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ABSTRACT

Many modern biological assays, including RNA sequencing, yield integer-valued
counts that reflect the number of molecules detected. These measurements are
often not at the desired resolution: while the unit of interest is typically a sin-
gle cell, many measurement technologies produce counts aggregated over sets of
cells. Although recent generative frameworks such as diffusion and flow matching
have been extended to non-Euclidean and discrete settings, it remains unclear how
best to model integer-valued data or how to systematically deconvolve aggregated
observations. We introduce Count Bridges, a stochastic bridge process on the
integers that provides an exact, tractable analogue of diffusion-style models for
count data, with closed-form conditionals for efficient training and sampling. We
extend this framework to enable direct training from aggregated measurements
via an Expectation-Maximization-style approach that treats unit-level counts as
latent variables. We demonstrate state-of-the-art performance on integer distribu-
tion matching benchmarks, comparing against flow matching and discrete flow
matching baselines across various metrics. We then apply Count Bridges to two
large-scale problems in biology: modeling single-cell gene expression data at the
nucleotide resolution, with applications to deconvolving bulk RNA-seq, and resolv-
ing multicellular spatial transcriptomic spots into single-cell count profiles. Our
methods offer a principled foundation for generative modeling and deconvolution
of biological count data across scales and modalities.

1 INTRODUCTION

Integer-valued counts are a fundamental product of scientific measurements because of the discrete
nature of molecules. Modern biological assays yield massive streams of count data: RNA-seq read
counts, fluorescence imaging molecule counts, and mass cytometry ion counts (Klein et al., 2015;
Raj et al., 2008; Bendall et al., 2011). However, these measurements are often aggregated over
multiple individual units, obscuring the fine-grained patterns underlying these natural phenomena.
Transcriptomics technologies exemplify this challenge, with technologies such as Visium capturing
10-50 cells per spot (Ståhl et al., 2016) and bulk RNA-seq aggregating thousands to millions of cells
per readout, yielding averages rather than high-resolution details. Deconvolving these aggregates into
single-cell profiles is critical for the precise mapping of cellular heterogeneity, cell-cell interactions,
and tissue architecture (Moses & Pachter, 2022; Armingol et al., 2021). The challenge is twofold:
building generative models that respect the integer nature of counts and extending these models to
infer unit-level profiles from aggregated observations.

Recent developments in generative modelling only partially addresss the problem. Discrete diffusion
models (Austin et al., 2021; Lou et al., 2023) treat counts as unordered categories through masking
or uniform noise. Blackout Diffusion (Santos et al., 2023), the only count-specific approach, uses
pure-death processes that cannot transport between arbitrary distributions. The biological decon-
volution literature on the other hand focuses on deconvolving cell-type (cluster-level) proportions
(Kleshchevnikov et al., 2022; Cable et al., 2022; Li et al., 2023), rather than unit-level count profiles.
Thus, there is need for a framework that respects the integer and ordinal structure of counts, enables
transport between arbitrary distributions, and can systematically deconvolve aggregated observations.

We introduce Count Bridges: a stochastic bridge process on Zd using Poisson birth-death dynamics.
This yields closed-form conditionals for exact sampling and extends naturally to deconvolution via an
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EM algorithm treating unit-level counts as latent. The birth-death mechanism allows transport between
arbitrary integer-valued distributions while preserving the ordinal structure, as both increments and
decrements respect the natural ordering of counts. We show that Count Bridges outperform existing
methods on synthetic benchmark datasets and scale more favorably to high-dimensional settings. We
then showcase Count Bridges on two real-world biological applications centered on deconvolution:
nucleotide-resolution single-cell RNA-sequence modeling for bulk RNA-seq deconvolution and
reference-free spatial transcriptomic deconvolution. The anonymized codebase is available here.

2 BACKGROUND ON DIFFUSION MODELS

Diffusion models specify a time–indexed family of bridge kernels connecting X0∼ p0 to a simple
source distribution X1∼ p1 (often Gaussian). There are two layers of structure: (i) an unconditional
forward process (Xt)t∈[0,1] with kernels Kt|0(xt | x0) = Law(Xt | X0 = x0); (ii) for any
0 ≤ s ≤ t ≤ 1, a family of bridge kernels Ks|0,t(xs | x0, xt) = Law(Xs | X0 = x0, Xt = xt).

Diffusion models require two consistency properties. First we require a bridge consistency identity.

For any 0 ≤ s ≤ t ≤ u ≤ 1, Ks|u(xs | xu) =
∫
Ks|t(xs | xt)Kt|u(xt | xu) dxt. (1)

Thus multi-step sampling along any grid u→ t→s matches the single-step u→s bridge.

Second, the kernel must have a projective posterior:

Ks|t(xs | xt) =
∫
q0|t(x0 | xt)Ks|0,t(xs | x0, xt) dx0, (2)

where q0|t(x0 | xt) = Law(X0 | Xt = xt). This identity expresses Ks|t as a mixture over the
posterior of the p0 data. It is essential for denoising: during sampling, each predicted Xt changes the
posterior q0|t, so the reverse kernels must be projective under this posterior update.

Together, equation 1 and equation 2 lets us define a general diffusion approach. First we train a
denoiser qθ that approximates the posterior, X̃0 ∼ qθ( · | xt, t) ≈ Law(X0 | Xt=xt), using tuples
(t,Xt, X0) drawn from the “global” bridge: sample x0 ∼ p0, x1 ∼ p1, t ∼ Unif[0, 1] and then
Xt ∼ Kt|0,1(· | x0, x1).
For sampling, pick a grid 1 = tK > · · · > t0 = 0, draw X1 ∼ p1, set XtK ← X1, sampling

X̃
(k+1)
0 ∼ qθ( · | Xtk+1

, tk+1), Xtk ∼ Ktk|0,tk+1
( · | X̃(k+1)

0 , Xtk+1
). (3)

By our consistency properties, this multi–step procedure is equivalent to sampling directly from the
(0, 1) bridge, so the model cannot drift out of the training distribution.

2.1 DIFFUSION AS A BRIDGE BETWEEN NOISE AND DATA

Let us consider the unconditional Kt|0 process (Xt)t∈[0,1] of the following form
Xt = α(t)X0 +Bt, (4)

where (Bt)t∈[0,1] is a d-dimensional Gaussian process with non-decreasing standard deviation σ(t),
and α(t) a non-increasing function. Note that α(0)=1 and σ(0)=0.

We want to define a process that interpolates smoothly between X0∼ p0 and X1 given by another
distribution as in Peluchetti (2023); Albergo et al. (2023); Delbracio & Milanfar (2023); Liu et al.
(2022; 2023). We have the following proposition defining the global and local bridge.
Proposition 2.1. Let (Xt)t∈[0,1] be given by equation 4. For 0 < s < t ≤ 1, consider (Xs)s∈[0,t]

conditioned on Xt = xt and X0 = x0. Then the conditional law Ks|0,t(· | x0, xt) is Gaussian and
can be written

Xs
d
= α(s)(1− r(s, t))X0 +

α(s)

α(t)
r(s, t)Xt + σ(s)(1− r(s, t))1/2Z, (5)

where Z ∼ N (0, Id) is independent of (X0, Xt) and r(s, t) = α(t)2σ(s)2

α(s)2σ(t)2 . In particular, the family
{Ks|0,t}0≤s≤t≤1 defined by equation 5 satisfies equations 1 and 2.

Note that if X1 ∼ N (0, Id), α(1) = 0 and σ(1) = 1 we have Xt
d
= α(t)X0 + σ(t)Z. Furthermore,

our equation 5 recovers the interpolation described in Albergo et al. (2023) with the identification
α(t)→ α(t)(1− r(t)), α(t)α(1)r(t)→ β(t) and σ(t)(1− r(t))1/2 → γt.
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Figure 1: Left: Sample paths for several endpoint gaps d1 (top). Fixing the prefix [0, t] resample
(t, 1] by the recursive kernel (bottom). Middle: Bessel slack posteriors at initial and intermediate
times. The slack Mt concentrates near 0 as |d| grows. Right: ECDFs of Xs from a one–step kernel
(1→s) and a two–step kernel (1→ t→s) are indistinguishable, confirming composition.

2.2 SAMPLING THE POSTERIOR

In this paradigm the bridge is only the first of two choices that define the model. We also have to
choose how to model the posterior X0|Xt, t. There are two core options: we can use differential
equations to model the posterior in the limit of small steps or we can focus more directly on modeling
the posterior. In Euclidean space, the former lets us learn a simple conditional expectation, whereas
the latter always requires a distribution model.

Infinitesimal. Consider a small backward step of size δ > 0. The local bridge between times t and
t− δ is Gaussian, so conditioned on Xt = x we can write to first order in δ

Xt−δ | Xt = x ≈ x− δ b(x, t) +
√
δ ξt, ξt ∼ N

(
0,Σ(x, t)

)
,

where b is the reverse-time drift and Σ is the diffusion covariance of the bridge.

The conditional law Xt−δ | Xt is Gaussian and can be computed in closed form:
b(x, t) = B1(t)x+B2(t)E[X0 | Xt = x] + b0(t), Σ(x, t) = Σ0(t).

The diffusion covariance depends only on t (from the Brownian increment), and the drift depends
on the posterior Law(X0 | Xt) only through its mean. This justifies learning the mean qθ(x, t) ≈
E[X0 | Xt = x] (equivalently, a score or velocity) as in standard diffusion models (Song et al., 2020).

Distributional. Following De Bortoli et al. (2025) we can learn the conditional law qθ( · | xt, t) ≈
Law(X0 | Xt=xt), using any distribution learning approach. We can then sample and directly plug
into the bridge

X̃
(k+1)
0 ∼ qθ( · | Xtk+1

, tk+1), Xtk ∼ Ktk|0,tk+1

(
· | X̃(k+1)

0 , Xtk+1

)
.

to sample the posterior. The distributional perspective is particularly powerful when the infinitesimal
perspective fails to admit a simplification to the conditional expectation, which motivates our use
of the distributional approach for Count Bridges (see Sec. 3.2). In categorical discrete settings, all
approaches are distributional since they are based on cross-entropy losses, see Campbell et al. (2022);
Austin et al. (2021); Shi et al. (2024); Sahoo et al. (2024).

3 COUNT BRIDGES

3.1 AN INTEGER BRIDGE BETWEEN DISTRIBUTIONS

Mirroring Sec. 2, we seek a bridge for integer-valued data. Instead of a Gaussian process, we use a pair
of independent Poisson birth/death processes (Bt)t∈[0,1] and (Dt)t∈[0,1] that increment/decrement
the counts. We define an increasing “jump-intensity” function w : [0, 1] → R≥0 with w(0) = 0,
w(1) = 1, and then write the cumulative birth/death intensities as Λ±(t) = λ± w(t) for some λ± > 0
so Bt ∼ Poi(Λ+(t)) and Dt ∼ Poi(Λ−(t)). From here we can define the unconditional kernel Kt|0:

Xt = X0 +Bt −Dt. (6)

3
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Denoting the displacement dt = Xt −X0, the total number of jumps Nt = Bt +Dt, and the slack
variable Mt = min(Bt, Dt). Any two of these variables determine the third:

Nt = |dt|+ 2Mt, Bt =
1
2 (Nt + dt), Dt = Nt −Bt. (7)

From the (Nt, Bt) perspective, Poisson superposition and thinning imply that, conditional on (Nt, Bt)
at time t, the earlier counts (Ns, Bs) for s < t can be sampled by a Binomial draw for Ns and a
Hypergeometric draw for Bs. Switching to (Mt, dt), a Poisson change of variables yields the slack
posterior Mt | dt, whose pmf has Bessel form (see Prop. A.5 in App. A). These two ingredients
together give a count analogue of Proposition 2.1; the full derivation is in App. A.
Proposition 3.1. Let (Xt)t∈[0,1] be given by equation 6. Now, consider (Xs)s∈[0,t] conditioned by
Xt = xt and X0 = x0. Then, we have the Poisson Birth-Death bridge Ks|0,t:

Xs
d
= X0 +Bs −Ds, (8)

where we condition on dt = Xt − X0 and sample Mt | dt ∼ Bes(|dt|; Λ+(t),Λ−(t)), changing
variables to Nt and Bt to sample Bs, and Ds which we can plug into equation 8:

Ns | Nt ∼ Bin

(
Nt,

w(s)

w(t)

)
, Bs | (Nt, Ns, Bt) ∼ Hyp(Nt, Bt, Ns), Ds = Ns −Bs. (9)

The family {Ks|0,t}0≤s≤t≤1 defined by equation 8 satisfies equations 1 and 2.

We visualize this process in Fig. 1 where we show the trajectories for the one- and two-step models
along with the core composition property that drives bridge models. This setup enables training and
sampling from a Count Bridge, see Algorithms 1 and 2. These results leverage our custom CUDA
kernel implementing the fast Bessel sampler of Devroye (2002) to enable sampling at scale.

In Fig. 1 we also see that as dt grows the slack Mt concentrates near zero, so there is no slack.
This means that Count Bridges are an instance of the static Schrödinger bridge problem (Léonard,
2013): they solve an entropy-regularized optimal transport. Let κ =

√
λ+λ− be the jump intensity

and pκref(x0, x1) = p0(x0)K
κ
1|0(x1|x0) be the joint law of (X0, X1) induced by the kernel. Over the

space of couplings C(p0, p1) = {C on X × X : C(·,X ) = p0, C(X , ·) = p1}, Count Bridges solve

Cκ ∈ arg min
C∈C(p0,p1)

KL
(
C ∥ pκref

)
.

Letting κ→∞ yields the independent coupling p0 ⊗ p1, but as κ ↓ 0 we obtain

KL
(
C ∥ pκref

)
≈ log

(
2
κ

)
EC |X1−X0| −H(C),

so κ→ 0 recovers discrete OT with cost |x1−x0| (see App. A.2).

This echoes the Gaussian case (Sec. 2) where we define σ = σ(1) and pσref , and as σ ↓ 0

KL
(
C ∥ pσref

)
≈ 1

2σ2 EC∥X1−X0∥2 −H(C),

so σ → 0 recovers quadratic OT, while σ → ∞ again gives p0 ⊗ p1 (Shi et al., 2023). Thus the
bridge parameters κ (count) and σ (Gaussian) play the same role as entropy–regularization strengths.

3.2 DISTRIBUTIONAL SCORING LOSS FOR THE DENOISER

Training requires a distributional loss due to the discrete nature of the space. As shown by Holderrieth
et al. (2024), the ELBO for discrete generators (e.g., jump processes) is distributional and cannot
be reduced to expectations over point estimates. This mirrors the need for cross-entropy in discrete
diffusion and flow models. We can use cross-entropy with Count Bridges (we test this, see App.
D.1), but it has two issues: first, it does not incorporate the lattice structure; second, cross-entropy
cannot model the joint of Xs | Xt without exponential cost in dimension, so cross entropy is usually
factorized, modeling each coordinate of Xs | Xt independently or autoregressively. Specializing to
count data we can go beyond cross-entropy by using a proper scoring rule that (i) incorporates the
geometry and (ii) enables modeling of the joint.

