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Abstract

We present a new method of training energy-based models (EBMs) for anomaly
detection that leverages low-dimensional structures within data. The proposed
algorithm, Manifold Projection-Diffusion Recovery (MPDR), first perturbs a data
point along a low-dimensional manifold that approximates the training dataset.
Then, EBM is trained to maximize the probability of recovering the original
data. The training involves the generation of negative samples via MCMC, as in
conventional EBM training, but from a different distribution concentrated near the
manifold. The resulting near-manifold negative samples are highly informative,
reflecting relevant modes of variation in data. An energy function of MPDR
effectively learns accurate boundaries of the training data distribution and excels
at detecting out-of-distribution samples. Experimental results show that MPDR
exhibits strong performance across various anomaly detection tasks involving
diverse data types, such as images, vectors, and acoustic signals.

1 Introduction

Unsupervised detection of anomalous data appears frequently in practical applications, such as
industrial surface inspection [1], machine fault detection [2, 3], and particle physics [4]. Modeling
the probability distribution of normal data pdata(x) is a principled approach for anomaly detection
[5]. Anomalies, often called outliers or out-of-distribution (OOD) samples, lie outside of the
data distribution and can thus be characterized by low probability density under the distribution.
However, many deep generative models that can evaluate the likelihood of data, including variational
autoencoders (VAE; [6]), autoregressive models [7], and flow-based models [8] are known to perform
poorly on popular anomaly detection benchmarks such as CIFAR-10 (in) vs SVHN (out), by assigning
high likelihood on seemingly trivial outliers [9, 10].

On the other hand, deep energy-based models (EBMs) have demonstrated notable improvement in
anomaly detection compared to other deep generative models [11]. While the specific reason for the
superior performance of EBMs has not been formally analyzed, one probable factor is the explicit
mechanism employed in EBM’s maximum likelihood training that reduces the likelihood of negative
samples. These negative samples are generated from the model distribution pθ(x) using Markov
Chain Monte Carlo (MCMC). Since modern EBMs operate in high-dimensional data spaces, it is
extremely difficult to cover the entire space with a finite-length Markov chain. The difficulty in
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Figure 1: (Left) An illustration of Manifold Projection-Diffusion. A datum x is first projected into the
latent space Z through the encoder fe(x) and then diffused with a local noise, such as Gaussian. The
perturbed sample x̃ is obtained by projecting it back to the input space X through the decoder fd(z).
(Right) Comparison between the perturbations in MPDR and DRL [16] on CIFAR-10 examples.

generating negative samples triggered the development of several heuristics such as using truncated
chains [12], persistent chains [13], sample replay buffers [11], and data augmentation in the middle
of the chain [14].

Instead of requiring a Markov chain to cover the entire space, EBM can be trained with MCMC
running within the vicinity of each training datum. For example, Contrastive Divergence (CD; [15])
uses a short Markov chain initialized on training data to generate negative samples close to the
training distribution. Diffusion Recovery Likelihood (DRL; [16]) enables MCMC to focus on the
training data’s neighborhood using a different objective function called recovery likelihood. Recovery
likelihood pθ(x|x̃) is the conditional probability of training datum x given the observation of its copy
x̃ perturbed with a Gaussian noise. Training of DRL requires sampling from the recovery likelihood
distribution pθ(x|x̃), which is easier than sampling from the model distribution pθ(x), as pθ(x|x̃) is
close to uni-modal and concentrated near x. While CD and DRL significantly stabilize the negative
sampling process, the resulting EBMs exhibit limited anomaly detection performance due to the
insufficient coverage of negative samples in the input space.

In this paper, we present a novel training algorithm for EBM that does not require MCMC covering
the entire space while achieving strong anomaly detection performance. The proposed algorithm,
Manifold Projection-Diffusion Recovery (MPDR), extends the recovery likelihood framework by
replacing Gaussian noise with Manifold Projection-Diffusion (MPD), a novel perturbation operation
that reflects low-dimensional structure of data. Leveraging a separately trained autoencoder manifold,
MPD firstly projects a training datum onto the manifold and perturbs the datum along the manifold.
Compared to Gaussian noise, MPD reflects relevant modes of variation in data, such as change in
colors or shapes in an image, as shown in Fig. 1. A MPD-perturbed sample serves as an informative
starting point for MCMC that generates a negative sample, teaching EBM to discriminate challenging
outliers that has partial similarity to training data.

Given an MPD-perturbed sample, EBM is trained by maximizing the recovery likelihood. We derive
a simple expression for evaluating the recovery likelihood for MPD. We also propose an efficient
two-stage MCMC strategy for sampling from the recovery likelihood, leveraging the latent space of
the autoencoder. Additionally, we show that the model parameter estimation by MPDR is consistent
under standard assumptions.

