), \Lambda_{\pm}(\cdot), q_{\theta}, \Pi$
 271 1: **for** $k = K, K-1, \dots, 2$ **do**
 272 2: Sample $\hat{\mathbf{x}}_{0,t_k} \sim q_{\theta}(\cdot | \mathbf{x}_{t_k}, t_k, z)$
 273 3: $\tilde{\mathbf{x}}_{0,t_k} \leftarrow \Pi(\hat{\mathbf{x}}_{0,t_k}, a_0, z)$
 274 4: Update $\mathbf{x}_{t_{k-1}}$ by running the reverse step
 275 5: using steps 4–10 of Alg. 2, with $\tilde{\mathbf{x}}_{0,t_k}$
 276 6: **end for**
 277 7: $\mathbf{x}_0^{\tilde{\sim}} \leftarrow$ sample and project $\hat{\mathbf{x}}_{0,t_1}$
 278 8: **return** $\mathbf{x}_0^{\tilde{\sim}}$

Algorithm 3: Guided Sampling to for $x_0^{\tilde{\sim}}$

279 **Require:** $(\mathbf{x}_1, a_0, z), w(\cdot), \Lambda_{\pm}(\cdot), q_{\theta}, \Pi$
 280 1: **for** each minibatch **do**
 281 2: **E-step:** Sample latent $\mathbf{x}_0^{\tilde{\sim}}$ from
 282 3: \mathbf{x}_1 conditional on a_0 via Alg. 3
 283 4: **M-step:** $t \sim \text{Unif}[0, 1]$
 284 5: Sample \mathbf{x}_t via the forward bridge on
 285 6: $(\mathbf{x}_0^{\tilde{\sim}}, \mathbf{x}_1)$ using steps 4–10 of Alg. 1
 286 7: Update θ using the gradient of $-\mathcal{L}_{\text{agg}}(\theta)$
 287 8: **end for**

Algorithm 4: Training with Aggregate Supervision

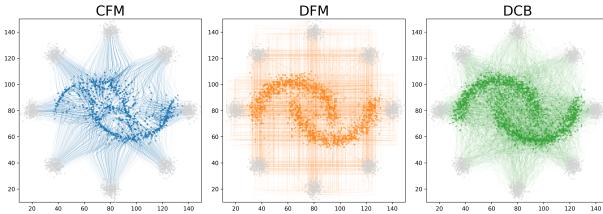


Figure 2: A scaled and rounded variant of the classic 8 gaussian to two moons task. Here we compare the trajectories of continuous flow matching, discrete flow matching, and count bridges. CB achieves the lowest W_2 , MMD, and EMD, see Table 6.

291 $\tilde{\mathbf{x}}_0$, and (3) perform the sampling step using $\hat{\mathbf{x}}_0$ as the predicted endpoint. This projection–guided
 292 diffusion ensures the aggregate constraint is incorporated throughout the denoising trajectory (see
 293 Alg. 3). This process produces latent $x_0^{\tilde{\sim}}$ samples that are consistent with the aggregate constraints,
 294 which we can then use in the M-step to train the model. We outline this in App. B.4 and prove that,
 295 when learning from aggregates is possible, the EM approach will learn the bridge.

296
 297 **M-Step** With these unit-level samples in hand, the M–step runs the bridge process as in Section 3.
 298 But instead of computing the loss on the unit-level latents, we compute the loss with respect to the
 299 aggregates. Given the ground-truth aggregate a_0 , we lift the same strictly proper score to aggregates:

$$S_{\rho}^A(p, a) = \frac{1}{2} \mathbb{E}_p [\rho(A(\mathbf{X}), A(\mathbf{X}'))] - \mathbb{E}_p [\rho(A(\mathbf{X}), a)] \text{ and } \mathcal{L}_{\text{agg}}(\theta) = \mathbb{E}_{A_0, \mathbf{X}_t, t} [S_{\rho}^A(q_{\theta}(\cdot | \mathbf{X}_t, t, z), A_0)]$$

300 with the plug-in obtained by sampling $\hat{\mathbf{X}}_0^{(j)} \sim q_{\theta}(\cdot | \mathbf{X}_t, t, z)$ and forming $\hat{a}^{(j)} = A(\hat{\mathbf{X}}_0^{(j)})$.
 301

302 **Approximate Sampling from the conditional distribution** Given a predicted endpoint $\hat{\mathbf{x}}_0$ from
 303 our diffusion model and target aggregate a_0 , we need to sample from the conditional distribution
 304 $Q_{\theta}(\cdot | A(\mathbf{X}_0) = a_0)$. While this is intractable, we can derive a principled approximation.

305 **Proposition 4.1** (First–order aggregate projection). *Let $A(\mathbf{X}_0)$ be the aggregate, and let P_{θ} be
 306 the prior law w \mathbf{X}_0 . Under the regularity conditions in App. B.1, the aggregate–conditional law
 307 $Q_{\theta}(\cdot | A_0 = a_0)$ admits a first–order exponential tilt. The corresponding KL projection*

$$\Pi(\mathbf{x}_0) = \arg \min_{\mathbf{y}_0: A(\mathbf{y}_0) = a_0} D_{\text{KL}}(\mathbf{y}_0 \| \mathbf{x}_0)$$

308 gives a first–order approximation to $Q_{\theta}(\cdot | A_0 = a_0)$. For an elementwise sum $A(\mathbf{x}_0) = \sum_g x_{g0}$
 309 this projection is the simple scaling $\Pi(\mathbf{x}_0)_g = a_0 x_{g0} / (\sum_{g'} x_{g'0})$.
 310

311 The proposition shows that the natural rescaling operation is not ad hoc, but is justified as a kind
 312 of first–order Taylor approximation to the true conditional distribution (see Appendix B.1). When
 313 unit-level training data exist, we can learn a projection $\Pi_{\psi}(\hat{\mathbf{x}}_0, z, a_0)$ that actually enables sampling
 314 conditional on the mean. See Sec. 6 where we show outline how to learn such a projection.
 315

320 5 RELATED WORKS

321 **Stochastic interpolants.** Our formulation allows us to transport any integer-valued distribution
 322 p_1 to another integer-valued distribution p_0 . In the case of Euclidean state space early works such

324 as (De Bortoli et al., 2021; Vargas et al., 2021; Chen et al., 2021) have shown how to perform such
 325 an interpolation leveraging (Entropic) Optimal transport and the concept of Schrödinger Bridges.
 326 In more recent works, ignoring the Optimal Transport constraints, several works have proposed to
 327 bridge distributions in a more relaxed formulation leveraging the concept of Markov projection, see
 328 Peluchetti (2023); Albergo et al. (2023); Delbracio & Milanfar (2023); Liu et al. (2022; 2023) for
 329 instance. Those frameworks can be shown to be strictly equivalent to diffusion models in the case
 330 where one of the end distribution is a unit Gaussian, see Gao et al. (2025). However, those works are
 331 limited to the Euclidean setting, and extension to the integer-valued setting is required.

332 **Discrete diffusion models.** Recently, with the advent of language diffusion models such as Ye
 333 et al. (2025); Song et al. (2025); Sahoo et al. (2024); Shi et al. (2024); Ou et al. (2024a); Arriola et al.
 334 (2025); Nie et al. (2024); Zheng et al. (2023), discrete diffusion models have gained considerable
 335 traction. Most works rely on discrete equivalents of the original formulation of diffusion models,
 336 explicitly or implicitly replacing the continuous Gaussian noising process by a Continuous-Time
 337 Markov Chain (CTMC) (Austin et al., 2021; Campbell et al., 2022; Lou et al., 2023; Campbell et al.,
 338 2024; Kitouni et al., 2024; Sun et al., 2023). Other approaches include relying on some Euclidean
 339 relaxation (Chen et al., 2022) or modelling the space of probability (Avdeyev et al., 2023; Stark et al.,
 340 2024). Similarly, flow matching techniques have been extended to cover this paradigm (Gat et al.,
 341 2024). Most of these works focus on *categorical* data and therefore consider uninformed forward
 342 process such as uniform or masking process. In contrast, in this work, we focus on ordinal data. To
 343 the best of our knowledge, the only existing work that also deals with such a process is Blackout
 344 Diffusion (Santos et al., 2023), which considers a pure-death process where an image is taken to the
 345 all-zero limit, as opposed to an endpoint conditioned bridge. Our approach generalizes this setup in
 346 two ways: first, we allow births and deaths at every time, recovering their pure birth construction in
 347 the limit as $\kappa \rightarrow 0$; second, we generalize the process to a bridge which can transport X_1 to X_0 .

348 Finally, we highlight that diffusion models have been extended to the very general setting where
 349 only an *infinitesimal generator* is available Benton et al. (2024); Holderith et al. (2024). While our
 350 work can be seen as an instantiation of this general framework, these general frameworks do not
 351 give any information regarding the design of the forward process for integer-valued data, the specific
 352 parameterization in terms of slack variables and the necessity of the distributional diffusion loss.

353 **Distributional Diffusion Models.** In De Bortoli et al. (2025); Shen et al. (2025), the authors learn
 354 the conditional distribution $p_{0|t}(x_0|x_t)$ through the use of scoring rules, going beyond the classical
 355 training framework of diffusion, which approximates the conditional mean $\mathbb{E}[X_0|X_t = x_t]$. The
 356 importance of approximating the covariance was already noted by Nichol & Dhariwal (2021) and
 357 further analyzed in (Ho et al., 2020; Nichol & Dhariwal, 2021; Bao et al., 2022a;b; Ou et al., 2024b).
 358 In a similar flavor (Xiao et al., 2022) uses a GAN to approximate $p_{0|t}(x_0|x_t)$.
 359

360 **Sequence-to-expression models** An ambitious goal in biology is to predict gene expression from
 361 DNA sequence information. There have been several attempts to train deep learning models for
 362 sequence-to-expression prediction tasks (Barbadilla-Martínez et al., 2025), including Enformer (Avsec
 363 et al., 2021), a state-of-the-art transformer-based DNA sequence model. While powerful, Enformer,
 364 like the vast majority of sequence-to-expression models, was trained on bulk gene expression data
 365 and is not able to predict single-cell expression profiles, missing the cellular heterogeneity and
 366 fine-grained regulatory patterns that shape tissue function.

367 **Spatial transcriptomic deconvolution** Spatial transcriptomics encompasses a family of recently
 368 developed techniques which measure gene expression and spatial location in tissues. The majority of
 369 these techniques are not capable of resolving individual cells, instead providing aggregate information
 370 over small neighborhoods consisting of on the order of tens of cells (Moses & Pachter, 2022). To
 371 address this limitation, a number of deconvolution methods have been developed to infer single-
 372 cell level information (Li et al., 2023). The majority of these methods, including cell2location
 373 (Kleshcheynikov et al., 2022) and RCTD (Cable et al., 2022), require a paired non-spatially resolved
 374 scRNA-seq atlas, and output cluster-level mixture proportions rather than single cell counts. The
 375 ideal deconvolution would recover full single-cell count profiles directly from spatial data without
 376 requiring external reference atlases. DestVI (Lopez et al., 2022), which outputs count profiles but
 377 requires a reference, and STDeconvolve (Miller et al., 2022) which does not require a reference but
 outputs cluster-level predictions, both take steps toward this goal.

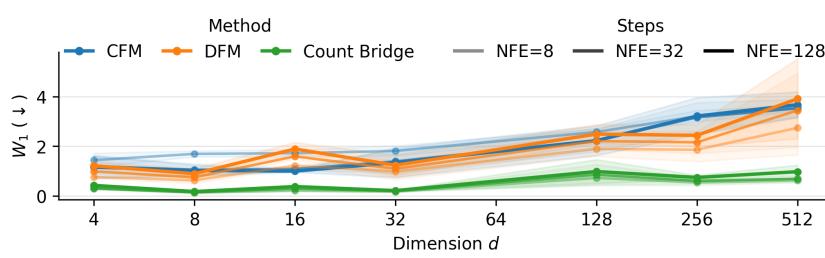


Figure 3: CFM, DFM, and CB on our low-rank mixture of Gaussians transport experiment across dimensions and NFE. See App. D.2 for full details.

6 APPLICATIONS

We evaluate with three distributional metrics: the Energy score, the Wasserstein-2 distance, and the MMD (RBF). For deconvolution, we evaluate cell-type proportion predictions using RMSE, the Jensen-Shannon Divergence (JSD), and Spearman correlation following Li et al. (2023). Synthetic tasks have std. errors over 3 training seeds; main applications have std. errors 3 over inference seeds.

6.1 SYNTHETIC DISTRIBUTIONS

Here, we benchmark count bridges (CB) against continuous flow matching (CFM) (Lipman et al., 2022) and discrete flow matching (DFM) (Gat et al., 2024) across a range of synthetic experiments.

Discrete 8-Gaussians to 2-Moons. We adapt this classic task to the integers. We plot the learned trajectories in Fig 2. Qualitatively CB achieves the best performance. DFM is much more competitive in this experiment than CFM, but DFM trajectories are decoupled from the underlying geometry, whereas CB produces OT-like trajectories similar to CFM. These qualitative evaluations are confirmed quantitatively: CB achieves the best performance across W_2 , Energy, and MMD (see App. D.1).

Scaling in Low-Rank Gaussian Mixtures. To test scalability to higher dimensions, we construct integer-valued datasets with fixed intrinsic dimensionality while ambient dimension d increases in powers of two from 4 to 512. Each dataset is a 5-component Gaussian mixture with latent rank $r = 3$, projected to \mathbb{Z}^d . In Fig. 3 see that CB has the best scaling in dimensionality (see App. D.2 for more).

Deconvolution of Gaussian Mixtures. We extend the low-rank mixture task to evaluate deconvolution capabilities. In this experiment, each observation is an aggregate constructed by summing a group of G samples. For each group, the G samples are drawn from a group-specific Gaussian mixture whose component weights are sampled from a Dirichlet distribution with concentration parameters $(\alpha_1, \dots, \alpha_5)$. The labels of the G source components are provided as unit-level side information. We then vary the size of the group G and the extent of variation between groups by changing the concentration parameter α (see Appendix D.3 for details). In Fig. 4 we see performance degrades as groups become more uniform and larger. We explore the theoretical limits to deconvolution in Apps. B.4.3 and B.3, which confirm that deconvolution requires between-group heterogeneity to enable identification, which is inherently lost as groups become large. Despite these limits, we demonstrate practical deconvolution on moderately-sized groups in our spatial transcriptomics application (Section 6.3).

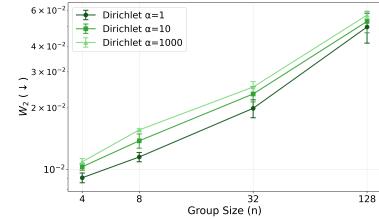


Figure 4: Deconvolution of the low-rank Gaussian mixture across different group sizes and levels of between-group heterogeneity.

6.2 MODELLING GENE EXPRESSION AT SINGLE-CELL AND SINGLE-NUCLEOTIDE RESOLUTION

A central goal in biology is to understand the relationship between DNA sequence and gene expression. Many models relate sequence and expression, the most prominent of which, such as Enformer (Avsec

Method	Bulk MSE	CT MSE	Comparison	MMD	W ₂	Energy
Fine-tuned Enformer	2.590	3.142	Bulk mean	0.515	0.208	56.800
Count Bridge	0.601 ±0.000	1.410 ±0.002	Count Bridge	0.446 ±0.000	0.182 ±0.001	28.583 ±0.003

Table 1: Nucleotide-level MSE for bulk and bulked cell-type (CT) specific predictions.

Table 2: Gene expression count profile deconvolution error for bulk RNA sequencing data.

et al., 2021), are Transformer-based models that predict expression from sequence. More recent work has explored fine-tuning Enformer on single-cell data (Hingerl et al., 2024). On the other hand, there is a mature literature on deconvolving bulk RNA-seq (Newman et al., 2019; Wang et al., 2019). These methods operate at the gene (rather than nucleotide) level, leveraging bulk cell-type profiles or single-cell references to deconvolve bulk profiles into cell-type proportions (not count profiles).

We use CBs to jointly model sequence and single-cell expression counts in scRNA-seq data, and to enable nucleotide-level deconvolution of bulk profiles. To validate CBs in this setting, we demonstrate two key results. First, we show that CBs trained on single-cell data produce meaningful count profiles and outperform a fine-tuned Enformer model on sequence-to-expression prediction. Second, we show that conditioning CBs on bulk profiles enables deconvolution of bulk gene expression into inferred single-cell gene expression profiles. We validate these deconvolved profiles distributionally and show that they achieve state-of-the-art performance relative to cell-type proportion deconvolution models.

Method	JSD	RMSE	Spearman
CIBERSORTx	0.194	0.109	0.079
MuSiC	0.313	0.140	0.186
Count Bridge	0.113 ±0.001	0.073 ±0.000	0.267 ±0.005

Table 3: Cell-type proportion deconvolution error for nucleotide level bulk RNA sequencing data.

Table 3: Cell-type proportion deconvolution error for nucleotide level bulk RNA sequencing data.

Modeling sequence and single-cell counts We train CBs on PBMC scRNA-seq counts at nucleotide resolution using 10^6 cells across 10^3 donors (Yazar et al., 2022). Each training example corresponds to a nucleotide position in a single cell, and is represented by the noisy count x_t and diffusion time t from the CB forward process, a cell-type embedding, a local genomic context z obtained by encoding the surrounding DNA sequence with Enformer, and i.i.d. noise ζ for the distributional loss. These features are concatenated and passed through residual multi-head attention blocks and a final softplus head that parameterizes the conditional count distribution $X_0|X_t, t, z$. The model is trained directly on unit-level (single-cell) expression profiles rather than only on aggregated counts. During training we randomly mask cell-type labels so that the model supports both unconditional and cell-type-conditional sampling at test time.

Learned projection for deconvolution Since we have unit-level data we can learn a better projection operator than the simple rescaling function in Prop. 4.1. We augment the CB with a small projection module Π_ψ , an attention block operating on each nucleotide (represented by z) across cells in the batch. Given an initial CB prediction \hat{x}_0 , an observed aggregate a_0 , and the noisy state x_t , the module outputs $\tilde{x}_0 = \Pi_\psi(\hat{x}_0, a_0, x_t, z)$, we train this using the distributional loss to learn to sample $X_0 | A(X_0)=a_0, X_t, t$. To support both unconditional and aggregate-conditioned inference, we apply the projection module only on a random 10% of training examples where a_0 is provided.

Bulk gene expression We first evaluate the ability of our model to predict expression from sequence, both unconditionally and conditional on cell type. As a baseline, we use an Enformer model fine-tuned directly on the PBMC dataset. We find that Count Bridge predictions outperform fine-tuned Enformer (Table 1, for results by cell type and further details see App. E).

