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ABSTRACT

Many modern biological assays, including RNA sequencing, yield integer-valued
counts that reflect the number of RNA molecules detected. These measurements are
often not at the desired resolution: while the unit of interest is typically a single cell,
many RNA sequencing and imaging technologies produce counts aggregated over
sets of cells. Although recent generative frameworks such as diffusion and flow
matching have been extended to non-Euclidean and discrete settings, it remains
unclear how best to model integer-valued data or how to systematically deconvolve
aggregated observations. We introduce Count Bridges, a stochastic bridge process
on the integers that provides an exact, tractable analogue of diffusion-style models
for count data, with closed-form conditionals for efficient training and sampling.
We extend this framework to enable direct training from aggregated measurements
via an Expectation-Maximization-style approach that treats unit-level counts as
latent variables. We demonstrate state-of-the-art performance on integer distribu-
tion matching benchmarks, comparing against flow matching and discrete flow
matching baselines across various metrics. We then apply Count Bridges to two
large-scale problems in biology: modeling single-cell gene expression data at the
nucleotide resolution, with applications to deconvolving bulk RNA-seq, and resolv-
ing multicellular spatial transcriptomic spots into single-cell count profiles. Our
methods offer a principled foundation for generative modeling and deconvolution
of biological count data across scales and modalities.

1 INTRODUCTION

Integer-valued counts are a fundamental product of scientific measurements because of the discrete
nature of molecules. Modern biological assays yield massive streams of count data: RNA-seq read
counts, fluorescence imaging molecule counts, and mass cytometry ion counts (Klein et al., 2015}
Raj et al.l 2008} Bendall et al., 2011). However, these measurements are often aggregated over
multiple individual units, obscuring the fine-grained patterns underlying these natural phenomena.
Transcriptomics technologies exemplify this challenge, with technologies such as Visium capturing
10-50 cells per spot (Stahl et al., 2016) and bulk RNA-seq aggregating thousands to millions of cells
per readout, yielding averages rather than high-resolution details. Deconvolving these aggregates into
single-cell profiles is critical for the precise mapping of cellular heterogeneity, cell-cell interactions,
and tissue architecture (Moses & Pachter, 2022} |Armingol et al.,|2021). The challenge is twofold:
building generative models that respect the integer nature of counts and extending these models to
infer unit-level profiles from aggregated observations.

Recent developments in generative modelling only partially adresss the problem. Discrete diffusion
models (Austin et al.,[2021};|Lou et al.,[2023)) treat counts as unordered categories through masking
or uniform noise. Blackout Diffusion (Santos et al.| [2023)), the only count-specific approach, uses
pure-death processes that cannot transport between arbitrary distributions. The biological decon-
volution literature on the other hand focuses on deconvolving cell-type (cluster-level) proportions
(Kleshchevnikov et al.| [2022} |Cable et al.| [2022; |Li et al.| [2023b)), rather than unit-level count profiles.
Thus, there is need for a framework that respects the integer and ordinal structure of counts, enables
transport between arbitrary distributions, and can systematically deconvolve aggregated observations.

We introduce Count Bridges: a stochastic bridge process on Z? using Poisson birth-death dynamics.
This yields closed-form conditionals for exact sampling and extends naturally to deconvolution via an
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EM algorithm treating unit-level counts as latent. The birth-death mechanism allows transport between
arbitrary integer-valued distributions while preserving the ordinal structure, as both increments and
decrements respect the natural ordering of counts. We show that Count Bridges outperform existing
methods on synthetic benchmark datasets and scale more favorably to high-dimensional settings. We
then showcase Count Bridges on two real-world biological applications centered on deconvolution:
nucleotide-resolution single-cell RNA-sequence modeling for bulk RNA-seq deconvolution and
reference-free spatial transcriptomic deconvolution. The anonymized codebase is available here,

2 BACKGROUND ON DIFFUSION MODELS

We present diffusion models as a time—indexed family of bridge kernels connecting Xy~ pgata and
X1~ v, where v is a source distribution (often Gaussian). We will use two kernels: (i) the global
bridge K1 (x1,%0) = Law(X; | X1=x1, Xo=m0), used to draw training tuples; and (ii) the local
bridge K (x¢, o) = Law(X | Xi=x¢, Xo=20) for 0< s < ¢ < 1, used to compose steps along a
time grid. We train a denoiser gy that allows approximately sampling the posterior,
X ~ qo(zt,t) ~ Law(Xo | Xe=x4),

using pairs (¢, X;) from the global bridge. For sampling, pick 1 = tx > --- > tg = 0, draw X; ~v,
set X;, <~ X1, and fork = K—1,...,0 sample

> (k > (k

X~ qo(Xatir), Xap ~ Koo, (X0, X8, ()
So the sampling process cannot drift out of the training distribution and ps(x) is equivalently:
J Ko (zslzy, wo)v(z)dey = [ Kyy(zs | 0, x0) poje(zo | 2) Ky1 (2 | 21, 20) v(21) dao day doy .

Different problem classes require different bridge families K'|. and different methods to approximate
the posterior, but the general training/sampling scheme above is unchanged.

2.1 DIFFUSION AS A BRIDGE BETWEEN NOISE AND DATA

First, let us consider a process (X¢);c[o,1] of the following form
X =y Xo + Bo,, (2)

where (B¢);e(o,1) is a d-dimensional Brownian motion, oy is a non-increasing process and oy is a
non-decreasing process. In addition, we assume that X ~ pgata. Note that g = 1 and og = 0.

First, we want to define a process that interpolates smoothly between Xy~ pgata and X7 given by
another distribution as in [Peluchetti| (2023)); |Albergo et al.| (2023)); Delbracio & Milanfar| (2023); |Liu
et al.| (2022;2023). We have the following proposition defining the global and local bridge.
Proposition 2.1. Let (X¢);¢[o,1) be given by equation Now, consider (X)se[o,¢ conditioned by
X¢ = xy and Xo = xg. Then, we have that
Xs i 055(1 7Ts,t)XO+ %Ts,tXt‘i’O's(l 7rs,t)1/2Z7 (3)
t

where Z ~ N (0,1d) is independent of Xo, Xy and v = azg'g.

e}

We can use this as the global bridge for training by setting t = 1, and as a local bridge for sampling
using ¢ and s iteratively. Note that if X; ~ A(0,Id), a; = 0 and o7 = 1 then we get that

X, L o, X+ 0,2 4)

Furthermore, our equation |3|recovers the interpolation described in |Albergo et al.| (2023)) with the
identification oty — (1 — 1), g—:rt — Brand oy (1 — 74)Y/% = ;.

2.2  SAMPLING THE POSTERIOR

In this paradigm the bridge is only the first of two choices that define the model. We also have to
choose how to model the posterior X| X%, t. There are two core options: we can use differential
equations to model the posterior in the limit of small steps or we can focus more directly on modeling
the posterior. In Euclidean space, the former lets us learn a simple conditional expectation, whereas
the latter always requires a distribution model.
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Figure 1: Left: Sample paths for several endpoint gaps d; (top). Fixing the prefix [0, ¢] resample
(t, 1] by the recursive kernel (bottom). Middle: Bessel slack posteriors at initial and intermediate
times. The slack M; concentrates near 0 as |d| grows. Right: ECDFs of X from a one—step kernel
(1—s) and a two-step kernel (1 —¢— s) are indistinguishable, confirming composition.

For X; = a4 X + B,, and a small step § > 0, the local bridge yields
X~ Xpps + 00(Xigs, t40) + Vi e 5,
where the drift b and noise A are defined by the conditional moments
E[X:| Xtys=x] = 2+ db(x,t+5) + 0(0), Cov[X;|Xirs=1] = 0 A(x,t+5) + 0(d),
and ¢, 5 satisfies Ele; 5| Xy 45=2] = 0, Covles 5| Xiy5=1] = A(z,t+0). By linearity in X,
b(z,t) = Bi(t) x + Ba(t) pope(z) +bo(t), Az, 1) = Ao(2),

depends on the posterior Law(Xy | X;=x) only via its mean pio|;(x) = E[X¢ | X;=x]. Hence a point

denoiser &g (z,t) ~ po|¢ () (equivalently a score/velocity) is sufficient here (Song et al., 2020).

Distributional. Following De Bortoli et al.| (2025) we can learn the conditional law qg( - | x¢,t) ~
Law(Xo | X;=x;), which we directly plug into equation|[I} The distributional perspective is particu-
larly powerful when the infinitesimal perspective fails to admit a simplification to the conditional
expectation, which motivates our use of the distributional approach for count bridges (see Sec. [3.2).
Note that in categorical discrete settings, all approaches are distributional since they are based on

cross-entropy losses, see|Campbell et al|(2022)); [Austin et al.| (2021); [Shi et al.| (2024); [Sahoo et al ]
(2024) for instance.

Infinitesimal.

3 COUNT BRIDGES

3.1 AN INTEGER BRIDGE BETWEEN DISTRIBUTIONS

Mirroring Sec. [2| we seek to develop a bridge for integer data. We let Ay : [0, 1] = R>¢ be rate

functions with cumulants A4 (t) = fg A+(s)ds and let w(t) = % We draw independent

Poisson processes (B;)c(o,1] ~ Poi(A ) and (Dy)¢cjo,1) ~ Poi(A_), then
Xy =Xo+ By — Ds. %)

We denote d; = X; — X, the total number of jumps N; = B; + Dy, and the slack variable
M; = min(By, D;). Any two of these variables identify the others:

Nt:|dt|+2Mt, Bt:%(Nt-f—dt), Dt:Nt—Bt. (6)
With these results in hand we can derive the counterpart of Proposition 2.1]in this setting.
Proposition 3.1. Let (X;).c[0,1] be given by equationﬁ Now, consider (X)¢e(o,4) conditioned by
X = xy and Xy = xo. Then, we have that

X, < Xy + B, — D, %)
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where

w(s)
w(t)
and dy = x; — xo, Ny and By are given by equation[6|and M, ~ Bes(|dy|; A4 (t), A_(t)).

Ns | Ny ~ Bin(Nn ) » Bs| (N, Ng, Be) ~ Hyp(Ne, By, N;), Dy =Ns—Bs, (8)

We visualize this process in Fig. [T| where we show the trajectories for the one- and two-step models
along with the core composition property that drives bridge models. This setup enables training and
sampling from a Count Bridge, see Algorithms|l|and[2] These results leverage our custom CUDA
kernel implementing (Devroyel 2002)) to enable sampling the Bessel distribution at scale.

In Fig. we can also see that as d; grows the slack concentrates at zero. This further connects Count

and Schrodinger Bridges [Léonard (2013). Let P[; be the joint induced by the birth-death kernel.

Then, iterating on Count Bridge would yield 7", similarly to|Shi et al.|(2023)), where we have

7% carg  min  KL(II|| P%,), KL(II|| P%,) = O,y +log(%>]En|X17X0| — H(IT) +0,,(1),
ell(Py,Py)

ref ref
05

so k | 0 gives the discrete OT (with cost |21 — xg|), while k1 0o yields Py ® Py (see App. |A.3).
Returning to our setup in Section if X1 = Xy + B, (i.e., a; =1, o =0), the same projection
gives R

KL(IT|| P) = Co + 502 Enl| X1 =Xo||* — H(IT) + 0(1),
0 10 gives the quadratic OT, while o 1 oo yields Py® P;. Thus « echoes entropy regularization in o.