Compared to existing EBM training algorithms using an autoencoder-like auxiliary module [17, 18,
19, 20], MPDR has two advantages. First, MPDR allows the use of multiple autoencoders for training.
The manifold ensemble technique stabilizes the training and improves anomaly detection performance
by providing diverse negative samples. Second, MPDR achieves good anomaly detection performance
with lightweight autoencoders. For example, autoencoders in our CIFAR-10 experiment has about
only 1.5∼3 million parameters, which are significantly fewer than that of NVAE [21] (∼130 million)
or Glow [8] (∼44 million), both of which are previously used in EBM training [17, 18].

Our contributions can be summarized as follows:

• We propose MPDR, a novel method of using autoencoders for training EBM. MPDR is compatible
with any energy functions and gives consistent density parameter estimation with any autoencoders.

• We provide a suite of practical strategies for achieving successful anomaly detection with MPDR,
including two-stage sampling, energy function design, and ensembling multiple autoencoders.
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• We demonstrate the effectiveness of MPDR on unsupervised anomaly detection tasks with various
data types, including images, representation vectors, and acoustic signals.

2 Preliminaries

Energy-Based Models (EBM) An energy-based generative model, or an unnormalized probabilistic
model, represents a probability density function using a scalar energy function Eθ : X → R, where
X denotes the domain of data. The energy function Eθ defines a probability density function pθ
through the following relationship:

pθ(x) ∝ exp(−Eθ(x)). (1)
The parameters θ can be learned by maximum likelihood estimation given iid samples from the
underlying data distribution pdata(x). The gradient of the log-likelihood for a training sample x is
well-known [15] and can be written as follows:

∇θ log pθ(x) = −∇θEθ(x) + Ex−∼pθ(x)[∇θEθ(x
−)], (2)

where x− denotes a “negative" sample drawn from the model distribution pθ(x). Typically, x− is
generated using Langevin Monte Carlo (LMC). In LMC, points are arbitrarily initialized and then
iteratively updated in a stochastic manner to simulate independent sampling from pθ(x). For each
time step t, a point x(t) is updated by x(t+1) = x(t) − λ1∇xEθ(x

(t)) + λ2ϵ
(t), for ϵ(t) ∼ N (0, I).

The step size λ1 and the noise scale λ2 are often tuned separately in practice. Since LMC needs to be
performed in every iteration of training, it is infeasible to run negative sampling until convergence,
and a compromise must be made. Popular heuristics include initializing MCMC on training data [15],
using short-run LMC [12], and utilizing a replay buffer [13, 11].

Recovery Likelihood [22, 16] Instead of directly maximizing the likelihood (Eq. (2)), θ can be
learned through the process of denoising data from artificially injected Gaussian noises. Denoising
corresponds to maximizing the recovery likelihood p(x|x̃), the probability of recovering data x from
its noise-corrupted version x̃ = x+ σϵ, where ϵ ∼ N (0, I).

pθ(x|x̃) ∝ pθ(x)p(x̃|x) ∝ exp

(
−Eθ(x)−

1

2σ2
||x− x̃||2

)
, (3)

where Bayes’ rule is applied. The model parameter θ is estimated by maximizing the log recovery
likelihood, i.e., maxθ Ex,x̃[log pθ(x|x̃)], for x ∼ pdata(x), x̃ ∼ p(x̃|x), where p(x̃|x) = N (x, σ2I).
This estimation is shown to be consistent under the usual assumptions (Appendix A.2 in [16]). DRL
[16] uses a slightly modified perturbation x̃ =

√
1− σ2x+σϵ in training EBM, following [23]. This

change introduces a minor modification of Eq. (3).

The recovery likelihood pθ(x|x̃) (Eq. 3) is essentially a new EBM with the energy Ẽθ(x|x̃) =
Eθ(x) + ||x − x̃||2/2σ2. Therefore, the gradient ∇θ log pθ(x|x̃) has the same form with the log-
likelihood gradient of EBM (Eq. (2)), except that negative samples are drawn from pθ(x|x̃) instead
of pθ(x):

∇θ log pθ(x|x̃) = −∇θEθ(x) + Ex−∼pθ(x|x̃)[∇θEθ(x
−)], (4)

where ∇θẼθ(x|x̃) = ∇θEθ(x) as the Gaussian noise is independent of θ. Sampling from pθ(x|x̃)
is more stable than sampling from pθ(x), because pθ(x|x̃) is close to a uni-modal distribution
concentrated near x [16, 22]. However, it is questionable whether Gaussian noise is the most
informative way to perturb data in a high-dimensional space.

3 Manifold Projection-Diffusion Recovery

We introduce the Manifold Projection-Diffusion Recovery (MPDR) algorithm, which trains EBM by
recovering from perturbations that are more informative than Gaussian noise. Firstly, we propose
Manifold Projection-Diffusion (MPD), a novel perturbation operation leveraging the low-dimensional
structure inherent in the data. Then, we derive the recovery likelihood for MPD. We also provide an
efficient sampling strategy and practical implementation techniques for MPDR. The implementation
of MPDR is publicly available1.