Deconvolved profiles We can use this unit-level model for deconvolution tasks: we can condition on an aggregate (bulk profile) to sample single-cell profiles from the model while matching that aggregate. We next evaluate the ability of CBs to deconvolve mixtures of cell types from held-out individuals. We held out 10% of patients from our training set and synthetically bulked these patients. Since we have the ground truth data, we can then evaluate deconvolution quality. We first evaluate the distributional quality of these predictions against the bulk mean, further validating the CB count profiles (Table 2). As a more robust set of baselines, we compare to CIBERSORTx (Newman et al., 2019) and MuSiC (Wang et al., 2019). To facilitate comparison, we aggregate our nucleotide-level predictions into gene counts and assign each of our deconvolved cells to the closest

486 cell type. CBs achieve better performance on JSD, RMSE, and Spearman correlation while providing
 487 nucleotide-level counts (Table 3). In App. E we plot the UMAP for qualitative comparison.
 488

489 6.3 DECONVOLVING SPATIAL TRANSCRIPTOMIC SPOTS INTO SINGLE-CELL COUNTS

490 Next, we show how CBs can be used to infer single cell gene expression profiles from spot-level
 491 aggregates in spatial transcriptomic data. In spatial transcriptomic data generated by Visium (Ståhl
 492 et al., 2016), it is common to have access to side information beyond the spot-level count aggregates.
 493 In particular, many datasets include images of the cells with a nuclear stain (Palla et al., 2022). CBs
 494 provide a natural way to leverage this cell-level side information to deconvolve aggregate count data.
 495

496 **Modeling spatial aggregates** We train CBs on a MERFISH mouse brain dataset (Vizgen, 2021),
 497 which is resolved at the single-cell level, and artificially aggregate neighborhoods of cells to simulate
 498 spot-level Visium data. This synthetic dataset gives us access to spot-level aggregates and their
 499 corresponding single-cell ground truth, as well as single-cell nuclear images. Following the notation
 500 in Sec. 4, the spot-level counts can be treated as aggregates a_0 , and single-cell images can be treated
 501 as unit-level side information z . In this application, we never observe single-cell count profiles, only
 502 spot-level aggregates and the single-cell images. We leverage a UViT (Bao et al., 2023) extended to
 503 incorporate count and noise patches (see App. F). We use a simple source distribution $X_1 \sim \text{Poi}(10)$.
 504

505 **Cell type proportions** We benchmark CBs
 506 against STDeconvolve (Miller et al., 2022), a
 507 widely used spatial transcriptomic deconvolution
 508 method which is state-of-the-art among
 509 reference-free approaches Li et al. (2023) (see
 510 Appendix F for comparisons to reference-based
 511 methods). STDeconvolve outputs cell type (clus-
 512 ter identity) proportions for each spot rather than single cell counts. As such, we evaluate the quality of
 513 deconvolution by comparing the predicted cell type proportions to the true cell type proportions per
 514 spot. For CBs, which provide single-cell count profile predictions rather than cell type proportions,
 515 we assign each predicted count profile its nearest neighbor cell type in order to compare against
 516 STDeconvolve. CBs outperforms STDeconvolve on both the JSD and the RMSE (Table 4).
 517

518 **Count profiles** We next evaluate the quality of the
 519 count profiles inferred by CBs. Here, because STDe-
 520 convolve does not provide these predictions, we
 521 instead consider a simple baseline: predicting the
 522 spot-level mean (a_0/G) for each cell. This baseline,
 523 while seemingly naive, is actually biologically well-
 524 motivated. In spatial transcriptomics, cells within a
 525 spot represent local tissue organization where neigh-
 526 boring cells coordinate their functions (Armingol et al., 2021). As such, we expect cells in spatial
 527 neighborhoods to have correlated gene expression profiles, making the spot mean a reasonable
 528 baseline. Nonetheless, CBs outperform the spot-level mean baseline (see Table 5), showing CBs can
 529 learn meaningful unit-level distributions from real-world aggregate data. In App. F we provide a
 530 more detailed biological evaluation of the cell types and pathways in our generated data, alongside
 531 the UMAP to facilitate qualitative comparison.
 532

533 7 CONCLUSION

534 Count Bridges offer a tractable, discrete-native alternative to continuous diffusion models, unifying
 535 direct count generation with deconvolution from aggregates. We demonstrate the power of Count
 536 Bridges for nucleotide-level deconvolution of bulk RNA-seq and spatial transcriptomic deconvolution.
 537

538 **Limitations** (i) When counts are well-approximated as continuous, Euclidean models may match
 539 or exceed performance. (ii) Identifiability in pure deconvolution degrades as group sizes grow or
 540 between-group heterogeneity shrinks, so our EM procedure is most reliable at moderate aggregation.
 541 (iii) The projection step we use is a first-order surrogate and lacks serious theoretical support.

542 Despite these caveats, Count Bridges lay the groundwork for rigorous discrete generative mod-
 543 eling and invite future work on deeper understanding of the projection-guided sampler, sharper
 544 identifiability bounds, and generally stronger guarantees for projection-guided EM.

540 **Ethics Statement.** This study uses publicly released, de-identified single-cell and spatial
 541 transcriptomics datasets under their respective licenses; no new human subject data were collected, and
 542 institutional review board (IRB) approval was therefore not required. We do not foresee serious
 543 ethical implications to Count Bridges beyond the risks already posed by standard diffusion/flow
 544 matching models. Our deconvolution methods could possibly pose some additional privacy risks. We
 545 used LLMs to help draft portions of the code used in our experiments and to edit portions of this
 546 manuscript. All our models are intended for research use only, not clinical use. LLMs were not used
 547 in any way significantly outside the current norms of academic research.

548 **Reproducibility Statement.** We have taken significant steps to ensure that all results presented
 549 in this work are reproducible. An anonymous source code repository is provided here, containing
 550 complete implementations of the Count Bridge framework, including model architectures, training
 551 procedures, projection-based deconvolution, and evaluation pipelines. The appendix includes full
 552 mathematical derivations and proofs of all theoretical claims. We also provide descriptions of all data
 553 preprocessing steps for synthetic benchmarks, PBMC sequence-to-expression prediction, and spatial
 554 transcriptomic aggregation, as well as architectural and hyperparameter specifications. Together,
 555 these materials are intended to allow independent researchers to fully reproduce our theoretical and
 556 empirical findings.

558 REFERENCES

560 Nist digital library of mathematical functions. <https://dlmf.nist.gov/>, 2025. See §10.41(ii).
 561 Accessed 2025-09-24.

563 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 564 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

565 Erick Armingol, Adam Officer, Olivier Harismendy, and Nathan E Lewis. Deciphering cell-cell
 566 interactions and communication from gene expression. *Nature reviews. Genetics*, 22(2):71–88,
 567 February 2021. ISSN 1471-0056,1471-0064. doi: 10.1038/s41576-020-00292-x.

569 Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
 570 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
 571 sive and diffusion language models. *arXiv preprint arXiv:2503.09573*, 2025.

573 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 574 denoising diffusion models in discrete state-spaces. *Advances in neural information processing
 575 systems*, 34:17981–17993, 2021.

576 Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score
 577 model for biological sequence generation. In *International Conference on Machine Learning*, pp.
 578 1276–1301. PMLR, 2023.

580 Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,
 581 Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene
 582 expression prediction from sequence by integrating long-range interactions. *Nature methods*, 18
 583 (10):1196–1203, 4 October 2021. ISSN 1548-7091,1548-7105. doi: 10.1038/s41592-021-01252-x.

584 Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal covariance
 585 with imperfect mean in diffusion probabilistic models. In *International Conference on Machine
 586 Learning*, 2022a.

588 Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the optimal
 589 reverse variance in diffusion probabilistic models. In *International Conference on Learning
 590 Representations*, 2022b.

592 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
 593 words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF conference on
 computer vision and pattern recognition*, pp. 22669–22679, 2023.

594 Lucía Barbadilla-Martínez, Noud Klaassen, Bas van Steensel, and Jeroen de Ridder. Predicting gene
 595 expression from DNA sequence using deep learning models. *Nature reviews. Genetics*, 26(10):
 596 666–680, 13 May 2025. ISSN 1471-0056,1471-0064. doi: 10.1038/s41576-025-00841-2.
 597

598 Sean C Bendall, Erin F Simonds, Peng Qiu, El-Ad D Amir, Peter O Krutzik, Rachel Finck, Robert V
 599 Bruggner, Rachel Melamed, Angelica Trejo, Olga I Ornatsky, Robert S Balderas, Sylvia K Plevritis,
 600 Karen Sachs, Dana Pe'er, Scott D Tanner, and Garry P Nolan. Single-cell mass cytometry of
 601 differential immune and drug responses across a human hematopoietic continuum. *Science (New
 602 York, N.Y.)*, 332(6030):687–696, 6 May 2011. ISSN 0036-8075,1095-9203. doi: 10.1126/science.
 603 1198704.

604 Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From
 605 denoising diffusions to denoising markov models. *Journal of the Royal Statistical Society Series B:
 606 Statistical Methodology*, 86(2):286–301, 2024.

607 Dylan M Cable, Evan Murray, Luli S Zou, Aleksandrina Goeva, Evan Z Macosko, Fei Chen,
 608 and Rafael A Irizarry. Robust decomposition of cell type mixtures in spatial transcriptomics.
 609 *Nature biotechnology*, 40(4):517–526, April 2022. ISSN 1087-0156,1546-1696. doi: 10.1038/
 610 s41587-021-00830-w.

611 Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
 612 Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural
 613 Information Processing Systems*, 35:28266–28279, 2022.

614 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 615 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
 616 *arXiv preprint arXiv:2402.04997*, 2024.

617 Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of schrödinger
 618 bridge using forward-backward sdes theory. *arXiv preprint arXiv:2110.11291*, 2021.

619 Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
 620 diffusion models with self-conditioning. *arXiv preprint arXiv:2208.04202*, 2022.

621 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
 622 bridge with applications to score-based generative modeling. *Advances in neural information
 623 processing systems*, 34:17695–17709, 2021.

624 Valentin De Bortoli, Alexandre Galashov, J Swaroop Guntupalli, Guangyao Zhou, Kevin Murphy,
 625 Arthur Gretton, and Arnaud Doucet. Distributional diffusion models with scoring rules. *arXiv
 626 preprint arXiv:2502.02483*, 2025.

627 Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
 628 diffusion for image restoration. *arXiv preprint arXiv:2303.11435*, 2023.

629 Luc Devroye. Simulating bessel random variables. *Statistics & probability letters*, 57(3):249–257,
 630 2002.

631 C Domínguez Conde, C Xu, L B Jarvis, D B Rainbow, S B Wells, T Gomes, S K Howlett, O Suchanek,
 632 K Polanski, H W King, L Mamanova, N Huang, P A Szabo, L Richardson, L Bolt, E S Fasouli,
 633 K T Mahbubani, M Prete, L Tuck, N Richoz, Z K Tuong, L Campos, H S Mousa, E J Needham,
 634 S Pritchard, T Li, R Elmentaitaite, J Park, E Rahmani, D Chen, D K Menon, O A Bayraktar, L K
 635 James, K B Meyer, N Yosef, M R Clatworthy, P A Sims, D L Farber, K Saeb-Parsy, J L Jones,
 636 and S A Teichmann. Cross-tissue immune cell analysis reveals tissue-specific features in humans.
 637 *Science (New York, N.Y.)*, 376(6594):eabl5197, 13 May 2022. ISSN 0036-8075,1095-9203. doi:
 638 10.1126/science.abl5197.

639 Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin Patrick Murphy, and Tim
 640 Salimans. Diffusion models and gaussian flow matching: Two sides of the same coin. In *The
 641 Fourth Blogpost Track at ICLR 2025*, 2025.

642 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 643 Yaron Lipman. Discrete flow matching. *Advances in Neural Information Processing Systems*, 37:
 644 133345–133385, 2024.

648 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
 649 *Journal of the American statistical Association*, 102(477):359–378, 2007.
 650

651 Johannes C Hingerl, Laura D Martens, Alexander Karollus, Trevor Manz, Jason D Buenrostro,
 652 Fabian J Theis, and Julien Gagneur. *scooby: Modeling multi-modal genomic profiles from*
 653 *DNA sequence at single-cell resolution. bioRxiv.org: the preprint server for biology*, pp.
 654 2024.09.19.613754, 23 September 2024. doi: 10.1101/2024.09.19.613754.

655 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*
 656 *Neural Information Processing Systems*, 2020.

657 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
 658 Ricky TQ Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
 659 markov processes. *arXiv preprint arXiv:2410.20587*, 2024.

660 Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for
 661 structured knowledge, 2024. URL <https://arxiv.org/abs/2312.05253>.

663 Allon M Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres, Victor Li, Leonid
 664 Peshkin, David A Weitz, and Marc W Kirschner. Droplet barcoding for single-cell transcriptomics
 665 applied to embryonic stem cells. *Cell*, 161(5):1187–1201, 21 May 2015. ISSN 0092-8674,1097-
 666 4172. doi: 10.1016/j.cell.2015.04.044.

667 Vitalii Kleshchevnikov, Artem Shmatko, Emma Dann, Alexander Aivazidis, Hamish W King, Tong Li,
 668 Rasa Elmentaite, Artem Lomakin, Veronika Kedlian, Adam Gayoso, Mika Sarkin Jain, Jun Sung
 669 Park, Lauma Ramona, Elizabeth Tuck, Anna Arutyunyan, Roser Vento-Tormo, Moritz Gerstung,
 670 Louisa James, Oliver Stegle, and Omer Ali Bayraktar. Cell2location maps fine-grained cell
 671 types in spatial transcriptomics. *Nature biotechnology*, 40(5):661–671, 13 May 2022. ISSN
 672 1087-0156,1546-1696. doi: 10.1038/s41587-021-01139-4.

673 Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal
 674 transport. *arXiv preprint arXiv:1308.0215*, 2013.

676 Haoyang Li, Juxiao Zhou, Zhongxiao Li, Siyuan Chen, Xingyu Liao, Bin Zhang, Ruochi Zhang,
 677 Yu Wang, Shiwei Sun, and Xin Gao. A comprehensive benchmarking with practical guidelines for
 678 cellular deconvolution of spatial transcriptomics. *Nature communications*, 14(1):1548, 21 March
 679 2023. ISSN 2041-1723,2041-1723. doi: 10.1038/s41467-023-37168-7.

680 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 681 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

683 Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
 684 Anandkumar. I 2 sb: Image-to-image schrödinger bridge. *arXiv preprint arXiv:2302.05872*,
 685 2023.

686 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 687 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

689 Romain Lopez, Baoguo Li, Hadas Keren-Shaul, Pierre Boyeau, Merav Kedmi, David Pilzer, Adam
 690 Jelinski, Ido Yofe, Eyal David, Allon Wagner, Can Ergen, Yoseph Addadi, Ofra Golani, Franca
 691 Ronchese, Michael I Jordan, Ido Amit, and Nir Yosef. DestVI identifies continuums of cell types
 692 in spatial transcriptomics data. *Nature biotechnology*, 40(9):1360–1369, September 2022. ISSN
 693 1087-0156,1546-1696. doi: 10.1038/s41587-022-01272-8.

694 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 695 of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023.

696 Brendan F Miller, Feiyang Huang, Lyla Atta, Arpan Sahoo, and Jean Fan. Reference-free
 697 cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics
 698 data. *Nature communications*, 13(1):2339, 29 April 2022. ISSN 2041-1723,2041-1723. doi:
 699 10.1038/s41467-022-30033-z.

701 Lambda Moses and Lior Pachter. Museum of spatial transcriptomics. *Nature methods*, 19(5):534–546,
 10 May 2022. ISSN 1548-7091,1548-7105. doi: 10.1038/s41592-022-01409-2.

702 Aaron M Newman, Chloé B Steen, Chih Long Liu, Andrew J Gentles, Aadel A Chaudhuri, Florian
 703 Scherer, Michael S Khodadoust, Mohammad S Esfahani, Bogdan A Luca, David Steiner, et al.
 704 Determining cell type abundance and expression from bulk tissues with digital cytometry. *Nature
 705 biotechnology*, 37(7):773–782, 2019.

706 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 707 In *International Conference on Machine Learning*, 2021.

709 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 710 Li. Scaling up masked diffusion models on text. *arXiv preprint arXiv:2410.18514*, 2024.

712 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 713 Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *arXiv
 714 preprint arXiv:2406.03736*, 2024a.

715 Zijing Ou, Mingtian Zhang, Andi Zhang, Tim Z Xiao, Yingzhen Li, and David Barber. Diffusion
 716 model with optimal covariance matching. *arXiv preprint arXiv:2406.10808*, 2024b.

718 Giovanni Palla, Hannah Spitzer, Michal Klein, David Fischer, Anna Christina Schaar, Louis Benedikt
 719 Kuemmerle, Sergei Rybakov, Ignacio L Ibarra, Olle Holmberg, Isaac Virshup, Mohammad Lot-
 720 fallahi, Sabrina Richter, and Fabian J Theis. Squidpy: a scalable framework for spatial omics
 721 analysis. *Nature methods*, 19(2):171–178, 28 February 2022. ISSN 1548-7091,1548-7105. doi:
 722 10.1038/s41592-021-01358-2.

723 Stefano Peluchetti. Non-denoising forward-time diffusions. *arXiv preprint arXiv:2312.14589*, 2023.

725 A Raj, P V D van den Bogaard, Scott A Rifkin, A van Oudenaarden, and Sanjay Tyagi. Imaging
 726 individual mRNA molecules using multiple singly labeled probes. *Nature methods*, 5(10):877–879,
 727 21 September 2008. ISSN 1548-7091,1548-7105. doi: 10.1038/nmeth.1253.

729 François Rozet, Gérôme Andry, François Lanusse, and Gilles Louppe. Learning diffusion priors from
 730 observations by expectation maximization. *Advances in Neural Information Processing Systems*,
 731 37:87647–87682, 2024.

732 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 733 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 734 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

736 Javier E Santos, Zachary R Fox, Nicholas Lubbers, and Yen Ting Lin. Blackout diffusion: generative
 737 diffusion models in discrete-state spaces. In *International Conference on Machine Learning*, pp.
 738 9034–9059. PMLR, 2023.

739 Xinwei Shen, Nicolai Meinshausen, and Tong Zhang. Reverse markov learning: Multi-step generative
 740 models for complex distributions. *arXiv preprint arXiv:2502.13747*, 2025.

742 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
 743 masked diffusion for discrete data. *Advances in neural information processing systems*, 37:
 744 103131–103167, 2024.

746 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 747 bridge matching. *Advances in Neural Information Processing Systems*, 36:62183–62223, 2023.

748 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 749 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 750 arXiv:2011.13456*, 2020.

752 Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
 753 Yang, Hongli Yu, Xingwei Qu, Yuwei Fu, Jing Su, Ge Zhang, Wenhao Huang, Mingxuan Wang,
 754 Lin Yan, Xiaoying Jia, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Yonghui Wu, and Hao Zhou.
 755 Seed diffusion: A large-scale diffusion language model with high-speed inference, 2025. URL
<https://arxiv.org/abs/2508.02193>.