3.2 DISTRIBUTIONAL SCORING LOSS FOR THE DENOISER

Training requires a distributional loss due to the discrete nature of the space. As shown by |Holderrieth
et al.| (2024), the ELBO for discrete generators (e.g., jump processes) is distributional and cannot
be reduced to expectations over point estimates. This mirrors the need for cross-entropy in discrete
diffusion and flow models. However, since our data lives on a structured count space, we can go
beyond cross-entropy by using a proper scoring rule that better respects the geometry.

Formally, let (X, X;) denote a pair from the forward bridge law at time ¢ € [0, 1], and let gy(- |
x4, t, z) be our denoiser. We train gy using a strictly proper distributional scoring rule (Gneiting &
Raftery, 2007; De Bortoli et al., [2025). Fix a negative-type semimetric p on Z” (e.g. p(z,2") =

|z — 2/||5 with 3 € (0,2)). For any distribution p and outcome y, the energy score is

Sp(pa y) = %EX,X’NP [p(X, X/)] - IEXNp [p(X, y)]7

which is strictly proper when p is characteristic. The objective integrates the conditional score over
the bridge with a user-chosen weight schedule w:

1
E(e) = _/ th(XOaXt) |:Sp(q9( ) | Xt7t7 Z)7 XO):|dt
0

We employ the standard U-statistic estimator (Gneiting & Raftery, [2007; |De Bortoli et al., [2025).

4 DECONVOLUTION WITH COUNT BRIDGES

We extend Count Bridges to handle unit-level generation when we only observe aggregates. Consider
G units in the one-dimensional case where the group-level state at time ¢ is a vector X; € Z¢
with entries X g; for unit g at time ¢. Each entry evolves independently according to the bridge in
Section (3] The key challenge: we observe the unit-level endpoint x; but only the aggregate at time 0,
ap =Y. g—1Xg0 € Z, not the unit-level vector x¢. Our goal is to learn a count bridge gy (%0 | x¢,t, 2)
that generates unit—level endpoints given start data at time ¢ = 1 and side information z.

We formulate this as a generalized EM problem, similar to |Rozet et al.| (2024), where X, is latent
and qp = Zg Xgo is observed. Let A : 7Y — 7 be a linear aggregate map (e.g., SUms across units,

block sums). For (x4, t, z), the denoiser ¢y (- | ¢, t, z) induces a predictive aggregate law
Qola |z, t, 2) = IP’(A(XQ) = a|Xt:xt,t,z,X0~ qo (- | xt,t7z)).

In the E-step we will generate “latent” =’ using the model and in the M-step we will use these )’ to
train the model at the aggregate level. We summarize the overall procedure in Algorithms [3]and [4]
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Require: dataset (xg,x1), w(-), A+(+) Require: z;, = 1, model gp, w(-), Ay (")
1: for each minibatch do I: fork=K K-1,...,1do
2: sample (2o, 1) ~ Pdata 2: sample &g ~ qo(- | x4, , )
3: t~ Unlf[O, 1] 3: dtk S~ Ty, — Zo
4: dy + x1 — 3 4: My, ~ Bes(|ds, |; A (tr), A—(tk))
5: M1 ~ Bes(|d1|, A+(1),A7<1)) 5: Ntk — |dtk| + 2Mtk
6: Ny |d1| + 2M, 6: Btk — %(Ntk +dtk)
7. Bi 5(Ny+dy) 70 p e wltp_1)/w(ty)
8: Nt ~ Bil’l(Nl, w(t)) 8: Ntk71 ~ BiH(Ntk, p)

9: Bt ~ Hyp(Nh Bl, Nt) 9: Btk71 ~ Hyp(Ntka Btka Ntkfl)

10: Tt <—.'L'1—2(Bl—Bt)+(N1—Nt> 10: Tty <_xtk:_Z(Btk_Btk:—1)+(Ntk_Ntk—l)
11: update 6 on —log go(xo | z¢,1t) 11: end for

12: end for 12: return x;,

Algorithm 1: Training Poisson—-BD Bridge Algorithm 2: Sampling Poisson—-BD Bridge

E-Step The ideal E-step would sample from the exact aggregate—conditional law
X5~ Qo | A(Xo) = ag, x4, t, 2) .

We could then use the sampled xj as latent variables to sample z; by running the forward bridge
between (x5, x1) using the unit-level kernel Prop. Unfortunately, (Jy is generally intractable
to sample from, given just a unit-level model, so we approximate it through the diffusion sampling
process itself. Starting from x;, we run the sampling process as in Algorithm[2] but at each timestep
tr, we: (1) predict Xg ~ go(- | x¢,,tk, 2), (2) project Xq to satisfy the aggregate constraint (see
Sec. ), yielding X, and (3) perform the sampling step using X, as the predicted endpoint. This
projection—guided diffusion ensures the aggregate constraint is incorporated throughout the denoising
trajectory (see Alg. . This process produces latent x5’ samples that are consistent with the aggregate
constraints, which we can then use in the M-step to train the model. We outline this in App. and
prove that, when learning from aggregates is possible, the EM approach will learn the bridge.

M-Step With these unit-level samples in hand, the M—step runs the bridge process as in Section
But instead of computing the loss on the unit-level latents, we compute the loss with respect to the
aggregates. Given the ground-truth aggregate ag, we lift the same strictly proper score to aggregates:

SU(Qo (- | 0t 2), a0) = 3 E[p(ACX), AX)] — E[p(A(X), a0)],
where X, X’ g go(- | x4, t, z). The training objective from aggregate supervision is then
Lage(8) = — /O 1 WE 4,0 S#(Qo (- | X1, 2), Ao) | at
with the Monte-Carlo plug-in obtained by sampling (/) ~ ¢, and forming a/) = A(2)).

Approximate Sampling from the conditional distribution Given a predicted endpoint %X, from
our diffusion model and target aggregate ag, we need to sample from the conditional distribution
Qo(- | A(X40) = ap). While this is intractable, we can derive a principled approximation.

Proposition 4.1. Taylor expanding the true conditional law, under certain assumptions on pyqtq, the
first-order approximation to the conditional distribution is the KL projection

. Zg0
II(xg) = arg  min Dk (yollzo) = ag - =—2—.
(o) yo: A(yo)=ao (ollo) Zg/ Tg'0

The proposition shows that the natural rescaling operation is not ad hoc, but is justified as a kind
of first-order Taylor approximation to the true conditional distribution (see Appendix [B.I). When
unit-level training data exist, we can learn a projection I, (Xo, 2, ao) that actually enables sampling
conditional on the mean. See Sec. [6| where we show outline how to learn such a projetion.

!The same method described here can be used with distributional diffusion on continuous space, but we focus
on counts since most often when we observe aggregates we believe they are based on discrete underlying data.
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Require: (x1, a9, z), w(-), AL ("), go, I1 Require: (x1,ag,z), w(-), AL ("), go, I1
1: for ¢ from 1 down to 7 with steps do 1: for each minibatch do
2: xo ~ (go(- | x¢,1,2),2,a0) 2: E-step: Sample from x; to 7 via Alg.[3]
3: Update x; by running reverse step 3 M-step: ¢ ~ Unif[0, 1]
4: using steps 4-10 of Alg.[2] 4 Sample z; via forward bridge on
5: end for 5: xy, x1 using steps 4—10 of Alg.
6: Xg NH(qG( | Xt,t,Z),Z,CLo) 6 Update@on—logQg(ao | Xt7taz)
7: return X 7: end for

Algorithm 3: Guided Sampling to Time 7 Algorithm 4: Training with Aggregate Supervision

CFM DFM DCB . .
Figure 2: A scaled and rounded variant

of the classic 8 gaussian to two moons
task. Here we compare the trajecto-
ries of continuous flow matching, dis-
crete flow matching, and count bridges.
CB achieves the lowest W5, MMD, and
EMD, see TableE}

5 RELATED WORKS

Stochastic interpolants. Our formulation allows us to transport any integer-valued distribution
p1 to another integer-valued distribution pg. In the case of Euclidean state space early works such
as (De Bortoli et al., 2021} |Vargas et al., 2021 (Chen et al.,|2021) have shown how to perform such
an interpolation leveraging (Entropic) Optimal transport and the concept of Schrodinger Bridges.
In more recent works, ignoring the Optimal Transport constraints, several works have proposed to
bridge distributions in a more relaxed formulation leveraging the concept of Markov projection, see
Peluchetti| (2023)); |Albergo et al.| (2023)); Delbracio & Milanfar| (2023); |Liu et al.| (2022} [2023]) for
instance. Those frameworks can be shown to be strictly equivalent to diffusion models in the case
where one of the end distribution is a unit Gaussian, see |Gao et al.| (2025)). However, those works are
limited to the Euclidean setting, and extension to the integer-valued setting is required.

Discrete diffusion models. Recently, with the advent of language diffusion models such as|Ye
et al.| (2025)); Song et al.| (2025)); |Sahoo et al.|(2024); [Shi et al.| (2024)); |Ou et al.|(2024a); |Arriola et al.
(2025); Nie et al.[(2024); [Zheng et al.[(2023)), discrete diffusion models have gained considerable
traction. Most works rely on discrete equivalents of the original formulation of diffusion models,
explicitly or implicitly replacing the continuous Gaussian noising process by a Continuous-Time
Markov Chain (CTMC) Austin et al.[(2021)); |Campbell et al.|(2022);|Lou et al.[(2023);|Campbell et al.
(2024); Kitounti et al.| (2024)); Sun et al.|(2023). Other approaches include relying on some Euclidean
relaxation |Chen et al.[(2022) or modelling the space of probability |Avdeyev et al.|(2023); |Stark et al.
(2024). Similarly, flow matching techniques have been extended to cover this paradigm |Gat et al.
(2024). Most of these works focus on categorical data and therefore consider uninformed forward
process such as uniform or masking process. In contrast, in this work, we focus on ordinal data. To
the best of our knowledge, the only existing work that also deals with such a process is Blackout
Diffusion Santos et al.| (2023), which considers a pure-death process where an image is taken to the
all-zero limit, as opposed to an endpoint conditioned bridge. Our approach generalizes this setup in
two ways: first, we allow births and deaths at every time, recovering their pure birth construction in
the limit as k — 0; second, we generalize the process to a bridge which can transport X to Xj.

Finally, we highlight that diffusion models have been extended to the very general setting where
only an infinitesimal generator is available Benton et al.|(2024); |Holderrieth et al.| (2024). While our
work can be seen as an instanciation of this general framework, these general frameworks do not
give any information regarding the design of the forward process for integer-valued data, the specific
parameretization in terms of slack variables and the necessity of the distributional diffusion loss.
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Method Steps
—e— CFM DFM =e— Count Bridge —— NFE=8 =—— NFE=32 =— NFE=128
§ 2 i _ = -z——”/’
0 T If T ‘If T T T T
4 8 16 32 64 128 256 512

Dimension d

Figure 3: CFM, DFM, and CB on our low-rank mixture of Gaussians transport experiment across
dimensions and NFE. See App. for full details.

Distributional Diffusion Models. InDe Bortoli et al.|(2025); [Shen et al.| (2025)), the authors learn
the conditional distribution pg|; (| ) through the use of scoring rules, going beyond the classical
training framework of diffusion, which approximates the conditional mean E[X,|X; = x;]. The
importance of approximating the covariance was already noted by [Nichol & Dhariwal| (2021) and
further analyzed in (Ho et al.;2020; Nichol & Dhariwall 2021} |Bao et al., |2022ajb; |Ou et al.| [2024b)).
In a similar flavor (Xiao et al.,[2022) uses a GAN to approximate po‘t(x0|xt).