Formally, let (X0, Xt) denote a training pair from Kt|0,1 at time t ∈ [0, 1], and let qθ(· | xt, t) be our
denoiser. We train qθ using a strictly proper distributional scoring rule (Gneiting & Raftery, 2007;

4
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Require: dataset (x0,x1), w(·),Λ±(·)
1: for each minibatch do
2: sample (x0, x1) ∼ (x0,x1)
3: t ∼ Unif[0, 1]
4: d1 ← x1 − x0
5: M1 ∼ Bes(|d1|; Λ+(1),Λ−(1))
6: N1 ← |d1|+ 2M1

7: B1 ← 1
2 (N1 + d1)

8: Nt ∼ Bin
(
N1, w(t)

)
9: Bt ∼ Hyp

(
N1, B1, Nt

)
10: xt ← x1−2(B1−Bt)+(N1−Nt)
11: update θ on L(θ)
12: end for

Algorithm 1: Training Poisson–BD Bridge

Require: xtK = x1, model qθ, w(·),Λ±(·)
1: for k = K,K − 1, . . . , 1 do
2: sample x̂0 ∼ qθ(· | xtk , tk)
3: dtk ← xtk − x̂0
4: Mtk ∼ Bes(|dtk |; Λ+(tk),Λ−(tk))
5: Ntk ← |dtk |+ 2Mtk

6: Btk ← 1
2 (Ntk + dtk)

7: r ← w(tk−1)/w(tk)
8: Ntk−1

∼ Bin
(
Ntk , r

)
9: Btk−1

∼ Hyp
(
Ntk , Btk , Ntk−1

)
10: xtk−1

← xtk−2(Btk−Btk−1
)+(Ntk−Ntk−1

)
11: end for
12: return xt0

Algorithm 2: Sampling Poisson–BD Bridge

De Bortoli et al., 2025). Fix a negative-type semimetric ρ on ZD (all our experiments focus on the
ρ(x, x′) = ∥x− x′∥β2 with β = 1). For any distribution p and outcome y, the energy score is

Sρ(p, y) =
1
2 EX,X′∼p

[
ρ(X,X ′)

]
−EX∼p

[
ρ(X, y)

]
and L(θ) = EX0,Xt,t

[
Sρ
(
qθ( · | Xt, t), X0

)]
which is strictly proper when ρ is characteristic. Taking m i.i.d. samples x̂(j)∼qθ(· | xt, t) we can
use the plugin estimator: Ŝρ = 1

m(m−1)

∑
j ̸=j′

1
2ρ(x̂

(j), x̂(j
′))− 1

m

∑m
j=1 ρ

(
x̂(j), x0

)
.

4 DECONVOLUTION WITH COUNT BRIDGES

We extend Count Bridges to handle unit–level generation when we only observe aggregates. Consider
G units in the one-dimensional case where the group-level state at time t is a vector Xt ∈ ZG
with entries Xgt for unit g at time t. Each entry evolves independently according to the bridge in
Section 3. The key challenge: we observe the unit–level endpoint x1 but only the aggregate at time 0,
a0 =

∑G
g=1 xg0 ∈ Z, not the unit–level vector x0. Our goal is to learn a count bridge qθ(x0 | xt, t, z)

that generates unit–level endpoints given start data at time t = 1 and side information z.

We formulate this as a generalized EM problem, similar to Rozet et al. (2024), where X0 is latent
and a0 =

∑
gXg0 is observed. Let A : ZG→Z be a linear aggregate map (e.g., sums across units,

block sums). For (xt, t, z), the denoiser qθ(· | xt, t, z) defines an i.i.d. product prior over X0 =
(X10, . . . , XG0). Conditioning on the aggregate yields

Qθ(X0 | a0, xt, t, z) ∝
[ G∏
g=1

qθ(Xg0 | xt, t, z)
]
1{A(X0) = a0}.

In the E-step we will generate “latent” x≈0 using the model and in the M-step we will use these x≈0 to
train the model at the aggregate level. We summarize the overall procedure in Algorithms 3 and 4.

E-Step The ideal E–step would sample from the exact aggregate–conditional law

X⋆
0 ∼ Qθ(· | a0, xt, t, z) .

We could then use the sampled x⋆0 as latent variables to sample xt between (x⋆0,x1) using the
unit–level kernel Kt|0,1 from Prop. 3.1.1 Unfortunately, Qθ is generally intractable to sample from,
given just a unit-level model, so we approximate it through the diffusion sampling process itself.
Starting from x1, we run the sampling process as in Algorithm 2, but at each timestep tk we: (1)
predict x̂0 ∼ qθ(· | xtk , tk, z), (2) project x̂0 to satisfy the aggregate constraint (see Sec. 4), yielding

1The same method described here can be used with distributional diffusion on continuous space, but we focus
on counts since most often when we observe aggregates we believe they are based on discrete underlying data.
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Require: (x1, a0, z), w(·),Λ±(·), qθ, Π
1: for k = K,K − 1, . . . , 2 do
2: Sample x̂0,tk ∼ qθ(· | xtk , tk, z)
3: x̃0,tk ← Π(x̂0,tk , a0, z)
4: Update xtk−1

by running the reverse step
5: using steps 4–10 of Alg. 2, with x̃0,tk
6: end for
7: x≈

0 ← sample and project x̂0,t1
8: return x≈

0

Algorithm 3: Guided Sampling to for x≈0

Require: (x1, a0, z), w(·),Λ±(·), qθ, Π
1: for each minibatch do
2: E-step: Sample latent x≈

0 from
3: x1 conditional on a0 via Alg. 3
4: M-step: t ∼ Unif[0, 1]
5: Sample xt via the forward bridge on
6: (x≈

0 ,x1) using steps 4–10 of Alg. 1
7: Update θ using the gradient of −Lagg(θ)
8: end for

Algorithm 4: Training with Aggregate Supervision

Figure 2: A scaled and rounded variant
of the classic 8 gaussian to two moons
task. Here we compare the trajecto-
ries of continuous flow matching, dis-
crete flow matching, and count bridges.
CB achieves the lowest W2, MMD, and
EMD, see Table 6.

x̃0, and (3) perform the sampling step using x̃0 as the predicted endpoint. This projection–guided
diffusion ensures the aggregate constraint is incorporated throughout the denoising trajectory (see
Alg. 3). This process produces latent x≈0 samples that are consistent with the aggregate constraints,
which we can then use in the M-step to train the model. We outline this in App. B.4 and prove that,
when learning from aggregates is possible, the EM approach will learn the bridge.

M-Step With these unit-level samples in hand, the M–step runs the bridge process as in Section 3.
But instead of computing the loss on the unit-level latents, we compute the loss with respect to the
aggregates. Given the ground-truth aggregate a0, we lift the same strictly proper score to aggregates:

SA
ρ

(
p, a

)
= 1

2
Ep

[
ρ(A(X), A(X′))

]
− Ep

[
ρ(A(X), a)

]
and Lagg(θ) = EA0,Xt,t

[
SA
ρ

(
qθ(· | Xt, t, z), A0

)]
with the plug-in obtained by sampling X̂

(j)
0 ∼ qθ(· | Xt, t, z) and forming â(j) = A(X̂

(j)
0 ).

Approximate Sampling from the conditional distribution Given a predicted endpoint x̂0 from
our diffusion model and target aggregate a0, we need to sample from the conditional distribution
Qθ(· | A(X0) = a0). While this is intractable, we can derive a principled approximation.
Proposition 4.1 (First–order aggregate projection). Let A(X0) be the aggregate, and let Pθ be
the prior law w X0. Under the regularity conditions in App. B.1, the aggregate–conditional law
Qθ(· | A0 = a0) admits a first–order exponential tilt. The corresponding KL projection

Π(x0) = arg min
y0:A(y0)=a0

DKL(y0∥x0)

gives a first–order approximation to Qθ(· | A0 = a0). For an elementwise sum A(x0) =
∑
g xg0

this projection is the simple scaling Π(x0)g = a0xg0/(
∑
g′ xg′0).

The proposition shows that the natural rescaling operation is not ad hoc, but is justified as a kind
of first-order Taylor approximation to the true conditional distribution (see Appendix B.1). When
unit-level training data exist, we can learn a projection Πψ(x̂0, z, a0) that actually enables sampling
conditional on the mean. See Sec. 6 where we show outline how to learn such a projetion.

5 RELATED WORKS

Stochastic interpolants. Our formulation allows us to transport any integer-valued distribution
p1 to another integer-valued distribution p0. In the case of Euclidean state space early works such

6
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as (De Bortoli et al., 2021; Vargas et al., 2021; Chen et al., 2021) have shown how to perform such
an interpolation leveraging (Entropic) Optimal transport and the concept of Schrödinger Bridges.
In more recent works, ignoring the Optimal Transport constraints, several works have proposed to
bridge distributions in a more relaxed formulation leveraging the concept of Markov projection, see
Peluchetti (2023); Albergo et al. (2023); Delbracio & Milanfar (2023); Liu et al. (2022; 2023) for
instance. Those frameworks can be shown to be strictly equivalent to diffusion models in the case
where one of the end distribution is a unit Gaussian, see Gao et al. (2025). However, those works are
limited to the Euclidean setting, and extension to the integer-valued setting is required.

Discrete diffusion models. Recently, with the advent of language diffusion models such as Ye
et al. (2025); Song et al. (2025); Sahoo et al. (2024); Shi et al. (2024); Ou et al. (2024a); Arriola et al.
(2025); Nie et al. (2024); Zheng et al. (2023), discrete diffusion models have gained considerable
traction. Most works rely on discrete equivalents of the original formulation of diffusion models,
explicitly or implicitly replacing the continuous Gaussian noising process by a Continuous-Time
Markov Chain (CTMC) (Austin et al., 2021; Campbell et al., 2022; Lou et al., 2023; Campbell et al.,
2024; Kitouni et al., 2024; Sun et al., 2023). Other approaches include relying on some Euclidean
relaxation (Chen et al., 2022) or modelling the space of probability (Avdeyev et al., 2023; Stark et al.,
2024). Similarly, flow matching techniques have been extended to cover this paradigm (Gat et al.,
2024). Most of these works focus on categorical data and therefore consider uninformed forward
process such as uniform or masking process. In contrast, in this work, we focus on ordinal data. To
the best of our knowledge, the only existing work that also deals with such a process is Blackout
Diffusion (Santos et al., 2023), which considers a pure-death process where an image is taken to the
all-zero limit, as opposed to an endpoint conditioned bridge. Our approach generalizes this setup in
two ways: first, we allow births and deaths at every time, recovering their pure birth construction in
the limit as κ→ 0; second, we generalize the process to a bridge which can transport X1 to X0.

Finally, we highlight that diffusion models have been extended to the very general setting where
only an infinitesimal generator is available Benton et al. (2024); Holderrieth et al. (2024). While our
work can be seen as an instanciation of this general framework, these general frameworks do not
give any information regarding the design of the forward process for integer-valued data, the specific
parameretization in terms of slack variables and the necessity of the distributional diffusion loss.

Distributional Diffusion Models. In De Bortoli et al. (2025); Shen et al. (2025), the authors learn
the conditional distribution p0|t(x0|xt) through the use of scoring rules, going beyond the classical
training framework of diffusion, which approximates the conditional mean E[X0|Xt = xt]. The
importance of approximating the covariance was already noted by Nichol & Dhariwal (2021) and
further analyzed in (Ho et al., 2020; Nichol & Dhariwal, 2021; Bao et al., 2022a;b; Ou et al., 2024b).
In a similar flavor (Xiao et al., 2022) uses a GAN to approximate p0|t(x0|xt).

Sequence-to-expression models An ambitious goal in biology is to predict gene expression from
DNA sequence information. There have been several attempts to train deep learning models for
sequence-to-expression prediction tasks (Barbadilla-Martı́nez et al., 2025), including Enformer (Avsec
et al., 2021), a state-of-the-art transformer-based DNA sequence model. While powerful, Enformer,
like the vast majority of sequence-to-expression models, was trained on bulk gene expression data
and is not able to predict single-cell expression profiles, missing the cellular heterogeneity and
fine-grained regulatory patterns that shape tissue function.

Spatial transcriptomic deconvolution Spatial transcriptomics encompasses a family of recently
developed techniques which measure gene expression and spatial location in tissues. The majority of
these techniques are not capable of resolving individual cells, instead providing aggregate information
over small neighborhoods consisting of on the order of tens of cells (Moses & Pachter, 2022). To
address this limitation, a number of deconvolution methods have been developed to infer single-
cell level information (Li et al., 2023). The majority of these methods, including cell2location
(Kleshchevnikov et al., 2022) and RCTD (Cable et al., 2022), require a paired non-spatially resolved
scRNA-seq atlas, and output cluster-level mixture proportions rather than single cell counts. The
ideal deconvolution would recover full single-cell count profiles directly from spatial data without
requiring external reference atlases. DestVI (Lopez et al., 2022), which outputs count profiles but
requires a reference, and STDeconvolve (Miller et al., 2022) which does not require a reference but
outputs cluster-level predictions, both take steps toward this goal.
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Figure 3: CFM, DFM, and CB on our low-rank mixture of Gaussians transport experiment across
dimensions and NFE. See App. D.2 for full details.

6 APPLICATIONS

We evaluate with three distributional metrics: the Energy score, the Wasserstein-2 distance, and the
MMD (RBF). For deconvolution, we evaluate cell-type proportion predictions using RMSE, the
Jensen-Shannon Divergence (JSD), and Spearman correlation following Li et al. (2023). Synthetic
tasks have std. errors over 3 training seeds; main applications have std. errors 3 over inference seeds.

6.1 SYNTHETIC DISTRIBUTIONS

Here, we benchmark count bridges (CB) against continuous flow matching (CFM) (Lipman et al.,
2022) and discrete flow matching (DFM) (Gat et al., 2024) across a range of synthetic experiments.

Discrete 8-Gaussians to 2-Moons. We adapt this classic task to the integers. We plot the learned
trajectories in Fig 2. Qualitatively CB achieves the best performance. DFM is much more competitive
in this experiment than CFM, but DFM trajectories are decoupled from the underlying geometry,
whereas CB produces OT-like trajectories similar to CFM. These qualitative evaluations are confirmed
quantitatively: CB achieves the best performance across W2, Energy, and MMD (see App. D.1).

Scaling in Low-Rank Gaussian Mixtures. To test scalability to higher dimensions, we construct
integer-valued datasets with fixed intrinsic dimensionality while ambient dimension d increases in
powers of two from 4 to 512. Each dataset is a 5-component Gaussian mixture with latent rank r = 3,
projected to Zd. In Fig. 3 see that CB has the best scaling in dimensionality (see App. D.2 for more).

Figure 4: Deconvolution of the low-
rank Gaussian mixture across dif-
ferent group sizes and levels of
between-group heterogeneity.

Deconvolution of Gaussian Mixtures. We extend the low-
rank mixture task to evaluate deconvolution capabilities. In this
experiment, each observation is an aggregate constructed by
summing a group of G samples. For each group, the G samples
are drawn from a group-specific Gaussian mixture whose com-
ponent weights are sampled from a Dirichlet distribution with
concentration parameters (α1, . . . , α5). The labels of the G
source components are provided as unit-level side information.
We then vary the size of the group G and the extent of variation
between groups by changing the concentration parameter α
(see Appendix D.3 for details). In Fig. 4 we see performance
degrades as groups become more uniform and larger. We ex-
plore the theoretical limits to deconvolution in Apps. B.4.3 and
B.3, which confirm that deconvolution requires between-group heterogeneity to enable identification,
which is inherently lost as groups become large. Despite these limits, we demonstrate practical
deconvolution on moderately-sized groups in our spatial transcriptomics application (Section 6.3).