756 Patrik L Ståhl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro, Jens
 757 Magnusson, Stefania Giacomello, Michaela Asp, Jakub O Westholm, Mikael Huss, Annelie
 758 Mollbrink, Sten Linnarsson, Simone Codeluppi, Åke Borg, Fredrik Pontén, Paul Igor Costea, Pelin
 759 Sahlén, Jan Mulder, Olaf Bergmann, Joakim Lundeberg, and Jonas Frisén. Visualization and
 760 analysis of gene expression in tissue sections by spatial transcriptomics. *Science (New York, N.Y.)*,
 761 353(6294):78–82, 1 July 2016. ISSN 0036-8075,1095-9203. doi: 10.1126/science.aaf2403.

762 Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
 763 Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. *arXiv preprint*
 764 *arXiv:2402.05841*, 2024.

765 Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
 766 discrete diffusion models, 2023. URL <https://arxiv.org/abs/2211.16750>.

767 Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
 768 bridges via maximum likelihood. *Entropy*, 23(9):1134, 2021.

769 Vizgen. Vizgen Data Release V1.0, May 2021. Title of the publication associated with this dataset:
 770 Mouse Brain Receptor Map.

771 Xuran Wang, Jihwan Park, Katalin Susztak, Nancy R Zhang, and Mingyao Li. Bulk tissue cell type
 772 deconvolution with multi-subject single-cell expression reference. *Nature communications*, 10(1):
 773 380, 2019.

774 Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
 775 denoising diffusion GANs. In *International Conference on Learning Representations*, 2022.

776 Seyhan Yazar, Jose Alquicira-Hernandez, Kristof Wing, Anne Senabouth, M Grace Gordon, Stacey
 777 Andersen, Qinyi Lu, Antonia Rowson, Thomas R P Taylor, Linda Clarke, Katia Maccora, Christine
 778 Chen, Anthony L Cook, Chun Jimmie Ye, Kirsten A Fairfax, Alex W Hewitt, and Joseph E Powell.
 779 Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease.
 780 *Science (New York, N.Y.)*, 376(6589):eabf3041, 8 April 2022. ISSN 0036-8075,1095-9203. doi:
 781 10.1126/science.abf3041.

782 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 783 Kong. Dream 7b: Diffusion large language models, 2025. URL <https://arxiv.org/abs/2508.15487>.

784 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
 785 text generation. *arXiv preprint arXiv:2302.05737*, 2023.

791 A COUNT BRIDGES

794 A.1 POISSON BIRTH–DEATH BRIDGE ON \mathbb{Z}

795 We start by showing where the Binomial and Hypergeometric distributions emerge in our framework.
 796 Then we will prove that if we condition on the amount of slack these distributions compose. Finally
 797 we will show that using the Bessel slack law we have composition while mixing over the slack
 798 distribution.

800 A.1.1 SAMPLING PROCESS

801 We now formalize where the Binomial and Hypergeometric terms in equation 9 come from. We work
 802 directly with the birth–death representation introduced above.

803 Let $\lambda_+, \lambda_- > 0$ and let $w : [0, 1] \rightarrow \mathbb{R}_{\geq 0}$ be an increasing “jump–intensity” shape function with
 804 $w(0) = 0$ and $w(1) = 1$. Define the cumulative birth/death intensities

$$805 \quad \Lambda_+(t) = \lambda_+ w(t), \quad \Lambda_-(t) = \lambda_- w(t),$$

806 and let $(B_t)_{t \in [0,1]}$ and $(D_t)_{t \in [0,1]}$ be independent (non-homogeneous) Poisson processes with these
 807 cumulants. Set

$$808 \quad X_t = X_0 + B_t - D_t,$$

810 so that the unconditional forward kernel $K_{t|0}$ is the same as in equation 6.
 811

812 Write the total jump count as

$$813 \quad N_t = B_t + D_t, \quad t \in [0, 1].$$

814 Standard properties of Poisson superposition imply that (N_t) is a (non-homogeneous) Poisson process
 815 with cumulative intensity

$$816 \quad \Lambda(t) = \Lambda_+(t) + \Lambda_-(t) = (\lambda_+ + \lambda_-) w(t).$$

818 Conditional on $N_1 = n$, the n unordered jump times are i.i.d. with cdf

$$819 \quad \mathbb{P}(T \leq t \mid N_1 \geq 1) = w(t), \quad t \in [0, 1],$$

821 so w is precisely the time-rescaling that makes the jump times uniform on $[0, 1]$.

822 We now condition on endpoints $X_0 = x_0, X_1 = x_1$ and define

$$824 \quad d_1 = x_1 - x_0, \quad N_1 = B_1 + D_1, \quad B_1 = \frac{1}{2}(N_1 + d_1), \quad D_1 = N_1 - B_1.$$

825 Given (N_1, B_1) , we can view the N_1 jumps as a set of N_1 points on $[0, 1]$, each labelled +1 (birth)
 826 or -1 (death). The superposition and thinning properties give two key facts:

827 We now record the Binomial and Hypergeometric structure of the jump counts.

829 **Lemma A.1** (Binomial–Hypergeometric structure of the birth–death bridge). *Fix $t \in (0, 1]$. Conditional on $N_1 = n$ and $B_1 = b$, let $0 < T_{(1)} < \dots < T_{(n)} \leq 1$ denote the ordered jump times and let $(L_1, \dots, L_n) \in \{+1, -1\}^n$ be the corresponding jump labels, with $\sum_{k=1}^n \mathbf{1}\{L_k = +1\} = b$. Then:*

832 1. Binomial structure. *The unordered jump times are i.i.d. on $(0, 1]$ with cdf w , so*

$$834 \quad N_t \mid N_1 = n \sim \text{Bin}(n, w(t)).$$

836 2. Hypergeometric structure. *Conditional on $(N_1, B_1, N_t) = (n, b, m)$, the labels
 837 (L_1, \dots, L_n) are exchangeable given $B_1 = b$, and the m jumps with times in $(0, t]$ corre-
 838 spond to a uniformly random m -subset of $\{1, \dots, n\}$. Hence*

$$839 \quad B_t \mid (N_1, B_1, N_t) = (n, b, m) \sim \text{Hyp}(n, b, m),$$

841 and therefore $D_t = N_t - B_t$.

843 More generally, for $0 < s < t < 1$ define $r = w(s)/w(t)$. Conditional on $(N_t, B_t) = (n, b)$, the n
 844 jumps in $(0, t]$ form a non-homogeneous Poisson process with cumulative intensity $\Lambda(\cdot)/\Lambda(t)$, so the
 845 N_s jumps in $(0, s]$ satisfy

$$846 \quad N_s \mid N_t = n \sim \text{Bin}(n, r),$$

847 and, by the same exchangeability argument applied within $(0, t]$,

$$848 \quad B_s \mid (N_t, B_t, N_s) = (n, b, m) \sim \text{Hyp}(n, b, m), \quad D_s = N_s - B_s.$$

850 A.1.2 COMPOSITION CONDITIONAL ON THE SLACK

852 We now show that the Binomial–Hypergeometric construction is closed under composition when we
 853 condition on a fixed slack value.

854 Conditional on (X_0, X_1, M_1) (equivalently on (N_1, B_1)), the total number of jumps N_t and the
 855 number of births B_t at any intermediate time t are governed by the Binomial–Hypergeometric
 856 structure in Lemma A.1. We now record two elementary composition facts which we will use with
 857

$$858 \quad p = w(t), \quad q = \frac{w(s)}{w(t)}, \quad 0 < s < t < 1.$$

860 **Lemma A.2** (Binomial composition). *Let $K \sim \text{Bin}(N, p)$ and, conditional on K , let $L \sim \text{Bin}(K, q)$.
 861 Then $L \sim \text{Bin}(N, pq)$. Moreover, (K, L) has joint pmf*

$$863 \quad \mathbb{P}\{K = k, L = \ell\} = \binom{N}{\ell} (pq)^\ell (1-pq)^{N-\ell} \binom{N-\ell}{k-\ell} \left(\frac{p(1-q)}{1-pq}\right)^{k-\ell} \left(\frac{1-p}{1-pq}\right)^{N-k}.$$

864 *Proof.* We begin by writing the joint distribution directly from the model:
 865

$$866 \quad \mathbb{P}(K = k, L = \ell) = \mathbb{P}(K = k) \mathbb{P}(L = \ell | K = k) = \binom{N}{k} p^k (1-p)^{N-k} \binom{k}{\ell} q^\ell (1-q)^{k-\ell}. \\ 867$$

868 Apply the standard combinatorial identity
 869

$$870 \quad \binom{N}{k} \binom{k}{\ell} = \binom{N}{\ell} \binom{N-\ell}{k-\ell}, \\ 871$$

872 to obtain the factorization
 873

$$874 \quad \mathbb{P}(K = k, L = \ell) = \binom{N}{\ell} (pq)^\ell (1-pq)^{N-\ell} \binom{N-\ell}{k-\ell} \left(\frac{p(1-q)}{1-pq}\right)^{k-\ell} \left(\frac{1-p}{1-pq}\right)^{(N-k)}. \\ 875$$

876 To get the marginal law of L , sum the joint pmf over all $k \geq \ell$. Let $m = k - \ell$; then m ranges from 0
 877 to $N - \ell$, and
 878

$$879 \quad \mathbb{P}(L = \ell) = \sum_{m=0}^{N-\ell} \binom{N}{\ell} (pq)^\ell (1-pq)^{N-\ell} \binom{N-\ell}{m} \left(\frac{p(1-q)}{1-pq}\right)^m \left(\frac{1-p}{1-pq}\right)^{(N-\ell)-m}. \\ 880 \\ 881$$

882 All terms not depending on m factor out:
 883

$$884 \quad \mathbb{P}(L = \ell) = \binom{N}{\ell} (pq)^\ell (1-pq)^{N-\ell} \sum_{m=0}^{N-\ell} \binom{N-\ell}{m} a^m b^{(N-\ell)-m}, \\ 885 \\ 886$$

887 where

$$888 \quad a = \frac{p(1-q)}{1-pq}, \quad b = \frac{1-p}{1-pq}. \\ 889$$

890 Since $a + b = 1$, the inner sum is exactly the Binomial theorem,
 891

$$892 \quad \sum_{m=0}^{N-\ell} \binom{N-\ell}{m} a^m b^{(N-\ell)-m} = (a+b)^{N-\ell} = 1. \\ 893 \\ 894$$

895 Thus

$$896 \quad \mathbb{P}(L = \ell) = \binom{N}{\ell} (pq)^\ell (1-pq)^{N-\ell}, \\ 897$$

898 which is the pmf of $\text{Bin}(N, pq)$. □
 899

900 **Lemma A.3** (Hypergeometric composition). *Fix an urn with N balls of which B are marked
 901 “success”. Draw $N_t = k$ balls without replacement and record $B_t = b$ successes. From the k drawn
 902 balls, draw $N_s = j \leq k$ without replacement and record $B_s = a$ successes. Then the marginal law
 903 of (N_s, B_s) satisfies*

$$904 \quad \mathbb{P}\{N_s = j, B_s = a | N, B\} = \binom{N}{j}^{-1} \binom{B}{a} \binom{N-B}{j-a}, \\ 905$$

906 which is the pmf of the single hypergeometric draw $\text{Hyp}(N, B, j)$.
 907

908 *Proof.* Fix the total population of N items with B successes. The first draw selects a subset
 909 $S_t \subset \{1, \dots, N\}$ of size $k = N_t$ uniformly among all $\binom{N}{k}$ such subsets. From S_t the second draw
 910 selects a subset $S_s \subset S_t$ of size $j = N_s$ uniformly among all $\binom{k}{j}$ subsets of S_t .
 911

912 Every subset S_s of size j can be formed in at least one two-step sequence of the form $S_s \subset S_t \subset$
 913 $\{1, \dots, N\}$. Moreover, under simple sampling without replacement, all such two-step sequences
 914 occur with equal probability:
 915

$$916 \quad \mathbb{P}(S_s = A) = \sum_{\substack{T \supset A \\ |T|=k}} \frac{1}{\binom{N}{k}} \cdot \frac{1}{\binom{k}{j}} = \frac{\binom{N-j}{k-j}}{\binom{N}{k} \binom{k}{j}} \quad \text{for any size-}j \text{ subset } A. \\ 917$$

918 The right-hand side does not depend on A , so conditional on $N_s = j$ every j -subset of $\{1, \dots, N\}$
 919 is equally likely. There are $\binom{N}{j}$ such subsets.
 920

921 Among these $\binom{N}{j}$ subsets, exactly

$$\binom{B}{a} \binom{N-B}{j-a}$$

922 subsets contain a successes and $j - a$ failures. Hence

$$\mathbb{P}(B_s = a \mid N_s = j) = \frac{\binom{B}{a} \binom{N-B}{j-a}}{\binom{N}{j}},$$

923 which is the pmf of the hypergeometric distribution $\text{Hyp}(N, B, j)$. \square

924 We can now state composition of the birth-death bridge at fixed slack.

925 **Theorem A.4** (Bridge composition conditional on slack). *Fix $0 < s < t < 1$ and endpoints $X_0 = x_0$,
 926 $X_1 = x_1$, and slack $M_1 = m$ (equivalently, fix (N_1, B_1) via equation 7). Let $w : [0, 1] \rightarrow [0, 1]$ be
 927 the time-rescaling function from the birth-death construction.*

928 Define the fixed-slack bridge kernels

$$K_{a|0,b}^{(m)}(x_a \mid x_0, x_b) = \mathbb{P}(X_a = x_a \mid X_0 = x_0, X_b = x_b, M_1 = m), \quad 0 \leq a \leq b \leq 1.$$

929 Then the two-stage rule $(1 \rightarrow t \rightarrow s)$ yields the same law for (N_s, B_s) as the single-stage rule
 930 $(1 \rightarrow s)$, and the fixed-slack kernels satisfy the bridge-consistency identity

$$K_{s|0,1}^{(m)}(x_s \mid x_0, x_1) = \sum_{x_t} K_{s|0,t}^{(m)}(x_s \mid x_0, x_t) K_{t|0,1}^{(m)}(x_t \mid x_0, x_1). \quad (10)$$

941 *Proof.* Working conditional on (N_1, B_1) (equivalently on $(x_0, x_1, M_1 = m)$), the Binomial-Hypergeometric structure of Lemma A.1 gives

$$N_t \mid N_1 \sim \text{Bin}(N_1, w(t)), \quad N_s \mid N_t \sim \text{Bin}(N_t, w(s)/w(t)).$$

942 Applying Lemma A.2 with $p = w(t)$ and $q = w(s)/w(t)$ yields

$$N_s \mid N_1 \sim \text{Bin}(N_1, w(s)),$$

943 which coincides with the direct $(1 \rightarrow s)$ rule.

944 For the colour counts, conditional on (N_1, B_1) and N_t , the N_t jumps in $(0, t]$ form a finite population
 945 with B_t births (successes) and $N_t - B_t$ deaths (failures). Within this population, the two-stage
 946 sampling $(t \rightarrow s)$ is exactly the nested hypergeometric scheme of Lemma A.3, so the marginal law
 947 of (N_s, B_s) coincides with that of a single hypergeometric draw $\text{Hyp}(N_1, B_1, N_s)$ from the original
 948 N_1 jumps. This is the direct $(1 \rightarrow s)$ rule.

949 Thus, at fixed $(x_0, x_1, M_1 = m)$, the two-step transition $(1 \rightarrow t \rightarrow s)$ and the one-step transition
 950 $(1 \rightarrow s)$ agree in law for (N_s, B_s) , and hence for $X_s = x_0 + B_s - D_s$. Equivalently, the conditional
 951 distributions $\mathbb{P}(X_s = x_s \mid X_0 = x_0, X_1 = x_1, M_1 = m)$ obey the kernel identity equation 10,
 952 which is exactly the fixed-slack bridge consistency for $K_{a|0,b}^{(m)}$. \square

953 A.1.3 INTEGRATING OVER THE SLACK: THE OBSERVABLE BRIDGE

954 In the previous section we established that, *conditional on a fixed slack value*, the birth-death (BD)
 955 bridge satisfies exact composition: for fixed (X_0, X_t, M_t) the $(t \rightarrow s)$ transition coincides with the
 956 direct $(t \rightarrow s)$ rule defined by the Binomial-Hypergeometric structure. However, our generative
 957 model does not include a latent slack variable: at time t we observe only $X_t = X_0 + B_t - D_t$, not
 958 the pair (B_t, D_t) or their slack $M_t = \min(B_t, D_t)$.

959 To obtain an observable Markov bridge we therefore *resample the slack at each time* from its posterior
 960 distribution

$$\pi_t(m \mid d_t) = \mathbb{P}(M_t = m \mid d_t = X_t - X_0),$$

972 and then apply the conditional BH transition at that m . This subsection derives the explicit form of
 973 $\pi_t(m | d_t)$ and, crucially, proves its closure under the time-rescaling $w(t)$ of the BD reference. This
 974 closure ensures that the mixture over M_t interacts correctly with the BH transitions, enabling the
 975 observable process to satisfy the bridge consistency equation 1.

976 **The Slack Posterior**

977 Recall from the BD reference that

$$980 \quad B_t \sim \text{Poi}(\Lambda_+(t)), \quad D_t \sim \text{Poi}(\Lambda_-(t)), \quad \Lambda_{\pm}(t) = \lambda_{\pm}w(t), \quad B_t \perp D_t.$$

981 **Proposition A.5** (Bessel slack posterior and closure under time-rescaling). *Fix $t \in (0, 1]$ and let*
 982 $d_t = X_t - X_0 = B_t - D_t$. *Conditional on d_t , the pair (B_t, D_t) lies on the lattice*

$$984 \quad (B_t, D_t) = \begin{cases} (m + d_t, m), & d_t \geq 0, \\ (m, m + |d_t|), & d_t < 0, \end{cases} \quad m \in \mathbb{N},$$

987 and the induced posterior pmf of the slack $M_t = \min(B_t, D_t)$ is

$$989 \quad \pi_t(m | d_t) = \mathbb{P}(M_t = m | d_t) \propto \frac{(\Lambda_+(t)\Lambda_-(t))^m}{(m + |d_t|)! m!}, \quad m = 0, 1, 2, \dots \quad (11)$$

991 with normalizer

$$992 \quad Z_t(d_t) = (\Lambda_+(t)\Lambda_-(t))^{-|d_t|/2} I_{|d_t|} \left(2\sqrt{\Lambda_+(t)\Lambda_-(t)} \right),$$

994 where I_{ν} is the modified Bessel function of the first kind.

995 **Moreover—closure under time-rescaling:** for any $0 < s < t$,

$$997 \quad \pi_s(\cdot | d_s) \text{ has the same functional form as } \pi_t(\cdot | d_t),$$

999 with parameters obtained by replacing $(\Lambda_+(t), \Lambda_-(t))$ by $(\Lambda_+(s), \Lambda_-(s))$. Since $\Lambda_{\pm}(s) = \lambda_{\pm}w(s)$,
 1000 this closure depends only on the rescaling of $w(\cdot)$ and not on any other properties of the process.