Sequence-to-expression models An ambitious goal in biology is to predict gene expression from
DNA sequence information. There have been several attempts to train deep learning models for
sequence-to-expression prediction tasks (Barbadilla-Martinez et al.,[2025)), including Enformer (Avsec
et al.| 2021)), a state-of-the-art transformer-based DNA sequence model. While powerful, Enformer,
like the vast majority of sequence-to-expression models, was trained on bulk gene expression data
and is not able to predict single-cell expression profiles, missing the cellular heterogeneity and
fine-grained regulatory patterns that shape tissue function.

Spatial transcriptomic deconvolution Spatial transcriptomics encompasses a family of recently
developed techniques which measure gene expression and spatial location in tissues. The majority of
these techniques are not capable of resolving individual cells, instead providing aggregate information
over small neighborhoods consisting of on the order of tens of cells (Moses & Pachter, 2022). To
address this limitation, a number of deconvolution methods have been developed to infer single-
cell level information |Li et al.| (2023b). The majority of these methods, including cell2location
(Kleshchevnikov et al.,[2022) and RCTD (Cable et al., 2022), require a paired non-spatially resolved
scRNA-seq atlas, and output cluster-level mixture proportions rather than single cell counts. The
ideal deconvolution would recover full single-cell count profiles directly from spatial data without
requiring external reference atlases. STDeconvolve Miller et al.| (2022)

6 APPLICATIONS

6.1 SYNTHETIC DISTRIBUTIONS

Here, we we benchmark count bridges (CB) against continuous flow matching (CFM) (Lipman et al.|
2022) and discrete flow matching (DFM) (Gat et al.,|2024) across a range of synthetic experiments.

Discrete 8-Gaussians to 2-Moons. We adapt this classic task to the integers. We plot the learned
trajectories in Fig[2] Qualitatively CB achieves the best performance. DFM is much more competitive
in this experiment than CFM, but DFM trajectories are decoupled from the underlying geometry,
whereas CB produces OT-like trajectories similar to CFM. These qualitative evaluations are confirmed
quantitatively: CB achieves the best performance across W, Energy, and MMD (see App. [C.I).

Scaling in Low-Rank Gaussian Mixtures. To test scalability to higher dimensions, we construct
integer-valued datasets with fixed intrinsic dimensionality while ambient dimension d increases in
powers of two from 4 to 512. Each dataset is a 5-component Gaussian mixture with latent rank r = 3,
projected to Z%. In Fig. [3|see that CB has the best scaling in dimensionality (see App. for more).
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6x10%1 _3_ Dirichlet a=1

Deconvolution of Gaussian Mixtures. We extend the [oW- ... oricnet o100
rank mixture task to evaluate deconvolution capabilities. In this s«
experiment, each observation is an aggregate constructed by ; .
summing a group of G samples. For each group, the G samples
are drawn from a group-specific Gaussian mixture whose com-
ponent weights are sampled from a Dirichlet distribution with L
concentration parameters (a1, ...,as). The labels of the G Group sie ()
source components are provided as unit-level side information.
We then vary the size of the group G and the extent of variation
between groups by changing the concentration parameter o
(see Appendix for details). In Fig. 4| we see performance degrades as groups become more
uniform and larger. We explore the theoretical limits to deconvolution in Apps. and[B.3] which
confirm that deconvolution requires between-group heterogeneity to enable identification, which is
inherently lost as groups become large. Despite these limits, we demonstrate practical deconvolution
on moderately-sized groups in our spatial transcriptomics application (Section [6.3).

Figure 4: Deconvolution of the low-
rank Gaussian mixture.

6.2 MODELLING GENE EXPRESSION AT SINGLE-CELL AND SINGLE-NUCLEOTIDE RESOLUTION

A central goal in biology is to understand the relationship between DNA sequence and gene expression.
Many models have been developed to relate sequence and expression, the most prominent of which,
such as Enformer (Avsec et al[2021)) are Transformer-based models which predict expression from
sequence. These models are typically trained on bulk data, where gene expression counts are very
high such that continuous approximation is effective. More recent work has explored fine-tuning
Enformer on single cell data (Hingerl et al., 2024)). However, single cell data has significantly lower
counts, which may make continuous approximation less suitable.

Here, we use Count Bridges to jointly model sequence and expression counts in single-cell RNA
sequencing (scRNA-seq) data. We show two key results. First, we show that Count Bridges enable
cell-type specific sequence-to-expression prediction which outperforms Enformer. Second, we show
that the aggregate-level conditioning enables CB to deconvolve bulk gene expression profiles into
inferred single-cell gene expression profiles.

We model PBMC scRNA-seq counts at the nucleotide level from 10 cells and 10% donors |Yazar
et al.| (2022)). For each nucleotide, we condition on the noisy count z;, the diffusion time ¢, a
cell-type embedding, and i.i.d. noise z, together with a local genomic context encoded by Enformer.
The concatenated features pass through residual multi—-head attention blocks and a final head with
softplus output. Additionally we train using a small projection module 1I,,—an attention block
that jointly processes the nucleotide-level embeddings across positions—to produce a projected
Zo = Iy (20, ao, x¢) so that when an aggregate is observed we can approximately sample from the
conditional Xy | A(Xo)=ao, X, t.

Cell-type specific gene expression We first evaluate the ability of our model to predict expression
from sequence, conditional on cell type. As a baseline, we use an Enformer model which is fine-tuned
directly on the PBMC dataset. We find that Count Bridge predictions outperform fine-tuned Enformer
(Table([T} for results by cell type and further details see App. [E).

Bulk deconvolution Count Bridges enable us to lift our unit-level model to deconvolution tasks:
given an aggregate of counts across a set of cells, we can make predictions about the single cell
profiles by conditioning on the aggregate. We next evaluate the ability of Count Bridges to deconvolve
mixtures of cell types from held-out individuals. As a baseline, we compare to CIBERSORTx
(Newman et al., 2019), a bulk RNA-seq deconvolution method which operates at the level of genes
(rather than single nucleotides), and outputs cell type proportions (not count profiles). To compare we
aggregate our nucleotide-level predictions into gene counts and assign each of our deconvolved cells
to the closest cell type. Count Bridges achieve better performance on JSD and RMSE (Table[2).

6.3 DECONVOLVING SPATIAL TRANSCRIPTOMIC SPOTS INTO SINGLE-CELL COUNTS

Next, we show how count bridges can be used to infer single cell gene expression profiles from
spot-level aggregates in spatial transcriptomic data. In spatial transcriptomic data generated by
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Method Bulk MSE  Cell-type MSE | Method JSD RMSE

Fine-tuned Enformer 2.590 3.142 CIBERSORTx 0.193  0.665

Count Bridge 0.601 1.41 Count Bridge  0.166  0.547
Table 1: Sequence-to-expression prediction error Table 2: Cell-type deconvolution error

Visium (Stahl et al.,[2016), it is common to have access to side information beyond the spot-level
count aggregates. In particular, many datasets include images of the cells with a nuclear stain (Palla
et al.| [2022)). Count bridges provide a natural way to leverage this cell-level side information to
deconvolve aggregate count data. Following the notation in Sec. 4] spot-level counts can be treated
as linear aggregates a, and single-cell images can be treated as unit-level side information z. We
leverage a UVIT (Bao et al.,[2023) extended to incorporate count and noise patches (see App. D).

To evaluate deconvolution from aggregates, we use a MERFISH mouse brain dataset (Vizgen, 2021)
which is resolved at the single-cell level, and artifically aggregate neighborhoods of cells to simulate
spot-level Visium data. This synthetic dataset gives us access to spot-level aggregates and their
corresponding single cell ground truth, as well as single-cell nuclear images. With this benchmarking
setup, we compare our approach to STDeconvolve (Miller et all |2022), a widely used spatial
transcriptomic deconvolution method which is state-of-the-art among reference-free approaches|L1
et al.| (2023b) (see Appendix [D|for comparisons to reference-based methods). STDeconvolve outputs
cell type (cluster identity) proportions for each spot rather than single cell counts. As such, we evalute
the quality of deconvolution as the error (root mean squared error and Jensen-Shannon Divergence)
of the predicted cell type proportions from true cell type proportions per spot.

Method RMSE _ JSD For count bridges, which provide sing}e—cell count profile
predictions rather than cell type proportions, we assign each
STDeconvolve  2.746  0.289  predicted count profile to a cell type using a nearest neighbor
Count Bridge ~ 0.404  0.250  classifier in order to compare against STDeconvolve. Count
Bridges outperforms STDeconvolve on both the JSD and the
RMSE (Table3).

We next evaluate the quality of the count profiles Table 4: Count profile error
inferred by Count Bridges. Here, because STDecon-
volve does not provide these predictions, we instead =~ Comparison ~MMD W,  Energy
consider a simple baseline: pr.edlctln.g the spot—level Spot mean 0409 0030 41717
mean (aq/G) for each cell. This baseline, while seem- .

. L . . . Count Bridge 0.258 0.020 15.787
ingly naive, is actually biologically well-motivated.
In spatial transcriptomics, cells within a spot represent local tissue organization where neighboring
cells coordinate their functions (Armingol et al.| 2021). As such, we expect cells in spatial neigh-
borhoods to have correlated gene expression profiles, making the spot mean a reasonable baseline.
Nonetheless, Count Bridges outperform the spot-level mean baseline (see Table ), showing that
Count Bridges can learn meaningful unit-level distributions from real-world aggregate data.

Table 3: Cell-type error

7 CONCLUSION.

Count Bridges offer a tractable, discrete-native alternative to continuous diffusion models, unifying
direct count generation with deconvolution from aggregates. Exact birth—death conditionals on
74 let us train and sample without approximation, and we observe order-of-magnitude gains over
both continuous and discrete flow matching. We then demonstrate the power of count bridges for
nucleotide-level deconvolution of bulk RNA-seq and spatial transcriptomic deconvolution.

Limitations. (i) When counts are well-approximated as continuous, Euclidean models may match
or exceed performance. (ii) Identifiability in pure deconvolution degrades as group sizes grow or
between-group heterogeneity shrinks, so our EM procedure is most reliable at moderate aggregation.
(iii) The projection step we use is a first-order surrogate and lacks serious theoretical support.

Despite these caveats, Count Bridges lay the groundwork for rigorous discrete generative mod-
eling and invite future work on deeper understanding of the projection-guided sampler, sharper
identifiability bounds, and generally stronger guarantees for projection-guided EM.
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Ethics Statement. This study uses publicly released, de-identified single-cell and spatial tran-
scriptomics datasets under their respective licenses; no new human subject data were collected, and
institutional review board (IRB) approval was therefore not required. We do not foresee serious
ethical implications to Count Bridges beyond the risks already posed by standard diffusion/flow
matching models. Our deconvolution methods could possibly pose some additional privacy risks,
but we believe the additional risk is low. We used LLMs to help draft portions of the code used in
our experiments and to edit portions of this manuscript. All our models are intended for research
use only, not clinical use. LLMs were not used in any way significantly outside the current norms of
academic research.