6.2 MODELLING GENE EXPRESSION AT SINGLE-CELL AND SINGLE-NUCLEOTIDE RESOLUTION

A central goal in biology is to understand the relationship between DNA sequence and gene expression.
Many models relate sequence and expression, the most prominent of which, such as Enformer (Avsec
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Method Bulk MSE CT MSE
Fine-tuned Enformer 2.590 3.142
Count Bridge 0.601

±0.000
1.410
±0.002

Table 1: Nucleotide-level MSE for bulk and
bulked cell-type (CT) specific predictions.

Comparison MMD W2 Energy
Bulk mean 0.515 0.208 56.800
Count Bridge 0.446

±0.000
0.182
±0.001

28.583
±0.003

Table 2: Gene expression count profile deconvo-
lution error for bulk RNA sequencing data.

et al., 2021), are Transformer-based models that predict expression from sequence. More recent
work has explored fine-tuning Enformer on single-cell data (Hingerl et al., 2024). On the other hand,
there is a mature literature on deconvolving bulk RNA-seq (Newman et al., 2019; Wang et al., 2019).
These methods operate at the gene (rather than nucleotide) level, leveraging bulk cell-type profiles or
single-cell references to deconvolve bulk profiles into cell-type proportions (not count profiles).

Method JSD RMSE Spearman
CIBERSORTx 0.194 0.109 0.079
MuSiC 0.313 0.140 0.186
Count Bridge 0.113

±0.001
0.073
±0.000

0.267
±0.005

Table 3: Cell-type proportion deconvolution error for
nucleotide level bulk RNA sequencing data.

We use CBs to jointly model sequence and
single-cell expression counts in scRNA-seq
data, and to enable nucleotide-level decon-
volution of bulk profiles. To validate CBs
in this setting, we demonstrate two key re-
sults. First, we show that CBs trained on
single-cell data produce meaningful count
profiles and outperform a fine-tuned En-
former model on sequence-to-expression prediction. Second, we show that conditioning CBs on
bulk profiles enables deconvolution of bulk gene expression into inferred single-cell gene expres-
sion profiles. We validate these deconvolved profiles distributionally and show that they achieve
state-of-the-art performance relative to cell-type proportion deconvolution models.

Modeling sequence and single-cell counts We train CBs on PBMC scRNA-seq counts at nucleotide
resolution using 106 cells across 103 donors (Yazar et al., 2022). Each training example corresponds
to a nucleotide position in a single cell, and is represented by the noisy count xt and diffusion
time t from the CB forward process, a cell-type embedding, a local genomic context z obtained
by encoding the surrounding DNA sequence with Enformer, and i.i.d. noise ζ for the distributional
loss. These features are concatenated and passed through residual multi–head attention blocks and a
final softplus head that parameterizes the conditional count distribution X0|Xt, t, z. The model is
trained directly on unit-level (single-cell) expression profiles rather than only on aggregated counts.
During training we randomly mask cell-type labels so that the model supports both unconditional and
cell-type-conditional sampling at test time.

Learned projection for deconvolution Since we have unit-level data we can learn a better projection
operator than the simple rescaling function in Prop. 4.1. We augment the CB with a small projection
module Πψ, an attention block operating on each nucleotide (represented by z) across cells in the
batch. Given an initial CB prediction x̂0, an observed aggregate a0, and the noisy state xt, the
module outputs x̃0 = Πψ(x̂0, a0,xt, z), we train this using the distributional loss to learn to sample
X0 | A(X0)=a0, Xt, t. To support both unconditional and aggregate-conditioned inference, we
apply the projection module only on a random 10% of training examples where a0 is provided.

Bulk gene expression We first evaluate the ability of our model to predict expression from sequence,
both unconditionally and conditional on cell type. As a baseline, we use an Enformer model fine-
tuned directly on the PBMC dataset. We find that Count Bridge predictions outperform fine-tuned
Enformer (Table 1, for results by cell type and further details see App. E).

Deconvolved profiles We can use this unit-level model for deconvolution tasks: we can condition
on an aggregate (bulk profile) to sample single-cell profiles from the model while matching that
aggregate. We next evaluate the ability of CBs to deconvolve mixtures of cell types from held-
out individuals. We held out 10% of patients from our training set and synthetically bulked these
patients. Since we have the ground truth data, we can then evaluate deconvolution quality. We
first evaluate the distributional quality of these predictions against the bulk mean, further validating
the CB count profiles (Table 2). As a more robust set of baselines, we compare to CIBERSORTx
(Newman et al., 2019) and MuSiC (Wang et al., 2019). To facilitate comparison, we aggregate our
nucleotide-level predictions into gene counts and assign each of our deconvolved cells to the closest
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cell type. CBs achieve better performance on JSD, RMSE, and Spearman correlation while providing
nucleotide-level counts (Table 3). In App. E we plot the UMAP for qualitative comparison.
6.3 DECONVOLVING SPATIAL TRANSCRIPTOMIC SPOTS INTO SINGLE-CELL COUNTS

Next, we show how CBs can be used to infer single cell gene expression profiles from spot-level
aggregates in spatial transcriptomic data. In spatial transcriptomic data generated by Visium (Ståhl
et al., 2016), it is common to have access to side information beyond the spot-level count aggregates.
In particular, many datasets include images of the cells with a nuclear stain (Palla et al., 2022). CBs
provide a natural way to leverage this cell-level side information to deconvolve aggregate count data.

Modeling spatial aggregates We train CBs on a MERFISH mouse brain dataset (Vizgen, 2021),
which is resolved at the single-cell level, and artificially aggregate neighborhoods of cells to simulate
spot-level Visium data. This synthetic dataset gives us access to spot-level aggregates and their
corresponding single-cell ground truth, as well as single-cell nuclear images. Following the notation
in Sec. 4, the spot-level counts can be treated as aggregates a0, and single-cell images can be treated
as unit-level side information z. In this application, we never observe single-cell count profiles, only
spot-level aggregates and the single-cell images. We leverage a UViT (Bao et al., 2023) extended to
incorporate count and noise patches (see App. F). We use a simple source distribution X1 ∼ Poi(10).

Method JSD RMSE Spearman
STDeconvolve 0.288 0.177 0.255
Count Bridge 0.231

±0.002
0.110
±0.001

0.332
±0.001

Table 4: Cell-type proportion deconvolution error
for spatial transcriptomics.

Cell type proportions We benchmark CBs
against STDeconvolve (Miller et al., 2022), a
widely used spatial transcriptomic deconvolu-
tion method which is state-of-the-art among
reference-free approaches Li et al. (2023) (see
Appendix F for comparisons to reference-based
methods). STDeconvolve outputs cell type (clus-
ter identity) proportions for each spot rather than single cell counts. As such, we evalute the quality of
deconvolution by comparing the predicted cell type proportions to the true cell type proportions per
spot. For CBs, which provide single-cell count profile predictions rather than cell type proportions,
we assign each predicted count profile its nearest neighbor cell type in order to compare against
STDeconvolve. CBs outperforms STDeconvolve on both the JSD and the RMSE (Table 4).

Comparison MMD W2 Energy
Spot mean 0.409 0.030 41.717
Count Bridge 0.203

±0.000
0.017
±0.000

8.903
±0.014

Table 5: Gene expression count profile decon-
volution error for spatial transcriptomics

Count profiles We next evaluate the quality of the
count profiles inferred by CBs. Here, because STDe-
convolve does not provide these predictions, we
instead consider a simple baseline: predicting the
spot-level mean (a0/G) for each cell. This baseline,
while seemingly naive, is actually biologically well-
motivated. In spatial transcriptomics, cells within a
spot represent local tissue organization where neigh-
boring cells coordinate their functions (Armingol et al., 2021). As such, we expect cells in spatial
neighborhoods to have correlated gene expression profiles, making the spot mean a reasonable
baseline. Nonetheless, CBs outperform the spot-level mean baseline (see Table 5), showing CBs can
learn meaningful unit-level distributions from real-world aggregate data. In App. F we provide a
more detailed biological evaluation of the cell types and pathways in our generated data, alongside
the UMAP to facilitate qualitative comparison.

7 CONCLUSION

Count Bridges offer a tractable, discrete-native alternative to continuous diffusion models, unifying
direct count generation with deconvolution from aggregates. We demonstrate the power of Count
Bridges for nucleotide-level deconvolution of bulk RNA-seq and spatial transcriptomic deconvolution.

Limitations (i) When counts are well-approximated as continuous, Euclidean models may match
or exceed performance. (ii) Identifiability in pure deconvolution degrades as group sizes grow or
between-group heterogeneity shrinks, so our EM procedure is most reliable at moderate aggregation.
(iii) The projection step we use is a first-order surrogate and lacks serious theoretical support.

Despite these caveats, Count Bridges lay the groundwork for rigorous discrete generative mod-
eling and invite future work on deeper understanding of the projection-guided sampler, sharper
identifiability bounds, and generally stronger guarantees for projection-guided EM.
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Ethics Statement. This study uses publicly released, de-identified single-cell and spatial tran-
scriptomics datasets under their respective licenses; no new human subject data were collected, and
institutional review board (IRB) approval was therefore not required. We do not foresee serious
ethical implications to Count Bridges beyond the risks already posed by standard diffusion/flow
matching models. Our deconvolution methods could possibly pose some additional privacy risks. We
used LLMs to help draft portions of the code used in our experiments and to edit portions of this
manuscript. All our models are intended for research use only, not clinical use. LLMs were not used
in any way significantly outside the current norms of academic research.

Reproducibility Statement. We have taken significant steps to ensure that all results presented
in this work are reproducible. An anonymous source code repository is provided here, containing
complete implementations of the Count Bridge framework, including model architectures, training
procedures, projection-based deconvolution, and evaluation pipelines. The appendix includes full
mathematical derivations and proofs of all theoretical claims. We also provide descriptions of all data
preprocessing steps for synthetic benchmarks, PBMC sequence-to-expression prediction, and spatial
transcriptomic aggregation, as well as architectural and hyperparameter specifications. Together,
these materials are intended to allow independent researchers to fully reproduce our theoretical and
empirical findings.
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A COUNT BRIDGES

A.1 POISSON BIRTH–DEATH BRIDGE ON Z

We start by showing where the Binomial and Hypergeoemtric distributions emerge in our framework.
Then we will prove that if we condition on the amount of slack these distributions compose. Finally
we will show that using the Bessel slack law we have composition while mixing over the slack
distribution.

A.1.1 SAMPLING PROCESS

We now formalize where the Binomial and Hypergeometric terms in equation 9 come from. We work
directly with the birth–death representation introduced above.

Let λ+, λ− > 0 and let w : [0, 1] → R≥0 be an increasing “jump–intensity” shape function with
w(0) = 0 and w(1) = 1. Define the cumulative birth/death intensities

Λ+(t) = λ+ w(t), Λ−(t) = λ− w(t),

and let (Bt)t∈[0,1] and (Dt)t∈[0,1] be independent (non-homogeneous) Poisson processes with these
cumulants. Set

Xt = X0 +Bt −Dt,
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so that the unconditional forward kernel Kt|0 is the same as in equation 6.

Write the total jump count as
Nt = Bt +Dt, t ∈ [0, 1].

Standard properties of Poisson superposition imply that (Nt) is a (non-homogeneous) Poisson process
with cumulative intensity

Λ(t) = Λ+(t) + Λ−(t) = (λ+ + λ−)w(t).

Conditional on N1 = n, the n unordered jump times are i.i.d. with cdf

P(T ≤ t | N1 ≥ 1) = w(t), t ∈ [0, 1],

so w is precisely the time–rescaling that makes the jump times uniform on [0, 1].

We now condition on endpoints X0 = x0, X1 = x1 and define

d1 = x1 − x0, N1 = B1 +D1, B1 = 1
2 (N1 + d1), D1 = N1 −B1.

Given (N1, B1), we can view the N1 jumps as a set of N1 points on [0, 1], each labelled +1 (birth)
or −1 (death). The superposition and thinning properties give two key facts:

We now record the Binomial and Hypergeometric structure of the jump counts.
Lemma A.1 (Binomial–Hypergeometric structure of the birth–death bridge). Fix t ∈ (0, 1]. Condi-
tional on N1 = n and B1 = b, let 0 < T(1) < · · · < T(n) ≤ 1 denote the ordered jump times and let
(L1, . . . , Ln) ∈ {+1,−1}n be the corresponding jump labels, with

∑n
k=1 1{Lk = +1} = b. Then:

1. Binomial structure. The unordered jump times are i.i.d. on (0, 1] with cdf w, so

Nt | N1 = n ∼ Bin
(
n, w(t)

)
.

2. Hypergeometric structure. Conditional on (N1, B1, Nt) = (n, b,m), the labels
(L1, . . . , Ln) are exchangeable given B1 = b, and the m jumps with times in (0, t] corre-
spond to a uniformly random m–subset of {1, . . . , n}. Hence

Bt | (N1, B1, Nt) = (n, b,m) ∼ Hyp
(
n, b, m

)
,

and therefore Dt = Nt −Bt.

More generally, for 0 < s < t < 1 define r = w(s)/w(t). Conditional on (Nt, Bt) = (n, b), the n
jumps in (0, t] form a non-homogeneous Poisson process with cumulative intensity Λ(·)/Λ(t), so the
Ns jumps in (0, s] satisfy

Ns | Nt = n ∼ Bin
(
n, r

)
,

and, by the same exchangeability argument applied within (0, t],

Bs | (Nt, Bt, Ns) = (n, b,m) ∼ Hyp
(
n, b, m

)
, Ds = Ns −Bs.

A.1.2 COMPOSITION CONDITIONAL ON THE SLACK

We now show that the Binomial–Hypergeometric construction is closed under composition when we
condition on a fixed slack value.

Conditional on (X0, X1,M1) (equivalently on (N1, B1)), the total number of jumps Nt and the
number of births Bt at any intermediate time t are governed by the Binomial–Hypergeometric
structure in Lemma A.1. We now record two elementary composition facts which we will use with

p = w(t), q =
w(s)

w(t)
, 0 < s < t < 1.

Lemma A.2 (Binomial composition). LetK ∼ Bin(N, p) and, conditional onK, let L ∼ Bin(K, q).
Then L ∼ Bin(N, pq). Moreover, (K,L) has joint pmf

P{K = k, L = ℓ} =
(
N

ℓ

)
(pq)ℓ(1− pq)N−ℓ

(
N − ℓ
k − ℓ

)(p(1− q)
1− pq

)k−ℓ( 1− p
1− pq

)N−k
.
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Proof. We begin by writing the joint distribution directly from the model:

P(K = k, L = ℓ) = P(K = k)P(L = ℓ | K = k) =

(
N

k

)
pk(1− p)N−k

(
k

ℓ

)
qℓ(1− q)k−ℓ.

Apply the standard combinatorial identity(
N

k

)(
k

ℓ

)
=

(
N

ℓ

)(
N − ℓ
k − ℓ

)
,

to obtain the factorization

P(K = k, L = ℓ) =

(
N

ℓ

)
(pq)ℓ(1− pq)N−ℓ

(
N − ℓ
k − ℓ

)(
p(1−q)
1−pq

)k−ℓ(
1−p
1−pq

)(N−k)
.