1001 *Proof.* We treat $d_t \geq 0$, the other case being symmetric. If $d_t = B_t - D_t \geq 0$ then $B_t = D_t + d_t$
 1002 and thus

$$1004 \quad (B_t, D_t) = (m + d_t, m) \iff M_t = m.$$

1005 The joint pmf at $(m + d_t, m)$ is

$$1007 \quad \mathbb{P}(B_t = m + d_t, D_t = m) = e^{-(\Lambda_+(t) + \Lambda_-(t))} \frac{\Lambda_+(t)^{m+d_t}}{(m + d_t)!} \frac{\Lambda_-(t)^m}{m!}.$$

1009 Conditioning on d_t amounts to normalizing over m :

$$1011 \quad \pi_t(m | d_t) = \frac{\Lambda_+(t)^{m+d_t} \Lambda_-(t)^m / ((m + d_t)! m!)}{\sum_{r=0}^{\infty} \Lambda_+(t)^{r+d_t} \Lambda_-(t)^r / ((r + d_t)! r!)}$$

1014 Factor $\Lambda_+(t)^{d_t}$ from numerator and denominator to obtain

$$1016 \quad \pi_t(m | d_t) = \frac{(\Lambda_+(t)\Lambda_-(t))^m}{(m + d_t)! m!} \left/ \sum_{r=0}^{\infty} \frac{(\Lambda_+(t)\Lambda_-(t))^r}{(r + d_t)! r!} \right.,$$

1018 which is exactly equation 11. The denominator is the standard Skellam normalizer, given by the
 1019 stated Bessel expression.

1021 For closure, note that for any $s < t$ we have independent thinning

$$1022 \quad B_s \sim \text{Poi}(\Lambda_+(s)), \quad D_s \sim \text{Poi}(\Lambda_-(s)), \quad \Lambda_{\pm}(s) = \lambda_{\pm}w(s).$$

1024 Repeating the same conditioning argument with (B_s, D_s) and d_s yields the same functional family
 1025 as equation 11, with parameters $(\Lambda_+(s), \Lambda_-(s))$ replacing $(\Lambda_+(t), \Lambda_-(t))$. Thus π_t is closed under
 the time-rescaling $w(\cdot)$. \square

1026 Mixing Over the Slack
 1027

1028 This proposition shows that the slack posterior depends on the state only through the observable
 1029 displacement $d_t = X_t - X_0$ and the posterior family $\pi_t(\cdot | d_t)$ is closed under passing to earlier
 1030 times $s < t$.

1031 Using these properties, combined with the composition in a fixed slack, we can prove the general
 1032 Markovianity after mixing over the slack. We now mix the fixed-slack bridges over the Bessel slack
 1033 posterior to obtain an observable bridge that depends only on the counts X_t and satisfies the same
 1034 bridge consistency identity as in equation 1.

1035 Recall the fixed-slack bridge kernels from Theorem A.4:
 1036

$$1037 K_{a|0,b}^{(m)}(x_a | x_0, x_b) = \mathbb{P}(X_a = x_a | X_0 = x_0, X_b = x_b, M_1 = m), \quad 0 \leq a \leq b \leq 1.$$

1038 For each $m \in \mathbb{N}$ these satisfy fixed-slack bridge consistency: for all $0 < s < t < 1$,
 1039

$$1040 K_{s|0,1}^{(m)}(x_s | x_0, x_1) = \sum_{x_t} K_{s|0,t}^{(m)}(x_s | x_0, x_t) K_{t|0,1}^{(m)}(x_t | x_0, x_1). \quad (12)$$

1043 At the terminal time 1, define the observable $(0, 1)$ bridge by
 1044

$$1045 K_{s|0,1}(x_s | x_0, x_1) = \sum_{m=0}^{\infty} \pi_1(m | d_1) K_{s|0,1}^{(m)}(x_s | x_0, x_1), \quad d_1 = x_1 - x_0.$$

1047 At an intermediate time t , define the observable $(0, t)$ bridge by
 1048

$$1049 K_{s|0,t}(x_s | x_0, x_t) = \sum_{m=0}^{\infty} \pi_t(m | d_t) K_{s|0,t}^{(m)}(x_s | x_0, x_t), \quad d_t = x_t - x_0,$$

1052 and similarly
 1053

$$1054 K_{t|0,1}(x_t | x_0, x_1) = \sum_{m=0}^{\infty} \pi_1(m | d_1) K_{t|0,1}^{(m)}(x_t | x_0, x_1).$$

1055 **Theorem A.6** (Bridge consistency of the observable count bridge). *Under the Poisson birth–death
 1056 reference and Bessel slack mixing, the observable bridge kernels satisfy the discrete form of equation 1:
 1057 for all $0 < s < t < 1$ and endpoints x_0, x_1 ,*
 1058

$$1059 K_{s|0,1}(x_s | x_0, x_1) = \sum_{x_t} K_{s|0,t}(x_s | x_0, x_t) K_{t|0,1}(x_t | x_0, x_1). \quad (13)$$

1062 *Proof.* Fix x_0, x_1 and a bounded test function φ on the state space. We prove equation 13 in weak
 1063 form by comparing $\mathbb{E}[\varphi(X_s) | X_0 = x_0, X_1 = x_1]$ computed in two ways.

1064 First, by definition of $K_{s|0,1}$ and the slack posterior at time 1,
 1065

$$1066 \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_1 = x_1] = \sum_{m=0}^{\infty} \pi_1(m | d_1) \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_1 = x_1, M = m],$$

1069 with $d_1 = x_1 - x_0$. For each fixed m , the bridge with slack $M = m$ satisfies the fixed-slack bridge
 1070 consistency equation 12, so

$$1071 \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_1 = x_1, M = m] \\ 1072 = \sum_{x_t} \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_t = x_t, M = m] K_{t|0,1}^{(m)}(x_t | x_0, x_1).$$

1075 Substitute into the previous display and interchange the sums over x_t and m :

$$1076 \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_1 = x_1] \\ 1077 = \sum_{x_t} \sum_{m=0}^{\infty} \pi_1(m | d_1) \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_t = x_t, M = m] K_{t|0,1}^{(m)}(x_t | x_0, x_1).$$

Now condition on the intermediate state $X_t = x_t$ and use Bayes' rule. By Proposition A.5, the posterior over M given $(X_0 = x_0, X_t = x_t)$ is exactly $\pi_t(\cdot | d_t)$ with $d_t = x_t - x_0$, i.e.

$$\pi_t(m | d_t) = \mathbb{P}(M = m | X_0 = x_0, X_t = x_t).$$

Hence we can rewrite the inner sum over m as

$$\sum_{m=0}^{\infty} \pi_t(m | d_t) \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_t = x_t, M = m] = \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_t = x_t],$$

and the definition of $K_{s|0,t}$ then gives

$$\mathbb{E}[\varphi(X_s) | X_0 = x_0, X_t = x_t] = \sum_{x_s} \varphi(x_s) K_{s|0,t}(x_s | x_0, x_t).$$

Putting everything together,

$$\begin{aligned} \mathbb{E}[\varphi(X_s) | X_0 = x_0, X_1 = x_1] &= \sum_{x_t} \left(\sum_{x_s} \varphi(x_s) K_{s|0,t}(x_s | x_0, x_t) \right) K_{t|0,1}(x_t | x_0, x_1) \\ &= \sum_{x_s} \varphi(x_s) \left(\sum_{x_t} K_{s|0,t}(x_s | x_0, x_t) K_{t|0,1}(x_t | x_0, x_1) \right). \end{aligned}$$

On the other hand, by the definition of $K_{s|0,1}$,

$$\mathbb{E}[\varphi(X_s) | X_0 = x_0, X_1 = x_1] = \sum_{x_s} \varphi(x_s) K_{s|0,1}(x_s | x_0, x_1).$$

Since φ is arbitrary, the coefficients of $\varphi(x_s)$ must agree for all x_s , which yields equation 13. \square

This theorem shows that after mixing over the Bessel slack posterior at each time, the observable birth-death bridge has the same bridge consistency property equation 1 as the Gaussian diffusion bridge in Proposition 2.1.

A.2 LINK WITH SCHRÖDINGER BRIDGES

We now justify the Schrödinger-bridge interpretation stated in Sec. 3. Recall the unconditional birth-death construction

$$X_t = X_0 + B_t - D_t,$$

where $(B_t)_{t \in [0,1]}$ and $(D_t)_{t \in [0,1]}$ are independent Poisson processes with cumulative intensities $\Lambda_+(t) = \lambda_+ w(t)$, $\Lambda_-(t) = \lambda_- w(t)$, and $w(0) = 0, w(1) = 1$. Let $\kappa = \sqrt{\lambda_+ \lambda_-}$ denote the (scalar) jump intensity. Then for each $x_0 \in \mathcal{X}$, the forward kernel at time $t = 1$ has Skellam pmf

$$K_{1|0}^\kappa(x_1 | x_0) = \exp[-\Lambda_+(1) - \Lambda_-(1)] \left(\frac{\Lambda_+(1)}{\Lambda_-(1)} \right)^{\frac{x_1 - x_0}{2}} I_{|x_1 - x_0|}(2\kappa),$$

where I_ν is the modified Bessel function of the first kind.

Let

$$p_{\text{ref}}^\kappa(x_0, x_1) = p_0(x_0) K_{1|0}^\kappa(x_1 | x_0)$$

be the *reference joint law* of (X_0, X_1) induced by the birth-death process and the data prior p_0 . Over the space of couplings

$$\mathcal{C}(p_0, p_1) = \{C \text{ on } \mathcal{X} \times \mathcal{X} : C(\cdot, \mathcal{X}) = p_0, C(\mathcal{X}, \cdot) = p_1\},$$

we consider the entropic projection

$$C_\kappa \in \arg \min_{C \in \mathcal{C}(p_0, p_1)} \text{KL}(C \| p_{\text{ref}}^\kappa).$$

Fix any $C \in \mathcal{C}(p_0, p_1)$ and write expectations with respect to C as $\mathbb{E}_C[\cdot]$. By definition,

$$\begin{aligned} \text{KL}(C \| p_{\text{ref}}^\kappa) &= \mathbb{E}_C \left[\log \frac{dC}{dp_{\text{ref}}^\kappa}(X_0, X_1) \right] \\ &= -H(C) - \mathbb{E}_C \left[\log K_{1|0}^\kappa(X_1 | X_0) \right] + C_\kappa(p_0, p_1), \end{aligned}$$

1134 where $H(C)$ is the Shannon entropy of C and $C_\kappa(p_0, p_1)$ collects all terms depending only on the
 1135 marginals (including $\Lambda_\pm(1)$ and $\mathbb{E}_C[X_1 - X_0]$, which are fixed across all couplings with marginals
 1136 p_0, p_1).

1137 Using the explicit Skellam form, we can isolate the Bessel contribution:

$$1139 \text{KL}(C \parallel p_{\text{ref}}^\kappa) = C_\kappa(p_0, p_1) - \mathbb{E}_C[\log I_{|X_1 - X_0|}(2\kappa)] - H(C).$$

1141 To study the limits $\kappa \rightarrow \infty$ and $\kappa \rightarrow 0^+$, we use standard asymptotics for I_ν (NIS, 2025, §10.41(ii)):

$$1143 I_\nu(z) = \frac{e^z}{\sqrt{2\pi z}} (1 + o(1)) \quad \text{as } z \rightarrow \infty, \quad I_\nu(z) = \frac{(z/2)^\nu}{\Gamma(\nu+1)} (1 + o(1)) \quad \text{as } z \rightarrow 0^+.$$

1145 **High-noise limit** $\kappa \rightarrow \infty$. For fixed ν , the large- z expansion shows that $\log I_\nu(2\kappa)$ depends on ν
 1146 only through $O(1/\kappa)$ terms. Hence, as $\kappa \rightarrow \infty$,

$$1148 \mathbb{E}_C[\log I_{|X_1 - X_0|}(2\kappa)] = C'_\kappa(p_0, p_1) + o_\kappa(1),$$

1149 where $C'_\kappa(p_0, p_1)$ does not depend on the choice of coupling C . It follows that

$$1151 \text{KL}(C \parallel p_{\text{ref}}^\kappa) = C - H(C) + o_\kappa(1), \quad \kappa \rightarrow \infty,$$

1152 for some constant C that is independent of C . Maximizing $H(C)$ over $\mathcal{C}(p_0, p_1)$ yields the indepen-
 1153 dent coupling $p_0 \otimes p_1$, so in the high-noise limit $C_\kappa \rightarrow p_0 \otimes p_1$.

1155 **Low-noise limit** $\kappa \rightarrow 0^+$. For small z , we have

$$1157 \log I_\nu(2\kappa) = \nu \log\left(\frac{2}{\kappa}\right) + O(1) \quad \text{as } \kappa \rightarrow 0^+,$$

1159 uniformly for integer ν in any fixed finite range. Applying this with $\nu = |X_1 - X_0|$ gives

$$1161 -\mathbb{E}_C[\log I_{|X_1 - X_0|}(2\kappa)] = \log\left(\frac{2}{\kappa}\right) \mathbb{E}_C|X_1 - X_0| + O(1), \quad \kappa \rightarrow 0^+.$$

1162 Substituting into the expression for the KL divergence, we obtain

$$1164 \text{KL}(C \parallel p_{\text{ref}}^\kappa) = C + \log\left(\frac{2}{\kappa}\right) \mathbb{E}_C|X_1 - X_0| - H(C) + o_\kappa(1), \quad \kappa \rightarrow 0^+,$$

1166 for some constant C independent of C .

1167 Thus, in the low-noise limit the dominant term in $\text{KL}(C \parallel p_{\text{ref}}^\kappa)$ is proportional to $\mathbb{E}_C|X_1 - X_0|$;
 1168 minimizing the KL over $\mathcal{C}(p_0, p_1)$ therefore recovers discrete optimal transport with cost $|x_1 - x_0|$,
 1169 while the entropy term $-H(C)$ corresponds to the usual entropic regularization. This proves the
 1170 characterization stated in Sec. 3.

1172 B LIFTING COUNT BRIDGES TO AGGREGATES

1174 We make two central assumptions that enable deconvolution.

1175 **Assumption B.1** (Realizability and recoverability). *There exists θ^* such that for all $t \in [0, 1]$:*

1177 1. **Realizability:** $Q_{\theta^*}(a_0 \mid \mathbf{x}_t, t, z) = p_{\text{data}}(a_0 \mid \mathbf{x}_t, t, z)$ almost surely

1179 2. **Recoverability:** The aggregate-to-unit map has local modulus $\kappa_{\text{loc}}(t)$: for θ near θ^* ,

$$1180 D_{\text{KL}}(p_{\text{data}}(\mathbf{x}_0 \mid \mathbf{x}_t, t, z) \parallel q_\theta(\cdot \mid \mathbf{x}_t, t, z)) \leq \kappa_{\text{loc}}(t) \cdot D_{\text{KL}}(p_{\text{data}}(a_0 \mid \mathbf{x}_t, t, z) \parallel Q_\theta(\cdot \mid \mathbf{x}_t, t, z))$$

1182 Recoverability means that the aggregate distribution uniquely determines the unit-level distribu-
 1183 tion—if we know the sum perfectly, we can deduce the summands. This is not always possible.
 1184 Consider the simplest case: if $X_1, X_2 \sim \text{Poisson}(\lambda_1), \text{Poisson}(\lambda_2)$ are independent, their sum
 1185 is $\text{Poisson}(\lambda_1 + \lambda_2)$. Observing only the sum, we cannot distinguish $(\lambda_1 = 3, \lambda_2 = 2)$ from
 1186 $(\lambda_1 = 4, \lambda_2 = 1)$ —both yield $\text{Poisson}(5)$. Now if we had side information that identified the
 1187 “component” each Poisson was drawn from we could identify this, but it illustrates the difficulties we
 1188 will face here.

1188 Recoverability holds when units have sufficient diversity. Formally, it requires that units are condition-
 1189 ally independent given (\mathbf{x}_1, z) and have distinct factorial cumulant signatures—essentially, different
 1190 statistical fingerprints that survive aggregation. For count data, this means units must have different
 1191 parameters (e.g., different Poisson rates or negative binomial dispersions) that are distinguishable
 1192 through the covariates z .

1193 Theorem B.10 in Appendix B.4.3 provides precise conditions: when the factorial cumulant generating
 1194 functions $C_{X_{g0}}(t) = F(t; \psi_g)$ form an identifiable system and covariates provide sufficient labeling
 1195 to distinguish units. In practice, this means units should have heterogeneous characteristics captured
 1196 by z —for example, different images associated with the transcriptomics is spatial single cell data.

1197 Recoverability faces fundamental limits as the number of units G grows. By the central limit theorem,
 1198 when $G \rightarrow \infty$, the standardized aggregate $(A_0 - \mu_G)/\sigma_G$ converges to a Gaussian regardless of the
 1199 unit-level distributions. The higher-order cumulants that distinguish different unit configurations
 1200 vanish at rate $O(G^{-k/2})$ for order $k > 2$, leaving only the mean and variance (Appendix B.3).

1201 This CLT collapse means our method is most powerful for moderate G (tens to hundreds of units)
 1202 where unit heterogeneity is preserved in aggregates. For very large G , additional structure is
 1203 needed—either parametric constraints (e.g., unit parameters follow a low-dimensional model), mul-
 1204 tiple aggregate observations under different conditions, or direct observation of some unit-level
 1205 data.

1206 We illustrate these issues in Fig. 4 in the main text: as the dirichlet concentration increases the
 1207 group-level mixture weights concentrate. When combined with large group sizes this forces all
 1208 groups to become identical. This gives a clear empirical sense for the limits of deconvolution.

1211 B.1 APPROXIMATELY SAMPLING CONDITIONAL ON THE SUM

1212 The most central part of our deconvolution approach is our projection operation. Here we sketch a
 1213 formal characterization of this operation and justify it based on a Taylor expansion around the true
 1214 conditional distribution.