Reproducibility Statement. We have taken significant steps to ensure that all results presented
in this work are reproducible. An anonymous source code repository is provided here, containing
complete implementations of the Count Bridge framework, including model architectures, training
procedures, projection-based deconvolution, and evaluation pipelines. The appendix includes full
mathematical derivations and proofs of all theoretical claims. We also provide descriptions of all data
preprocessing steps for synthetic benchmarks, PBMC sequence-to-expression prediction, and spatial
transcriptomic aggregation, as well as architectural and hyperparameter specifications. Together,
these materials are intended to allow independent researchers to fully reproduce our theoretical and
empirical findings.
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A COUNT BRIDGES

A.1 POISSON BIRTH-DEATH BRIDGE ON Z

We start by showing where the Binomial and Hypergeoemtric distributions emerge in our framework.
Then we will prove that if we condition on the amount of slack these distributions compose. Finally
we will show that using the Bessel slack law we have composition while mixing over the slack
distribution.

A.1.1 SAMPLING PROCESS

Let Ay be Borel rates with cumulants A4 (t) = fg A+(s)ds and set w(t) = %

independent Poisson processes (Bt):e[o,1] ~ Poi(Ay) and Dyco,1) ~ Poi(A_), and define X; =
Xo+ By — D;. Condition on endpoints Xy = zg, X; = 21 and write d; := x1 —x9, N1 := B1+ D1,
By = %(Nl +d1)

Let Ny := #{s <t : AX, # 0} be the total jump count up to ¢ and let (overloading notation) B; also
denote the number of +1 jumps among those N;. Under the superposed non-homogenous Poisson
process with rate Ay + A_, the N7 unordered jump times are i.i.d. with cdf w(-), and, conditional on
(N1, By), the 41 labels form a uniformly random subset of size By among {1, ..., N7}, independent
of times. Therefore,

Draw

Ni | Ny ~Bin(Ny, w(t)), By | (N1, By, Ny) ~ Hyp (N1, Bi, Ny).
More generally, for 0 < s < ¢t < 1 with p = w(s)/w(t),

Ny | Ny ~ Bin(Ny, p), By | (Ny, By, Ni) ~ Hyp(Ny, By, Ns).

A.1.2 CoOMPOSITION CONDITIONAL ON M,

Now we will prove composition while conditioning on the slack M;. Fix integers xg, z1 € Z with
displacement d; := x; — x¢. Fix the slack variable M; € N. We require two elementary composition
lemmas; the first is classical, the second is a counting exercise.
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Lemma A.1 (Binomial composition). Let K ~ Bin(N, p) and, conditional on K, let L ~ Bin(K, q).
Then L ~ Bin(N, pq) and (K, L) has joint pmf

P{K =k, L=1{(}= (JZ) (pg)*(1 = pg)™~* (Z_f) (p(l . q)>H( — )Nﬁk‘

L —pq L —pq
Proof. First, write down the joint probability

P(K=k L=f)=P(K=k)P(L="{|K=k) = (]Z)p"’u —p)NF (‘;)q‘*u —q)"

N\ [k N\ (N —¢
Using the combinatorial identity ( k:> ( €> = < é) < Py ) , we get

rwh e (oo () ()

To show that L is Bin(N, pq), we explicitly marginalize over all possible k > £:

P(L = () = XN:IP’(K —k L=10)= ZN: (]Z) (pa)*(1—pa)" ™" (J/Z_f) (”fi—;z))H(f:;;)N’k.
k=t

k=t

Factor out everything not depending on k, and change variables m = k — £:

N—t
_n_ (N ¢ N—¢ N =6\ (pa-g)\™(1=p \ V7O
IF”(L—f)—(£>(17(1) (1—pq) mz_:o( . (HDQ) (H,q) :
But the sum is exactly ZTZX;S (Nﬂ:z) ambN == = (q 4 b)N ¢ with

1-— 1-—
a:u b= p’ a+b=1.

1—pqg’ 1—pq
Hence that sum is 1, and we conclude

P(L=1()= (JZ) (pg) (1 — pg)N 7+,

i.e. L ~ Bin(N, pq). O

Lemma A.2 (Nested hypergeometric draws). Fix an urn with N balls of which B are white. Draw
Ny = k balls without replacement and record By = b whites. From the k drawn, draw N; = j, (< k)
and record Bs = a whites. Then the marginal law obtained by the two-step procedure satisfies

v n=arvn= (1) (0)(57))

which equals the pmf of the single hypergeometric draw Hyp(N, B, j).
Proof. Observe that the two—stage procedure:

1. pick a subset of size k from {1,..., N},

2. then pick a subset of size j from that first subset

is exactly equivalent to “pick a subset of size j directly from {1, ..., N},” because any j-subset can
be realized in some order of two draws and all orders are equally likely under simple “draw-without-
replacement.”

N
Therefore, conditional on the final sample size N, = j, each of the ( . ) subsets of size j from the

J
N items is equally likely. Among those, exactly

(2)(G20)
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subsets contain exactly a of the B “success” items. Hence
B\ (N—B
(a) ( Jj—a )
N Y
(5)

which is precisely Hyp (N, B, j). O

P(Bs=a|Ns=j) =

Theorem A.3 (Consistency). For 0 < s < t < 1 the two-stage sampling rule (1 — t — s) yields
exactly the same law for (N, By) as the single-stage rule (1 — s). Explicitly

NS|N1NBiD(N1,’U}(S)), B ‘NS;BINHyp(NlaBlaNs)~

Proof. Write p = w(t) and ¢ = w(s)/w(t). By LemmafA.1} N, | N obtained via N — Ny — N
is Bin(Ny, pq) = Bin(Ny, w(s)), coinciding with the direct rule.

Conditional on N, = j and By, the colour counts obey Lemmal[A.2]and thus coincide with a single
hypergeometric draw. Hence, the two sampling routes coincide in distribution. O

A.2 OBSERVABLE MARKOV PROPERTY VIA POISSON THINNING AND BESSEL SLACK

We now show that the bridge obtained from the Poisson birth—death (BD) reference is Markov in the
observable X, (i.e., its one—step kernels satisfy Chapman—Kolmogorov without augmenting the state)
if and only if, at each time, we mix over Bessel slack (Skellam—conditioned) endpoint counts. The
proof uses only classical Poisson thinning/superposition and the form of the Skellam conditioning.
Throughout, let a(t) = Ay (t), () = A_(t) and w(t) = % € [0,1]. Write d; := X; — X,
dZ:dl :Xl—Xo.

A.2.1 CLOSURE UNDER THINNING AND DIFFERENCE CONDITIONING

Lemma A.4 (Thinning closure). If By ~ Poi(«) and Dy ~ Poi(8) are independent, then for any
te (0,1)

B, | By ~ Bin(B1,w(t)), D:| D1~ Bin(D1,w(t)) independently,

and marginally (By, D) ~ Poi (ozt) x Poi (ﬁt) with a; = w(t)a, By = w(t)s.

Lemma A.5 (Bessel slack). Condition on the difference dy = By — D, at any fixed t. Then the
conditional law of the endpoint counts (B, D) | {B;y — Dy = di} is supported on the lattice
{(m+|d:¢|,m) : m € N} (if dy > 0, or the swapped lattice if d; < 0) with

(e Be)™

Pr{M, = d _
H{My=m | di} o (m + |de )l m!”

ar = w(t)a, By = w(t)s,
i.e. the Bessel slack pmf. The normalizer is (atﬁt)—\dz\ﬂ I|dt|(2\/atﬁt).

Proof sketches. Lemma [A4] is standard Poisson thinning. Lemma [A.5] is the usual deriva-

tion of the Skellam conditioning: for d; > 0, Pr(By = m+d;,D; = m) =
e~ (@tBe) gmFde gm /(4 d,)!'m!), and dividing by Pr(B; — D, = d,) yields the stated form
with Bessel normalizer. O

By Lemma[A.3] the posterior over the slack given the observable d has the same functional form at
every t, with parameters simply scaled by thinning:

(Oétﬁt)m

mtld)m’ M7 w(t)a, B = w(t)p. ©)

me(m | dy) o
Hence 7,(- | d;) depends only on the current observable state x; (through d;) and on ¢ via (v, B¢).
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A.2.2 OBSERVABLE KERNELS

Fix0 < u<t<s <1 Foreachm € N, let KC(LT;) denote the one—step BH transition kernel at
times b — a conditional on M = m (equivalently on the endpoint counts/total jumps). By binomial
composition and hypergeometric consistency, each K (") satisfies CK:

K0 = KM s k. (10)

s|t slu ult

Define the observable kernel by mixing out the slack with the time-¢ posterior equation [0

Kap(wp,20) = m(m | dp) Kiﬁ)(mb, xo), dy = 7 — T9.

m=0

Theorem A.6 (Observable Markov property and CK). Under the Poisson BD reference with Bessel
slack mixing, the observable kernels are Markov and satisfy Chapman—Kolmogorov:

Kgp = Ko * Kyt forall0 <u<t<s<l.

Proof. We prove the CK identity against an arbitrary bounded test function ¢. Condition on (X, )
and write d; = X; — xg.

Using the tower property and equation [T0}
]EI:SO(XS) |Xt7mOaM] :/ ( )Ks(|t (fE;Xt,.’Eo) = /E[SD(XS) | X’u.vx()vM:I K,L(Lj‘\f)(dxu,Xt;xO)

Average w.r.t. the time-t posterior m;(m | dy), valid by equation 9}

E[o(Xs) | Xy, 0] Zwt m | dy) / [o(X) | Xu, w0, M=m] K7 (dwu; Xt w0).
Given X, and o, the fime-u posterior over M is again equation Q| with (v, 8.) = (w(u)a, w(u)B)
and d, = X, — o, by Lemmas[A.4HA 3] Therefore

Zm m | di) K (dw; Xp, w0) = Kypo(da; X, 7o),

and likewise >, (m | d WK = Ku.-

slu

Combine the previous displays to obtain

E[SD(XS) | Xta$0} = / (Zﬂu(m ‘ du)E[@(XS) | Xu,xo,M:m]) Kult(dIuEXta$O)

- / E[p(X.) | Xo.to] Kuge(dira: X1, 20),

which is the CK identity K; = K, * K,|; in weak form. Since ¢ is arbitrary, the kernel identity
holds. O

The core intuition here is that the only statistic of X, relevant for the slack posterior is d,, = X, — X,
and its likelihood under any M = m is Skellam with parameters (v, 3,) = (w(u)a, w(u)B). Thus
the posterior family over M is closed under time changes (thinning) and depends only on the current
observable state. This is precisely the “lumpability” needed for Markovianity in X;.

A.3 LINK WITH SCHRODINGER BRIDGE

We have that the distribution of X;| X, X is the bridge distribution of a process such that for any ¢

Set
X, = Xo+ By — Ds.
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Then X; | X is Skellam with pmf

A Pl
Kfio(@1 | 20) = exp[~ A4 (1) — A_(1)] (Ajgg) Loy —a/(25).-

Let P := Py ® K7, be the reference joint. For any coupling IT € II(Py, P1),
KI(IT|| P¢) = —H(IT) — Enf log K1jo(X1 | Xo)] 4 Cx(Po)
::C%(fhvfﬁ)_'Eriloglhxr—xom2ﬁ)]__f{GI%
where C), (P, P1) collects terms depending only on the marginals (including A4 (1) and E[X; — X)).

Using the facts that I,,(z) = —&— (1 +0(1)) as z — oo and I,,(z) = (2/2)" /T (v+1) (1 + o(1)) as

V2rz
z — 0% (NIS, 2025} §10.41(ii)), we obtain
C — H(II) + 04(1), K — 00,

I(L(I[HJzZJ = 2 . . +
C+log(n)]EH|X1 Xo| — HAI) + 0x(1), & — 0%,

which yields the conclusions in the main text: high noise leads to the independent coupling Py ® P;;
low noise gives discrete OT with cost Ey| X7 —Xp|.