To get the marginal law of L, sum the joint pmf over all k ≥ ℓ. Let m = k− ℓ; then m ranges from 0
to N − ℓ, and

P(L = ℓ) =

N−ℓ∑
m=0

(
N

ℓ

)
(pq)ℓ(1− pq)N−ℓ

(
N − ℓ
m

)(
p(1−q)
1−pq

)m(
1−p
1−pq

)(N−ℓ)−m
.

All terms not depending on m factor out:

P(L = ℓ) =

(
N

ℓ

)
(pq)ℓ(1− pq)N−ℓ

N−ℓ∑
m=0

(
N − ℓ
m

)
amb(N−ℓ)−m,

where

a =
p(1− q)
1− pq

, b =
1− p
1− pq

.

Since a+ b = 1, the inner sum is exactly the Binomial theorem,

N−ℓ∑
m=0

(
N − ℓ
m

)
amb(N−ℓ)−m = (a+ b)N−ℓ = 1.

Thus

P(L = ℓ) =

(
N

ℓ

)
(pq)ℓ(1− pq)N−ℓ,

which is the pmf of Bin(N, pq).

Lemma A.3 (Hypergeometric composition). Fix an urn with N balls of which B are marked
“success”. Draw Nt = k balls without replacement and record Bt = b successes. From the k drawn
balls, draw Ns = j ≤ k without replacement and record Bs = a successes. Then the marginal law
of (Ns, Bs) satisfies

P{Ns = j, Bs = a | N,B} =
(
N

j

)−1(
B

a

)(
N −B
j − a

)
,

which is the pmf of the single hypergeometric draw Hyp(N,B, j).

Proof. Fix the total population of N items with B successes. The first draw selects a subset
St ⊂ {1, . . . , N} of size k = Nt uniformly among all

(
N
k

)
such subsets. From St the second draw

selects a subset Ss ⊂ St of size j = Ns uniformly among all
(
k
j

)
subsets of St.

Every subset Ss of size j can be formed in at least one two–step sequence of the form Ss ⊂ St ⊂
{1, . . . , N}. Moreover, under simple sampling without replacement, all such two–step sequences
occur with equal probability:

P(Ss = A) =
∑
T⊃A
|T |=k

1(
N
k

) · 1(
k
j

) =

(
N−j
k−j

)(
N
k

)(
k
j

) for any size-j subset A.
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The right-hand side does not depend on A, so conditional on Ns = j every j–subset of {1, . . . , N}
is equally likely. There are

(
N
j

)
such subsets.

Among these
(
N
j

)
subsets, exactly (

B

a

)(
N −B
j − a

)
subsets contain a successes and j − a failures. Hence

P(Bs = a | Ns = j) =

(
B
a

)(
N−B
j−a

)(
N
j

) ,

which is the pmf of the hypergeometric distribution Hyp(N,B, j).

We can now state composition of the birth–death bridge at fixed slack.
Theorem A.4 (Bridge composition conditional on slack). Fix 0 < s < t < 1 and endpointsX0 = x0,
X1 = x1, and slack M1 = m (equivalently, fix (N1, B1) via equation 7). Let w : [0, 1]→ [0, 1] be
the time–rescaling function from the birth–death construction.

Define the fixed–slack bridge kernels

K
(m)
a|0,b(xa | x0, xb) = P

(
Xa = xa

∣∣X0 = x0, Xb = xb,M1 = m
)
, 0 ≤ a ≤ b ≤ 1.

Then the two–stage rule (1 → t → s) yields the same law for (Ns, Bs) as the single–stage rule
(1→ s), and the fixed–slack kernels satisfy the bridge–consistency identity

K
(m)
s|0,1(xs | x0, x1) =

∑
xt

K
(m)
s|0,t(xs | x0, xt)K

(m)
t|0,1(xt | x0, x1). (10)

Proof. Working conditional on (N1, B1) (equivalently on (x0, x1,M1 = m)), the Bino-
mial–Hypergeometric structure of Lemma A.1 gives

Nt | N1 ∼ Bin
(
N1, w(t)

)
, Ns | Nt ∼ Bin

(
Nt, w(s)/w(t)

)
.

Applying Lemma A.2 with p = w(t) and q = w(s)/w(t) yields

Ns | N1 ∼ Bin
(
N1, w(s)

)
,

which coincides with the direct (1→ s) rule.

For the colour counts, conditional on (N1, B1) and Nt, the Nt jumps in (0, t] form a finite population
with Bt births (successes) and Nt − Bt deaths (failures). Within this population, the two–stage
sampling (t→ s) is exactly the nested hypergeometric scheme of Lemma A.3, so the marginal law
of (Ns, Bs) coincides with that of a single hypergeometric draw Hyp(N1, B1, Ns) from the original
N1 jumps. This is the direct (1→ s) rule.

Thus, at fixed (x0, x1,M1 = m), the two–step transition (1→ t→ s) and the one–step transition
(1→ s) agree in law for (Ns, Bs), and hence for Xs = x0 +Bs −Ds. Equivalently, the conditional
distributions P(Xs = xs | X0 = x0, X1 = x1,M1 = m) obey the kernel identity equation 10,
which is exactly the fixed–slack bridge consistency for K(m)

a|0,b.

A.1.3 INTEGRATING OVER THE SLACK: THE OBSERVABLE BRIDGE

In the previous section we established that, conditional on a fixed slack value, the birth–death (BD)
bridge satisfies exact composition: for fixed (X0, Xt,Mt) the (t→ s) transition coincides with the
direct (t → s) rule defined by the Binomial–Hypergeometric structure. However, our generative
model does not include a latent slack variable: at time t we observe only Xt = X0 +Bt −Dt, not
the pair (Bt, Dt) or their slack Mt = min(Bt, Dt).

To obtain an observable Markov bridge we therefore resample the slack at each time from its posterior
distribution

πt(m | dt) = P
(
Mt = m | dt = Xt −X0

)
,
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and then apply the conditional BH transition at that m. This subsection derives the explicit form of
πt(m | dt) and, crucially, proves its closure under the time-rescaling w(t) of the BD reference. This
closure ensures that the mixture over Mt interacts correctly with the BH transitions, enabling the
observable process to satisfy the bridge consistency equation 1.

The Slack Posterior

Recall from the BD reference that

Bt ∼ Poi(Λ+(t)), Dt ∼ Poi(Λ−(t)), Λ±(t) = λ±w(t), Bt ⊥ Dt.

Proposition A.5 (Bessel slack posterior and closure under time-rescaling). Fix t ∈ (0, 1] and let
dt = Xt −X0 = Bt −Dt. Conditional on dt, the pair (Bt, Dt) lies on the lattice

(Bt, Dt) =

{
(m+ dt, m), dt ≥ 0,

(m, m+ |dt|), dt < 0,
m ∈ N,

and the induced posterior pmf of the slack Mt = min(Bt, Dt) is

πt(m | dt) = P(Mt = m | dt) ∝
(Λ+(t)Λ−(t))

m

(m+ |dt|)!m!
, m = 0, 1, 2, . . . (11)

with normalizer
Zt(dt) =

(
Λ+(t)Λ−(t)

)−|dt|/2
I|dt|

(
2
√
Λ+(t)Λ−(t)

)
,

where Iν is the modified Bessel function of the first kind.

Moreover—closure under time-rescaling: for any 0 < s < t,

πs( · | ds) has the same functional form as πt( · | dt),

with parameters obtained by replacing (Λ+(t),Λ−(t)) by (Λ+(s),Λ−(s)). Since Λ±(s) = λ±w(s),
this closure depends only on the rescaling of w(·) and not on any other properties of the process.

Proof. We treat dt ≥ 0, the other case being symmetric. If dt = Bt −Dt ≥ 0 then Bt = Dt + dt
and thus

(Bt, Dt) = (m+ dt,m) ⇐⇒ Mt = m.

The joint pmf at (m+ dt,m) is

P(Bt = m+ dt, Dt = m) = e−(Λ+(t)+Λ−(t))Λ+(t)
m+dt

(m+ dt)!

Λ−(t)
m

m!
.

Conditioning on dt amounts to normalizing over m:

πt(m | dt) =
Λ+(t)

m+dtΛ−(t)
m/

(
(m+ dt)!m!

)∑∞
r=0 Λ+(t)r+dtΛ−(t)r/

(
(r + dt)! r!

) .
Factor Λ+(t)

dt from numerator and denominator to obtain

πt(m | dt) =
(Λ+(t)Λ−(t))

m

(m+ dt)!m!

/ ∞∑
r=0

(Λ+(t)Λ−(t))
r

(r + dt)! r!
,

which is exactly equation 11. The denominator is the standard Skellam normalizer, given by the
stated Bessel expression.

For closure, note that for any s < t we have independent thinning

Bs ∼ Poi(Λ+(s)), Ds ∼ Poi(Λ−(s)), Λ±(s) = λ±w(s).

Repeating the same conditioning argument with (Bs, Ds) and ds yields the same functional family
as equation 11, with parameters (Λ+(s),Λ−(s)) replacing (Λ+(t),Λ−(t)). Thus πt is closed under
the time-rescaling w(·).
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Mixing Over the Slack

This proposition shows that the slack posterior depends on the state only through the observable
displacement dt = Xt − X0 and the posterior family πt(· | dt) is closed under passing to earlier
times s < t.

Using these properties, combined with the composition in a fixed slack, we can prove the general
Markovanity after mixing over the slack. We now mix the fixed–slack bridges over the Bessel slack
posterior to obtain an observable bridge that depends only on the counts Xt and satisfies the same
bridge consistency identity as in equation 1.

Recall the fixed–slack bridge kernels from Theorem A.4:

K
(m)
a|0,b(xa | x0, xb) = P

(
Xa = xa

∣∣X0 = x0, Xb = xb,M1 = m
)
, 0 ≤ a ≤ b ≤ 1.

For each m ∈ N these satisfy fixed–slack bridge consistency: for all 0 < s < t < 1,

K
(m)
s|0,1(xs | x0, x1) =

∑
xt

K
(m)
s|0,t(xs | x0, xt)K

(m)
t|0,1(xt | x0, x1). (12)

At the terminal time 1, define the observable (0, 1) bridge by

Ks|0,1(xs | x0, x1) =

∞∑
m=0

π1(m | d1)K(m)
s|0,1(xs | x0, x1), d1 = x1 − x0.

At an intermediate time t, define the observable (0, t) bridge by

Ks|0,t(xs | x0, xt) =

∞∑
m=0

πt(m | dt)K(m)
s|0,t(xs | x0, xt), dt = xt − x0,

and similarly

Kt|0,1(xt | x0, x1) =

∞∑
m=0

π1(m | d1)K(m)
t|0,1(xt | x0, x1).

Theorem A.6 (Bridge consistency of the observable count bridge). Under the Poisson birth–death
reference and Bessel slack mixing, the observable bridge kernels satisfy the discrete form of equation 1:
for all 0 < s < t < 1 and endpoints x0, x1,

Ks|0,1(xs | x0, x1) =
∑
xt

Ks|0,t(xs | x0, xt)Kt|0,1(xt | x0, x1). (13)

Proof. Fix x0, x1 and a bounded test function φ on the state space. We prove equation 13 in weak
form by comparing E[φ(Xs) | X0 = x0, X1 = x1] computed in two ways.

First, by definition of Ks|0,1 and the slack posterior at time 1,

E[φ(Xs) | X0 = x0, X1 = x1] =

∞∑
m=0

π1(m | d1)E[φ(Xs) | X0 = x0, X1 = x1,M = m],

with d1 = x1 − x0. For each fixed m, the bridge with slack M = m satisfies the fixed–slack bridge
consistency equation 12, so

E[φ(Xs) | X0 = x0, X1 = x1,M = m]

=
∑
xt

E[φ(Xs) | X0 = x0, Xt = xt,M = m]K
(m)
t|0,1(xt | x0, x1).

Substitute into the previous display and interchange the sums over xt and m:

E[φ(Xs) | X0 = x0, X1 = x1]

=
∑
xt

∞∑
m=0

π1(m | d1)E[φ(Xs) | X0 = x0, Xt = xt,M = m]K
(m)
t|0,1(xt | x0, x1).
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Now condition on the intermediate state Xt = xt and use Bayes’ rule. By Proposition A.5, the
posterior over M given (X0 = x0, Xt = xt) is exactly πt(· | dt) with dt = xt − x0, i.e.

πt(m | dt) = P(M = m | X0 = x0, Xt = xt).

Hence we can rewrite the inner sum over m as
∞∑
m=0

πt(m | dt)E[φ(Xs) | X0 = x0, Xt = xt,M = m] = E[φ(Xs) | X0 = x0, Xt = xt],

and the definition of Ks|0,t then gives

E[φ(Xs) | X0 = x0, Xt = xt] =
∑
xs

φ(xs)Ks|0,t(xs | x0, xt).

Putting everything together,

E[φ(Xs) | X0 = x0, X1 = x1] =
∑
xt

(∑
xs

φ(xs)Ks|0,t(xs | x0, xt)
)
Kt|0,1(xt | x0, x1)

=
∑
xs

φ(xs)
(∑
xt

Ks|0,t(xs | x0, xt)Kt|0,1(xt | x0, x1)
)
.

On the other hand, by the definition of Ks|0,1,

E[φ(Xs) | X0 = x0, X1 = x1] =
∑
xs

φ(xs)Ks|0,1(xs | x0, x1).

Since φ is arbitrary, the coefficients of φ(xs) must agree for all xs, which yields equation 13.

This theorem shows that after mixing over the Bessel slack posterior at each time, the observable
birth–death bridge has the same bridge consistency property equation 1 as the Gaussian diffusion
bridge in Proposition 2.1.

A.2 LINK WITH SCHRÖDINGER BRIDGES

We now justify the Schrödinger-bridge interpretation stated in Sec. 3. Recall the unconditional
birth–death construction

Xt = X0 +Bt −Dt,

where (Bt)t∈[0,1] and (Dt)t∈[0,1] are independent Poisson processes with cumulative intensities
Λ+(t) = λ+w(t), Λ−(t) = λ−w(t), and w(0) = 0, w(1) = 1. Let κ =

√
λ+λ− denote the (scalar)

jump intensity. Then for each x0 ∈ X , the forward kernel at time t = 1 has Skellam pmf

Kκ
1|0(x1 | x0) = exp

[
− Λ+(1)− Λ−(1)

] (Λ+(1)
Λ−(1)

) x1−x0
2

I|x1−x0|
(
2κ

)
,

where Iν is the modified Bessel function of the first kind.

Let
pκref(x0, x1) = p0(x0)K

κ
1|0(x1 | x0)

be the reference joint law of (X0, X1) induced by the birth–death process and the data prior p0. Over
the space of couplings

C(p0, p1) =
{
C on X × X : C(·,X ) = p0, C(X , ·) = p1

}
,

we consider the entropic projection

Cκ ∈ arg min
C∈C(p0,p1)

KL
(
C ∥ pκref

)
.

Fix any C ∈ C(p0, p1) and write expectations with respect to C as EC [·]. By definition,

KL
(
C ∥ pκref

)
= EC

[
log

dC

dpκref
(X0, X1)

]
= −H(C)− EC

[
logKκ

1|0(X1 | X0)
]
+ Cκ(p0, p1),
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where H(C) is the Shannon entropy of C and Cκ(p0, p1) collects all terms depending only on the
marginals (including Λ±(1) and EC [X1−X0], which are fixed across all couplings with marginals
p0, p1).