1215 We first give a completely formal statement of our theorem:

1216 **Theorem B.2** (Rescaling emerges from first-order conditional). *Let p_{data} be the prior law of X_0 and
 1217 write the aggregate $A_0 = A(X_{g0})$ with $\mu = \mathbb{E}_{P_\theta}[A_0]$ and $\Sigma = \text{Cov}_{P_\theta}(A_0)$ (finite, p.d.). For a target
 1218 aggregate a_0 , set $\delta := a_0 - \mu$. Then the aggregate-conditional law $Q_\theta(\cdot | A_0 = a_0)$ admits the
 1219 Radon–Nikodym form*

$$1221 \frac{dQ_\theta}{dP_\theta}(x_0) = \exp\left\{\lambda^\top \sum_g x_{g0} - A(\lambda)\right\}, \quad \lambda = \Sigma^{-1}\delta + O(\|\delta\|^2),$$

1224 where $A(\lambda) = \log \mathbb{E}_{P_\theta}[e^{\lambda^\top \sum_g X_{g0}}]$. The KL projection forms a first-order approximation:

$$1226 T^*(x_0) = \arg \min_{y_0: \sum_g y_{g0} = a_0} D_{\text{KL}}(y_0 \| x_0),$$

1228 which for non-overlapping groups yields the simple scaling update

$$1230 T^*(x_0)_g^{(d)} = x_{g0}^{(d)} \cdot \frac{a_0^{(d)}}{\sum_{g'} x_{g'0}^{(d)}}, \quad d = 1, \dots, D.$$

1233 We prove Theorem B.2 (Section 3.2) under explicit regularity, giving a first-order expansion for the
 1234 tilt parameter and $O(\|\delta\|^2)$ control of the KL gap.

1235 **Assumption B.3** (Cramér regularity and nondegenerate covariance). *Let P_θ be the prior law of X_0
 1236 and $A_0 = \sum_g X_{g0} \in \mathbb{Z}_{\geq 0}^D$. The cumulant generating function*

$$1238 A(\lambda) := \log \mathbb{E}_{P_\theta}[e^{\lambda^\top A_0}]$$

1240 exists and is finite on an open neighborhood \mathcal{N} of $\lambda = 0$, is twice continuously differentiable on \mathcal{N} ,
 1241 and $\Sigma := \nabla^2 A(0) = \text{Cov}_{P_\theta}(A_0)$ is positive definite. We also assume $\nabla^2 A$ is locally Lipschitz on a
 1242 smaller neighborhood $\mathcal{N}_0 \subset \mathcal{N}$.

1242 **Definition B.4** (Exponential tilt and I-projection). *For $\lambda \in \mathcal{N}$, define the tilted law on X_0 :*

$$1244 \quad \frac{dP_{\theta,\lambda}}{dP_{\theta}}(x_0) = \exp\{\lambda^\top A_0(x_0) - A(\lambda)\}. \\ 1245$$

1246 *Let $a_0 \in \mathbb{R}^D$ be a feasible aggregate and $\delta := a_0 - \mu$ with $\mu := \nabla A(0) = \mathbb{E}_{P_{\theta}}[A_0]$. The I-projection*
 1247 *of P_{θ} onto the affine moment set $\{Q : \mathbb{E}_Q[A_0] = a_0\}$ is $P_{\theta,\hat{\lambda}}$ with $\hat{\lambda}$ the unique solution of*
 1248

$$1249 \quad \nabla A(\hat{\lambda}) = a_0. \\ 1250$$

1251 **Lemma B.5** (Duality and uniqueness). *Under Assumption B.3, the map $\lambda \mapsto \nabla A(\lambda)$ is a local*
 1252 *diffeomorphism at 0, hence for $\|a_0 - \mu\|$ sufficiently small there exists a unique $\hat{\lambda} \in \mathcal{N}_0$ such that*
 1253 *$\nabla A(\hat{\lambda}) = a_0$. Moreover,*

$$1254 \quad \text{KL}\left(P_{\theta,\hat{\lambda}} \parallel P_{\theta}\right) = A(\hat{\lambda}) - \hat{\lambda}^\top a_0 \quad \text{and} \quad \mathbb{E}_{P_{\theta,\hat{\lambda}}}[A_0] = a_0. \\ 1255$$

1257 *Proof.* $\nabla^2 A(0) = \Sigma \succ 0$ implies invertibility of the Jacobian at 0. The inverse function theorem
 1258 yields a local inverse ψ of ∇A near μ , with $\hat{\lambda} = \psi(a_0)$. The KL identity is standard for exponential
 1259 families; the moment identity is by construction. \square

1260 **Lemma B.6** (First-order expansion of the dual parameter). *Let L be a Lipschitz constant for $\nabla^2 A$ on*
 1261 *\mathcal{N}_0 . Then, for δ small enough,*

$$1263 \quad \hat{\lambda} = \Sigma^{-1}\delta + r(\delta), \quad \|r(\delta)\| \leq \frac{L}{2} \|\Sigma^{-1}\|^2 \|\delta\|^2. \\ 1264$$

1265 *Proof.* Taylor expand ∇A at 0: $\nabla A(\lambda) = \mu + \Sigma\lambda + R(\lambda)$ with $\|R(\lambda)\| \leq \frac{L}{2}\|\lambda\|^2$. Solve $\mu + \Sigma\hat{\lambda} +$
 1266 $R(\hat{\lambda}) = \mu + \delta$ to obtain $\hat{\lambda} = \Sigma^{-1}(\delta - R(\hat{\lambda}))$, hence the bound. \square

1268 **Lemma B.7** (KL and expectation errors). *As $\delta \rightarrow 0$,*

$$1269 \quad \text{KL}\left(P_{\theta,\hat{\lambda}} \parallel P_{\theta}\right) = \frac{1}{2} \delta^\top \Sigma^{-1} \delta + O(\|\delta\|^3), \quad \left\| \mathbb{E}_{P_{\theta,\hat{\lambda}}}[f(X_0)] - \mathbb{E}_{Q_{\theta}(\cdot \mid A_0 = a_0)}[f(X_0)] \right\| = O(\|\delta\|^2),$$

1271 *for any f with $\mathbb{E}_{P_{\theta}}[|f(X_0)|] < \infty$ whenever the exact conditional $Q_{\theta}(\cdot \mid A_0 = a_0)$ exists.*

1273 *Proof.* Expand $A(\hat{\lambda})$ to second order using Lemma B.6 and standard cumulant properties. For
 1274 expectations, note that both $P_{\theta,\hat{\lambda}}$ and $Q_{\theta}(\cdot \mid A_0 = a_0)$ are I-projections onto the same affine
 1275 moment set; the latter is the exact conditional when it exists. Bregman (KL) Pythagorean identities
 1276 give that their KL gap is $O(\|\delta\|^2)$, which implies the stated expectation difference by Pinsker and
 1277 boundedness-by-integrability. \square

1279 **Theorem B.8** (Proof of Theorem B.2). *Under Assumption B.3, for $\delta = a_0 - \mu$ small,*

$$1280 \quad \frac{dQ_{\theta}}{dP_{\theta}}(x_0) = \exp\{\hat{\lambda}^\top A_0(x_0) - A(\hat{\lambda})\}, \quad \hat{\lambda} = \Sigma^{-1}\delta + O(\|\delta\|^2), \\ 1281$$

1283 *and $\text{KL}(Q_{\theta} \parallel P_{\theta,\hat{\lambda}}) = O(\|\delta\|^2)$. For per-coordinate column constraints, the I-projection is the*
 1284 *multiplicative scaling*

$$1285 \quad T^*(x_0)_g^{(d)} = x_{g0}^{(d)} \cdot \frac{a_0^{(d)}}{\sum_{g'} x_{g'0}^{(d)}}, \quad d = 1, \dots, D. \\ 1286 \\ 1287$$

1289 *Proof.* Combine Lemmas B.5–B.7. The explicit scaling is the closed-form I-projection onto the
 1290 linear constraints $\sum_g y_{g0}^{(d)} = a_0^{(d)}$ with KL geometry (“IPF step”); it follows from separability across
 1291 d . \square

1293 B.2 CONDITIONS FOR REALIZABILITY AND RECOVERABILITY

1294 We provide concrete conditions under which the key assumptions of recoverability and realizability
 1295 hold for count data.

1296 B.2.1 FACTORIAL CUMULANT FRAMEWORK
12971298 For nonnegative integer-valued X , define the factorial moment generating function (FMGF):
1299

1300
$$M_X(t) = \mathbb{E}[(1+t)^X], \quad t \in \mathbb{R} \text{ near } 0,$$

1301 and the factorial cumulant generating function (FCGF):
1302

1303
$$C_X(t) = \log M_X(t) = \sum_{k \geq 1} \frac{\kappa_k(X)}{k!} t^k,$$

1304

1305 where $\kappa_k(X)$ are the factorial cumulants.
13061307 **Lemma B.9** (Properties of factorial cumulants). (a) If X, Y are independent nonnegative integer-
1308 valued, then $C_{X+Y}(t) = C_X(t) + C_Y(t)$.
13091310 (b) If $\{f_\psi : \psi \in \Psi\}$ are real-analytic near 0 with injective $\psi \mapsto f_\psi$, and $\sum_{g=1}^G f_{\psi_g} \equiv \sum_{g=1}^G f_{\psi'_g}$,
1311 then the multisets $\{\psi_g\}$ and $\{\psi'_g\}$ coincide.
13121313 B.2.2 SUFFICIENT CONDITIONS FOR RECOVERABILITY
13141315 **Theorem B.10** (Recoverability via factorial cumulants). Assume:
13161317 1. Conditionally on $\mathcal{C} = \sigma(\mathbf{X}_1, Z)$, the units (X_{10}, \dots, X_{G0}) are independent.
1318 2. Each unit's FCGF has the form $C_{X_{g0}}(t) = F(t; \psi_g)$ where $F(\cdot; \psi)$ is real-analytic near
1319 $t = 0$ and $\psi \mapsto F(\cdot; \psi)$ is injective.
1320 3. The covariates provide labeling: distinct units with distinct ψ_g have distinct labels $\lambda_g =$
1321 $\lambda(\mathbf{X}_1, Z, g)$ almost surely.
13221323 Then the aggregate map $\mathcal{A}_\mathcal{C}$ is injective, ensuring recoverability.
13241325 *Proof.* By independence and Lemma B.9(a), $C_{A_0}(t) = \sum_{g=1}^G F(t; \psi_g)$. If two specifications yield
1326 the same aggregate law, their FCGF sums agree. By Lemma B.9(b), the multisets coincide. The
1327 labeling removes permutation ambiguity, yielding $\psi_g = \psi'_g$ for each g . \square
13281329 B.3 LARGE- G LIMITS: CLT-INDUCED NON-IDENTIFIABILITY
13301331 We show that even when recoverability holds for finite G , the deconvolution problem can become
1332 ill-posed as $G \rightarrow \infty$ due to central limit phenomena.
13331334 B.3.1 THE FUNDAMENTAL TENSION
13351336 As G grows, a fundamental statistical phenomenon emerges: the aggregate distribution converges
1337 to a Gaussian regardless of the specific unit-level distributions, losing the fine-grained information
1338 needed for deconvolution.
1339

B.3.2 CLT COLLAPSE OF AGGREGATE INFORMATION

1340 **Theorem B.11** (Loss of identifiability under CLT scaling). Let $\{X_{g0}^{(G)} : 1 \leq g \leq G\}$ be conditionally
1341 independent given $\mathcal{C} = \sigma(\mathbf{X}_1, Z)$, with
1342

1343
$$\mu_G = \sum_{g=1}^G \mathbb{E}[X_{g0}^{(G)} | \mathcal{C}], \quad \sigma_G^2 = \sum_{g=1}^G \text{Var}(X_{g0}^{(G)} | \mathcal{C}) < \infty.$$

1344

1345 Under Lindeberg conditions, any two sequences of unit-level distributions that produce the same
1346 (μ_G, σ_G^2) yield asymptotically identical aggregate distributions:
1347

1348
$$\frac{A_0^{(G)} - \mu_G}{\sigma_G} \Rightarrow \mathcal{N}(0, 1) \quad \text{as } G \rightarrow \infty.$$

1349

1350 *Proof.* The Lindeberg-Feller CLT applies to both sequences. Since they share the same first two
 1351 moments, their standardized aggregates converge to the same Gaussian limit, making them indistin-
 1352 guishable through aggregate observations. \square

1353 **B.3.3 IMPLICATIONS FOR FACTORIAL CUMULANTS**

1354 Recall from Section B.4.3 that recoverability relies on the factorial cumulants $\kappa_k(A_0) = \sum_g \kappa_k(X_{g0})$
 1355 determining the individual unit parameters. Under CLT scaling:

1356 **Corollary B.12** (Vanishing higher-order cumulants). *For standardized aggregates, the k -th factorial
 1357 cumulant scales as $O(\sigma_G^{-k+2})$ for $k \geq 3$. Thus:*

$$1360 \quad \frac{\kappa_k(A_0^{(G)})}{\sigma_G^k} \rightarrow 0 \quad \text{as } G \rightarrow \infty, \quad k \geq 3.$$

1361 *Only the first two cumulants (mean and variance) survive in the limit.*

1362 This means the factorial cumulant signature that enables recoverability for finite G becomes asymp-
 1363 tootically uninformative—all unit-level configurations with the same total mean and variance are
 1364 indistinguishable.

1365 **B.4 GRADIENT BOUNDS FOR DECONVOLUTION**

1366 A subtle issue arises in the theoretical analysis of the EM algorithm we present in the main text: if we
 1367 always generate training pairs by running the full reverse trajectory from \mathbf{x}_1 to \mathbf{x}_0 , errors in early
 1368 predictions can compound. Each reverse step conditions on the previous prediction, so mistakes
 1369 propagate and potentially amplify. The model could learn from its own errors, leading to distribution
 1370 shift.

1371 We resolve this through a simple but crucial observation: at time $t = 1$ (the noisy endpoint), we are
 1372 training on the actual data, so as long as we can learn unit-level distributions from aggregates this can
 1373 serve as a “backstop” from a theoretical point of view.

1374 Our modified training strategy exploits this guarantee while allowing the model to benefit from
 1375 iterative refinement when possible. At each epoch, we evaluate the aggregate prediction quality at
 1376 different reverse trajectory endpoints $\tau \in \{t_1 = 1, t_2, \dots, t_K\}$. For each minibatch, we run Alg.
 1377 2 (note, not the guided sampling) and compute the aggregate score for the sampled $\hat{x}_{0,t}$ for each
 1378 timepoint and use the lowest scoring timepoint to form our “latent” \tilde{x}_0 . We cannot use the guided
 1379 sampling since it is guaranteed to match the aggregates at late times. But once we choose the end
 1380 time we can then sample using Alg. 3 stopping at time τ^* and projecting to incorporate the aggregate
 1381 constraints.

1382 If there is significant compounding error, the score will be worse for smaller τ (longer trajectories),
 1383 and the procedure naturally falls back to $\tau = 1$ where convergence is guaranteed. However, when the
 1384 model is well-calibrated, earlier times often achieve better scores because they benefit from multiple
 1385 rounds of refinement.

1386 Now we establish that training from aggregates with adaptive end-time selection produces gradients
 1387 that approximate the oracle unit-level gradients, with the approximation quality determined by the
 1388 best aggregate prediction achievable. This proof is essentially straightforward: we assume that we
 1389 can learn from aggregates using the model at $t = 1$ and then show that our EM procedure will not go
 1390 wrong given this backstop.

1391 Empirically, we often find that using the full trajectory ($\tau = 0$) works well without explicit adaptation,
 1392 suggesting the projection guidance effectively prevents severe compounding. An important area for
 1393 future work is developing a more satisfying theory that explains this strong performance.

1394 **Assumption B.13** (Bounded Fisher information). *The aggregate Fisher information satisfies
 1395 $\sup_{(\mathbf{x}_t, t, z)} \text{tr } I_\theta(\mathbf{x}_t, t, z) \leq C_I < \infty$, and the unit-level score has bounded second moment
 1396 $\mathbb{E}_{q_\theta} [\|\nabla_\theta \log q_\theta(\mathbf{x}_0 \mid \mathbf{x}_t, t, z)\|^2] \leq C_{\text{unit}}(t)$.*

1397 **Theorem B.14** (Gradient bounds under adaptive training). *Under Assumptions B.1–B.13, define the
 1398 aggregate risk at time τ :*

$$1400 \quad R_\tau(\theta) = \mathbb{E}[D_{KL}(p_{\text{data}}(a_0 \mid \mathbf{x}_\tau, \tau, z) \parallel Q_\theta(a_0 \mid \mathbf{x}_\tau, \tau, z))]$$

1404 where \mathbf{x}_τ is generated by Algorithm 3 run up to time τ . Let $g_\tau(\theta)$ be the gradient from aggregate
 1405 scoring and $g_\tau^{\text{unit}}(\theta)$ the oracle unit-level gradient. Then:

$$1407 \|g_\tau(\theta) - g_\tau^{\text{unit}}(\theta)\| \leq \left(\sqrt{2C_I} + \sqrt{2C_{\text{unit}}(\tau)\kappa_{\text{loc}}(\tau)} \right) \sqrt{R_\tau(\theta)}.$$

1408 For adaptive selection $\tau^* = \arg \min_\tau R_\tau(\theta)$, the gradient error is controlled by the minimum
 1409 achievable risk across all times.

1411 This theorem reveals the power of adaptive training: the gradient approximation quality depends on
 1412 the *best* prediction achievable at any time, not a fixed time. When the model is poorly calibrated, $\tau = 1$
 1413 minimizes risk (where exact aggregate-conditional sampling is possible). As training progresses,
 1414 earlier times may achieve lower risk through iterative refinement, automatically improving gradient
 1415 quality. The proof uses the Fisher identity and Pinsker's inequality to bound the gradient gap in terms
 1416 of the aggregate KL divergence.

1417 Combined with the recoverability assumption, this ensures that minimizing aggregate risk leads to
 1418 learning the correct unit-level model. Once correct at any time, the θ -free property of the bridge kernel
 1419 guarantees correct distributions at all times, enabling consistent training across different trajectory
 1420 endpoints.

1421 Throughout, expectations are taken under the population law. For any time $\tau \in [0, 1]$, the state \mathbf{x}_τ is
 1422 generated *recursively* by Algorithm 3 (reverse sampling with projection Π used only to draw $\tilde{\mathbf{x}}_0$ as an
 1423 internal step). The *loss is always pre-projection*: we score $Q_\theta(a_0 | \mathbf{x}_\tau, \tau, z)$, never Π .

1424 Write the aggregate score function

$$1426 \ell_\theta(a_0; \mathbf{x}_\tau, \tau, z) := -\log Q_\theta(a_0 | \mathbf{x}_\tau, \tau, z), \quad s_\theta(a_0 | \mathbf{x}_\tau, \tau, z) := \nabla_\theta \log Q_\theta(a_0 | \mathbf{x}_\tau, \tau, z)$$

1428 so that the population *aggregate* gradient at time τ is

$$1429 g_\tau(\theta) := \mathbb{E}[\nabla_\theta \ell_\theta(A_0; \mathbf{x}_\tau, \tau, Z)] = -\mathbb{E}[s_\theta(A_0 | \mathbf{x}_\tau, \tau, Z)].$$

1431 Define the *oracle unit-level* score and gradient at time τ

$$1433 u_\theta(\mathbf{x}_0 | \mathbf{x}_\tau, \tau, z) := \nabla_\theta \log q_\theta(\mathbf{x}_0 | \mathbf{x}_\tau, \tau, z), \quad g_\tau^{\text{unit}}(\theta) := \mathbb{E}[-u_\theta(\mathbf{X}_0 | \mathbf{x}_\tau, \tau, Z)]$$

1435 (the gradient one would take if \mathbf{X}_0 were observable).