B LIFTING COUNT BRIDGES TO AGGREGATES

We make two central assumptions that enable deconvolution.
Assumption B.1 (Realizability and recoverability). There exists 0* such that for all t € [0, 1]:

1. Realizability: Qy-(ao | X¢,t,2) = Daara(ao | X¢, t, 2) almost surely
2. Recoverability: The aggregate-to-unit map has local modulus k. (t): for 0 near 6,

Dii(Pdara(%0 | Xt, 8, 2) || g0 (- | X¢,t, 2)) < Kioe(t)-Dri(Pdara(@o | X¢,t,2) || Qo (- | X, . 2))

Recoverability means that the aggregate distribution uniquely determines the unit-level distribu-
tion—if we know the sum perfectly, we can deduce the summands. This is not always possible.
Consider the simplest case: if X7, Xs ~ Poisson()\;),Poisson(A2) are independent, their sum
is Poisson(A; + A2). Observing only the sum, we cannot distinguish (A\; = 3, 2 = 2) from
(A = 4,y = 1)—both yield Poisson(5). Now if we had side information that identified the
“component” each Poisson was drawn from we could identify this, but it illustrates the difficulties we
will face here.

Recoverability holds when units have sufficient diversity. Formally, it requires that units are condition-
ally independent given (x1, z) and have distinct factorial cumulant signatures—essentially, different
statistical fingerprints that survive aggregation. For count data, this means units must have different
parameters (e.g., different Poisson rates or negative binomial dispersions) that are distinguishable
through the covariates z.

Theorem|[B.10]in Appendix [B.4.3|provides precise conditions: when the factorial cumulant generating
functions C'x, (t) = F(t; 1) form an identifiable system and covariates provide sufficient labeling
to distinguish units. In practice, this means units should have heterogeneous characteristics captured
by z—for example, different images associated with the transciptomics is spatial single cell data.

Recoverability faces fundamental limits as the number of units G' grows. By the central limit theorem,
when G — oo, the standardized aggregate (Ag — i) /oG converges to a Gaussian regardless of the
unit-level distributions. The higher-order cumulants that distinguish different unit configurations
vanish at rate O(G~*/2) for order k > 2, leaving only the mean and variance (Appendix

This CLT collapse means our method is most powerful for moderate G (tens to hundreds of units)
where unit heterogeneity is preserved in aggregates. For very large G, additional structure is
needed—either parametric constraints (e.g., unit parameters follow a low-dimensional model), mul-
tiple aggregate observations under different conditions, or direct observation of some unit-level
data.
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We illustrate these issues in Fig. []in the main text: as the dirichlet concentration increases the
group-level mixture weights concentrate. When combined with large group sizes this forces all
groups to become identical. This gives a clear empirical sense for the limits of deconvolution.

B.1 APPROXIMATELY SAMPLING CONDITIONAL ON THE SUM

The most central part of our deconvolution approach is our projection operation. Here we sketch a
formal characterization of this operation and justify it based on a Taylor expansion around the true
conditional distribution.

We first give a completely formal statement of our theorem:

Theorem B.2 (Rescaling emerges from first-order conditional). Let pyqtq be the prior law of Xy and
write the aggregate Ay = A(Xg0) with p = Ep,[Ao] and ¥ = Covp, (Ao) (finite, p.d.). For a target
aggregate ay, set 0 := ag — p. Then the aggregate-conditional law Qg( - | Ao = ao) admits the
Radon—Nikodym form

d
d%z(xo) —exp{AT S, 70— AN}, A=2715+0(|o]),

where A(\) = logEp, [e’\T 2, Xg"]. The KL projection forms a first-order approximation:

T*(xo) =arg _min  Dkr(yollzo),
Yoi 2o, Yg0=00

which for non-overlapping groups yields the simple scaling update

(d) (d) a((Jd)
*
T("L'O)g Zx90~7w), d:].,,D
2o Tgr0
We prove Theorem [B.2](Section 3.2) under explicit regularity, giving a first-order expansion for the
tilt parameter and O([[§||?) control of the KL gap.

Assumption B.3 (Cramér regularity and nondegenerate covariance). Let Py be the prior law of X
and Ay =) 9 Xg0 € Zgo. The cumulant generating function

AQN) = logEp,[e} 40]

exists and is finite on an open neighborhood N of A = 0, is twice continuously differentiable on N,
and Y := V2 A(0) = Covp, (Ag) is positive definite. We also assume N2 A is locally Lipschitz on a
smaller neighborhood No C N.

Definition B.4 (Exponential tilt and I-projection). For A\ € N, define the tilted law on Xy:

dpg)\
dPy

(z0) = exp{AT Ag(z0) — A(N)}.

Let ag € RP be a feasible aggregate and § := ag — p with ji := VA(0) = Ep, [Ag]. The I-projection
of Py onto the affine moment set {Q : Eq[Ao] = ao} is P, 5 with X the unique solution of

VA()\) = ag-

Lemma B.5 (Duality and uniqueness). Under Assumption the map A — VA()) is a local
diffeomorphism at 0, hence for ||ag — pl| sufficiently small there exists a unique A € Ny such that
VA(X) = ag. Moreover,

KL(Pys || Po) = A = ATag and En, [4o] = ao.

Proof. V2A(0) = ¥ = 0 implies invertibility of the Jacobian at 0. The inverse function theorem

yields a local inverse i) of VA near u, with A= 1 (ap). The KL identity is standard for exponential
families; the moment identity is by construction. O
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Lemma B.6 (First-order expansion of the dual parameter). Let L be a Lipschitz constant for VA on
No. Then, for § small enough,

A=371 + r(9), |

r@)I < 1= 8],

Proof. Taylor expand VA at 0: VA(A) = p+ SA + R(A) with || R(A)|| < £||A||%. Solve p+ YA+
R(\) = 1+ 0 to obtain A = £~(§ — R())), hence the bound. O

Lemma B.7 (KL and expectation errors). As § — 0,
KL(By3||Po) = 367875+ 0081%),  [Er,  [/(Xo)l-Eay(1asan T (XNl = OCIAIP),

forany f withEp,[|f(Xo)|] < oo whenever the exact conditional Qg (- | Ao = ag) exists.

Proof. Expand A(S\) to second order using Lemma and standard cumulant properties. For
expectations, note that both Pg’ 5 and Qo(- | Ao = ag) are I-projections onto the same affine
moment set; the latter is the exact conditional when it exists. Bregman (KL) Pythagorean identities
give that their KL gap is O(||§|?), which implies the stated expectation difference by Pinsker and
boundedness-by-integrability. O

Theorem B.8 (Proof of Theorem[B.2). Under Assumption|[B.3) for § = ag — p small,

d . . <
20 (o) = exp{A Ao(wo) ~ AN} A=27+0(0)
and KL(Qo||P, 5) = O(||6]|?). For per-coordinate column constraints, the I-projection is the

multiplicative scaling

o

d
T*<x0)§d) = x_E]O) ' OR
29 Tg0

d=1,...,D.

Proof. Combine Lemmas |B.5] The explicit scaling is the closed-form I-projection onto the

linear constraints » 9 ys%) = a(()d with KL geometry (“IPF step”); it follows from separability across

d. O

B.2 CONDITIONS FOR REALIZABILITY AND RECOVERABILITY

We provide concrete conditions under which the key assumptions of recoverability and realizability
hold for count data.

B.2.1 FACTORIAL CUMULANT FRAMEWORK
For nonnegative integer-valued X, define the factorial moment generating function (FMGF):
Mx(t) =E[(1+t)*], t¢& Rnear0,

and the factorial cumulant generating function (FCGF):

Cx(t) =log Mx(t) =)

k>1

where k(X)) are the factorial cumulants.

Lemma B.9 (Properties of factorial cumulants). (a) If X, Y are independent nonnegative integer-
valued, then Cx 1y (t) = Cx (t) + Cy (1).

(b) If { fp = ¥ € W} are real-analytic near 0 with injective 1) — f, and 25:1 fo, = 25:1 fups
then the multisets {14} and {1, } coincide.
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B.2.2 SUFFICIENT CONDITIONS FOR RECOVERABILITY
Theorem B.10 (Recoverability via factorial cuamulants). Assume:
1. Conditionally on C = o(Xy, Z), the units (X10, . .., Xgo) are independent.

2. Each unit’s FCGF has the form Cx (t) = F(t;1,) where F(-;%)) is real-analytic near
t = 0and — F(-;) is injective.

3. The covariates provide labeling: distinct units with distinct 1p4 have distinct labels Ay =
AX1, Z, g) almost surely.

Then the aggregate map Ac is injective, ensuring recoverability.
Proof. By independence and Lemma a), Cyu,(t) = Zle F(t;14). If two specifications yield

the same aggregate law, their FCGF sums agree. By Lemma [B.9(b), the multisets coincide. The
labeling removes permutation ambiguity, yielding v, = 1/1; for each g. O

B.3 LARGE-G LIMITS: CLT-INDUCED NON-IDENTIFIABILITY

We show that even when recoverability holds for finite G, the deconvolution problem can become
ill-posed as G — oo due to central limit phenomena.

B.3.1 THE FUNDAMENTAL TENSION

As G grows, a fundamental statistical phenomenon emerges: the aggregate distribution converges
to a Gaussian regardless of the specific unit-level distributions, losing the fine-grained information
needed for deconvolution.

B.3.2 CLT COLLAPSE OF AGGREGATE INFORMATION

Theorem B.11 (Loss of identifiability under CLT scaling). Let {X ;8:) : 1 < g < G} be conditionally
independent given C = o(Xy, Z), with

G G
G G
pe = E E[X;O) |C], o0& = E Var(Xs(IO) | C) < 0.
g=1 g=1

Under Lindeberg conditions, any two sequences of unit-level distributions that produce the same
(na, o%) yield asymptotically identical aggregate distributions:

A — pe
e

= N(0,1) asG — oco.

Proof. The Lindeberg-Feller CLT applies to both sequences. Since they share the same first two
moments, their standardized aggregates converge to the same Gaussian limit, making them indistin-
guishable through aggregate observations. O

B.3.3 IMPLICATIONS FOR FACTORIAL CUMULANTS

Recall from Section that recoverability relies on the factorial cumulants rx(Ao) = 3, k(X g0)
determining the individual unit parameters. Under CLT scaling:
Corollary B.12 (Vanishing higher-order cumulants). For standardized aggregates, the k-th factorial
cumulant scales as O(o5"*?) for k > 3. Thus:
i (457)
07’&
Only the first two cumulants (mean and variance) survive in the limit.

-0 asG — o0, k>3

This means the factorial cumulant signature that enables recoverability for finite G becomes asymp-
totically uninformative—all unit-level configurations with the same total mean and variance are
indistinguishable.
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B.4 GRADIENT BOUNDS FOR DECONVOLUTION

A subtle issue arises in the theoretical analysis of the EM algorithm we present in the main text: if we
always generate training pairs by running the full reverse trajectory from x; to xg, errors in early
predictions can compound. Each reverse step conditions on the previous prediction, so mistakes
propagate and potentially amplify. The model could learn from its own errors, leading to distribution
shift.

We resolve this through a simple but crucial observation: at time ¢ = 1 (the noisy endpoint), we are
training on the actual data, so as long as we can learn unit-level distributions from aggregates this can
serve as a “backstop” from a theoretical point of view.