1https://github.com/swyoon/manifold-projection-diffusion-recovery-pytorch
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pdata Data x & Manifold MPD-Perturbed x After Latent Chain xO Negative Sample x  

Figure 2: Negative sample generation process in MDPR. Data x (blue dots) are first projected and
diffused on autoencoder manifold M (gray line), resulting in x̃. The latent chain starting from x̃
generates x−

0 ∈ M. The visible chain draws negative samples x− from p(x|x̃) starting from x−
0 .

Autoencoders MPDR assumes that a pretrained autoencoder approximating the training data
manifold is given. The autoencoder consists of an encoder fe : X → Z and a decoder fd : Z →
X , both assumed to be deterministic and differentiable. The latent space is denoted as Z . The
dimensionalities of X and Z are denoted as Dx and Dz, respectively. We assume fe and fd as typical
deep neural networks jointly trained to reduce the training data’s reconstruction error l(x), where
l(x) is typically an l2 error, l(x) = ||x− fd(fe(x))||2.

3.1 Manifold Projection-Diffusion

We propose a novel perturbation operation, Manifold Projection-Diffusion (MPD). Instead of adding
Gaussian noise directly to a datum x

+σϵ−−→ x̃ as in the conventional recovery likelihood, MPD first
encodes x using the autoencoder and then applies a noise in the latent space:

x
fe−→ z

+σϵ−−→ z̃
fd−→ x̃, (5)

where z = fe(x), z̃ = z + σϵ, and x̃ = fd(z̃). The noise magnitude σ is a predefined constant
and ϵ ∼ N (0, I). The first step projects x into Z , and the second step diffuses the encoded vector
z. When decoded through fd, the output x̃ always lies on the decoder manifold M = {x|x =
fd(z), z ∈ Z}, a collection of all possible outputs from the decoder fd(z). The process is visualized
in the left panel of Fig. 1.

Since z serves as a coordinate of M, a Gaussian noise in Z corresponds to perturbation of data along
the manifold M, reflecting more relevant modes of variation in data than Gaussian perturbation in X
(Fig. 1). Note that MPD reduces to the conventional Gaussian perturbation if we set Z = X and set
fe and fd as identity mappings.

3.2 Manifold Projection-Diffusion Recovery Likelihood

We define the recovery likelihood for MPD as pθ(x|z̃), which is evaluated as follows:

pθ(x|z̃)
(i)
∝pθ(x)p(z̃|x) = pθ(x)

(∫
p(z̃|z)p(z|x)dz

)
(ii)
= pθ(x)

(∫
p(z̃|z)δfe(x)(z)dz

)
(6)

(iii)
= pθ(x)p(z̃|z = fe(x)) ∝ exp(−Eθ(x) + log p(z̃|z)) ≡ exp(−Ẽθ(x|z̃)). (7)

In (i), we apply Bayes’ rule. In (ii), we treat p(z|x) as δz(·), a Dirac measure on Z at z = fe(x), as our
encoder is deterministic. Equality (iii) results from the property of Dirac measure

∫
f(x)δy(z)dz =

f(y). Using Gaussian perturbation simplifies the energy to Ẽθ(x|z̃) = Eθ(x) +
1

2σ2 ||z̃− fe(x)||2.

Now, Eθ(x) is trained by maximizing log pθ(x|z̃). The gradient of log pθ(x|z̃) with respect to θ
has the same form as the conventional maximum likelihood case (Eq. 2) and the Gaussian recovery
likelihood case (Eq. 4) but with a different negative sample distribution pθ(x|z̃):

∇θ log pθ(x|z̃) = −∇θEθ(x) + Ex−∼pθ(x|z̃)[∇θEθ(x
−)]. (8)

Negative samples x− are drawn from pθ(x|z̃) using MCMC.

Another possible definition for the recovery likelihood is p(x|x̃), which becomes equivalent to p(x|z̃)
when fd is an injective function, i.e., no two instances of z̃ map to the same x̃. However, if fd is not
injective, additional information loss may occur and becomes difficult to compute. As a result, p(x|z̃)
serves as a more general and also convenient choice for the recovery likelihood.
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Algorithm 1 Manifold Projection-Diffusion Recovery
1: while converged do
2: Sample a mini-batch of positive samples x
3: Compute z̃ = fe(x) + σϵ

4: Sample z− from energy H̃θ(z|z̃) using
LMC on Z starting from z̃

5: Sample x− from energy Ẽθ(x|z̃) using
LMC on X starting from x−

0 = fd(z
−)

6: Update θ with the gradient:
− ∂

∂θEθ(x) +
∂
∂θEθ(x

−)
7: end while

MPDR-S
E = Scalar

 l1 Error: 0.018

MPDR-R
E = AE

 l1 Error: 0.012

Figure 3: 2D density estimation with
a scalar energy function (left) and an
autoencoder-based energy function (right).