1436 For the aggregate risk we use the KL divergence

$$1438 R_\tau(\theta) := \mathbb{E}[D_{\text{KL}}(p_{\text{data}}(A_0 | \mathbf{x}_\tau, \tau, Z) \parallel Q_\theta(A_0 | \mathbf{x}_\tau, \tau, Z))].$$

1440 B.4.1 TWO ELEMENTARY LEMMAS

1441 The first lemma is the (conditional) Fisher identity plus a Cauchy–Schwarz step.

1443 **Lemma B.15** (Aggregate score bias bound). *For any fixed $(\mathbf{x}_\tau, \tau, z)$,*

$$1445 \left\| \mathbb{E}[s_\theta(A_0 | \mathbf{x}_\tau, \tau, z) | \mathbf{x}_\tau, \tau, z] \right\| \leq \sqrt{\text{tr } I_\theta(\mathbf{x}_\tau, \tau, z)} \cdot \sqrt{2 D_{\text{KL}}(p_{\text{data}}(A_0 | \mathbf{x}_\tau, \tau, z) \parallel Q_\theta(A_0 | \mathbf{x}_\tau, \tau, z))},$$

1447 where $I_\theta(\mathbf{x}_\tau, \tau, z) = \text{Var}_{Q_\theta(\cdot | \mathbf{x}_\tau, \tau, z)}[s_\theta(\cdot | \mathbf{x}_\tau, \tau, z)]$.

1449 *Proof.* Under $Q_\theta(\cdot | \mathbf{x}_\tau, \tau, z)$, $\mathbb{E}[s_\theta] = 0$. Let $L = \frac{dp_{\text{data}}}{dQ_\theta}(A_0 | \mathbf{x}_\tau, \tau, z)$. Then $\mathbb{E}_{p_{\text{data}}}[s_\theta] =$
 1450 $\mathbb{E}_{Q_\theta}[s_\theta(L - 1)]$. By Cauchy–Schwarz, $\|\mathbb{E}_{Q_\theta}[s_\theta(L - 1)]\| \leq \sqrt{\mathbb{E}_{Q_\theta}[s_\theta]^2} \cdot \sqrt{\mathbb{E}_{Q_\theta}[(L - 1)^2]}$. The
 1451 first factor is $\sqrt{\text{tr } I_\theta(\mathbf{x}_\tau, \tau, z)}$. The second equals $\sqrt{\chi^2(p_{\text{data}} \| Q_\theta)} \leq \sqrt{2 D_{\text{KL}}(p_{\text{data}} \| Q_\theta)}$ in the local
 1452 regime near equality,² which yields the claim. \square

1454 The second lemma translates aggregate misfit to unit-level misfit via the local modulus.

1456 ²Locally (when the two distributions are close), $D_{\chi^2} \leq 2 D_{\text{KL}}$; more generally, they are second-order
 1457 equivalent by standard f -divergence comparisons. This is automatically satisfied in a neighborhood of θ^* under
 Assumption B.1.

1458
 1459 **Lemma B.16** (Unit-level score bias via recoverability). *Fix $(\mathbf{x}_\tau, \tau, z)$ and assume the local modulus*
 1460 *in Assumption B.1. Then*

1461
$$\left\| \mathbb{E}[u_\theta(\mathbf{X}_0 \mid \mathbf{x}_\tau, \tau, z) \mid \mathbf{x}_\tau, \tau, z] \right\| \leq \sqrt{2 C_{\text{unit}}(\tau) \kappa_{\text{loc}}(\tau)} \cdot \sqrt{D_{\text{KL}}(p_{\text{data}}(A_0 \mid \mathbf{x}_\tau, \tau, z) \parallel Q_\theta(A_0 \mid \mathbf{x}_\tau, \tau, z))}.$$

1463
 1464 *Proof.* With $p(\cdot) = p_{\text{data}}(\mathbf{x}_0 \mid \mathbf{x}_\tau, \tau, z)$ and $q(\cdot) = q_\theta(\cdot \mid \mathbf{x}_\tau, \tau, z)$, the same step as above
 1465 gives $\|\mathbb{E}_p[u_\theta]\| \leq \sqrt{\mathbb{E}_q\|u_\theta\|^2} \cdot \sqrt{2 D_{\text{KL}}(p\|q)}$. Bound $\mathbb{E}_q\|u_\theta\|^2 \leq C_{\text{unit}}(\tau)$ by Assumption B.13.
 1466 Then apply the local modulus (Assumption B.1) to replace $D_{\text{KL}}(p\|q)$ by $\kappa_{\text{loc}}(\tau) D_{\text{KL}}(p_{\text{data}}(A_0 \mid$
 1467 $\mathbf{x}_\tau, \tau, z) \parallel Q_\theta(\cdot \mid \mathbf{x}_\tau, \tau, z))$. \square

1468
 1469 **B.4.2 PROOF OF THEOREM B.14**

1470 *Proof of Theorem B.14.* By definitions,

1472
$$g_\tau(\theta) - g_\tau^{\text{unit}}(\theta) = -\mathbb{E}[s_\theta(A_0 \mid \mathbf{x}_\tau, \tau, Z)] + \mathbb{E}[u_\theta(\mathbf{X}_0 \mid \mathbf{x}_\tau, \tau, Z)].$$

1474 Apply the triangle inequality and condition on $(\mathbf{x}_\tau, \tau, Z)$:

1476
$$\begin{aligned} \|g_\tau(\theta) - g_\tau^{\text{unit}}(\theta)\| &\leq \mathbb{E}\left[\|\mathbb{E}[s_\theta(A_0 \mid \mathbf{x}_\tau, \tau, Z) \mid \mathbf{x}_\tau, \tau, Z]\|\right] \\ 1477 &\quad + \mathbb{E}\left[\|\mathbb{E}[u_\theta(\mathbf{X}_0 \mid \mathbf{x}_\tau, \tau, Z) \mid \mathbf{x}_\tau, \tau, Z]\|\right]. \end{aligned}$$

1479 Use Lemma B.15 for the first term and Lemma B.16 for the second, then apply Jensen and Assumptions B.13–B.1:

1482
$$\|g_\tau(\theta) - g_\tau^{\text{unit}}(\theta)\| \leq \left(\sqrt{2 C_I} + \sqrt{2 C_{\text{unit}}(\tau) \kappa_{\text{loc}}(\tau)}\right) \sqrt{R_\tau(\theta)}.$$

1484 Finally, for the adaptive choice $\tau^* \in \arg \min_\tau R_\tau(\theta)$, monotonicity gives $\sqrt{R_{\tau^*}(\theta)} \leq \sqrt{R_\tau(\theta)}$ for
 1485 all τ , so the same bound with $R_{\tau^*}(\theta)$ holds, which is exactly the theorem. \square

1487 **B.4.3 REMARKS ON SCOPE AND IDENTIFIABILITY**

1488 **Realizability and local modulus.** Assumption B.1 asks that aggregate equality implies unit-level
 1489 equality with a local modulus $\kappa_{\text{loc}}(t)$. Concrete sufficient conditions follow from identifiability of the
 1490 factorial-cumulant generating family of the units and diversity of covariates z (see Theorem B.10).

1492 **Large- G limits.** As G grows, higher-order cumulants in the aggregate attenuate (Appendix B.3),
 1493 so $\kappa_{\text{loc}}(t)$ may deteriorate unless additional structure is imposed (parametric shrinkage across units,
 1494 multiple aggregates, or occasional unit-level labels).

1496 **B.4.4 WHAT ADAPTIVE END-TIME BUYS YOU**

1498 Defining $R_\tau(\theta)$ using the *recursive* \mathbf{x}_τ makes the comparison truly training-aligned: your per-example
 1499 choice $\tau^* = \arg \min_\tau R_\tau(\theta)$ yields the *tightest* bound

1500
$$\|g_{\tau^*}(\theta) - g_{\tau^*}^{\text{unit}}(\theta)\| \leq \left(\sqrt{2 C_I} + \sqrt{2 C_{\text{max}} \kappa_{\text{max}}}\right) \sqrt{R_{\tau^*}(\theta)},$$

1502 with $C_{\text{max}} = \sup_\tau C_{\text{unit}}(\tau)$ and $\kappa_{\text{max}} = \sup_\tau \kappa_{\text{loc}}(\tau)$ (finite in the realizable neighborhood). Intuitively,
 1503 as the sampler refines its \mathbf{x}_τ along the reverse path, whichever time slice permits the *best*
 1504 aggregate prediction also delivers the *smallest* gap to the oracle unit-level bridge gradient.

1506 **C PROJECTION AND ROUNDING ALGORITHMS**

1508 **Group rescaling.** Algorithm 5 rescales item-level nonnegative values $\{x_b\}_{b=1}^B$ so that each group
 1509 G_g attains a prescribed aggregate C_g . The procedure is linear-time in the number of items and linear
 1510 in memory in the number of groups:

1511
$$T = O(B), \quad M_{\text{extra}} = O(G),$$

1512 and is applied in parallel to each feature dimension.
 1513

Algorithm 5 Group Rescaling to Match Aggregates (scalar form)

1516 **Require:** item values $x_b \geq 0$ for $b = 1, \dots, B$; groups G_1, \dots, G_G ; targets $C_g \geq 0$

1517 **Ensure:** $y_b \geq 0$ with $\sum_{b \in G_g} y_b = C_g$ for all g

```

 1518 1: for  $g = 1, \dots, G$  do
 1519 2:    $S_g \leftarrow \sum_{b \in G_g} x_b$ 
 1520 3:   if  $S_g > 0$  then
 1521 4:     for  $b \in G_g$  do
 1522 5:        $y_b \leftarrow x_b C_g / S_g$                                  $\triangleright$  proportional rescaling
 1523 6:     end for
 1524 7:   else
 1525 8:     for  $b \in G_g$  do
 1526 9:        $y_b \leftarrow C_g / |G_g|$                                  $\triangleright$  uniform split
 1527 10:    end for
 1528 11:   end if
 1529 12: end for
 1530 13: return  $\{y_b\}$ 
 1531
 1532
 1533
 1534
```

1535 **Randomized rounding.** Algorithm 6 independently rounds a real value to the nearest integers,
 1536 preserving the value in expectation. It runs in constant time and memory per entry, so applying it
 1537 over B items has

$$T = O(B), \quad M_{\text{extra}} = O(1).$$

Algorithm 6 Randomized Rounding (scalar form)

1543 **Require:** real value $x \geq 0$

1544 **Ensure:** integer $y \in \mathbb{Z}_{\geq 0}$

```

 1545 1:  $a \leftarrow \lfloor x \rfloor$ 
 1546 2:  $r \leftarrow x - a$ 
 1547 3: sample  $U \sim \text{Unif}[0, 1]$ 
 1548 4: if  $U < r$  then
 1549 5:    $y \leftarrow a + 1$ 
 1550 6: else
 1551 7:    $y \leftarrow a$ 
 1552 8: end if
 1553 9: return  $y$ 
 1554
 1555
 1556
```

1557 **Groupwise exact rounding.** Algorithm 7 converts rescaled real values $\{x_b\}$ to integers $\{y_b\}$ while
 1558 *exactly* preserving each group sum: $\sum_{b \in G_g} y_b = C_g$. Each y_b differs from x_b by at most 1. The only
 1559 expensive step is weighted sampling without replacement inside each group. With Gumbel–Top- k
 1560 sampling the worst-case complexity is

$$T = O\left(\sum_{g=1}^G |G_g| \log |G_g|\right), \quad M_{\text{extra}} = O(B),$$

1561
 1562 and the algorithm is again applied independently over coordinates.
 1563
 1564
 1565

1566 **Algorithm 7** Groupwise Randomized Rounding with Exact Aggregates (scalar form)

1567 **Require:** rescaled $x_b \geq 0$, groups G_1, \dots, G_G , integer targets C_g

1568 **Ensure:** integers $y_b \geq 0$ with $\sum_{b \in G_g} y_b = C_g$ and $|y_b - x_b| \leq 1$

1569 1: **for** $g = 1, \dots, G$ **do** ▷ work inside group G_g

1570 2: **for** $b \in G_g$ **do**

1571 3: $a_b \leftarrow \lfloor x_b \rfloor$

1572 4: $r_b \leftarrow x_b - a_b$

1573 5: **end for**

1574 6: $A_g \leftarrow \sum_{b \in G_g} a_b$

1575 7: $S_g \leftarrow C_g - A_g$ ▷ # of increments required

1576 8: **if** $S_g = 0$ **then**

1577 9: **for** $b \in G_g$ **do**

1578 10: $y_b \leftarrow a_b$

1579 11: **end for**

1580 12: **else**

1581 13: sample a subset $S \subseteq G_g$ of size S_g

1582 14: **without replacement** with weights $\propto r_b$

1583 15: **for** $b \in G_g$ **do**

1584 16: **if** $b \in S$ **then**

1585 17: $y_b \leftarrow a_b + 1$

1586 18: **else**

1587 19: $y_b \leftarrow a_b$

1588 20: **end if**

1589 21: **end for**

1590 22: **end if**

1591 23: **end for**

1592 24: **return** $\{y_b\}$

D SYNTHETIC DISTRIBUTIONS

1596 All synthetic tasks use the same base architecture with a 4-layer MLP with 128 dimensional hidden
 1597 layers. We scale the inputs and outputs in dimension, so for example the DFM and CE-CB have
 1598 $d \times 256$ dimensional outputs (since we clip all datasets to use a range of 256 to make for easy
 1599 tokenization). The energy score models take inputs in $d + \text{noise.dim}$ and we use $\text{noise.dim} = 100$
 1600 throughout. We ran all experiments with Adam using both $lr = 1e-3, 2e-4$ and present results
 1601 for the best performing learning rate for each method. We use a cosine warmup for the learning rate
 1602 for 100 steps. For all experiments we use gradient norm clipping to size 1, batch size 256, and train
 1603 for 500 epochs. For the energy score models, we use exponential model averaging, which is crucial
 1604 to good performance. Full details are available in the codebase.

1605 For the flow matching we use $\sigma = 0.1$ following best practices (we tested larger σ but saw large
 1606 degradations in performance). For the bessel sampler we use $\sqrt{\Lambda_+ \Lambda_-} = 32$.

D.1 DISCRETE 8-GAUSSIANS TO 2-MOONS

D.1.1 DATASET

1611 For qualitative evaluation, we adapt the classic continuous “8-Gaussians to 2-Moons” task into a
 1612 fully discrete, integer-valued setting suitable for count-based flow matching. Each dataset consists of
 1613 50,000 paired samples $(x_0, x_1) \in \mathbb{Z}^2$, constructed as follows.

1614 **Source distribution** (x_0). We generate samples from the standard two-moons dataset in \mathbb{R}^2 using
 1615 `make_moons` with noise level `noise = 0.1`. The moons are shifted to be approximately centered
 1616 at the origin by subtracting $(0.5, 0.25)$.

1618 **Target distribution** (x_1). We construct an 8-component Gaussian mixture arranged evenly on a
 1619 circle of radius 2.0 in \mathbb{R}^2 . Each component has isotropic Gaussian noise with variance matching

1620 noise = 0.1. A sample is generated by first selecting one of the 8 components uniformly at random,
 1621 then drawing from the corresponding Gaussian.
 1622

1623 **Integerization.** Both source and target samples are mapped to the integer lattice by
 1624

$$1625 \quad x \mapsto \text{round}(\text{clip}(x \cdot \text{scale} + \text{offset}, \text{min_value}, \text{value_range} - 1)),$$

1627 with parameters `scale` = 30.0, `offset` = 80.0, `min_value` = 0, and `value_range` = 196.
 1628 This procedure ensures that all outputs fall in the discrete vocabulary $\{0, 1, \dots, 195\}^2$, but the scales
 1629 are chosen so that essentially no values are actually clipped.
 1630

1631 D.1.2 RESULTS

1633 We present a visualization of the learned trajectories in Fig. 2 and the full details in Table 6. Count
 1634 bridges achieve uniformly the best performance using the distributional losses, that is the cross
 1635 entropy or energy scores with the energy score uniformly best.
 1636

1637 Table 6: Discrete Moons Results: Noise \rightarrow Two Moons

1639 Method	1640 MMD	1641 W_2	1642 Energy
CFM	0.065 ± 0.019	0.049 ± 0.008	0.874 ± 0.246
DFM	0.010 ± 0.002	0.010 ± 0.002	0.035 ± 0.014
Count Bridge (CE)	0.0065 ± 0.0023	0.0080 ± 0.0009	0.026 ± 0.004
Count Bridge (ES)	0.0044 ± 0.0018	0.0052 ± 0.0007	0.0098 ± 0.0029
Count Bridge (MSE)	0.030 ± 0.000	0.033 ± 0.001	0.366 ± 0.015

1646 We also run the Count Bridge across different noise levels, here we actually find that our default of
 1647 $\lambda_+ = \lambda_- = 32$ is not optimized, so all results can be considered lower bounds on our performance.
 1648

1649 Table 7: Count Bridge (Energy Score) Results Across Different $\lambda_+ = \lambda_-$ Values

1651 $\lambda_+ = \lambda_-$	1652 MMD	1653 W_2	1654 Energy
0	0.0038 ± 0.0012	0.0046 ± 0.0002	0.0075 ± 0.0011
8	0.0039 ± 0.0015	0.0045 ± 0.0006	0.0080 ± 0.0022
16	0.0049 ± 0.0003	0.0049 ± 0.0003	0.0095 ± 0.0004
32	0.0052 ± 0.0024	0.0055 ± 0.0015	0.011 ± 0.006
256	0.0064 ± 0.0020	0.0063 ± 0.0009	0.015 ± 0.004

1660 D.1.3 NOISE TO 2-MOONS FOR DIFFUSION COMPARISONS

1661 Here we compare against a standard Gaussian DDIM model Song et al. (2020) and Discrete Diffusion
 1662 as in Shi et al. (2024). Since these models go from noise to a target distribution, we cannot do the
 1663 8-Gaussians to 2-Moons task, so we simply target the 2-Moons. This makes the task substantially
 1664 easier. For Count Bridges we use the same results from the previous table (the more difficult task, but
 1665 with comparable scores at the endpoint).
 1666

1667 Table 8: Discrete Moons Results: Eight Gaussians \rightarrow Two Moons

1669 Method	1670 MMD	1671 W_2	1672 Energy
Count Bridge (ES)	0.0044 ± 0.0018	0.0052 ± 0.0007	0.0098 ± 0.0029
Gaussian Diffusion	0.024 ± 0.009	0.017 ± 0.006	0.118 ± 0.064
Discrete Diffusion	0.017 ± 0.010	0.013 ± 0.006	0.072 ± 0.055

1674 D.2 LOW-RANK GAUSSIAN MIXTURE
16751676 D.2.1 DATASET
1677

1678 For synthetic evaluation, we use a pre-sampled integer-valued Gaussian mixture dataset that scales
1679 with the ambient dimension d while fixing the latent rank at $r = 3$. Each dataset consists of 50,000
1680 paired samples $(x_0, x_1) \in \mathbb{Z}^d$ generated according to the following procedure:

1681 **Mixture construction.** We define a $k = 5$ component Gaussian mixture in latent space \mathbb{R}^r with
1682 $r = 3$ (we hold these parameters constant as we scale in d):
1683

- 1684 • **Means.** Component means are drawn from $\mathcal{N}(0, \sigma^2 I)$ with scale $\sigma = \text{mean_scale}/\sqrt{r}$,
1685 and shifted to lie near the center of the integer range. We set $\text{mean_scale} = 20.0$.
- 1686 • **Covariances.** Each covariance is constructed by sampling eigenvalues from an exponential
1687 distribution with scale $\text{cov_scale} = 10.0$, clamped below $\text{min_eigenvalue} = 0.1$,
1688 and conjugating by a random orthogonal matrix.
- 1689 • **Mixture weights.** Weights are drawn from a Dirichlet($1, \dots, 1$) prior, yielding a random
1690 simplex vector.