Our modified training strategy exploits this guarantee while allowing the model to benefit from
iterative refinement when possible. At each epoch, we evaluate the aggregate prediction quality at
different reverse trajectory endpoints 7 € {t; = 1,%s,...,tx }. For each minibatch, we run Alg.
(note, not the guided sampling) and compute the aggregate score for the sampled & ; for each
timepoint and use the lowest scoring timepoint to form our “latent” 7. We cannot use the guided
sampling since it is guaranteed to match the aggregates at late times. But once we choose the end
time we can then sample using Alg. |3|stopping at time 7* and projecting to incorporate the aggregate
constraints.

If there is significant compounding error, the score will be worse for smaller 7 (longer trajectories),
and the procedure naturally falls back to 7 = 1 where convergence is guaranteed. However, when the
model is well-calibrated, earlier times often achieve better scores because they benefit from multiple
rounds of refinement.

Now we establish that training from aggregates with adaptive end-time selection produces gradients
that approximate the oracle unit-level gradients, with the approximation quality determined by the
best aggregate prediction achievable. This proof is essentially straightforward: we assume that we
can learn from aggregates using the model at £ = 1 and then show that our EM procedure will not go
wrong given this backstop.

Empirically, we often find that using the full trajectory (7 = 0) works well without explicit adaptation,
suggesting the projection guidance effectively prevents severe compounding. An important area for
future work is developing a more satisfying theory that explains this strong performance.

Assumption B.13 (Bounded Fisher information). The aggregate Fisher information satisfies
SUP(x, 1,2) trlo(x¢,t,2) < Cp < oo, and the unit-level score has bounded second moment

qu H|V9 log Q9(X0 ‘ Xt, t7 Z)||2] S Cunit(t)~
Theorem B.14 (Gradient bounds under adaptive training). Under Assumptions define the
aggregate risk at time T:

RT(Q) = E[DKL<pdata(a0 | Xry T, Z) H QO(O'O ‘ Xy T, Z))]

where X, is generated by Algorithm Let g, (0) be the gradient from aggregate scoring and g""*()
the oracle unit-level gradient. Then:

l9-(6) = g2 (@)l < (V207 + V200 (M) ) V).

For adaptive selection T* = argmin, R, (0), the gradient error is controlled by the minimum
achievable risk across all times.

This theorem reveals the power of adaptive training: the gradient approximation quality depends on
the best prediction achievable at any time, not a fixed time. When the model is poorly calibrated, 7 = 1
minimizes risk (where exact aggregate-conditional sampling is possible). As training progresses,
earlier times may achieve lower risk through iterative refinement, automatically improving gradient
quality. The proof uses the Fisher identity and Pinsker’s inequality to bound the gradient gap in terms
of the aggregate KL divergence.

Combined with the recoverability assumption, this ensures that minimizing aggregate risk leads to
learning the correct unit-level model. Once correct at any time, the f-free property of the bridge kernel
guarantees correct distributions at all times, enabling consistent training across different trajectory
endpoints.
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Throughout, expectations are taken under the population law. For any time 7 € [0, 1], the state X, is
generated recursively by Algorithm |3|(reverse sampling with projection IT used only to draw X as an
internal step). The loss is always pre-projection: we score Qg (ag | X, T, z), never II.

Write the aggregate score function
lo(ag; X, 7,2) := —logQylao | xX+,7,2), sglao | %x-,7,2) := VglogQo(ao | x+,7, 2)
so that the population aggregate gradient at time 7 is
g-(0) = ]E[VQEQ(AO; Xr T, Z)} = —E [SQ(AO | %, T, Z)} .
Define the oracle unit-level score and gradient at time 7
wo(x0 | %r,7,2) = Valogao(xo | x,,72),  g2(0) i= B[~ uo(Xo | x:,7,2)]

(the gradient one would take if X, were observable).

For the aggregate risk we use the KL divergence

R.(0) = E[DKL(pdata(AO | xr,7,Z) H Qo(Ao | %+, T, Z))]

B.4.1 TWO ELEMENTARY LEMMAS

The first lemma is the (conditional) Fisher identity plus a Cauchy—Schwarz step.

Lemma B.15 (Aggregate score bias bound). For any fixed (x,,T, z),

H E[SG(AO | X77T7z) | Xy T, Z} H S V tI‘I@(XT,T,Z) : \/2 DKL(pduta(AO | Xy T, Z) H QQ(AO I Xy T, Z)>7

where Ip(X;,T, 2) = Varg, (.|x, r.)[ so(- | X+, 7, 2)].

Proof. Under Qy(- | x-,7,2), E[sg] = 0. Let L = %(Ao | x-,7,2). Then E, . [ss] =
Eq,[se(L — 1)]. By Cauchy-Schwarz, ||Eq,[se(L — 1)]|| < \/Eq,||ss]? - v/Eq, (L — 1)2. The
first factor is /tr Ip(x,, T, z). The second equals \/X2 (Paaa]| Qo) < \/2 Dx1,(Pdaa]| Qo) in the local
regime near equalityE] which yields the claim. O

The second lemma translates aggregate misfit to unit-level misfit via the local modulus.

Lemma B.16 (Unit-level score bias via recoverability). Fix (x,, 7, z) and assume the local modulus
in Assumption Then

| Eluo(Xo |%,7.2) [%7,7,2] | < V2 Conid) t0e(7) ~\/DKL(pdm(Ao %,72) || QolAo [ xr,7.2) ).

Proof. With p(-) = pgaa(X0 | X-,7,2) and q(-) = qo(- | x;,7,2), the same step as above
gives | E,[ug]|| < VEql[uol® - /2 Dxr(pllq). Bound Ey||ug|[? < Cunie(T) by Assumption
Then apply the local modulus (Assumption | to replace Dk, (pl|¢) by Kioe(T) DL (pdm(Ao |
Xr, T, 2)[|Qol- | XT,T,Z)). -

B.4.2 PROOF OF THEOREM
Proof of Theorem By definitions,

9-(6) = g2™(6) = —E[s0(do | %7,7.2)] + Eug(Xo | x-,7, 7).

?Locally (when the two distributions are close), D,: < 2 Dkr; more generally, they are second-order
equivalent by standard f-divergence comparisons. This is automatically satisfied in a neighborhood of #* under

Assumption [B.T}
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Apply the triangle inequality and condition on (x., 7, Z):
lg-(6) = g2 O)Il < B[ [|Blso(Ao | %r,7,2) | %77, 2]
+ E[ [Eluo(Xo | %7,7.2) | %77, Z]]| ]

Use Lemma|[B.T5]|for the first term and Lemma [B.16|for the second, then apply Jensen and Assump-
tions [B.13HB. 1!

lg-(0) = 2 (@)]| < (V2Cr + V2 Con) fee(r)) VR0).

Finally, for the adaptive choice 7* € arg min, R, (), monotonicity gives /R~ () < \/R.(0) for
all 7, so the same bound with R« (6) holds, which is exactly the theorem. O

B.4.3 REMARKS ON SCOPE AND IDENTIFIABILITY

Realizability and local modulus. Assumption [B.T]asks that aggregate equality implies unit-level
equality with a local modulus ko (t). Concrete sufficient conditions follow from identifiability of the
factorial-cumulant generating family of the units and diversity of covariates z (see Theorem |B.10).

Large-G limits. As G grows, higher-order cumulants in the aggregate attenuate (Appendix [B.3),
SO Kioc(t) may deteriorate unless additional structure is imposed (parametric shrinkage across units,
multiple aggregates, or occasional unit-level labels).

B.4.4 WHAT ADAPTIVE END-TIME BUYS YOU

Defining R (6) using the recursive x, makes the comparison truly training-aligned: your per-example
choice 7* = arg min, R, () yields the rightest bound

||g7.* (9) — g;l_rilt(g)” S (\/2 CI + \/2 Cmaxﬁmax) \/RT* (9)7

with Chpax = sup, Cunit(7) and Kmax = Sup, Kioc(7) (finite in the realizable neighborhood). Intu-
itively, as the sampler refines its x, along the reverse path, whichever time slice permits the best
aggregate prediction also delivers the smallest gap to the oracle unit-level bridge gradient.

C SYNTHETIC DISTRIBUTIONS

All synthetic tasks use the same base architecture with a 4-layer MLP with 128 dimensional hidden
layers. We scale the inputs and outputs in dimension, so for example the DFM and CE-CB have
d x 256 dimensional outputs (since we clip all datasets to use a range of 256 to make for easy
tokenization). The energy score models take inputs in d + noise_dim and we use noise_dim = 100
throughout. We ran all experiments with Adam using both I = 1le — 3, 2e — 4 and present results
for the best performing learning rate for each method. We use a cosine warmup for the learning rate
for 100 steps. For all experiments we use gradient norm clipping to size 1, batch size 256, and train
for 500 epochs. For the energy score models, we use exponential model averaging, which is crucial
to good performance. Full details are available in the codebase.

For the flow matching we use o = 0.1 following best practices (we tested larger o but saw large
degradations in performance). For the bessel sampler we use /A A_ = 32.

C.1 DISCRETE 8-GAUSSIANS TO 2-MOONS

C.1.1 DATASET

For qualitative evaluation, we adapt the classic continuous “8-Gaussians to 2-Moons” task into a
fully discrete, integer-valued setting suitable for count-based flow matching. Each dataset consists of
50,000 paired samples (g, x1) € Z2, constructed as follows.

Source distribution (z). We generate samples from the standard two-moons dataset in R? using
make_moons with noise level noise = 0.1. The moons are shifted to be approximately centered
at the origin by subtracting (0.5, 0.25).
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Target distribution (). We construct an 8-component Gaussian mixture arranged evenly on a
circle of radius 2.0 in R2. Each component has isotropic Gaussian noise with variance matching
noise = 0.1. A sample is generated by first selecting one of the 8 components uniformly at random,
then drawing from the corresponding Gaussian.

Integerization. Both source and target samples are mapped to the integer lattice by
x +— round(clip(x - scale + offset, min_value, value_range — 1)),

with parameters scale = 30.0, offset = 80.0, min_value = 0, and value_range = 196.
This procedure ensures that all outputs fall in the discrete vocabulary {0, 1,...,195}2, but the scales
are chosen so that essentially no values are actually clipped.

C.1.2 RESULTS

We present a visualization of the learned trajectories in Fig. 2Jand the full details in Table[5] Count
bridges achieve uniformly the best performance using the distributional losses, that is the cross
entropy or energy scores with the energy score uniformly best.

Table 5: Discrete Moons Results: Eight Gaussians — Two Moons

Method MMD Ws Energy
CFM 0.065 £ 0.019 0.049 £ 0.008 0.874 £ 0.246
DFM 0.010 £ 0.002 0.010 £ 0.002 0.035+0.014

Count Bridge (CE) 0.0065 £ 0.0023  0.0080 + 0.0009  0.026 + 0.004
Count Bridge (ES) 0.0044 = 0.0018  0.0052 = 0.0007 0.0098 + 0.0029
Count Bridge (MSE)  0.030 = 0.000 0.033 £ 0.001 0.366 £ 0.015

C.2 Low-RANK GAUSSIAN MIXTURE
C.2.1 DATASET

For synthetic evaluation, we use a pre-sampled integer-valued Gaussian mixture dataset that scales
with the ambient dimension d while fixing the latent rank at » = 3. Each dataset consists of 50,000
paired samples (z¢, 1) € Z% generated according to the following procedure:

Mixture construction. We define a £ = 5 component Gaussian mixture in latent space R” with
r = 3 (we hold these parameters constant as we scale in d):

* Means. Component means are drawn from N (0, 0%]) with scale ¢ = mean_scale/\/T,
and shifted to lie near the center of the integer range. We set mean_scale = 20.0.