Consistency Maximizing log p(x|z̃) leads to the consistent estimation of θ. The consistency is
shown by transforming the objective function into KL divergence. The assumptions resemble those
for maximum likelihood estimation, including infinite data, identifiablility, and a correctly specified
model. Additionally, the autoencoder (fe, fd) and the noise magnitude σ should be independent of
θ, remaining fixed during training. The consistency holds for any choices of (fe, fd) and σ, as long
as the recovery likelihood pθ(x|z̃) is non-zero for any (x, z̃). Further details can be found in the
Appendix.

3.3 Two-Stage Sampling

A default method for drawing x− from pθ(x|z̃) is to execute LMC on X , starting from x̃, as done in
DRL [16]. While this visible chain should suffice in principle with infinite chain length, sampling
can be improved by leveraging the latent space Z , as demonstrated in [24, 18, 20, 25]. For MPDR,
we propose a latent chain, a short LMC operating on Z that generates a better starting point x−

0

for the visible chain. We first define the auxiliary latent energy H̃θ(z) = Ẽθ(fd(z)|z̃), the pullback
of Ẽθ(x|z̃) through the decoder fd(z). Then, we run a latent LMC that samples from a probability
density proportional to exp(−H̃θ(z)). The latent chain’s outcome, z−0 , is fed to the decoder to
produce the visible chain’s starting point x−

0 = fd(z), which is likely to have a smaller energy than
the original starting point Ẽθ(x

−
0 |z̃) < Ẽ(x̃|z̃). Introducing a small number of latent chain steps

improves anomaly detection performance in our experiments. A similar latent-space LMC method
appears in [24] but requires a sample replay buffer not used in MPDR. Fig.2 illustrates the sampling
procedure, and Algorithm1 summarizes the training algorithm.

3.4 Perturbation Ensemble
Dz
32

64

128

Figure 4: CIFAR-10 negative sam-
ples from a manifold ensemble.
Negative samples become more vi-
sually complex as Dz grows larger.

Using multiple perturbations simultaneously during MPDR
training improves performance and stability, while not harming
the consistency. Although the consistency of estimation is
independent of the specifics of the perturbation, the perturbation
design, such as (fe, fd) and σ, have a significant impact on
performance in practice. Perturbation ensemble alleviates the
risk of adhering to a single suboptimal choice of perturbation.

Noise Magnitude Ensemble We randomly draw the per-
turbation magnitude σ from a uniform distribution over a pre-
defined interval for each sample in a mini-batch. In our imple-
mentation, we draw σ from the interval [0.05, 0.3] throughout
all the experiments.

Manifold Ensemble We can also utilize multiple autoen-
coder manifolds M in MPD. Given K autoencoders, a mini-
batch is divided into K equally sized groups. For each group, negative samples are generated
separately using the corresponding autoencoder. Only a minimal increase in training time is observed
as K increases, since each autoencoder processes a smaller mini-batch. Memory overhead does exist
but is manageable, since MPDR can achieve good performance with relatively smaller autoencoders.
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Table 1: MNIST hold-out digit detection. Performance is measured in AUPR. The standard deviation
of AUPR is computed over the last 10 epochs. The largest mean value is marked in bold, while the
second-largest is underlined. Asterisks denote that the results are adopted from literature.

Hold-Out Digit 1 4 5 7 9

Autoencoder (AE) 0.062 ± 0.000 0.204 ± 0.003 0.259 ± 0.006 0.125 ± 0.003 0.113 ± 0.001
IGEBM 0.101 ± 0.020 0.106 ± 0.019 0.205 ± 0.108 0.100 ± 0.042 0.079 ± 0.015
MEG [26]∗ 0.281 ± 0.035 0.401 ± 0.061 0.402 ± 0.062 0.290 ± 0.040 0.324 ± 0.034
BiGAN-σ [27]∗ 0.287 ± 0.023 0.443 ± 0.029 0.514 ± 0.029 0.347 ± 0.017 0.307 ± 0.028
Latent EBM[20]∗ 0.336 ± 0.008 0.630 ± 0.017 0.619 ± 0.013 0.463 ± 0.009 0.413 ± 0.010
VAE+EBM [19]∗ 0.297 ± 0.033 0.723 ± 0.042 0.676 ± 0.041 0.490 ± 0.041 0.383 ± 0.025
NAE [24] 0.802 ± 0.079 0.648 ± 0.045 0.716 ± 0.032 0.789 ± 0.041 0.441 ± 0.067
MPDR-S (ours) 0.764 ± 0.045 0.823 ± 0.018 0.741 ± 0.041 0.857 ± 0.022 0.478 ± 0.048
MPDR-R (ours) 0.844 ± 0.030 0.711 ± 0.029 0.757 ± 0.024 0.850 ± 0.014 0.569 ± 0.036

An effective strategy is to utilize autoencoders with varying latent space dimensionalities Dz. For
high-dimensional data, such as images, M with different Dz tends to capture distinct modes of
variation in data. As depicted in Fig. 4, a perturbation on M with small Dz corresponds to low-
frequency variation in X , whereas for M with large Dz, it corresponds to higher-frequency variation.
Using multiple Dz’s in MPDR gives us more diverse x− and eventually better anomaly detection
performance.