1691 **Projection to \mathbb{R}^d .** Latent samples $z \in \mathbb{R}^3$ are mapped to the ambient space via a
1692 random projection matrix $P \in \mathbb{R}^{d \times r}$ with entries scaled by $\text{projection_scale}/\sqrt{r}$,
1693 where $\text{projection_scale} = 1.0$. To avoid degeneracy, isotropic Gaussian noise $\epsilon \sim \mathcal{N}(0, \text{noise_scale}^2 I_d)$ with $\text{noise_scale} = 1.0$ is added after projection:
1694

$$1695 y = Pz + \epsilon, \quad z \sim \text{MoGr}, \quad \epsilon \sim \mathcal{N}(0, I_d).$$

1696 **Integerization.** Projected samples $y \in \mathbb{R}^d$ are rounded to the nearest integer and reflected into the
1697 bounded range $[\text{min_value}, \text{value_range} - 1] = [0, 255]$ to ensure validity of DFM.
1698

1700 **Scaling in d .** The intrinsic latent structure is fixed at $r = 3$, while the output dimension d is varied
1701 across experiments (e.g. $d = 5, 16, 32, 128, 256, 512$). This construction produces datasets with
1702 constant intrinsic complexity but increasing ambient dimension, providing a natural test of how
1703 models scale in d .
1704

1705 D.2.2 RESULTS
1706

1707 The central scaling results are presented visually in Fig. 3. Here we also present the full experimental
1708 details in Table 9.
1709

1710 D.3 DECONVOLUTION GAUSSIAN MIXTURE DATASET
1711

1712 We extend the low-rank Gaussian mixture task (Appendix D.2) to evaluate deconvolution capabilities
1713 under controlled conditions. Each observation is formed by aggregating a group of G unit-level
1714 samples into a single count vector.
1715

1716 **Group construction.** For each group, component proportions are drawn from a Dirichlet distribution
1717 with concentration parameter α , yielding group-specific mixture weights. The G unit-level
1718 samples are then drawn independently from the corresponding mixture components. Both the ag-
1719 gregated sum $X_0 \in \mathbb{Z}^d$ and the individual unit-level labels $z \in \{0, 1\}^{G \times k}$ are retained, enabling
1720 evaluation of methods under both aggregate-only and aggregate+unit supervision.
1721

1722 **Experimental variation.** We vary two factors that control the difficulty of deconvolution:
1723

- 1724 • **Group size:** $G \in \{4, 8, 32, 128\}$, which determines how many unit-level samples are aggre-
1725 gated. Larger groups yield more uniform averages and less information about component
heterogeneity.
- 1726 • **Dirichlet concentration:** $\alpha \in \{1, 10, 1000\}$, which controls variability in group-specific
1727 mixture weights. Small α values produce heterogeneous groups (informative for deconvolu-
tion), while large α values yield nearly uniform group proportions (uninformative).
1728

Table 9: Performance Comparison Across Dimensions and Methods

Dim	Method	NFE	MMD	W_2	EMD
4	CFM	8	0.027 \pm 0.014	0.019 \pm 0.002	0.716 \pm 0.420
		32	0.026 \pm 0.017	0.015 \pm 0.004	0.584 \pm 0.460
		128	0.026 \pm 0.018	0.015 \pm 0.004	0.565 \pm 0.469
	DFM	8	0.025 \pm 0.004	0.011 \pm 0.001	0.245 \pm 0.053
		32	0.035 \pm 0.003	0.014 \pm 0.001	0.458 \pm 0.078
		128	0.046 \pm 0.005	0.018 \pm 0.002	0.759 \pm 0.144
	Count Bridge	8	0.0053 \pm 0.0007	0.0040 \pm 0.0004	0.020 \pm 0.004
		32	0.0054 \pm 0.0010	0.0042 \pm 0.0002	0.023 \pm 0.005
		128	0.0098 \pm 0.0008	0.0058 \pm 0.0003	0.055 \pm 0.008
	CFM	8	0.041 \pm 0.013	0.025 \pm 0.004	1.05 \pm 0.18
		32	0.039 \pm 0.012	0.014 \pm 0.004	0.456 \pm 0.147
		128	0.040 \pm 0.010	0.014 \pm 0.003	0.421 \pm 0.128
8	DFM	8	0.026 \pm 0.007	0.011 \pm 0.001	0.204 \pm 0.067
		32	0.034 \pm 0.009	0.011 \pm 0.003	0.317 \pm 0.142
		128	0.042 \pm 0.011	0.012 \pm 0.003	0.497 \pm 0.228
	Count Bridge	8	0.0036 \pm 0.0007	0.0023 \pm 0.0001	0.0068 \pm 0.0024
		32	0.0038 \pm 0.0011	0.0026 \pm 0.0006	0.0077 \pm 0.0028
		128	0.0050 \pm 0.0015	0.0029 \pm 0.0003	0.012 \pm 0.002
	CFM	8	0.066 \pm 0.011	0.028 \pm 0.001	2.08 \pm 0.54
		32	0.053 \pm 0.011	0.017 \pm 0.001	0.788 \pm 0.211
		128	0.052 \pm 0.011	0.015 \pm 0.001	0.647 \pm 0.163
	DFM	8	0.078 \pm 0.001	0.017 \pm 0.000	1.20 \pm 0.06
		32	0.100 \pm 0.005	0.022 \pm 0.002	1.92 \pm 0.28
		128	0.118 \pm 0.017	0.025 \pm 0.004	2.72 \pm 0.86
16	Count Bridge	8	0.0067 \pm 0.0014	0.0035 \pm 0.0003	0.025 \pm 0.007
		32	0.011 \pm 0.001	0.0045 \pm 0.0004	0.048 \pm 0.007
		128	0.017 \pm 0.001	0.0057 \pm 0.0004	0.090 \pm 0.013
	CFM	8	0.145 \pm 0.024	0.030 \pm 0.001	4.63 \pm 1.28
		32	0.131 \pm 0.043	0.026 \pm 0.005	3.14 \pm 1.72
		128	0.131 \pm 0.052	0.022 \pm 0.006	3.09 \pm 1.97
	DFM	8	0.079 \pm 0.027	0.016 \pm 0.008	1.23 \pm 0.76
		32	0.089 \pm 0.023	0.017 \pm 0.006	1.55 \pm 0.85
		128	0.100 \pm 0.027	0.018 \pm 0.007	1.99 \pm 1.10
	Count Bridge	8	0.0083 \pm 0.0008	0.0024 \pm 0.0003	0.021 \pm 0.002
		32	0.010 \pm 0.002	0.0031 \pm 0.0006	0.029 \pm 0.008
		128	0.010 \pm 0.002	0.0034 \pm 0.0007	0.034 \pm 0.007
32	CFM	8	0.296 \pm 0.077	0.042 \pm 0.008	13.43 \pm 6.74
		32	0.313 \pm 0.099	0.046 \pm 0.014	16.07 \pm 9.93
		128	0.326 \pm 0.107	0.049 \pm 0.017	17.94 \pm 11.55
	DFM	8	0.105 \pm 0.033	0.022 \pm 0.007	1.71 \pm 1.07
		32	0.126 \pm 0.039	0.020 \pm 0.005	2.57 \pm 1.58
		128	0.147 \pm 0.048	0.022 \pm 0.006	3.59 \pm 2.20
	Count Bridge	8	0.020 \pm 0.004	0.0051 \pm 0.0005	0.072 \pm 0.019
		32	0.027 \pm 0.002	0.0061 \pm 0.0002	0.112 \pm 0.014
		128	0.029 \pm 0.001	0.0065 \pm 0.0005	0.138 \pm 0.018
	CFM	8	0.335 \pm 0.009	0.038 \pm 0.003	12.89 \pm 1.09
		32	0.276 \pm 0.034	0.033 \pm 0.008	10.59 \pm 3.51
		128	0.260 \pm 0.048	0.032 \pm 0.008	10.55 \pm 4.74
64	DFM	8	0.205 \pm 0.036	0.042 \pm 0.005	6.66 \pm 2.47
		32	0.236 \pm 0.031	0.043 \pm 0.005	9.06 \pm 2.63
		128	0.259 \pm 0.028	0.050 \pm 0.011	10.90 \pm 2.92
	Count Bridge	8	0.128 \pm 0.066	0.014 \pm 0.006	3.30 \pm 2.34
		32	0.140 \pm 0.075	0.014 \pm 0.006	3.89 \pm 2.97
		128	0.151 \pm 0.082	0.016 \pm 0.007	4.55 \pm 3.65
	CFM	8	0.461 \pm 0.007	0.049 \pm 0.007	28.45 \pm 4.63
		32	0.402 \pm 0.049	0.047 \pm 0.006	28.95 \pm 10.71
		128	0.390 \pm 0.069	0.045 \pm 0.012	30.57 \pm 13.24
	DFM	8	0.216 \pm 0.049	0.029 \pm 0.008	9.75 \pm 5.07
		32	0.228 \pm 0.045	0.033 \pm 0.008	12.63 \pm 4.81
		128	0.255 \pm 0.044	0.039 \pm 0.009	15.80 \pm 4.96
256	Count Bridge	8	0.087 \pm 0.045	0.0093 \pm 0.0022	1.58 \pm 1.28
		32	0.092 \pm 0.044	0.0099 \pm 0.0021	1.68 \pm 1.30
		128	0.105 \pm 0.039	0.012 \pm 0.001	1.98 \pm 1.26
	CFM	8	0.569 \pm 0.055	0.051 \pm 0.006	49.32 \pm 7.46
		32	0.471 \pm 0.046	0.049 \pm 0.005	50.69 \pm 11.35
		128	0.438 \pm 0.034	0.048 \pm 0.005	53.70 \pm 14.23
	DFM	8	0.261 \pm 0.069	0.042 \pm 0.015	30.49 \pm 21.88
		32	0.288 \pm 0.099	0.050 \pm 0.019	44.53 \pm 29.76
		128	0.319 \pm 0.112	0.058 \pm 0.022	55.03 \pm 35.35
512	Count Bridge	8	0.081 \pm 0.028	0.010 \pm 0.002	1.46 \pm 0.73
		32	0.085 \pm 0.026	0.010 \pm 0.001	1.79 \pm 0.89
		128	0.113 \pm 0.029	0.016 \pm 0.003	3.53 \pm 2.27

Dataset parameters. We fix the ambient dimension at $d = 4$, latent rank at $r = 3$, number of mixture components $k = 5$, and use the same mixture parameterization as in the low-rank dataset (means scaled by 20.0, covariances scaled by 10.0 with minimum eigenvalue 0.1, projection scale 1.0, isotropic noise 1.0, and integerization into $[0, 255]$). Each dataset contains 5,000 groups, drawn from a base pool of 50,000 pre-sampled mixture samples.

Results. As shown in Fig. 4, deconvolution performance degrades as groups become larger and more uniform. This matches the theoretical results in Appendices B.4.3 and B.3, which establish that deconvolution requires between-group heterogeneity for identification, a property that is inherently lost as G grows. We present detailed results across metrics in Tables 10, 11, 12.

Table 10: Deconvolution Performance: W_2 vs Group Size and Dirichlet Concentration

Group Size (n)	$\alpha = 1$	$\alpha = 10$	$\alpha = 1000$
4	0.0091 ± 0.0005	0.010 ± 0.000	0.011 ± 0.000
8	0.011 ± 0.001	0.014 ± 0.001	0.016 ± 0.000
32	0.020 ± 0.002	0.023 ± 0.002	0.025 ± 0.002
128	0.050 ± 0.008	0.053 ± 0.006	0.057 ± 0.002

Table 11: Deconvolution Performance: EMD vs Group Size and Dirichlet Concentration

Group Size (n)	$\alpha = 1$	$\alpha = 10$	$\alpha = 1000$
4	0.130 ± 0.006	0.195 ± 0.025	0.207 ± 0.040
8	0.286 ± 0.023	0.363 ± 0.037	0.483 ± 0.010
32	0.530 ± 0.051	0.657 ± 0.095	0.921 ± 0.222
128	2.24 ± 0.58	2.22 ± 0.54	2.63 ± 0.14

Table 12: Deconvolution Performance: MMD vs Group Size and Dirichlet Concentration

Group Size (n)	$\alpha = 1$	$\alpha = 10$	$\alpha = 1000$
4	0.011 ± 0.001	0.011 ± 0.002	0.012 ± 0.004
8	0.016 ± 0.001	0.017 ± 0.002	0.021 ± 0.001
32	0.014 ± 0.003	0.020 ± 0.003	0.025 ± 0.010
128	0.037 ± 0.005	0.045 ± 0.007	0.044 ± 0.001

To investigate the importance of different rounding approaches in our deconvolution implementation we run an ablation study where we substitute our preferred exact rounding approach for two alternatives: first a simple deterministic rounding, and second a randomized rounding (where we simply add zero or one with probability of the decimal value). Deterministic rounding can lead to arbitrarily incorrect results, randomized rounding preserves the expectation, and our exact approach will ensure we exactly match the target aggregate value. We find that although our exact approach is superior across three replicates of the $n = 128$, $\alpha = 1$ setting the results are very close particularly for the randomized rounding. We believe this could justify substituting the randomized approach since it is simpler, although in different regimes this may matter more or less.

Table 13: Performance comparison of different rounding methods with standard errors.

Method	MMD	W_2	EMD
exact	0.037 ± 0.005	0.050 ± 0.008	2.24 ± 0.58
randomized	0.038 ± 0.000	0.051 ± 0.007	2.33 ± 0.43
round	0.038 ± 0.003	0.052 ± 0.007	2.32 ± 0.44

E NUCLEOTIDE-LEVEL GENE EXPRESSION MODELLING

E.1 DATASET

Nucleotide-level data preprocessing We use the Onekil peripheral blood mononuclear cells (PBMC) 10X 3' scRNA-seq dataset, originally collected by Yazari et al. (2022). For our analysis, as we are interested in nucleotide-level counts rather than the gene-level counts provided with the initial

1836 publication, we use the preprocessed reads made available by Hingerl et al. (2024). The reads are
 1837 aligned to the hg38 human reference genome. The resulting BAM files are filtered to include only
 1838 high quality, UMI-deduplicated reads. The cell type annotations were used as provided in the original
 1839 dataset.

1840

1841 **Gene-level data preprocessing** We construct the gene-level count matrices directly from our single-
 1842 cell coverage matrices rather than following the typical single-cell gene expression preprocessing
 1843 pipeline. In particular, for each annotated gene and each cell, we take the max count over the
 1844 nucleotide-level coverage matrix as the count for the gene.

1845

1846 E.2 ARCHITECTURE, TRAINING, AND INFERENCE

1847 E.2.1 INPUTS AND EMBEDDINGS

1849 We model nucleotide-level counts on a fixed window of length $L=896$. For each example we form
 1850

$$1851 x_t \in \mathbb{Z}_{\geq 0}^L, \quad t \in (0, 1], \quad z \sim \mathcal{N}(0, I_{d_z}), \quad c \in \{1, \dots, C\}, \quad \text{seq} \in \{\text{A, C, G, T, N}\}^L.$$

1852 Sequence context is embedded with a frozen Enformer encoder (EleutherAI checkpoint), yielding
 1853 per-position embeddings

$$1854 E(\text{seq}) \in \mathbb{R}^{L \times d_E}, \quad d_E = 3072.$$

1855 We tile the scalars across positions and concatenate

$$1857 H^{(0)} = [E(\text{seq}) \parallel x_t \parallel t \parallel z \parallel \text{emb}(c)] \in \mathbb{R}^{L \times (d_E + 1 + 1 + d_z + d_c)},$$

1858 with $d_z=100$ and $d_c=14$. A two-layer SELU MLP projects to the model width d :

$$1859 X^{(0)} = \phi(W_2 \phi(W_1 H^{(0)})) \in \mathbb{R}^{L \times d}.$$

1861 E.2.2 LOCAL ATTENTION BACKBONE

1863 We apply N_{attn} residual self-attention blocks (PyTorch MultiheadAttention, batch-first) with
 1864 LayerNorm:

$$1865 \tilde{X}^{(\ell)} = \text{MHA}(X^{(\ell)}, X^{(\ell)}, X^{(\ell)}), \quad X^{(\ell+1)} = \text{LN}(\tilde{X}^{(\ell)} + X^{(\ell)}),$$

1867 where the residual skip uses the pre-block $X^{(0)}$ as in the implementation.³ We use $N_{\text{attn}}=2$ layers,
 1868 $d=\text{hidden_dim}$, and $h=4$ heads. A linear projection followed by softplus produces a
 1869 nonnegative per-position prediction

$$1870 \hat{x}_0 = \text{softplus}(W_{\text{out}} X^{(N_{\text{attn}})}) \in \mathbb{R}_{\geq 0}^L.$$

1872 This parameterizes the conditional law $q_{\theta}(\cdot \mid x_t, t, z, c, \text{seq})$ used inside the count-bridge reverse
 1873 kernel (Sec. 3).

1874

1875 E.2.3 LEARNED PROJECTION MODULE Π_{ψ}

1876 When an aggregate constraint $a_0 = \sum_{i=1}^L x_{0,i}$ is observed, we refine \hat{x}_0 with a lightweight attention
 1877 projector that operates across *positions*. We form

$$1879 Y^{(0)} = [\hat{x}_0 \parallel x_t \parallel a_0 \parallel X^{(N_{\text{attn}})}] \in \mathbb{R}^{L \times (1 + 1 + 1 + d)}.$$

1880 A two-layer SELU MLP lifts to width d , then $N_{\text{proj}}=2$ self-attention layers (sequence-first API)
 1881 with residual+LayerNorm are applied:

$$1883 \tilde{Y}^{(m)} = \text{MHA}(Y^{(m)}, Y^{(m)}, Y^{(m)}), \quad Y^{(m+1)} = \text{LN}(\tilde{Y}^{(m)} + Y^{(0)}).$$

1884 A linear head produces an additive correction which we re-softplus for nonnegativity:

$$1886 \tilde{x}_0 = \text{softplus}(W_{\text{proj}} Y^{(N_{\text{proj}})}) + \hat{x}_0.$$

1887 At inference, when a_0 is present we use \tilde{x}_0 as the endpoint in the reverse step; otherwise we use \hat{x}_0 .