Using the explicit Skellam form, we can isolate the Bessel contribution:

KL
(
C ∥ pκref

)
= Cκ(p0, p1)− EC

[
log I|X1−X0|(2κ)

]
−H(C).

To study the limits κ→∞ and κ→ 0+, we use standard asymptotics for Iν (NIS, 2025, §10.41(ii)):

Iν(z) =
ez√
2πz

(1 + o(1)) as z →∞, Iν(z) =
(z/2)ν

Γ(ν+1)
(1 + o(1)) as z → 0+.

High-noise limit κ→∞. For fixed ν, the large-z expansion shows that log Iν(2κ) depends on ν
only through O(1/κ) terms. Hence, as κ→∞,

EC
[
log I|X1−X0|(2κ)

]
= C ′

κ(p0, p1) + oκ(1),

where C ′
κ(p0, p1) does not depend on the choice of coupling C. It follows that

KL
(
C ∥ pκref

)
= C −H(C) + oκ(1), κ→∞,

for some constant C that is independent of C. Maximizing H(C) over C(p0, p1) yields the indepen-
dent coupling p0 ⊗ p1, so in the high-noise limit Cκ → p0 ⊗ p1.

Low-noise limit κ→ 0+. For small z, we have

log Iν(2κ) = ν log
(

2
κ

)
+O(1) as κ→ 0+,

uniformly for integer ν in any fixed finite range. Applying this with ν = |X1−X0| gives

−EC
[
log I|X1−X0|(2κ)

]
= log

(
2
κ

)
EC |X1−X0|+O(1), κ→ 0+.

Substituting into the expression for the KL divergence, we obtain

KL
(
C ∥ pκref

)
= C + log

(
2
κ

)
EC |X1−X0| −H(C) + oκ(1), κ→ 0+,

for some constant C independent of C.

Thus, in the low-noise limit the dominant term in KL(C ∥ pκref) is proportional to EC |X1−X0|;
minimizing the KL over C(p0, p1) therefore recovers discrete optimal transport with cost |x1−x0|,
while the entropy term −H(C) corresponds to the usual entropic regularization. This proves the
characterization stated in Sec. 3.

B LIFTING COUNT BRIDGES TO AGGREGATES

We make two central assumptions that enable deconvolution.
Assumption B.1 (Realizability and recoverability). There exists θ⋆ such that for all t ∈ [0, 1]:

1. Realizability: Qθ⋆(a0 | xt, t, z) = pdata(a0 | xt, t, z) almost surely

2. Recoverability: The aggregate-to-unit map has local modulus κloc(t): for θ near θ⋆,

DKL(pdata(x0 | xt, t, z) ∥ qθ(· | xt, t, z)) ≤ κloc(t)·DKL(pdata(a0 | xt, t, z) ∥Qθ(· | xt, t, z))

Recoverability means that the aggregate distribution uniquely determines the unit-level distribu-
tion—if we know the sum perfectly, we can deduce the summands. This is not always possible.
Consider the simplest case: if X1, X2 ∼ Poisson(λ1),Poisson(λ2) are independent, their sum
is Poisson(λ1 + λ2). Observing only the sum, we cannot distinguish (λ1 = 3, λ2 = 2) from
(λ1 = 4, λ2 = 1)—both yield Poisson(5). Now if we had side information that identified the
“component” each Poisson was drawn from we could identify this, but it illustrates the difficulties we
will face here.
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Recoverability holds when units have sufficient diversity. Formally, it requires that units are condition-
ally independent given (x1, z) and have distinct factorial cumulant signatures—essentially, different
statistical fingerprints that survive aggregation. For count data, this means units must have different
parameters (e.g., different Poisson rates or negative binomial dispersions) that are distinguishable
through the covariates z.

Theorem B.10 in Appendix B.4.3 provides precise conditions: when the factorial cumulant generating
functions CXg0

(t) = F (t;ψg) form an identifiable system and covariates provide sufficient labeling
to distinguish units. In practice, this means units should have heterogeneous characteristics captured
by z—for example, different images associated with the transciptomics is spatial single cell data.

Recoverability faces fundamental limits as the number of units G grows. By the central limit theorem,
when G→∞, the standardized aggregate (A0 − µG)/σG converges to a Gaussian regardless of the
unit-level distributions. The higher-order cumulants that distinguish different unit configurations
vanish at rate O(G−k/2) for order k > 2, leaving only the mean and variance (Appendix B.3).

This CLT collapse means our method is most powerful for moderate G (tens to hundreds of units)
where unit heterogeneity is preserved in aggregates. For very large G, additional structure is
needed—either parametric constraints (e.g., unit parameters follow a low-dimensional model), mul-
tiple aggregate observations under different conditions, or direct observation of some unit-level
data.

We illustrate these issues in Fig. 4 in the main text: as the dirichlet concentration increases the
group-level mixture weights concentrate. When combined with large group sizes this forces all
groups to become identical. This gives a clear empirical sense for the limits of deconvolution.

B.1 APPROXIMATELY SAMPLING CONDITIONAL ON THE SUM

The most central part of our deconvolution approach is our projection operation. Here we sketch a
formal characterization of this operation and justify it based on a Taylor expansion around the true
conditional distribution.

We first give a completely formal statement of our theorem:

Theorem B.2 (Rescaling emerges from first-order conditional). Let pdata be the prior law of X0 and
write the aggregate A0 = A(Xg0) with µ = EPθ

[A0] and Σ = CovPθ
(A0) (finite, p.d.). For a target

aggregate a0, set δ := a0 − µ. Then the aggregate-conditional law Qθ( · | A0 = a0) admits the
Radon–Nikodym form

dQθ
dPθ

(x0) = exp
{
λ⊤

∑
g xg0 −A(λ)

}
, λ = Σ−1δ +O(∥δ∥2),

where A(λ) = logEPθ

[
eλ

⊤ ∑
g Xg0

]
. The KL projection forms a first-order approximation:

T ⋆(x0) = arg min
y0:

∑
g yg0=a0

DKL(y0∥x0),

which for non-overlapping groups yields the simple scaling update

T ⋆(x0)
(d)
g = x

(d)
g0 ·

a
(d)
0∑
g′ x

(d)
g′0

, d = 1, . . . , D.

We prove Theorem B.2 (Section 3.2) under explicit regularity, giving a first-order expansion for the
tilt parameter and O(∥δ∥2) control of the KL gap.

Assumption B.3 (Cramér regularity and nondegenerate covariance). Let Pθ be the prior law of X0

and A0 =
∑
gXg0 ∈ ZD≥0. The cumulant generating function

A(λ) := logEPθ

[
eλ

⊤A0
]

exists and is finite on an open neighborhood N of λ = 0, is twice continuously differentiable on N ,
and Σ := ∇2A(0) = CovPθ

(A0) is positive definite. We also assume∇2A is locally Lipschitz on a
smaller neighborhood N0 ⊂ N .
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Definition B.4 (Exponential tilt and I-projection). For λ ∈ N , define the tilted law on X0:

dPθ,λ
dPθ

(x0) = exp
{
λ⊤A0(x0)−A(λ)

}
.

Let a0 ∈ RD be a feasible aggregate and δ := a0−µ with µ := ∇A(0) = EPθ
[A0]. The I-projection

of Pθ onto the affine moment set {Q : EQ[A0] = a0} is Pθ,λ̂ with λ̂ the unique solution of

∇A(λ̂) = a0.

Lemma B.5 (Duality and uniqueness). Under Assumption B.3, the map λ 7→ ∇A(λ) is a local
diffeomorphism at 0, hence for ∥a0 − µ∥ sufficiently small there exists a unique λ̂ ∈ N0 such that
∇A(λ̂) = a0. Moreover,

KL
(
Pθ,λ̂

∥∥∥Pθ) = A(λ̂)− λ̂⊤a0 and EPθ,λ̂
[A0] = a0.

Proof. ∇2A(0) = Σ ≻ 0 implies invertibility of the Jacobian at 0. The inverse function theorem
yields a local inverse ψ of ∇A near µ, with λ̂ = ψ(a0). The KL identity is standard for exponential
families; the moment identity is by construction.

Lemma B.6 (First-order expansion of the dual parameter). Let L be a Lipschitz constant for∇2A on
N0. Then, for δ small enough,

λ̂ = Σ−1δ + r(δ), ∥r(δ)∥ ≤ L
2 ∥Σ

−1∥2 ∥δ∥2.

Proof. Taylor expand∇A at 0: ∇A(λ) = µ+Σλ+R(λ) with ∥R(λ)∥ ≤ L
2 ∥λ∥

2. Solve µ+Σλ̂+

R(λ̂) = µ+ δ to obtain λ̂ = Σ−1(δ −R(λ̂)), hence the bound.

Lemma B.7 (KL and expectation errors). As δ → 0,

KL
(
Pθ,λ̂

∥∥∥Pθ) = 1
2 δ

⊤Σ−1δ + O(∥δ∥3),
∥∥EPθ,λ̂

[f(X0)]−EQθ(·|A0=a0)[f(X0)]
∥∥ = O(∥δ∥2),

for any f with EPθ
[|f(X0)|] <∞ whenever the exact conditional Qθ(· | A0 = a0) exists.

Proof. Expand A(λ̂) to second order using Lemma B.6 and standard cumulant properties. For
expectations, note that both Pθ,λ̂ and Qθ(· | A0 = a0) are I-projections onto the same affine
moment set; the latter is the exact conditional when it exists. Bregman (KL) Pythagorean identities
give that their KL gap is O(∥δ∥2), which implies the stated expectation difference by Pinsker and
boundedness-by-integrability.

Theorem B.8 (Proof of Theorem B.2). Under Assumption B.3, for δ = a0 − µ small,

dQθ
dPθ

(x0) = exp
{
λ̂⊤A0(x0)−A(λ̂)

}
, λ̂ = Σ−1δ +O(∥δ∥2),

and KL(Qθ∥Pθ,λ̂) = O(∥δ∥2). For per-coordinate column constraints, the I-projection is the
multiplicative scaling

T ⋆(x0)
(d)
g = x

(d)
g0 ·

a
(d)
0∑
g′ x

(d)
g′0

, d = 1, . . . , D.

Proof. Combine Lemmas B.5–B.7. The explicit scaling is the closed-form I-projection onto the
linear constraints

∑
g y

(d)
g0 = a

(d)
0 with KL geometry (“IPF step”); it follows from separability across

d.

B.2 CONDITIONS FOR REALIZABILITY AND RECOVERABILITY

We provide concrete conditions under which the key assumptions of recoverability and realizability
hold for count data.
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B.2.1 FACTORIAL CUMULANT FRAMEWORK

For nonnegative integer-valued X , define the factorial moment generating function (FMGF):

MX(t) = E[(1 + t)X ], t ∈ R near 0,

and the factorial cumulant generating function (FCGF):

CX(t) = logMX(t) =
∑
k≥1

κk(X)

k!
tk,

where κk(X) are the factorial cumulants.
Lemma B.9 (Properties of factorial cumulants). (a) If X,Y are independent nonnegative integer-
valued, then CX+Y (t) = CX(t) + CY (t).

(b) If {fψ : ψ ∈ Ψ} are real-analytic near 0 with injective ψ 7→ fψ, and
∑G
g=1 fψg ≡

∑G
g=1 fψ′

g
,

then the multisets {ψg} and {ψ′
g} coincide.

B.2.2 SUFFICIENT CONDITIONS FOR RECOVERABILITY

Theorem B.10 (Recoverability via factorial cumulants). Assume:

1. Conditionally on C = σ(X1, Z), the units (X10, . . . , XG0) are independent.

2. Each unit’s FCGF has the form CXg0(t) = F (t;ψg) where F (·;ψ) is real-analytic near
t = 0 and ψ 7→ F (·;ψ) is injective.

3. The covariates provide labeling: distinct units with distinct ψg have distinct labels λg =
λ(X1, Z, g) almost surely.

Then the aggregate map AC is injective, ensuring recoverability.

Proof. By independence and Lemma B.9(a), CA0
(t) =

∑G
g=1 F (t;ψg). If two specifications yield

the same aggregate law, their FCGF sums agree. By Lemma B.9(b), the multisets coincide. The
labeling removes permutation ambiguity, yielding ψg = ψ′

g for each g.

B.3 LARGE-G LIMITS: CLT-INDUCED NON-IDENTIFIABILITY

We show that even when recoverability holds for finite G, the deconvolution problem can become
ill-posed as G→∞ due to central limit phenomena.

B.3.1 THE FUNDAMENTAL TENSION

As G grows, a fundamental statistical phenomenon emerges: the aggregate distribution converges
to a Gaussian regardless of the specific unit-level distributions, losing the fine-grained information
needed for deconvolution.

B.3.2 CLT COLLAPSE OF AGGREGATE INFORMATION

Theorem B.11 (Loss of identifiability under CLT scaling). Let {X(G)
g0 : 1 ≤ g ≤ G} be conditionally

independent given C = σ(X1, Z), with

µG =

G∑
g=1

E[X(G)
g0 | C], σ2

G =

G∑
g=1

Var(X(G)
g0 | C) <∞.

Under Lindeberg conditions, any two sequences of unit-level distributions that produce the same
(µG, σ

2
G) yield asymptotically identical aggregate distributions:

A
(G)
0 − µG
σG

⇒ N (0, 1) as G→∞.
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Proof. The Lindeberg-Feller CLT applies to both sequences. Since they share the same first two
moments, their standardized aggregates converge to the same Gaussian limit, making them indistin-
guishable through aggregate observations.

B.3.3 IMPLICATIONS FOR FACTORIAL CUMULANTS

Recall from Section B.4.3 that recoverability relies on the factorial cumulants κk(A0) =
∑
g κk(Xg0)

determining the individual unit parameters. Under CLT scaling:
Corollary B.12 (Vanishing higher-order cumulants). For standardized aggregates, the k-th factorial
cumulant scales as O(σ−k+2

G ) for k ≥ 3. Thus:

κk(A
(G)
0 )

σkG
→ 0 as G→∞, k ≥ 3.

Only the first two cumulants (mean and variance) survive in the limit.

This means the factorial cumulant signature that enables recoverability for finite G becomes asymp-
totically uninformative—all unit-level configurations with the same total mean and variance are
indistinguishable.

B.4 GRADIENT BOUNDS FOR DECONVOLUTION

A subtle issue arises in the theoretical analysis of the EM algorithm we present in the main text: if we
always generate training pairs by running the full reverse trajectory from x1 to x0, errors in early
predictions can compound. Each reverse step conditions on the previous prediction, so mistakes
propagate and potentially amplify. The model could learn from its own errors, leading to distribution
shift.

We resolve this through a simple but crucial observation: at time t = 1 (the noisy endpoint), we are
training on the actual data, so as long as we can learn unit-level distributions from aggregates this can
serve as a “backstop” from a theoretical point of view.

Our modified training strategy exploits this guarantee while allowing the model to benefit from
iterative refinement when possible. At each epoch, we evaluate the aggregate prediction quality at
different reverse trajectory endpoints τ ∈ {t1 = 1, t2, . . . , tK}. For each minibatch, we run Alg.
2 (note, not the guided sampling) and compute the aggregate score for the sampled x̂0,t for each
timepoint and use the lowest scoring timepoint to form our “latent” x≈0 . We cannot use the guided
sampling since it is guaranteed to match the aggregates at late times. But once we choose the end
time we can then sample using Alg. 3 stopping at time τ∗ and projecting to incorporate the aggregate
constraints.