3.5 Energy Function Design

MPDR is a versatile training algorithm for general EBMs, compatible with various types of energy
functions. The design of an energy function plays a crucial role in anomaly detection performance, as
the inductive bias of an energy governs its behavior in out-of-distribution regions. We primarily ex-
plore two designs for energy functions: MPDR-Scalar (MPDR-S), a feed-forward neural network that
takes input x and produces a scalar output, and MPDR-Reconstruction (MPDR-R), the reconstruction
error from an autoencoder, Eθ(x) = ||x − gd(ge(x))||2, for an encoder ge and a decoder gd. The
autoencoder (ge, gd) is separate from the autoencoder (fe, fd) used in MPD. First proposed in [24],
a reconstruction-based energy function has an inductive bias towards assigning high energy values
to off-manifold regions (Fig. 3). Training such energy functions using conventional techniques like
CD [15] or persistent chains [13, 11] is reported to be challenging [24]. However, MPDR effectively
trains both scalar and reconstruction energies. Additionally, in Sec. 4.4, we demonstrate that MPDR
is also compatible with an energy function based on a masked autoencoder.

4 Experiment

4.1 Implementation of MPDR

Table 2: MNIST OOD detection performance measured in
AUPR. We test models from hold-out digit 9 experiment
(Table 1). The overall performance is high, as detecting
these outliers is easier than identifying the hold-out digit.

KMNIST EMNIST Omniglot FashionMNIST Constant

AE 0.999 0.977 0.947 1.000 0.954
IGEBM 0.990 0.923 0.845 0.996 1.000
NAE 1.000 0.993 0.997 1.000 1.000
MPDR-S 0.999 0.995 0.994 0.999 1.000
MPDR-R 0.999 0.989 0.997 0.999 0.990

An autoencoder (fe, fd) is trained by
minimizing the reconstruction error of
the training data and remains fixed dur-
ing the training of Eθ(x). When us-
ing an ensemble of manifolds, each au-
toencoder is trained independently. For
anomaly detection, the energy value
Eθ(x) serves as an anomaly score which
assigns a high value for anomalous x.
All optimizations are performed using
Adam with a learning rate of 0.0001.
Each run is executed on a single Tesla
V100 GPU. Other details, including network architectures and LMC hyperparameters, can be found
in the Appendix.

Spherical Latent Space In all our implementations of autoencoders, we utilize a hyperspherical
latent space Z = SDz−1 [28, 29, 30]. The encoder output is projected onto SDz−1 via division
by its norm before being fed into the decoder. Employing SDz−1 standardizes the length scale of
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Z , allowing us to use the same value of σ across various data sets and autoencoder architectures.
Meanwhile, the impact of SDz−1 on the reconstruction error is minimal.

Regularization For a scalar energy function, MPDR-S, we add Lreg = Eθ(x)
2 + Eθ(x

−)2 to
the loss function, as proposed by [11]. For a reconstruction energy function, MPDR-R, we add
Lreg = Eθ(x

−)2, following [24].

Scaling Perturbation Probability Applying regularization to an energy restricts its scale, causing
a mismatch in scales between the two terms in the recovery likelihood (Eq. (7)). To remedy this
mismatch, we heuristically introduce a scale factor γ < 1 to log p(z|z̃), resulting in the modified
recovery energy Ẽ

(γ)
θ (x|z̃) = Eθ(x) +

γ
2σ2 ||z̃− fe(x)||2. We use γ = 0.0001 for all experiments.

4.2 2D Density Estimation

We show MPDR’s ability to estimate multi-modal density using a mixture of eight circularly arranged
2D Gaussians (Fig. 2). We construct an autoencoder with S1 latent space, which approximately
captures the circular arrangement. The encoder and the decoder are MLPs with two layers of 128
hidden neurons. To show the impact of the design of energy functions, we implement both scalar
energy and reconstruction energy. Three-hidden-layer MLPs are used for the scalar energy function,
and the encoder and the decoder in the reconstruction energy function. Note that the network
architecture of the reconstruction energy is not the same as the autoencoder used for MPD. The
density estimation results are presented in Fig. 3. We quantify density estimation performance using l1
error. After numerically normalizing the energy function and true density on the visualized bounded
domain, we compute the l1 error at 10,000 grid points. While both energies capture the overall
landscape of the density, the reconstruction energy achieves a smaller error by suppressing probability
density at off-manifold regions.