* Covariances. Each covariance is constructed by sampling eigenvalues from an exponential
distribution with scale cov_scale = 10.0, clamped below min_eigenvalue = 0.1,
and conjugating by a random orthogonal matrix.

* Mixture weights. Weights are drawn from a Dirichlet(1, ..., 1) prior, yielding a random
simplex vector.

Projection to R?. Latent samples z € R> are mapped to the ambient space via a
random projection matrix P € R?*" with entries scaled by projection_scale/\/T,
where projection_scale = 1.0. To avoid degeneracy, isotropic Gaussian noise € ~
N(0,noise_scale®l,) withnoise_scale = 1.0 is added after projection:

y=Pz+e, 2 ~MoG;,, € ~ N(0,1).

Integerization. Projected samples y € R? are rounded to the nearest integer and reflected into the
bounded range [min_value,value_range — 1] = [0, 255] to ensure validity of DFM.
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Scaling in d. The intrinsic latent structure is fixed at » = 3, while the output dimension d is varied
across experiments (e.g. d = 5,16,32,128,256,512). This construction produces datasets with
constant intrinsic complexity but increasing ambient dimension, providing a natural test of how
models scale in d.

C.2.2 RESULTS

The central scaling results are presented visually in Fig. [3] Here we also present the full experimental
details in Table

C.3 DECONVOLUTION GAUSSIAN MIXTURE DATASET

We extend the low-rank Gaussian mixture task (Appendix [C.2)) to evaluate deconvolution capabilities
under controlled conditions. Each observation is formed by aggregating a group of G unit-level
samples into a single count vector.

Group construction. For each group, component proportions are drawn from a Dirichlet distri-
bution with concentration parameter «, yielding group-specific mixture weights. The G unit-level
samples are then drawn independently from the corresponding mixture components. Both the ag-
gregated sum Xy € Z% and the individual unit-level labels z € {0,1}%** are retained, enabling
evaluation of methods under both aggregate-only and aggregate+unit supervision.

Experimental variation. We vary two factors that control the difficulty of deconvolution:

* Group size: G € {4, 8,32, 128}, which determines how many unit-level samples are aggre-
gated. Larger groups yield more uniform averages and less information about component
heterogeneity.

* Dirichlet concentration: o € {1, 10, 1000}, which controls variability in group-specific
mixture weights. Small « values produce heterogeneous groups (informative for deconvolu-
tion), while large « values yield nearly uniform group proportions (uninformative).

Dataset parameters. We fix the ambient dimension at d = 4, latent rank at » = 3, number of
mixture components £ = 5, and use the same mixture parameterization as in the low-rank dataset
(means scaled by 20.0, covariances scaled by 10.0 with minimum eigenvalue 0.1, projection scale
1.0, isotropic noise 1.0, and integerization into [0, 255]). Each dataset contains 5,000 groups, drawn
from a base pool of 50,000 pre-sampled mixture samples.

Results. As shown in Fig.[d] deconvolution performance degrades as groups become larger and
more uniform. This matches the theoretical results in Appendices and [B.3] which establish that
deconvolution requires between-group heterogeneity for identification, a property that is inherently
lost as G grows. We present detailed results across metrics in Tables 7] [8] 0]

D SPATIAL TRANSCRIPTOMIC DECONVOLUTION

D.1 DATASET

Preprocessing We used the publicly available mouse brain MERFISH dataset from [Vizgen| (2021)).
We subset the data to a particular slice (slice 1, replicate 2). We used the transcript puncta and nuclear
segmentation masks as provided with the dataset. For gene expression, we used the raw transcript
counts without applying standard single-cell preprocessing pipelines. For each cell, we resized the
DAPI image to 256x256 pixels by padding.

Aggregation To simulate a Visium-style spatial transcriptomics dataset, we aggregated the single-
cell MERFISH data. A grid of spots was defined with a center-to-center distance of 100um and a
spot radius of 55um. The gene expression profile for each simulated spot was then generated by
summing the transcript counts of all identified cells whose nuclei fell within the circular bounds of
that spot.
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Table 6: Performance Comparison Across Dimensions and Methods

Dim Method NFE MMD Wy EMD
8 0.027 £0.014 0.019 £ 0.002 0.716 + 0.420
CFM 32 0.026 +0.017 0.015 £ 0.004 0.584 +0.460
128 0.026 +0.018 0.015 + 0.004 0.565 + 0.469
8 0.025 + 0.004 0.011 £ 0.001 0.245 +0.053
4 DFM 32 0.035 +0.003 0.014 £ 0.001 0.458 +0.078
128 0.046 + 0.005 0.018 + 0.002 0.759 +0.144
8 0.0053 + 0.0007 0.0040 + 0.0004 0.020 £ 0.004
Count Bridge 32 0.0054 + 0.0010 0.0042 % 0.0002 0.023 £ 0.005
128 0.0098 + 0.0008 0.0058 + 0.0003 0.055 + 0.008
8 0.041 +£0.013 0.025 £ 0.004 1.05£0.18
CFM 32 0.039 +0.012 0.014 £ 0.004 0.456 +0.147
128 0.040 +0.010 0.014 + 0.003 0.421 +0.128
8 0.026 + 0.007 0.011 £0.001 0.204 + 0.067
8 DFM 32 0.034 + 0.009 0.011 £ 0.003 0.317 £0.142
128 0.042+0.011 0.012 + 0.003 0.497 +0.228
8 0.0036 + 0.0007 0.0023 + 0.0001 0.0068 + 0.0024
Count Bridge 32 0.0038 + 0.0011 0.0026 * 0.0006 0.0077 + 0.0028
128 0.0050 + 0.0015 0.0029 + 0.0003 0.012 + 0.002
8 0.066 +0.011 0.028 £ 0.001 2.08 £0.54
CFM 32 0.053 +0.011 0.017 £ 0.001 0.788 +0.211
128 0.052+0.011 0.015 +0.001 0.647 +0.163
8 0.078 £ 0.001 0.017 £ 0.000 1.20 £ 0.06
16 DFM 32 0.100 + 0.005 0.022 + 0.002 1.92+0.28
128 0.118 +0.017 0.025 + 0.004 2.72+0.86
8 0.0067 = 0.0014 0.0035 + 0.0003 0.025 £ 0.007
Count Bridge 32 0.011  0.001 0.0045 % 0.0004 0.048 £ 0.007
128 0.017 £ 0.001 0.0057 % 0.0004 0.090 £ 0.013
8 0.145 +0.024 0.030 + 0.001 4.63+128
CFM 32 0.131 +£0.043 0.026 + 0.005 3.14+1.72
128 0.131 +0.052 0.022 + 0.006 3.09+1.97
8 0.079 £ 0.027 0.016 £ 0.008 1.23£0.76
32 DFM 32 0.089 +0.023 0.017 £ 0.006 1.55+0.85
128 0.100 + 0.027 0.018 £ 0.007 1.99 £ 1.10
8 0.0083 + 0.0008 0.0024 % 0.0003 0.021 £ 0.002
Count Bridge 32 0.010 + 0.002 0.0031 % 0.0006 0.029 £ 0.008
128 0.010 + 0.002 0.0034 % 0.0007 0.034 £ 0.007
8 0.296 + 0.077 0.042 £ 0.008 13.43+6.74
CFM 32 0.313 £0.099 0.046 £ 0.014 16.07 £9.93
128 0.326 +0.107 0.049 £ 0.017 17.94 + 11.55
8 0.105 £ 0.033 0.022 £ 0.007 1.71 £1.07
64 DFM 32 0.126 £ 0.039 0.020 + 0.005 257+1.58
128 0.147 £ 0.048 0.022 + 0.006 3.59+£2.20
8 0.020 + 0.004 0.0051 % 0.0005 0.072 £ 0.019
Count Bridge 32 0.027 + 0.002 0.0061 % 0.0002 0.112 £ 0.014
128 0.029 + 0.001 0.0065 % 0.0005 0.138 + 0.018
8 0.335 £ 0.009 0.038 £ 0.003 12.89 + 1.09
CFM 32 0.276 + 0.034 0.033 + 0.008 10.59 £3.51
128 0.260 + 0.048 0.032 + 0.008 10.55+4.74
8 0.205 +£0.036 0.042 + 0.005 6.66 +2.47
128 DFM 32 0.236 +0.031 0.043 + 0.005 9.06 £2.63
128 0.259 +0.028 0.050 + 0.011 10.90 +2.92
8 0.128 + 0.066 0.014 £ 0.006 3.30+£2.34
Count Bridge 32 0.140 £ 0.075 0.014 £ 0.006 3.89 £2.97
128 0.151 + 0.082 0.016 + 0.007 4.55 + 3.65
8 0.461 +0.007 0.049 + 0.007 28.45+4.63
CFM 32 0.402 +0.049 0.047 + 0.006 28.95+10.71
128 0.390 + 0.069 0.045 +0.012 30.57 +13.24
8 0.216 £ 0.049 0.029 + 0.008 9.75£5.07
256 DFM 32 0.228 +0.045 0.033 + 0.008 12.63 +4.81
128 0.255 +0.044 0.039 + 0.009 15.80 +4.96
8 0.087 + 0.045 0.0093 + 0.0022 1.58 £1.28
Count Bridge 32 0.092 + 0.044 0.0099 + 0.0021 1.68 +1.30
128 0.105 + 0.039 0.012 + 0.001 1.98 +1.26
8 0.569 + 0.055 0.051 + 0.006 49.32 £7.46
CFM 32 0.471 +£0.046 0.049 + 0.005 50.69 + 11.35
128 0.438 +0.034 0.048 + 0.005 53.70 + 14.23
8 0.261 +0.069 0.042 £ 0.015 30.49 +21.88
512 DFM 32 0.288 + 0.099 0.050 £ 0.019 44.53 £29.76
128 0.319+0.112 0.058 + 0.022 55.03 +35.35
8 0.081 + 0.028 0.010 + 0.002 1.46 £ 0.73
Count Bridge 32 0.085 + 0.026 0.010 + 0.001 1.79 £ 0.89
128 0.113 + 0.029 0.016 = 0.003 3.53£2.27

D.2 ARCHITECTURE, TRAINING, AND SAMPLING
D.2.1 INPUTS AND TOKENIZATION

We model spot-level counts while conditioning on image context and diffusion noise/time tokens.
Each training example provides

™ e Zgg, I e ROHW 4 2(0,1], eeRY¥, ye{l,...,C,} (optional).

27



Under review as a conference paper at ICLR 2026

Table 7: Deconvolution Performance: W5 vs Group Size and Dirichlet Concentration

Group Size (n) a=1 a=10 a = 1000
4 0.0091 = 0.0005 0.010 £0.000 0.011 % 0.000
8 0.011 = 0.001 0.014 £0.001 0.016 +0.000
32 0.020 £0.002  0.023 £0.002 0.025 = 0.002
128 0.050 = 0.008 0.053 £0.006 0.057 +£0.002

Table 8: Deconvolution Performance: EMD vs Group Size and Dirichlet Concentration

Group Size (n)

a=1

4
8
32
128

0.286 + 0.023
0.530 £ 0.051

a=10 o = 1000
0.130 £ 0.006 0.195+0.025 0.207 £ 0.040
0.363 £0.037 0.483 +0.010
0.657 £0.095 0.921 +0.222
222+0.54 2.63+0.14

224 +0.58

Table 9: Deconvolution Performance: MMD vs Group Size and Dirichlet Concentration

Group Size (n) a=1 a=10 a = 1000
4 0.011 £0.001 0.011+0.002 0.012+0.004
8 0.016 £0.001 0.017 £0.002 0.021 +£0.001
32 0.014 £0.003 0.020 £0.003 0.025 £0.010
128 0.037 £0.005 0.045+0.007 0.044 +0.001

Images are patchified by a ViT-style embedder (Pat chEmbed) into

im; B X Nimg Xd
X g c R img ,

while counts are converted into a small set of count patches using a learned projector

(CountPatchEmbedding):

X = reshape(MLP(m

Nimg = (H/P) (W/P),

)a [B7NCnt;d]) + Ecnh

with N¢, learned “pseudo-patches” and E learnable positional embeddings.