If there is significant compounding error, the score will be worse for smaller τ (longer trajectories),
and the procedure naturally falls back to τ = 1 where convergence is guaranteed. However, when the
model is well-calibrated, earlier times often achieve better scores because they benefit from multiple
rounds of refinement.

Now we establish that training from aggregates with adaptive end-time selection produces gradients
that approximate the oracle unit-level gradients, with the approximation quality determined by the
best aggregate prediction achievable. This proof is essentially straightforward: we assume that we
can learn from aggregates using the model at t = 1 and then show that our EM procedure will not go
wrong given this backstop.

Empirically, we often find that using the full trajectory (τ = 0) works well without explicit adaptation,
suggesting the projection guidance effectively prevents severe compounding. An important area for
future work is developing a more satisfying theory that explains this strong performance.
Assumption B.13 (Bounded Fisher information). The aggregate Fisher information satisfies
sup(xt,t,z) tr Iθ(xt, t, z) ≤ CI < ∞, and the unit-level score has bounded second moment
Eqθ [∥∇θ log qθ(x0 | xt, t, z)∥2] ≤ Cunit(t).
Theorem B.14 (Gradient bounds under adaptive training). Under Assumptions B.1–B.13, define the
aggregate risk at time τ :

Rτ (θ) = E[DKL(pdata(a0 | xτ , τ, z) ∥Qθ(a0 | xτ , τ, z))]
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where xτ is generated by Algorithm 3 run up to time τ . Let gτ (θ) be the gradient from aggregate
scoring and gunit

τ (θ) the oracle unit-level gradient. Then:

∥gτ (θ)− gunit
τ (θ)∥ ≤

(√
2CI +

√
2Cunit(τ)κloc(τ)

)√
Rτ (θ).

For adaptive selection τ∗ = argminτ Rτ (θ), the gradient error is controlled by the minimum
achievable risk across all times.

This theorem reveals the power of adaptive training: the gradient approximation quality depends on
the best prediction achievable at any time, not a fixed time. When the model is poorly calibrated, τ = 1
minimizes risk (where exact aggregate-conditional sampling is possible). As training progresses,
earlier times may achieve lower risk through iterative refinement, automatically improving gradient
quality. The proof uses the Fisher identity and Pinsker’s inequality to bound the gradient gap in terms
of the aggregate KL divergence.

Combined with the recoverability assumption, this ensures that minimizing aggregate risk leads to
learning the correct unit-level model. Once correct at any time, the θ-free property of the bridge kernel
guarantees correct distributions at all times, enabling consistent training across different trajectory
endpoints.

Throughout, expectations are taken under the population law. For any time τ ∈ [0, 1], the state xτ is
generated recursively by Algorithm 3 (reverse sampling with projection Π used only to draw x̃0 as an
internal step). The loss is always pre-projection: we score Qθ(a0 | xτ , τ, z), never Π.

Write the aggregate score function

ℓθ(a0;xτ , τ, z) := − logQθ(a0 | xτ , τ, z), sθ(a0 | xτ , τ, z) := ∇θ logQθ(a0 | xτ , τ, z)
so that the population aggregate gradient at time τ is

gτ (θ) := E
[
∇θℓθ(A0;xτ , τ, Z)

]
= −E

[
sθ(A0 | xτ , τ, Z)

]
.

Define the oracle unit-level score and gradient at time τ

uθ(x0 | xτ , τ, z) := ∇θ log qθ(x0 | xτ , τ, z), gunit
τ (θ) := E

[
− uθ(X0 | xτ , τ, Z)

]
(the gradient one would take if X0 were observable).

For the aggregate risk we use the KL divergence

Rτ (θ) := E
[
DKL

(
pdata(A0 | xτ , τ, Z)

∥∥∥Qθ(A0 | xτ , τ, Z)
)]
.

B.4.1 TWO ELEMENTARY LEMMAS

The first lemma is the (conditional) Fisher identity plus a Cauchy–Schwarz step.
Lemma B.15 (Aggregate score bias bound). For any fixed (xτ , τ, z),∥∥∥E[sθ(A0 | xτ , τ, z)

∣∣ xτ , τ, z] ∥∥∥ ≤ √
tr Iθ(xτ , τ, z) ·

√
2DKL

(
pdata(A0 | xτ , τ, z)

∥∥∥Qθ(A0 | xτ , τ, z)
)
,

where Iθ(xτ , τ, z) = VarQθ(·|xτ ,τ,z)[ sθ(· | xτ , τ, z) ].

Proof. Under Qθ(· | xτ , τ, z), E[sθ] = 0. Let L = dpdata
dQθ

(A0 | xτ , τ, z). Then Epdata [sθ] =

EQθ
[sθ(L − 1)]. By Cauchy–Schwarz, ∥EQθ

[sθ(L − 1)]∥ ≤
√
EQθ
∥sθ∥2 ·

√
EQθ

(L− 1)2. The
first factor is

√
tr Iθ(xτ , τ, z). The second equals

√
χ2(pdata∥Qθ) ≤

√
2DKL(pdata∥Qθ) in the local

regime near equality,2 which yields the claim.

The second lemma translates aggregate misfit to unit-level misfit via the local modulus.
2Locally (when the two distributions are close), Dχ2 ≤ 2DKL; more generally, they are second-order

equivalent by standard f -divergence comparisons. This is automatically satisfied in a neighborhood of θ⋆ under
Assumption B.1.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Lemma B.16 (Unit-level score bias via recoverability). Fix (xτ , τ, z) and assume the local modulus
in Assumption B.1. Then∥∥∥E[uθ(X0 | xτ , τ, z)

∣∣ xτ , τ, z] ∥∥∥ ≤ √
2Cunit(τ)κloc(τ) ·

√
DKL

(
pdata(A0 | xτ , τ, z)

∥∥∥Qθ(A0 | xτ , τ, z)
)
.

Proof. With p(·) = pdata(x0 | xτ , τ, z) and q(·) = qθ(· | xτ , τ, z), the same step as above
gives ∥Ep[uθ]∥ ≤

√
Eq∥uθ∥2 ·

√
2DKL(p∥q). Bound Eq∥uθ∥2 ≤ Cunit(τ) by Assumption B.13.

Then apply the local modulus (Assumption B.1) to replace DKL(p∥q) by κloc(τ)DKL

(
pdata(A0 |

xτ , τ, z)∥Qθ(· | xτ , τ, z)
)
.

B.4.2 PROOF OF THEOREM B.14

Proof of Theorem B.14. By definitions,

gτ (θ)− gunit
τ (θ) = − E

[
sθ(A0 | xτ , τ, Z)

]
+ E

[
uθ(X0 | xτ , τ, Z)

]
.

Apply the triangle inequality and condition on (xτ , τ, Z):

∥gτ (θ)− gunit
τ (θ)∥ ≤ E

[ ∥∥E[sθ(A0 | xτ , τ, Z) | xτ , τ, Z]
∥∥ ]

+ E
[ ∥∥E[uθ(X0 | xτ , τ, Z) | xτ , τ, Z]

∥∥ ]
.

Use Lemma B.15 for the first term and Lemma B.16 for the second, then apply Jensen and Assump-
tions B.13–B.1:

∥gτ (θ)− gunit
τ (θ)∥ ≤

(√
2CI +

√
2Cunit(τ)κloc(τ)

) √
Rτ (θ).

Finally, for the adaptive choice τ∗ ∈ argminτ Rτ (θ), monotonicity gives
√
Rτ∗(θ) ≤

√
Rτ (θ) for

all τ , so the same bound with Rτ∗(θ) holds, which is exactly the theorem.

B.4.3 REMARKS ON SCOPE AND IDENTIFIABILITY

Realizability and local modulus. Assumption B.1 asks that aggregate equality implies unit-level
equality with a local modulus κloc(t). Concrete sufficient conditions follow from identifiability of the
factorial-cumulant generating family of the units and diversity of covariates z (see Theorem B.10).

Large-G limits. As G grows, higher-order cumulants in the aggregate attenuate (Appendix B.3),
so κloc(t) may deteriorate unless additional structure is imposed (parametric shrinkage across units,
multiple aggregates, or occasional unit-level labels).

B.4.4 WHAT ADAPTIVE END-TIME BUYS YOU

DefiningRτ (θ) using the recursive xτ makes the comparison truly training-aligned: your per-example
choice τ∗ = argminτ Rτ (θ) yields the tightest bound

∥gτ∗(θ)− gunit
τ∗ (θ)∥ ≤

(√
2CI +

√
2Cmaxκmax

)√
Rτ∗(θ),

with Cmax = supτ Cunit(τ) and κmax = supτ κloc(τ) (finite in the realizable neighborhood). Intu-
itively, as the sampler refines its xτ along the reverse path, whichever time slice permits the best
aggregate prediction also delivers the smallest gap to the oracle unit-level bridge gradient.

C PROJECTION AND ROUNDING ALGORITHMS

Group rescaling. Algorithm 5 rescales item-level nonnegative values {xb}Bb=1 so that each group
Gg attains a prescribed aggregate Cg . The procedure is linear-time in the number of items and linear
in memory in the number of groups:

T = O(B), Mextra = O(G),
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and is applied in parallel to each feature dimension.

Algorithm 5 Group Rescaling to Match Aggregates (scalar form)

Require: item values xb ≥ 0 for b = 1, . . . , B; groups G1, . . . , GG; targets Cg ≥ 0
Ensure: yb ≥ 0 with

∑
b∈Gg

yb = Cg for all g
1: for g = 1, . . . , G do
2: Sg ←

∑
b∈Gg

xb
3: if Sg > 0 then
4: for b ∈ Gg do
5: yb ← xb Cg/Sg ▷ proportional rescaling
6: end for
7: else
8: for b ∈ Gg do
9: yb ← Cg/|Gg| ▷ uniform split

10: end for
11: end if
12: end for
13: return {yb}

Randomized rounding. Algorithm 6 independently rounds a real value to the nearest integers,
preserving the value in expectation. It runs in constant time and memory per entry, so applying it
over B items has

T = O(B), Mextra = O(1).

Algorithm 6 Randomized Rounding (scalar form)

Require: real value x ≥ 0
Ensure: integer y ∈ Z≥0

1: a← ⌊x⌋
2: r ← x− a
3: sample U ∼ Unif[0, 1]
4: if U < r then
5: y ← a+ 1
6: else
7: y ← a
8: end if
9: return y

Groupwise exact rounding. Algorithm 7 converts rescaled real values {xb} to integers {yb} while
exactly preserving each group sum:

∑
b∈Gg

yb = Cg . Each yb differs from xb by at most 1. The only
expensive step is weighted sampling without replacement inside each group. With Gumbel–Top-k
sampling the worst-case complexity is

T = O

( G∑
g=1

|Gg| log |Gg|
)
, Mextra = O(B),

and the algorithm is again applied independently over coordinates.
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Algorithm 7 Groupwise Randomized Rounding with Exact Aggregates (scalar form)

Require: rescaled xb ≥ 0, groups G1, . . . , GG, integer targets Cg
Ensure: integers yb ≥ 0 with

∑
b∈Gg

yb = Cg and |yb − xb| ≤ 1

1: for g = 1, . . . , G do ▷ work inside group Gg
2: for b ∈ Gg do
3: ab ← ⌊xb⌋
4: rb ← xb − ab
5: end for
6: Ag ←

∑
b∈Gg

ab
7: Sg ← Cg −Ag ▷ # of increments required
8: if Sg = 0 then
9: for b ∈ Gg do

10: yb ← ab
11: end for
12: else
13: sample a subset S ⊆ Gg of size Sg
14: without replacement with weights ∝ rb
15: for b ∈ Gg do
16: if b ∈ S then
17: yb ← ab + 1
18: else
19: yb ← ab
20: end if
21: end for
22: end if
23: end for
24: return {yb}

D SYNTHETIC DISTRIBUTIONS

All synthetic tasks use the same base architecture with a 4-layer MLP with 128 dimensional hidden
layers. We scale the inputs and outputs in dimension, so for example the DFM and CE-CB have
d × 256 dimensional outputs (since we clip all datasets to use a range of 256 to make for easy
tokenization). The energy score models take inputs in d+ noise dim and we use noise dim = 100
throughout. We ran all experiments with Adam using both lr = 1e− 3, 2e− 4 and present results
for the best performing learning rate for each method. We use a cosine warmup for the learning rate
for 100 steps. For all experiments we use gradient norm clipping to size 1, batch size 256, and train
for 500 epochs. For the energy score models, we use exponential model averaging, which is crucial
to good performance. Full details are available in the codebase.

For the flow matching we use σ = 0.1 following best practices (we tested larger σ but saw large
degradations in performance). For the bessel sampler we use

√
Λ+Λ− = 32.

D.1 DISCRETE 8-GAUSSIANS TO 2-MOONS

D.1.1 DATASET

For qualitative evaluation, we adapt the classic continuous “8-Gaussians to 2-Moons” task into a
fully discrete, integer-valued setting suitable for count-based flow matching. Each dataset consists of
50,000 paired samples (x0, x1) ∈ Z2, constructed as follows.

Source distribution (x0). We generate samples from the standard two-moons dataset in R2 using
make moons with noise level noise = 0.1. The moons are shifted to be approximately centered
at the origin by subtracting (0.5, 0.25).

Target distribution (x1). We construct an 8-component Gaussian mixture arranged evenly on a
circle of radius 2.0 in R2. Each component has isotropic Gaussian noise with variance matching
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noise = 0.1. A sample is generated by first selecting one of the 8 components uniformly at random,
then drawing from the corresponding Gaussian.

Integerization. Both source and target samples are mapped to the integer lattice by

x 7→ round(clip(x · scale+ offset, min value, value range− 1)) ,

with parameters scale = 30.0, offset = 80.0, min value = 0, and value range = 196.
This procedure ensures that all outputs fall in the discrete vocabulary {0, 1, . . . , 195}2, but the scales
are chosen so that essentially no values are actually clipped.

D.1.2 RESULTS

We present a visualization of the learned trajectories in Fig. 2 and the full details in Table 6. Count
bridges achieve uniformly the best performance using the distributional losses, that is the cross
entropy or energy scores with the energy score uniformly best.

Table 6: Discrete Moons Results: Noise → Two Moons

Method MMD W2 Energy

CFM 0.065 ± 0.019 0.049 ± 0.008 0.874 ± 0.246
DFM 0.010 ± 0.002 0.010 ± 0.002 0.035 ± 0.014
Count Bridge (CE) 0.0065 ± 0.0023 0.0080 ± 0.0009 0.026 ± 0.004
Count Bridge (ES) 0.0044 ± 0.0018 0.0052 ± 0.0007 0.0098 ± 0.0029
Count Bridge (MSE) 0.030 ± 0.000 0.033 ± 0.001 0.366 ± 0.015

We also run the Count Bridge across different noise levels, here we actually find that our default of
λ+ = λ− = 32 is not optimized, so all results can be considered lower bounds on our performance.