4.3 Image Out-of-Distribution Detection

MNIST Hold-Out Digit Detection Following the protocol of [26, 27], we evaluated the perfor-
mance of MPDR on MNIST hold-out digit detection benchmark, where one of the ten digits in the
MNIST dataset is considered anomalous, and the remaining digits are treated as in-distribution. This
is a challenging task due to the diversity of the in-distribution data and a high degree of similarity
between target anomalies and inliers. In particular, selecting digits 1, 4, 5, 7, and 9 as anomalous is
known to be especially difficult. The results are shown in Table 1.

In MPDR, we use a single autoencoder (fe, fd) with Dz = 32. The energy function of MPDR-S is
initialized from scratch, and the energy function of MPDR-R is initialized from the (fe, fd) used
in MPD. Even without a manifold ensemble, MPDR shows significant improvement over existing
algorithms, including ones leveraging an autoencoder in EBM training [19, 24]. The performance of
MPDR is stable over a range of Dz, as demonstrated in Appendix B.1.

MNIST OOD Detection To ensure that MPDR is not overfitted to the hold-out digit, we test
MPDR in detecting five non-MNIST outlier datasets (Table 2). The results demonstrated that MPDR
excels in detecting a wide range of outliers, surpassing the performance of naive algorithms such
as autoencoders (AE) and scalar EBMs (IGEBM). Although MPDR achieves high overall detection
performance, MPDR-R exhibits slightly weaker performance on EMNIST and Constant datasets.
This can be attributed to the limited flexibility of the autoencoder-based energy function employed in
MPDR-R.

CIFAR-10 OOD Detection We evaluate MPDR on the CIFAR-10 inliers, a standard benchmark
for EBM-based OOD detection. The manifold ensemble includes three convolutional autoencoders,
with Dz = 32, 64, 128. MPDR-S uses a ResNet energy function used in IGEBM [11]. MPDR-R
adopts the ResNet-based autoencoder architecture used in NAE [24].

Table 3 compares MPDR to state-of-the-art EBMs. MPDR-R shows competitive performance
across five OOD datasets, while MPDR-S also achieves high AUROC on SVHN and Constant. As
both MPDR-R and NAE use the same autoencoder architecture for the energy, the discrepancy
in performance can be attributed to the MPDR training algorithm. MPDR-R outperforms NAE
on four out of five OOD datasets. Comparison between MPDR-S and DRL demonstrates the
effectiveness of non-Gaussian manifold-aware perturbation used in MPDR. CLEL shows strong
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Table 3: OOD detection with CIFAR-10 as in-distribution.
AUROC values are presented. The largest value in the
column is marked as boldface, and the second and the third
largest values are underlined. Asterisks denote that the
results are adopted from literature.

SVHN Textures Constant CIFAR100 CelebA

PixelCNN++ [31]∗ 0.32 0.33 0.71 0.63 -
GLOW [8]∗ 0.24 0.27 - 0.55 0.57
IGEBM [11]∗ 0.63 0.48 0.39 - -
NVAE [21] 0.4402 0.4554 0.6478 0.4943 0.6804
VAEBM [18]∗ 0.83 - - 0.62 0.77
JEM [32]∗ 0.67 0.60 - 0.67 0.75
Improved CD [14] 0.7843 0.7275 0.8000 0.5298 0.5399
NAE [24] 0.9352 0.7472 0.9793 0.6316 0.8735
DRL [16] 0.8816 0.4465 0.9884 0.4377 0.6398
CLEL [33]∗ 0.9848 0.9437 - 0.7161 0.7717
MPDR-S (ours) 0.9860 0.6583 0.9996 0.5576 0.7313
MPDR-R (ours) 0.9807 0.7978 0.9996 0.6354 0.8282

MPDR-R Single AE
Dz = 32 0.8271 0.6606 0.9877 0.5835 0.7751
Dz = 64 0.9330 0.6631 0.9489 0.6223 0.8272
Dz = 128 0.9886 0.6942 0.9651 0.6531 0.8500

Table 4: OOD detection on pretrained
ViT-B_16 representation with CIFAR-
100 as in-distribution. Performance is
measured in AUROC.

CIFAR10 SVHN CelebA

Supervised
MD [34] 0.8634 0.9638 0.8833
RMD [35] 0.9159 0.9685 0.4971

Unsupervised
AE 0.8580 0.9645 0.8103
NAE [24] 0.8041 0.9082 0.8181
IGEBM [11] 0.8217 0.9584 0.9004
DRL [16] 0.5730 0.6340 0.7293
MPDR-S (ours) 0.8338 0.9911 0.9183
MPDR-R (ours) 0.8626 0.9932 0.8662

MPDR-R Single AE
Dz = 128 0.6965 0.9326 0.9526
Dz = 256 0.8048 0.9196 0.7772
Dz = 1024 0.7443 0.9482 0.9247

overall performance, indicating that learning semantic information is important in this benchmark.
Incorporating contrastive learning into MPDR framework is an interesting future direction.