1888
 1889 ³Code uses a “global” residual $X \leftarrow X + X^{(0)}$ within each block. We retained this because it stabilized
 training with $L=896$.

1890
1891

E.2.4 TRAINING OBJECTIVES AND SCHEDULES

1892
1893
1894
1895
1896
1897

Distributional loss (energy score). We train q_θ with the energy score S_ρ on the conditional $X_0 \mid X_t=x_t$ (Sec. 3.2). For each example we draw m i.i.d. samples $\hat{x}_0^{(j)} \sim q_\theta(\cdot \mid x_t, t, z, c, \text{seq})$ via ancestral decoding of the per-position parameterization and estimate the U -statistic version of S_ρ with $\rho(x, x') = \|x - x'\|_2^\beta$ ($\beta \in (0, 2)$). We used $m=2$ in practice.

1898

Aggregate-aware training. With probability $p_{\text{agg}}=0.1$ we attach an aggregate a_0 and route the forward pass through Π_ψ to obtain \tilde{x}_0 , then compute the same energy score. This jointly trains Π_ψ to approximate sampling from the mean-conditional $X_0 \mid A(X_0)=a_0, X_t, t$ while preserving the exact reverse transition of the count bridge.

1902

1903
1904
1905

Cell-type masking. To support both conditional and unconditional generation, we randomly mask the cell-type embedding with probability p_{mask} (set to zero vector). We used $p_{\text{mask}}=0.1$.

1906

1907
1908

E.2.5 OPTIMIZATION AND HYPERPARAMETERS

1909
1910

We use Adam, learning rate $\{2 \times 10^{-4}$, cosine warmup for 100 steps, EMA with 0.999, batch size 128, gradient clipping at 1.0. See configs for exact architecture specification.

1911

1912
1913

E.2.6 SAMPLING

1914
1915
1916
1917
1918

At test time we follow Alg. 2: starting from x_1 we iterate $t_k \downarrow 0$. At each step we sample $\tilde{X}_0 \sim q_\theta(\cdot \mid x_{t_k}, t_k, z, c, \text{seq})$; if an aggregate is provided we replace with $\tilde{x}_0 = \Pi_\psi(\hat{x}_0, a_0, x_{t_k})$. We then apply the exact binomial-hypergeometric reverse kernel (Prop. 3.1) to obtain $x_{t_{k-1}}$. This guarantees that trajectories remain within the discrete support while leveraging the learned distributional posterior. We use three function evaluations for all results in this application.

1919
1920
1921

E.3 ADDITIONAL RESULTS

1922
1923

In Tab. E.3 we provide results for gene expression prediction performance, broken down by cell type.

1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939

Cell type	Baseline MSE	CB MSE
CD4 ET	3.596	1.402
NK	0.415	0.364
CD4 NC	3.382	1.304
CD8 S100B	2.619	1.002
CD8 ET	1.065	0.540
B IN	2.556	1.091
CD8 NC	3.381	1.311
B Mem	6.742	3.416
NK R	1.624	0.781
Mono NC	1.485	0.752
Mono C	1.253	0.676
DC	9.302	4.475
Plasma	10763.906	10696.934
CD4 SOX4	3.428	1.323

1940
1941
1942
1943

We also analyze the unit-level profiles of the deconvolved transcriptomes. We aggregate the nucleotide level transcriptomes up to the gene level by computing the maximum count over the gene profile, enabling us to generate a count matrix from our deconvolved profile. We then assign the cell types and plot the UMAP of the held-out ground truth vs the deconvolved transcriptomic profiles. We can see that the deconvolved profiles are realistically clustered mirroring the ground truth 5.

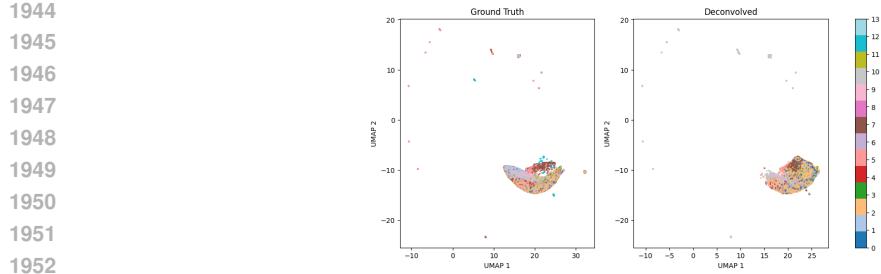


Figure 5: Ground Truth vs Deconvolved UMAP for nucleotide level bulk deconvolution, aggregated to the gene level and hued by cell type (as assigned by Yazar et al. (2022)).

F SPATIAL TRANSCRIPTOMIC DECONVOLUTION

F.1 DATASET

Preprocessing We used the publicly available mouse brain MERFISH dataset from Vizgen (2021). We subset the data to a particular slice (slice 1, replicate 2). We used the transcript puncta and nuclear segmentation masks as provided with the dataset. For gene expression, we used the raw transcript counts without applying standard single-cell preprocessing pipelines. For each cell, we resized the DAPI image to 256x256 pixels by padding.

Aggregation To simulate a Visium-style spatial transcriptomics dataset, we aggregated the single-cell MERFISH data. A grid of spots was defined with a center-to-center distance of $100\mu\text{m}$ and a spot radius of $55\mu\text{m}$. The gene expression profile for each simulated spot was then generated by summing the transcript counts of all identified cells whose nuclei fell within the circular bounds of that spot.

F.2 ARCHITECTURE, TRAINING, AND SAMPLING

F.2.1 INPUTS AND TOKENIZATION

We model spot-level *counts* while conditioning on *image* context and diffusion *noise/time* tokens. Each training example provides

$$x_t^{\text{cnt}} \in \mathbb{Z}_{\geq 0}^{D_c}, \quad I_t \in \mathbb{R}^{C \times H \times W}, \quad t \in (0, 1], \quad \varepsilon \in \mathbb{R}^{d_\varepsilon}, \quad y \in \{1, \dots, C_y\} \text{ (optional).}$$

Images are patchified by a ViT-style embedder (PatchEmbed) into

$$X^{\text{img}} \in \mathbb{R}^{B \times N_{\text{img}} \times d}, \quad N_{\text{img}} = (H/P)(W/P),$$

while counts are converted into a small set of *count patches* using a learned projector (CountPatchEmbedding):

$$X^{\text{cnt}} = \text{reshape}\left(\text{MLP}(x_t^{\text{cnt}}), [B, N_{\text{cnt}}, d]\right) + E_{\text{cnt}},$$

with N_{cnt} learned “pseudo-patches” and E_{cnt} learnable positional embeddings.

We form auxiliary tokens for time, noise, and (optionally) class:

$$\underbrace{\tau}_{\text{time}} = \text{TimeMLP}(\text{timestep_emb}(t)) \in \mathbb{R}^{B \times 1 \times d}, \quad \underbrace{\eta}_{\text{noise}} = \text{NoiseMLP}(W_\varepsilon \varepsilon) \in \mathbb{R}^{B \times 1 \times d},$$

and, if labels are used, $\ell = \text{Emb}(y) \in \mathbb{R}^{B \times 1 \times d}$. Concatenating all tokens,

$$X^{(0)} = [\ell; \eta; \tau; X^{\text{img}}; X^{\text{cnt}}] + E_{\text{pos}} \in \mathbb{R}^{B \times (N_{\text{img}} + N_{\text{cnt}} + \text{extras}) \times d},$$

with a single learned positional table E_{pos} covering all tokens.

1998 F.2.2 U-ViT BACKBONE (FUSION AND DECODING)
19992000 We process $X^{(0)}$ with a U-Net-style ViT:

2001
$$\underbrace{X^{(1)}, \dots, X^{(L/2)}}_{\text{encoder (save skips)}} \xrightarrow{\text{mid Block}} \underbrace{\tilde{X}^{(L/2)}, \dots, \tilde{X}^{(L)}}_{\text{decoder (with skips)}},$$

2002
2003

2004 where each `Block` is a standard MHA +MLP transformer block with LayerNorm, and decoder
2005 blocks attend over skip connections. A final LayerNorm yields $X^{\text{out}} \in \mathbb{R}^{B \times (N_{\text{img}} + N_{\text{cnt}} + \text{extras}) \times d}$.2006 We then drop the auxiliary tokens and split modalities:
2007

2008
$$X_{\text{out}}^{\text{img}} = X^{\text{out}}[:, \text{img range}, :], \quad X_{\text{out}}^{\text{cnt}} = X^{\text{out}}[:, \text{cnt range}, :].$$

2009

2010 **Count decoder.** Count patches are decoded back to a vector via a small MLP head with nonnegativity
2011 enforced by `Softplus`:

2012
$$\hat{x}_0 = \text{Softplus}\left(\text{MLP}(\text{flatten}(X_{\text{out}}^{\text{cnt}}))\right) \in \mathbb{R}^{B \times D_c}.$$

2013

2014 This parameterizes $q_{\theta}(\cdot | x_t^{\text{cnt}}, I_t, t, \varepsilon, y)$ for the distributional loss and the reverse count-bridge step.
2015

2016 F.2.3 TRAINING OBJECTIVE AND USAGE

2017 We train the model to predict the distribution of X_0 (counts) given multimodal context under the
2018 bridge (X_t):
2019

2020
$$\mathcal{L}(\theta) = -\mathbb{E}_{t, (X_0, X_t)} \left[S_{\rho}(q_{\theta}(\cdot | X_t^{\text{cnt}}, I_t, t, \varepsilon, y), X_0^{\text{cnt}}) \right],$$

2021

2022 using the energy score S_{ρ} with $\rho(x, x') = \|x - x'\|_2^{\beta}$ ($\beta \in (0, 2)$) and the standard unbiased U -statistic
2023 estimator with m samples from q_{θ} . Time and noise tokens implement the distributional diffusion
2024 conditioning; label tokens (if present) enable class-conditional modeling. During reverse sampling
2025 we draw $\tilde{X}_0 \sim q_{\theta}(\cdot | x_t^{\text{cnt}}, I_t, t, \varepsilon, y)$ and update $x_{t-\Delta}$ using the exact binomial–hypergeometric
2026 count-bridge kernel (Prop. 3.1).
2027

F.2.4 IMPLEMENTATION SPECIFICS

- **Patchification.** `PatchEmbed` uses patch size P on I_t (channels C), producing $N_{\text{img}} = (H/P)(W/P)$ tokens of width d . `CountPatchEmbedding` projects D_c -dimensional counts to N_{cnt} tokens of width d with learned positional embeddings.
- **Auxiliary tokens.** Time token: `timestep_embedding` followed by a linear or MLP projector (`time_dim` controls concatenated components); noise token: linear to d then a 2-layer SiLU MLP; label token: lookup embedding if used. All tokens share a single learned positional table.
- **Backbone.** Depth L with $L/2$ encoder and $L/2$ decoder blocks; each block uses d -dimensional embeddings, h heads, MLP ratio r , LayerNorm, and (optionally) gradient checkpointing. Decoder blocks accept the matching encoder skip.
- **Heads.** Count head: 2-layer GELU MLP over the concatenated count tokens, ending with `Softplus`. Image head exists but is ignored for the loss.
- **No weight decay.** We exclude token positional tables and count-positional embeddings from weight decay, following ViT practice.

F.2.5 OPTIMIZATION AND HYPERPARAMETERS

2045 We use Adam, learning rate $\{2 \times 10^{-4}$, cosine warmup for 100 steps, EMA with 0.999, batch size
2046 128, gradient clipping at 1.0. See configs for exact architecture specification.
2047

F.2.6 SAMPLING

2048 At test time we follow Alg. 3 using the aggregates to ensure our sampled \hat{x}_0 exactly match the target
2049 sum at each intermediate time. We then apply the exact binomial–hypergeometric reverse kernel
2050 (Prop. 3.1) to obtain $x_{t_{k-1}}$.
2051

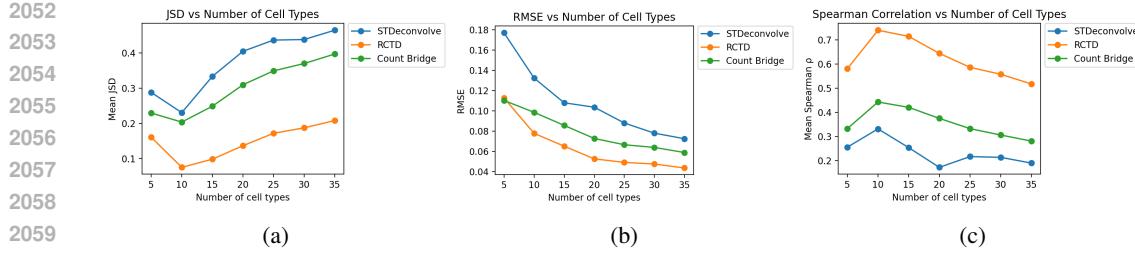


Figure 6: Performance of RCTD, STDeconvolve and Count Bridge on MERFISH deconvolution across number of cell types using (a) Jensen Shannon Divergence (JSD), (B) RMSE and (C) Spearman Correlation

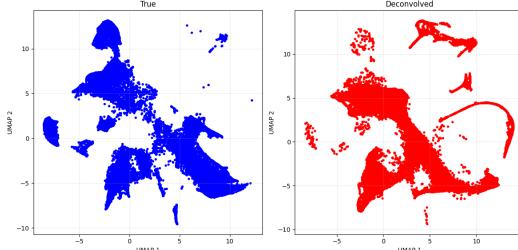


Figure 7: UMAP of true vs deconvolved cell profiles using the Count Bridge.

F.3 ADDITIONAL RESULTS

Comparison with reference-based methods Count Bridges and STDeconvolve are both reference-free methods: that is, they require only aggregate level data, and do not need a reference dataset of unit-level measurements. Many deconvolution methods, including RCTD (Cable et al., 2022) require a single-cell (non-spatial) reference dataset. These methods benefit from unit-level observations, and as such solve a more constrained problem – but require data which are not available in many settings.

Using the MERFISH benchmarking setup we also evaluate RCTD, and tabulate the results in Tab. 14. For evaluation, we use Jensen shannon Divergence (JSD) and RMSE metrics as described in Li et al. (2023). We find that Count Bridges perform similarly to RCTD (with a higher JSD but lower RMSE), despite the fact that Count Bridges do not have access to a reference dataset.

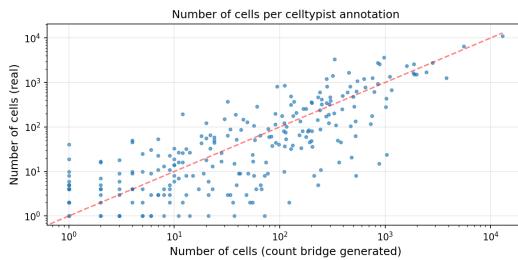
Method	JSD	RMSE	Spearman
STDeconvolve	0.288	0.177	0.255
RCTD	0.161	0.113	0.580
Count Bridge	0.229	0.110	0.332

Table 14: Cell-type deconvolution error for spatial transcriptomic data. Note that RCTD requires a single-cell reference dataset for deconvolution.

In Fig. 6, we show the performance of spatial deconvolution methods across varying numbers of cell types. These results evaluate only the recovery of cell type proportions, and do not evaluate full count profiles. Note that RCTD has access to the single-cell level reference data, while STDeconvolve and Count Bridges are fit entirely using aggregate-level data and do not have access to single cell counts.

Inspection of unit-level data generated by Count Bridges In the previous section, we have shown through quantitative metrics that Count Bridges outperform alternatives for reconstructing unit-level gene expression vectors from spot-level aggregates. We next aim to evaluate the extent to which reconstructed gene expression profiles are biologically meaningful. We do this by performing conventional single-cell transcriptomic analysis on the synthetic unit-level expression vectors generated by Count Bridges.

2106
2107
2108
2109
2110
2111
2112
2113
2114



2115 Figure 8: Abundance of putative cell types (automatically annotated by celltypist) in synthetic unit-
2116 level data generated by Count Bridges through deconvolution, vs. abundance of putative cell types in
2117 true unit-level data.

2118
2119
2120 First, we plot the umap of the raw expression profiles of the true and generated data in 7. We can
2121 clearly see that, without ever seeing unit-level data, our deconvolution approach clearly learns a
2122 realistic distribution of cells. This is visually clear in the distribution of the UMAP.

2123 Second we will perform cell-type annotation. We preprocess by normalizing counts to 10^4 per
2124 cell (row-normalizing), followed by a log-transform, then annotate cell types using celltypist
2125 (Domínguez Conde et al., 2022). From this process, we identify 268 putative cell types in the
2126 synthetic unit-level data. The same pipeline, when applied to the real single-cell level measurements,
2127 identifies 278 putative cell types. And as shown in Figure 8, the cell type abundances inferred by
2128 Count Bridges (without access to unit level data) closely align with the cell type abundances observed
2129 in the true unit level data.

2130 **Deconvolution of a 10X Visium dataset** We next evaluate the deconvolution of spots in a real
2131 world 10X Visium dataset profiling the mouse brain. As ground truth is unavailable in this setting, we
2132 validate model predictions by assessing the extent to which the synthetic deconvolved data reflects
2133 known biology.

2134 We use the 10X Visium fluorescence dataset distributed by Palla et al. (2022), which profiles a coronal
2135 section of a mouse brain. To demonstrate the generalization capabilities of Count Bridges, we apply
2136 the model trained on MERFISH data directly to this Visium dataset without retraining.

2137 In order to correct batch effects and align dimensionality between datasets, we employ a moment-
2138 matching procedure. For each gene in the MERFISH data, we compute the mean and variance of
2139 expression and identify the gene in the 10X Visium data that most closely matches these moments.
2140 We then map the 10X Visium count matrices to the MERFISH feature space by subsetting to these
2141 matched genes.

2142 We deconvolve the 10X Visium data using Count Bridges with a spot-level mean constraint. To
2143 evaluate prediction quality, we use a standard single-cell analysis pipeline (as described above) and
2144 determine putative cell type annotations using Celltypist (Domínguez Conde et al., 2022). Celltypist
2145 identifies 146 putative cell types, suggesting that the synthetic unit-level data recapitulates a significant
2146 degree of cell-to-cell variation. Furthermore, the recovered cell types are biologically consistent:
2147 the most abundant identified cell type is the oligodendrocyte, which matches the most abundant
2148 annotation in the MERFISH mouse brain dataset described above.

2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159