Table 7: Count Bridge (Energy Score) Results Across Different λ+ = λ− Values

λ+ = λ− MMD W2 Energy

0 0.0038 ± 0.0012 0.0046 ± 0.0002 0.0075 ± 0.0011
8 0.0039 ± 0.0015 0.0045 ± 0.0006 0.0080 ± 0.0022
16 0.0049 ± 0.0003 0.0049 ± 0.0003 0.0095 ± 0.0004
32 0.0052 ± 0.0024 0.0055 ± 0.0015 0.011 ± 0.006
256 0.0064 ± 0.0020 0.0063 ± 0.0009 0.015 ± 0.004

D.1.3 NOISE TO 2-MOONS FOR DIFFUSION COMPARISONS

Here we compare against a standard Gaussian DDIM model Song et al. (2020) and Discrete Diffusion
as in Shi et al. (2024). Since these models go from noise to a target distribution, we cannot do the
8-Gaussians to 2-Moons task, so we simply target the 2-Moons. This makes the task substantially
easier. For Count Bridges we use the same results from the previous table (the more difficult task, but
with comparable scores at the endpoint).

Table 8: Discrete Moons Results: Eight Gaussians → Two Moons

Method MMD W2 Energy

Count Bridge (ES) 0.0044 ± 0.0018 0.0052 ± 0.0007 0.0098 ± 0.0029
Gaussian Diffusion 0.024 ± 0.009 0.017 ± 0.006 0.118 ± 0.064
Discrete Diffusion 0.017 ± 0.010 0.013 ± 0.006 0.072 ± 0.055
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D.2 LOW-RANK GAUSSIAN MIXTURE

D.2.1 DATASET

For synthetic evaluation, we use a pre-sampled integer-valued Gaussian mixture dataset that scales
with the ambient dimension d while fixing the latent rank at r = 3. Each dataset consists of 50,000
paired samples (x0, x1) ∈ Zd generated according to the following procedure:

Mixture construction. We define a k = 5 component Gaussian mixture in latent space Rr with
r = 3 (we hold these parameters constant as we scale in d):

• Means. Component means are drawn from N (0, σ2I) with scale σ = mean scale/
√
r,

and shifted to lie near the center of the integer range. We set mean scale = 20.0.
• Covariances. Each covariance is constructed by sampling eigenvalues from an exponential

distribution with scale cov scale = 10.0, clamped below min eigenvalue = 0.1,
and conjugating by a random orthogonal matrix.

• Mixture weights. Weights are drawn from a Dirichlet(1, . . . , 1) prior, yielding a random
simplex vector.

Projection to Rd. Latent samples z ∈ R3 are mapped to the ambient space via a
random projection matrix P ∈ Rd×r with entries scaled by projection scale/

√
r,

where projection scale = 1.0. To avoid degeneracy, isotropic Gaussian noise ϵ ∼
N (0,noise scale2Id) with noise scale = 1.0 is added after projection:

y = Pz + ϵ, z ∼ MoGr, ϵ ∼ N (0, Id).

Integerization. Projected samples y ∈ Rd are rounded to the nearest integer and reflected into the
bounded range [min value,value range− 1] = [0, 255] to ensure validity of DFM.

Scaling in d. The intrinsic latent structure is fixed at r = 3, while the output dimension d is varied
across experiments (e.g. d = 5, 16, 32, 128, 256, 512). This construction produces datasets with
constant intrinsic complexity but increasing ambient dimension, providing a natural test of how
models scale in d.

D.2.2 RESULTS

The central scaling results are presented visually in Fig. 3. Here we also present the full experimental
details in Table 9.

D.3 DECONVOLUTION GAUSSIAN MIXTURE DATASET

We extend the low-rank Gaussian mixture task (Appendix D.2) to evaluate deconvolution capabilities
under controlled conditions. Each observation is formed by aggregating a group of G unit-level
samples into a single count vector.

Group construction. For each group, component proportions are drawn from a Dirichlet distri-
bution with concentration parameter α, yielding group-specific mixture weights. The G unit-level
samples are then drawn independently from the corresponding mixture components. Both the ag-
gregated sum X0 ∈ Zd and the individual unit-level labels z ∈ {0, 1}G×k are retained, enabling
evaluation of methods under both aggregate-only and aggregate+unit supervision.

Experimental variation. We vary two factors that control the difficulty of deconvolution:

• Group size: G ∈ {4, 8, 32, 128}, which determines how many unit-level samples are aggre-
gated. Larger groups yield more uniform averages and less information about component
heterogeneity.

• Dirichlet concentration: α ∈ {1, 10, 1000}, which controls variability in group-specific
mixture weights. Small α values produce heterogeneous groups (informative for deconvolu-
tion), while large α values yield nearly uniform group proportions (uninformative).
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Table 9: Performance Comparison Across Dimensions and Methods

Dim Method NFE MMD W2 EMD

4

CFM
8 0.027 ± 0.014 0.019 ± 0.002 0.716 ± 0.420
32 0.026 ± 0.017 0.015 ± 0.004 0.584 ± 0.460
128 0.026 ± 0.018 0.015 ± 0.004 0.565 ± 0.469

DFM
8 0.025 ± 0.004 0.011 ± 0.001 0.245 ± 0.053
32 0.035 ± 0.003 0.014 ± 0.001 0.458 ± 0.078
128 0.046 ± 0.005 0.018 ± 0.002 0.759 ± 0.144

Count Bridge
8 0.0053 ± 0.0007 0.0040 ± 0.0004 0.020 ± 0.004
32 0.0054 ± 0.0010 0.0042 ± 0.0002 0.023 ± 0.005
128 0.0098 ± 0.0008 0.0058 ± 0.0003 0.055 ± 0.008

8

CFM
8 0.041 ± 0.013 0.025 ± 0.004 1.05 ± 0.18
32 0.039 ± 0.012 0.014 ± 0.004 0.456 ± 0.147
128 0.040 ± 0.010 0.014 ± 0.003 0.421 ± 0.128

DFM
8 0.026 ± 0.007 0.011 ± 0.001 0.204 ± 0.067
32 0.034 ± 0.009 0.011 ± 0.003 0.317 ± 0.142
128 0.042 ± 0.011 0.012 ± 0.003 0.497 ± 0.228

Count Bridge
8 0.0036 ± 0.0007 0.0023 ± 0.0001 0.0068 ± 0.0024
32 0.0038 ± 0.0011 0.0026 ± 0.0006 0.0077 ± 0.0028
128 0.0050 ± 0.0015 0.0029 ± 0.0003 0.012 ± 0.002

16

CFM
8 0.066 ± 0.011 0.028 ± 0.001 2.08 ± 0.54
32 0.053 ± 0.011 0.017 ± 0.001 0.788 ± 0.211
128 0.052 ± 0.011 0.015 ± 0.001 0.647 ± 0.163

DFM
8 0.078 ± 0.001 0.017 ± 0.000 1.20 ± 0.06
32 0.100 ± 0.005 0.022 ± 0.002 1.92 ± 0.28
128 0.118 ± 0.017 0.025 ± 0.004 2.72 ± 0.86

Count Bridge
8 0.0067 ± 0.0014 0.0035 ± 0.0003 0.025 ± 0.007
32 0.011 ± 0.001 0.0045 ± 0.0004 0.048 ± 0.007
128 0.017 ± 0.001 0.0057 ± 0.0004 0.090 ± 0.013

32

CFM
8 0.145 ± 0.024 0.030 ± 0.001 4.63 ± 1.28
32 0.131 ± 0.043 0.026 ± 0.005 3.14 ± 1.72
128 0.131 ± 0.052 0.022 ± 0.006 3.09 ± 1.97

DFM
8 0.079 ± 0.027 0.016 ± 0.008 1.23 ± 0.76
32 0.089 ± 0.023 0.017 ± 0.006 1.55 ± 0.85
128 0.100 ± 0.027 0.018 ± 0.007 1.99 ± 1.10

Count Bridge
8 0.0083 ± 0.0008 0.0024 ± 0.0003 0.021 ± 0.002
32 0.010 ± 0.002 0.0031 ± 0.0006 0.029 ± 0.008
128 0.010 ± 0.002 0.0034 ± 0.0007 0.034 ± 0.007

64

CFM
8 0.296 ± 0.077 0.042 ± 0.008 13.43 ± 6.74
32 0.313 ± 0.099 0.046 ± 0.014 16.07 ± 9.93
128 0.326 ± 0.107 0.049 ± 0.017 17.94 ± 11.55

DFM
8 0.105 ± 0.033 0.022 ± 0.007 1.71 ± 1.07
32 0.126 ± 0.039 0.020 ± 0.005 2.57 ± 1.58
128 0.147 ± 0.048 0.022 ± 0.006 3.59 ± 2.20

Count Bridge
8 0.020 ± 0.004 0.0051 ± 0.0005 0.072 ± 0.019
32 0.027 ± 0.002 0.0061 ± 0.0002 0.112 ± 0.014
128 0.029 ± 0.001 0.0065 ± 0.0005 0.138 ± 0.018

128

CFM
8 0.335 ± 0.009 0.038 ± 0.003 12.89 ± 1.09
32 0.276 ± 0.034 0.033 ± 0.008 10.59 ± 3.51
128 0.260 ± 0.048 0.032 ± 0.008 10.55 ± 4.74

DFM
8 0.205 ± 0.036 0.042 ± 0.005 6.66 ± 2.47
32 0.236 ± 0.031 0.043 ± 0.005 9.06 ± 2.63
128 0.259 ± 0.028 0.050 ± 0.011 10.90 ± 2.92

Count Bridge
8 0.128 ± 0.066 0.014 ± 0.006 3.30 ± 2.34
32 0.140 ± 0.075 0.014 ± 0.006 3.89 ± 2.97
128 0.151 ± 0.082 0.016 ± 0.007 4.55 ± 3.65

256

CFM
8 0.461 ± 0.007 0.049 ± 0.007 28.45 ± 4.63
32 0.402 ± 0.049 0.047 ± 0.006 28.95 ± 10.71
128 0.390 ± 0.069 0.045 ± 0.012 30.57 ± 13.24

DFM
8 0.216 ± 0.049 0.029 ± 0.008 9.75 ± 5.07
32 0.228 ± 0.045 0.033 ± 0.008 12.63 ± 4.81
128 0.255 ± 0.044 0.039 ± 0.009 15.80 ± 4.96

Count Bridge
8 0.087 ± 0.045 0.0093 ± 0.0022 1.58 ± 1.28
32 0.092 ± 0.044 0.0099 ± 0.0021 1.68 ± 1.30
128 0.105 ± 0.039 0.012 ± 0.001 1.98 ± 1.26

512

CFM
8 0.569 ± 0.055 0.051 ± 0.006 49.32 ± 7.46
32 0.471 ± 0.046 0.049 ± 0.005 50.69 ± 11.35
128 0.438 ± 0.034 0.048 ± 0.005 53.70 ± 14.23

DFM
8 0.261 ± 0.069 0.042 ± 0.015 30.49 ± 21.88
32 0.288 ± 0.099 0.050 ± 0.019 44.53 ± 29.76
128 0.319 ± 0.112 0.058 ± 0.022 55.03 ± 35.35

Count Bridge
8 0.081 ± 0.028 0.010 ± 0.002 1.46 ± 0.73
32 0.085 ± 0.026 0.010 ± 0.001 1.79 ± 0.89
128 0.113 ± 0.029 0.016 ± 0.003 3.53 ± 2.27

Dataset parameters. We fix the ambient dimension at d = 4, latent rank at r = 3, number of
mixture components k = 5, and use the same mixture parameterization as in the low-rank dataset
(means scaled by 20.0, covariances scaled by 10.0 with minimum eigenvalue 0.1, projection scale
1.0, isotropic noise 1.0, and integerization into [0, 255]). Each dataset contains 5,000 groups, drawn
from a base pool of 50,000 pre-sampled mixture samples.
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Results. As shown in Fig. 4, deconvolution performance degrades as groups become larger and
more uniform. This matches the theoretical results in Appendices B.4.3 and B.3, which establish that
deconvolution requires between-group heterogeneity for identification, a property that is inherently
lost as G grows. We present detailed results across metrics in Tables 10, 11, 12.

Table 10: Deconvolution Performance: W2 vs Group Size and Dirichlet Concentration

Group Size (n) α = 1 α = 10 α = 1000

4 0.0091 ± 0.0005 0.010 ± 0.000 0.011 ± 0.000
8 0.011 ± 0.001 0.014 ± 0.001 0.016 ± 0.000
32 0.020 ± 0.002 0.023 ± 0.002 0.025 ± 0.002

128 0.050 ± 0.008 0.053 ± 0.006 0.057 ± 0.002

Table 11: Deconvolution Performance: EMD vs Group Size and Dirichlet Concentration

Group Size (n) α = 1 α = 10 α = 1000

4 0.130 ± 0.006 0.195 ± 0.025 0.207 ± 0.040
8 0.286 ± 0.023 0.363 ± 0.037 0.483 ± 0.010

32 0.530 ± 0.051 0.657 ± 0.095 0.921 ± 0.222
128 2.24 ± 0.58 2.22 ± 0.54 2.63 ± 0.14

Table 12: Deconvolution Performance: MMD vs Group Size and Dirichlet Concentration

Group Size (n) α = 1 α = 10 α = 1000

4 0.011 ± 0.001 0.011 ± 0.002 0.012 ± 0.004
8 0.016 ± 0.001 0.017 ± 0.002 0.021 ± 0.001

32 0.014 ± 0.003 0.020 ± 0.003 0.025 ± 0.010
128 0.037 ± 0.005 0.045 ± 0.007 0.044 ± 0.001

To investigate the importance of different rounding approaches in our deconvolution implementation
we run an ablation study where we substitute our preferred exact rounding approach for two alterna-
tives: first a simple deterministic rounding, and second a randomized rounding (where we simply
add zero or one with probability of the decimal value). Deterministic rounding can lead to arbitrarily
incorrect results, randomized rounding preserves the expectation, and our exact approach will ensure
we exactly match the target aggregate value. We find that although our exact approach is superior
across three replicates of the n = 128, α = 1 setting the results are very close particularly for the
randomized rounding. We believe this could justify substituting the randomized approach since it is
simpler, although in different regimes this may matter more or less.

Table 13: Performance comparison of different rounding methods with standard errors.

Method MMD W2 EMD

exact 0.037± 0.005 0.050± 0.008 2.24± 0.58
randomized 0.038± 0.000 0.051± 0.007 2.33± 0.43
round 0.038± 0.003 0.052± 0.007 2.32± 0.44

E NUCLEOTIDE-LEVEL GENE EXPRESSION MODELLING

E.1 DATASET

Nucleotide-level data preprocessing We use the Onek1k peripheral blood mononuclear cells
(PBMC) 10X 3’ scRNA-seq dataset, originally collected by Yazar et al. (2022). For our analysis, as
we are interested in nucleotide-level counts rather than the gene-level counts provided with the initial
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publication, we use the preprocessed reads made available by Hingerl et al. (2024). The reads are
aligned to the hg38 human reference genome. The resulting BAM files are filtered to include only
high quality, UMI-deduplicated reads. The cell type annotations were used as provided in the original
dataset.

Gene-level data preprocessing We construct the gene-level count matrices directly from our single-
cell coverage matrices rather than following the typical single-cell gene expression preprocessing
pipeline. In particular, for each annotated gene and each cell, we take the max count over the
nucleotide-level coverage matrix as the count for the gene.

E.2 ARCHITECTURE, TRAINING, AND INFERENCE

E.2.1 INPUTS AND EMBEDDINGS

We model nucleotide–level counts on a fixed window of length L=896. For each example we form

xt ∈ ZL≥0, t ∈ (0, 1], z ∼ N (0, Idz ), c ∈ {1, . . . , C}, seq ∈ {A,C,G,T,N}L.
Sequence context is embedded with a frozen Enformer encoder (EleutherAI checkpoint), yielding
per–position embeddings

E(seq) ∈ RL×dE , dE = 3072.