CIFAR-100 OOD Detection on Pretrained Representation In Table 4, we test MPDR on OOD
detection with CIFAR-100 inliers. To model a distribution of diverse images like CIFAR-100, we
follow [34] and apply generative modeling in the representation space from a large-scale pretrained
model. As we assume an unsupervised setting, we use pretrained representations without fine-
tuning. Input images are transformed into 768D vectors by ViT-B_16 model [36]. ViT outputs
are normalized with its norm and projected onto a hypersphere. We observe that adding a small
Gaussian noise of 0.01 to training data improves stability of all algorithms. We use MLP for all
energy functions and autoencoders. In MPDR, the manifold ensemble comprises three autoencoders
with Dz = 128, 256, 1024. We also implement supervised baselines (MD [34] and RMD [35]). The
spherical projection is not applied for MD and RMD to respect their original implementation.

MPDR demonstrates strong anomaly detection performance in the representation space, with MPDR-
S and MPDR-R outperforming IGEBM and AE/NAE, respectively. This success can be attributed
to the low-dimensional structure often found in the representation space of in-distribution data, as
observed in [37]. MPDR’s average performance is nearly on par with supervised methods, MD and
RMD, which utilize class information. Note that EBM inputs are no longer images, making previous
EBM training techniques based on image transformation [14, 33] inapplicable.

Ablation Study Table 3 and 4 also report the results from single-manifold MPDR-R with varying
latent dimensionality Dz to show MPDR’s sensitivity to a choice of an autoencoder manifold.
Manifold ensemble effectively hedges the risk of relying on a single autoencoder which may not
be optimal for detecting all types of outliers. Furthermore, manifold ensemble often achieves better
AUROC score than MPDR with a single autoencoder. Additional ablation studies can be found in
the Appendix. In Sec. B.2, we examine the sensitivity of MPDR to noise magnitude σ and the
effectiveness of the noise magnitude ensemble. Also in Sec. B.4.4, we investigate the effect to scaling
parameter γ and show that the training is unstable when γ is too large.

Multi-Class Anomaly Detection on MVTec-AD Using Pretrained Representation MVTec-AD
[38] is also a popular anomaly detection benchmark dataset, containing images of 15 objects in their
normal and defective forms. We follow the “unified” experimental setting from [39]. Normal images
from 15 classes are used as the training set, where no label information is provided. We use the
same feature extraction procedure used in [39]. Each image is transformed to a 272×14×14 feature
map using EfficientNet-b4. When running MPDR, we treat each spatial dimension of a feature map
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Table 5: Acoustic anomaly detection on DCASE 2020 Track 2 Dataset. AUROC and pAUROC (in
parentheses) are displayed per cent. pAUROC is defined as AUROC computed over a restricted false
positive rate interval [0, p], where we set p = 0.1, following [41].

Toy Car Toy Conveyor Fan Pump Slider Valve

AE [41] 75.40 (62.03) 77.38 (63.02) 66.44 (53.40) 71.42 (61.77) 89.65 (74.69) 72.52 (52.02)
MPDR-R 81.54 (68.21) 78.61 (63.99) 71.72 (55.95) 78.27 (68.14) 90.91 (76.58) 75.23 (51.04)

IDNN [44] 76.15 (72.36) 78.87 (62.50) 72.74 (54.30) 73.15 (61.25) 90.83 (74.16) 90.27 (69.46)
MPDR-IDNN 78.53 (73.34) 79.54 (65.35) 73.27 (54.57) 76.58 (66.49) 91.56 (75.19) 91.10 (70.87)

as an input vector to MPDR, transforming the task into a 272D density estimation problem. We
normalize a 272D vector with its norm and add a small white noise with a standard deviation of 0.01
during training. We use the maximum energy value among 14×14 vectors as an anomaly score of
an image. For the localization task, we resize 14×14 anomaly score map to 224x224 image and
compute AUROC for each pixel with respect to the ground true mask. We compare MPDR-R with
UniAD [39] and DRAEM [40]. The results are shown in Table 12. Details on MPDR implementation
can be found in B.5.

MPDR achieves AUROC scores that are very close to that of UniAD, outperforming DRAEM. The
trend is consistent in both detection and localization tasks. The performance gap between MPDR and
UniAD can be attributed to the fact that UniAD leverages spatial information of 14×14 feature map
while our implementation of MPDR processes each pixel in the feature map separately.

4.4 Acoustic Anomaly Detection

We apply MPDR to anomaly detection with acoustic signals, another form of non-image data. We use
DCASE 2020 Challenge Task 2 dataset [41], containing recordings from six different machines, with
three to four instances per machine type. The task is to detect anomalous sounds from deliberately
damaged machines, which are unavailable during training. We applied the standard preprocessing
methods in[41] to obtain a 640-dimensional vector built up of consecutive mel-spectrogram features.
Many challenge submissions exploit dataset-specific heuristics and ensembles for high performance,
e.g., [42, 43]. Rather than competing, we focus on demonstrating MPDR’s effectiveness in improving
common approaches, such as autoencoders and Interpolation Deep Neural Networks (IDNN) [44].
IDNN is a variant of masked autoencoders which predicts the middle (the third) frame given the
remaining frames. Similarly to autoencoders, IDNN predicts an input as anomaly when the prediction
error is large. We first train AE and IDNN for 100 epochs and then apply MPDR by treating the
reconstruction (or prediction) error as the energy. Manifold ensemble consists of autoencoders with
Dz = 32, 64, 128. More training details can be found in the Appendix.