We form auxiliary tokens for time, noise, and (optionally) class:

7 = TimeMLP(timestep_emb(t)) € RP*1*¢,
N

time

noise

n = NoiseMLP(W.e) € RP*!*4,
~~

and, if labels are used, £ = Emb(y) € RB*1X4, Concatenating all tokens,

X(O) _ [£7 n;T; Ximg; cht] + Epos c RBX(Nimg+Ncm+extras)><d

with a single learned positional table E,os covering all tokens.

D.2.2 U-VIT BACKBONE (FUSION AND DECODING)

We process X (9) with a U-Net—style ViT:

XM

L XE2)

encoder (save skips)

where each Block is a standard MHA +MLP transformer block with LayerNorm, and decoder
blocks attend over skip connections. A final LayerNorm yields X°" € RB* (Nime+

mid Block
EEEm—

XE2

7

7X(L)7

decoder (with skips)

We then drop the auxiliary tokens and split modalities:

Ximg _ Xout

out

[:, img range, ],

cht _ Xout

out

[:, cnt range, :].

Nepet-extras) X d
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Count decoder. Count patches are decoded back to a vector via a small MLP head with nonnega-
tivity enforced by Softplus:

out

#o = Softplus( MLP (latten(XSht)) ) € RF*Pe.

This parameterizes go( - | z$™, I;, t, €, y) for the distributional loss and the reverse count-bridge step.

D.2.3 TRAINING OBJECTIVE AND USAGE

We train the model to predict the distribution of X (counts) given multimodal context under the
bridge (X3):

£(9) = _Et,(Xq,Xt) |:Sp(q9( ‘ Xtcmvlt7t7€7y)7 X(gm) :|7

using the energy score S, with p(z, 2') = ||z —2’ 15(8 € (0,2)) and the standard unbiased U-statistic
estimator with m samples from gy. Time and noise tokens implement the distributional diffusion
conditioning; label tokens (if present) enable class-conditional modeling. During reverse sampling
we draw X ~ qg(- | 2™, I,,t,¢,y) and update z,_ A using the exact binomial-hypergeometric
count-bridge kernel (Prop. [3.1).

D.2.4 IMPLEMENTATION SPECIFICS

* Patchification. Pat chEmbed uses patch size P on I; (channels C), producing Nime =
(H/P)(W/P) tokens of width d. CountPatchEmbedding projects D.-dimensional
counts to N, tokens of width d with learned positional embeddings.

* Auxiliary tokens. Time token: timestep_embedding followed by a linear or MLP
projector (t ime_dim controls concatenated components); noise token: linear to d then a
2-layer SiLU MLP; label token: lookup embedding if used. All tokens share a single learned
positional table.

* Backbone. Depth L with L/2 encoder and L/2 decoder blocks; each block uses d-
dimensional embeddings, h heads, MLP ratio r, LayerNorm, and (optionally) gradient
checkpointing. Decoder blocks accept the matching encoder skip.

* Heads. Count head: 2-layer GELU MLP over the concatenated count tokens, ending with
Softplus. Image head exists but is ignored for the loss.

* No weight decay. We exclude token positional tables and count-positional embeddings
from weight decay, following ViT practice.

D.2.5 OPTIMIZATION AND HYPERPARAMETERS

We use Adam, learning rate {2x 10, cosine warmup for 100 steps, EMA with 0.999, batch size
128, gradient clipping at 1.0. See configs for exact architecture specification.

D.2.6 SAMPLING

At test time we follow Alg. [3|using the aggregates to ensure our sampled Z( exactly match the target
sum at each intermediate time. We then apply the exact binomial-hypergeometric reverse kernel

(Prop. to obtain z, .

D.3 ADDITIONAL RESULTS

Comparison with reference-based methods Count Bridges and STDeconvolve are both reference-
free methods: that is, they require only aggregate level data, and do not need a reference dataset of
unit-level measurements. Many deconvolution methods, including RCTD (Cable et al., [2022) require
a single-cell (non-spatial) reference dataset. These methods benefit from unit-level observations, and
as such solve a more constrained problem — but require data which are not available in many settings.

Using the MERFISH benchmarking setup we also evaluate RCTD, and tabulate the results in Tab.
For evaluation, we use Jensen shannon Divergence (JSD) and RMSE metrics as described in (Li et al.|
2023a). We find that Count Bridges perform similarly to RCTD (with a higher JSD but lower RMSE),
despite the fact that Count Bridges do not have access to a reference dataset.
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JSD vs Number of Cell Types RMSE vs Number of Cell Types
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Figure 5: Performance of RCTD, STDeconvolve and Count Bridge on MERFISH deconvolution
across number of cell types using (a) Jensen Shannon Divergence (JSD) and (B) RMSE

Method RMSE JSD . . )
In Fig.[5] we show the performance of spatial deconvolution

STDeconvolve  2.746  0.289  methods across varying numbers of cell types. These results
RCTD 0417  0.161 evaluate only the recovery of cell type proportions, and do
Count Bridge 0.404  0.250 not evaluate full count profiles. Note that RCTD has access
to the single-cell level reference data, while STDeconvolve
and Count Bridges are fit entirely using aggregate-level data
and do not have access to single cell counts.

Table 10: Cell-type error

E NUCLEOTIDE-LEVEL GENE EXPRESSION MODELLING

E.1 DATASET

Nucleotide-level data preprocessing We use the Oneklk peripheral blood mononuclear cells
(PBMC) 10X 3’ scRNA-seq dataset, originally collected by |Yazar et al.|(2022). For our analysis, as
we are interested in nucleotide-level counts rather than the gene-level counts provided with the initial
publication, we use the preprocessed reads made available by [Hingerl et al.| (2024)). The reads are
aligned to the hg38 human reference genome. The resulting BAM files are filtered to include only
high quality, UMI-deduplicated reads. The cell type annotations were used as provided in the original
dataset.

Gene-level data preprocessing We construct the gene-level count matrices directly from our single-
cell coverage matrices rather than following the typical single-cell gene expression preprocessing
pipeline. In particular, for each annotated gene and each cell, we take the max count over the
nucleotide-level coverage matrix as the count for the gene.

E.2 ARCHITECTURE, TRAINING, AND INFERENCE

E.2.1 INPUTS AND EMBEDDINGS

We model nucleotide—level counts on a fixed window of length L=896. For each example we form
z €75, te€(0,1, z~N(0,1s), ce{l,...,C}, seqe{ac,G1,N}"

Sequence context is embedded with a frozen Enformer encoder (EleutherAl checkpoint), yielding
per—position embeddings
E(seq) € REXdE  dp = 3072.

We tile the scalars across positions and concatenate
HO = [E(seq) | o, || ¢ ]| emb(c)] € REX(etititdtde)
with d,=100 and d.=14. A two-layer SELU MLP projects to the model width d:
XO = yWy oW H)) € REX4.
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E.2.2 LOCAL ATTENTION BACKBONE

We apply Ny, residual self-attention blocks (PyTorch Mult iheadAttention, batch—first) with
LayerNorm:

x@O — MHA(X(Z),X(Z),X(Z)), x ) LN(X(Z) —i—X(O)),

where the residual skip uses the pre-block X () as in the implementation We use Nyn=2 lay-
ers, d=hidden_dim, and h=4 heads. A linear projection followed by softplus produces a
nonnegative per—position prediction

To = Softplus(WoulX(Na"“)) IS Réo.

This parameterizes the conditional law gy (- | 2+, ¢, z, ¢, seq) used inside the count—bridge reverse
kernel (Sec. [3).

E.2.3 LEARNED PROJECTION MODULE Il

When an aggregate constraint ag= ZiLzl Zo,; 1s observed, we refine £o with a lightweight attention
projector that operates across positions. We form

vy [5@0 | ¢ || ao | X(Nutm)] c REX(1+1+1+d)

A two-layer SELU MLP lifts to width d, then Vy.,;=2 self-attention layers (sequence—first API)
with residual+LayerNorm are applied:

y(m) — MHA(Y(m), y(m), y(m))7 y(m+1) LN({/(m) + y(O))_
A linear head produces an additive correction which we re—softplus for nonnegativity:
Ty = softplus(mejY(Np“’j)) + Zo.

At inference, when a is present we use g as the endpoint in the reverse step; otherwise we use Z.

E.2.4 TRAINING OBJECTIVES AND SCHEDULES

Distributional loss (energy score). We train gy with the energy score S, on the conditional

Xo | X¢=xy (Sec. . For each example we draw m i.i.d. samples i:éj) ~qo(- | 24,1, 2, ¢,5eq) via
ancestral decoding of the per—position parameterization and estimate the U—statistic version of .S,

with p(z, z')=|lz—a'||5 (B€(0,2)). We used m=2 in practice.

Aggregate—aware training. With probability p,.,=0.1 we attach an aggregate a and route the
forward pass through II,, to obtain Z, then compute the same energy score. This jointly trains IT,, to
approximate sampling from the mean—conditional X | A(Xy)=ag, X¢, t while preserving the exact
reverse transition of the count bridge.

Cell-type masking. To support both conditional and unconditional generation, we randomly mask
the cell-type embedding with probability pp,sk (set to zero vector). We used ppax=0.1.

E.2.5 OPTIMIZATION AND HYPERPARAMETERS

We use Adam, learning rate {2x 10, cosine warmup for 100 steps, EMA with 0.999, batch size
128, gradient clipping at 1.0. See configs for exact architecture specification.

E.2.6 SAMPLING

At test time we follow Alg. [2} starting from x; we iterate ¢, | 0. Ateach step we sample X ~ gg(- |
Ty, th, 2, ¢, seq); if an aggregate is provided we replace with Zo=II, (&0, ag, 2, ). We then apply
the exact binomial-hypergeometric reverse kernel (Prop.|3.1)) to obtain x, _,. This guarantees that
trajectories remain within the discrete support while leveraging the learned distributional posterior.
We use three function evaluations for all results in this application.

3Code uses a “global” residual X + X + X (©) within each block. We retained this because it stabilized
training with L=896.
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E.3 ADDITIONAL RESULTS

In Tab. we provide results for gene expression prediction performance, broken down by cell type.

Cell type Baseline MSE CB MSE

CD4 ET 3.596 1.402
NK 0.415 0.364
CD4 NC 3.382 1.304
CD8 S100B 2.619 1.002
CDS8 ET 1.065 0.540
B IN 2.556 1.091
CD8 NC 3.381 1.311
B Mem 6.742 3.416
NKR 1.624 0.781
Mono NC 1.485 0.752
Mono C 1.253 0.676
DC 9.302 4475
Plasma 10763.906  10696.934
CD4 SOX4 3.428 1.323
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