We tile the scalars across positions and concatenate

H(0) =
[
E(seq) ∥ xt ∥ t ∥ z ∥ emb(c)

]
∈ RL×(dE+1+1+dz+dc),

with dz=100 and dc=14. A two–layer SELU MLP projects to the model width d:

X(0) = ϕ
(
W2 ϕ(W1H

(0))
)
∈ RL×d.

E.2.2 LOCAL ATTENTION BACKBONE

We apply Nattn residual self–attention blocks (PyTorch MultiheadAttention, batch–first) with
LayerNorm:

X̃(ℓ) = MHA
(
X(ℓ), X(ℓ), X(ℓ)

)
, X(ℓ+1) = LN

(
X̃(ℓ) +X(0)

)
,

where the residual skip uses the pre–block X(0) as in the implementation.3 We use Nattn=2 lay-
ers, d=hidden dim, and h=4 heads. A linear projection followed by softplus produces a
nonnegative per–position prediction

x̂0 = softplus
(
WoutX

(Nattn)
)
∈ RL≥0.

This parameterizes the conditional law qθ( · | xt, t, z, c, seq) used inside the count–bridge reverse
kernel (Sec. 3).

E.2.3 LEARNED PROJECTION MODULE Πψ

When an aggregate constraint a0=
∑L
i=1 x0,i is observed, we refine x̂0 with a lightweight attention

projector that operates across positions. We form

Y (0) =
[
x̂0 ∥ xt ∥ a0 ∥ X(Nattn)

]
∈ RL×(1+1+1+d).

A two–layer SELU MLP lifts to width d, then Nproj=2 self–attention layers (sequence–first API)
with residual+LayerNorm are applied:

Ỹ (m) = MHA(Y (m), Y (m), Y (m)), Y (m+1) = LN
(
Ỹ (m) + Y (0)

)
.

A linear head produces an additive correction which we re–softplus for nonnegativity:

x̃0 = softplus
(
WprojY

(Nproj)
)
+ x̂0.

At inference, when a0 is present we use x̃0 as the endpoint in the reverse step; otherwise we use x̂0.

3Code uses a “global” residual X ← X +X(0) within each block. We retained this because it stabilized
training with L=896.
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E.2.4 TRAINING OBJECTIVES AND SCHEDULES

Distributional loss (energy score). We train qθ with the energy score Sρ on the conditional
X0 | Xt=xt (Sec. 3.2). For each example we draw m i.i.d. samples x̂(j)0 ∼ qθ(· | xt, t, z, c, seq) via
ancestral decoding of the per–position parameterization and estimate the U–statistic version of Sρ
with ρ(x, x′)=∥x−x′∥β2 (β∈(0, 2)). We used m=2 in practice.

Aggregate–aware training. With probability pagg=0.1 we attach an aggregate a0 and route the
forward pass through Πψ to obtain x̃0, then compute the same energy score. This jointly trains Πψ to
approximate sampling from the mean–conditional X0 | A(X0)=a0, Xt, t while preserving the exact
reverse transition of the count bridge.

Cell–type masking. To support both conditional and unconditional generation, we randomly mask
the cell–type embedding with probability pmask (set to zero vector). We used pmask=0.1.

E.2.5 OPTIMIZATION AND HYPERPARAMETERS

We use Adam, learning rate {2×10−4, cosine warmup for 100 steps, EMA with 0.999, batch size
128, gradient clipping at 1.0. See configs for exact architecture specification.

E.2.6 SAMPLING

At test time we follow Alg. 2: starting from x1 we iterate tk ↓ 0. At each step we sample X̃0 ∼ qθ(· |
xtk , tk, z, c, seq); if an aggregate is provided we replace with x̃0=Πψ(x̂0, a0, xtk). We then apply
the exact binomial–hypergeometric reverse kernel (Prop. 3.1) to obtain xtk−1

. This guarantees that
trajectories remain within the discrete support while leveraging the learned distributional posterior.
We use three function evaluations for all results in this application.

E.3 ADDITIONAL RESULTS

In Tab. E.3 we provide results for gene expression prediction performance, broken down by cell type.

Cell type Baseline MSE CB MSE

CD4 ET 3.596 1.402
NK 0.415 0.364
CD4 NC 3.382 1.304
CD8 S100B 2.619 1.002
CD8 ET 1.065 0.540
B IN 2.556 1.091
CD8 NC 3.381 1.311
B Mem 6.742 3.416
NK R 1.624 0.781
Mono NC 1.485 0.752
Mono C 1.253 0.676
DC 9.302 4.475
Plasma 10763.906 10696.934
CD4 SOX4 3.428 1.323

We also analyze the unit-level profiles of the deconvolved transciptomes. We aggregate the nucleotide
level transcriptomes up to the gene level by computing the maximum count over the gene profile,
enabling us to generate a count matrix from our deconvolved profile. We then assign the cell types
and plot the UMAP of the held-out ground truth vs the deconvolved transcriptomic profiles. We can
see that the deconvolved profiles are realistically clustered mirroring the ground truth 5.
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Figure 5: Ground Truth vs Deconvovled UMAP for nucleotide level bulk deconvolution, aggregated
to the gene level and hued by cell type (as assigned by Yazar et al. (2022)).

F SPATIAL TRANSCRIPTOMIC DECONVOLUTION

F.1 DATASET

Preprocessing We used the publicly available mouse brain MERFISH dataset from Vizgen (2021).
We subset the data to a particular slice (slice 1, replicate 2). We used the transcript puncta and nuclear
segmentation masks as provided with the dataset. For gene expression, we used the raw transcript
counts without applying standard single-cell preprocessing pipelines. For each cell, we resized the
DAPI image to 256x256 pixels by padding.

Aggregation To simulate a Visium-style spatial transcriptomics dataset, we aggregated the single-
cell MERFISH data. A grid of spots was defined with a center-to-center distance of 100µm and a
spot radius of 55µm. The gene expression profile for each simulated spot was then generated by
summing the transcript counts of all identified cells whose nuclei fell within the circular bounds of
that spot.

F.2 ARCHITECTURE, TRAINING, AND SAMPLING

F.2.1 INPUTS AND TOKENIZATION

We model spot-level counts while conditioning on image context and diffusion noise/time tokens.
Each training example provides

xcnt
t ∈ ZDc

≥0, It ∈ RC×H×W , t ∈ (0, 1], ε ∈ Rdε , y ∈ {1, . . . , Cy} (optional).

Images are patchified by a ViT-style embedder (PatchEmbed) into

X img ∈ RB×Nimg×d, Nimg = (H/P ) (W/P ),

while counts are converted into a small set of count patches using a learned projector
(CountPatchEmbedding):

Xcnt = reshape
(
MLP(xcnt

t ), [B,Ncnt, d]
)

+ Ecnt,

with Ncnt learned “pseudo-patches” and Ecnt learnable positional embeddings.

We form auxiliary tokens for time, noise, and (optionally) class:

τ︸︷︷︸
time

= TimeMLP
(
timestep emb(t)

)
∈ RB×1×d, η︸︷︷︸

noise

= NoiseMLP
(
Wεε

)
∈ RB×1×d,

and, if labels are used, ℓ = Emb(y) ∈ RB×1×d. Concatenating all tokens,

X(0) =
[
ℓ ; η ; τ ; X img ; Xcnt ] + Epos ∈ RB×(Nimg+Ncnt+extras)×d,

with a single learned positional table Epos covering all tokens.
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F.2.2 U-VIT BACKBONE (FUSION AND DECODING)

We process X(0) with a U-Net–style ViT:

X(1), . . . , X(L/2)︸ ︷︷ ︸
encoder (save skips)

mid Block−−−−−−→ X̃(L/2), . . . , X̃(L)︸ ︷︷ ︸
decoder (with skips)

,

where each Block is a standard MHA+MLP transformer block with LayerNorm, and decoder
blocks attend over skip connections. A final LayerNorm yields Xout ∈ RB×(Nimg+Ncnt+extras)×d.

We then drop the auxiliary tokens and split modalities:

X img
out = Xout[:, img range, :], Xcnt

out = Xout[:, cnt range, :].

Count decoder. Count patches are decoded back to a vector via a small MLP head with nonnega-
tivity enforced by Softplus:

x̂0 = Softplus
(
MLP

(
flatten(Xcnt

out)
))
∈ RB×Dc .

This parameterizes qθ( · | xcnt
t , It, t, ε, y) for the distributional loss and the reverse count-bridge step.

F.2.3 TRAINING OBJECTIVE AND USAGE

We train the model to predict the distribution of X0 (counts) given multimodal context under the
bridge (Xt):

L(θ) = −Et,(X0,Xt)

[
Sρ
(
qθ(· | Xcnt

t , It, t, ε, y), X
cnt
0

) ]
,

using the energy score Sρ with ρ(x, x′) = ∥x−x′∥β2 (β ∈ (0, 2)) and the standard unbiasedU -statistic
estimator with m samples from qθ. Time and noise tokens implement the distributional diffusion
conditioning; label tokens (if present) enable class-conditional modeling. During reverse sampling
we draw X̃0 ∼ qθ(· | xcnt

t , It, t, ε, y) and update xt−∆ using the exact binomial–hypergeometric
count-bridge kernel (Prop. 3.1).

F.2.4 IMPLEMENTATION SPECIFICS

• Patchification. PatchEmbed uses patch size P on It (channels C), producing Nimg =
(H/P )(W/P ) tokens of width d. CountPatchEmbedding projects Dc-dimensional
counts to Ncnt tokens of width d with learned positional embeddings.

• Auxiliary tokens. Time token: timestep embedding followed by a linear or MLP
projector (time dim controls concatenated components); noise token: linear to d then a
2-layer SiLU MLP; label token: lookup embedding if used. All tokens share a single learned
positional table.

• Backbone. Depth L with L/2 encoder and L/2 decoder blocks; each block uses d-
dimensional embeddings, h heads, MLP ratio r, LayerNorm, and (optionally) gradient
checkpointing. Decoder blocks accept the matching encoder skip.

• Heads. Count head: 2-layer GELU MLP over the concatenated count tokens, ending with
Softplus. Image head exists but is ignored for the loss.

• No weight decay. We exclude token positional tables and count-positional embeddings
from weight decay, following ViT practice.

F.2.5 OPTIMIZATION AND HYPERPARAMETERS

We use Adam, learning rate {2×10−4, cosine warmup for 100 steps, EMA with 0.999, batch size
128, gradient clipping at 1.0. See configs for exact architecture specification.

F.2.6 SAMPLING

At test time we follow Alg. 3 using the aggregates to ensure our sampled x̂0 exactly match the target
sum at each intermediate time. We then apply the exact binomial–hypergeometric reverse kernel
(Prop. 3.1) to obtain xtk−1

.
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(a) (b) (c)

Figure 6: Performance of RCTD, STDeconvolve and Count Bridge on MERFISH deconvolution
across number of cell types using (a) Jensen Shannon Divergence (JSD), (B) RMSE and (C) Spearman
Correlation

Figure 7: UMAP of true vs deconvolved cell profiles using the Count Bridge.

F.3 ADDITIONAL RESULTS

Comparison with reference-based methods Count Bridges and STDeconvolve are both reference-
free methods: that is, they require only aggregate level data, and do not need a reference dataset of
unit-level measurements. Many deconvolution methods, including RCTD (Cable et al., 2022) require
a single-cell (non-spatial) reference dataset. These methods benefit from unit-level observations, and
as such solve a more constrained problem – but require data which are not available in many settings.

Using the MERFISH benchmarking setup we also evaluate RCTD, and tabulate the results in Tab. 14.
For evaluation, we use Jensen shannon Divergence (JSD) and RMSE metrics as described in Li et al.
(2023). We find that Count Bridges perform similarly to RCTD (with a higher JSD but lower RMSE),
despite the fact that Count Bridges do not have access to a reference dataset.

Method JSD RMSE Spearman

STDeconvolve 0.288 0.177 0.255
RCTD 0.161 0.113 0.580
Count Bridge 0.229 0.110 0.332

Table 14: Cell-type deconvolution error for spatial transcriptomic data. Note that RCTD requires a
single-cell reference dataset for deconvolution.

In Fig. 6, we show the performance of spatial deconvolution methods across varying numbers of cell
types. These results evaluate only the recovery of cell type proportions, and do not evaluate full count
profiles. Note that RCTD has access to the single-cell level reference data, while STDeconvolve and
Count Bridges are fit entirely using aggregate-level data and do not have access to single cell counts.

Inspection of unit-level data generated by Count Bridges In the previous section, we have shown
through quantitative metrics that Count Bridges outperform alternatives for reconstructing unit-level
gene expression vectors from spot-level aggregates. We next aim to evaluate the extent to which
reconstructed gene expression profiles are biologically meaningful. We do this by performing con-
ventional single-cell transcriptomic analysis on the synthetic unit-level expression vectors generated
by Count Bridges.
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Figure 8: Abundance of putative cell types (automatically annotated by celltypist) in synthetic unit-
level data generated by Count Bridges through deconvolution, vs. abundance of putative cell types in
true unit-level data.

First, we plot the umap of the raw expression profiles of the true and generated data in 7. We can
clearly see that, without ever seeing unit-level data, our deconvolution approach clearly learns a
realistic distribution of cells. This is visually clear in the distribution of the UMAP.

Second we will perform cell-type annotation. We preprocess by normalizing counts to 104 per
cell (row-normalizing), followed by a log-transform, then annotate cell types using celltypist
(Domı́nguez Conde et al., 2022). From this process, we identify 268 putative cell types in the
synthetic unit-level data. The same pipeline, when applied to the real single-cell level measurements,
identifies 278 putative cell types. And as shown in Figure 8, the cell type abundances inferred by
Count Bridges (without access to unit level data) closely align with the cell type abundances observed
in the true unit level data.

Deconvolution of a 10X Visium dataset We next evaluate the deconvolution of spots in a real
world 10X Visium dataset profiling the mouse brain. As ground truth is unavailable in this setting, we
validate model predictions by assessing the extent to which the synthetic deconvolved data reflects
known biology.

We use the 10X Visium fluorescence dataset distributed by Palla et al. (2022), which profiles a coronal
section of a mouse brain. To demonstrate the generalization capabilities of Count Bridges, we apply
the model trained on MERFISH data directly to this Visium dataset without retraining.

In order to correct batch effects and align dimensionality between datasets, we employ a moment-
matching procedure. For each gene in the MERFISH data, we compute the mean and variance of
expression and identify the gene in the 10X Visium data that most closely matches these moments.
We then map the 10X Visium count matrices to the MERFISH feature space by subsetting to these
matched genes.

We deconvolve the 10X Visium data using Count Bridges with a spot-level mean constraint. To
evaluate prediction quality, we use a standard single-cell analysis pipeline (as described above) and
determine putative cell type annotations using Celltypist (Domı́nguez Conde et al., 2022). Celltypist
identifies 146 putative cell types, suggesting that the synthetic unit-level data recapitulates a significant
degree of cell-to-cell variation. Furthermore, the recovered cell types are biologically consistent:
the most abundant identified cell type is the oligodendrocyte, which matches the most abundant
annotation in the MERFISH mouse brain dataset described above.
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