Table 5 shows that MPDR improves anomaly detection performance for both AE and IDNN. The
known failure mode of AE and IDNN is producing unexpected low prediction (or reconstruction)
error for anomalous inputs. By treating the error as the energy and applying generative training,
the error in OOD region is increased through training, resulting in improved anomaly detection
performance.

4.5 Anomaly Detection on Tabular Data

We test MPDR on ADBench [45], which consists 47 tabular datasets for anomaly detection. We
compare MPDR with 13 baselines from ADBench. The baseline results are reproduced using the
official ADBench repository. We consider the setting where the training split does not contain
anomalies. For each dataset, we run each algorithm on three random splits and computed the AUROC
on the corresponding test split. We then ranked the algorithms based on the averaged AUROC. In
Table A, we present a summary table with the average rank across the 47 datasets.

We employ MPDR-R with a single manifold. For both the manifold and the energy, the same
MLP-based autoencoder architecture is used. The encoder and the decoder are MLPs with two
1024-hidden-neuron layers. If the input space dimensionality is smaller than or equal to 100, the
latent space dimensionality is set to have the same dimensionality Dz = Dx. If Dx > 100, we
set Dz as 70% of Dx. We employ 1 step of Langevin Monte Carlo in the latent space and 5 steps
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in the input space. The step sizes are 0.1 for the latent space and 10 for the input space. All the
hyperparameters except Dz are fixed across 47 datasets.

As shown in Table 6, MPDR achieves highly competitive performance on ADBench, demonstrating a
higher average rank than the isolation forest, with some overlap of confidence interval. This result
indicates that MPDR is a general-purpose anomaly detection algorithm capable of handling tabular
data. We empirically observe that MPDR is most effective when AUROC from its autoencoder is low,
meaning that the outliers are near the autoencoder manifold. When the autoencoder already achieves
good AUROC, the improvement from MPDR training is often marginal.

5 Related Work

Table 6: The rank of AUROC aver-
aged over 47 datasets in ADBench.
A smaller value indicates the al-
gorithm achieves higher AUROC
score compared to other algorithms
on average. The standard errors are
also displayed.

Method Average Rank

MPDR (ours) 4.43 ± 0.50
IForest 5.28± 0.39
OCSVM 7.94± 0.47
CBLOF 5.98± 0.53
COF 9.23± 0.58
COPOD 7.10± 0.61
ECOD 6.97± 0.58
HBOS 6.53± 0.51
KNN 6.64± 0.56
LOF 9.04± 0.62
PCA 6.45± 0.64
SOD 7.91± 0.52
DeepSVDD 11.43± 0.42
DAGMM 10.09± 0.52

Leveraging autoencoders in training, MPDR is closely related
to other EBM training algorithms that incorporate auxiliary
modules. While the use of a single variational autoencoder
in EBM training is explored in [18, 19, 46], MPDR employs
multiple autoencoders. MPDR is also compatible with non-
variational autoencoders, offering greater flexibility. Normal-
izing flows [17, 25, 47] provide informative negative samples
and a latent space for EBM training, but unlike MPDR, they
do not exploit the low-dimensional structure of data. EBMs
can also be trained with additional generator modules [48, 49],
which plays a similar role to the decoder of an autoencoder. A
contrastive representation learning module [33] improves EBM
performance but relies on domain-specific data augmentations
and is only demonstrated on images. In contrast, MPDR is
applicable to a wider range of data, utilizing a more general
assumption of low-dimensionality in data.

MPDR presents a novel objective function for EBM by extend-
ing recovery likelihood framework [22, 16]. Investigating its
connection to other previously studied objective functions, such
as f -divergence [50], pseudo-spherical scoring rule [51], diver-
gence triangle [46], and Stein discrepancy [52], would also be
an interesting future direction.

MPDR contributes to the field of anomaly detection [45, 39, 40,
53, 54]. The promising results from MPDR demonstrates that
learning the distribution of data is a principled and effective
approach for detecting anomalies [24].

6 Conclusion

Contributions We propose MPDR, a novel method of utilizing autoencoders for training EBM.
An autoencoder in MPDR provides an informative starting point for MCMC, offers the latent space
for the effective traversal of a high-dimensional space, and guides the drift of an MCMC sampler
(Eq. 7). MPDR performs competitively on various anomaly detection benchmarks involving diverse
types of data, contributing to the enhancement of generative modeling for anomaly detection with
high-dimensional data.

Limitations First, the practical performance of MPDR is still sensitive to the specifics of autoen-
coders used in MPD. Second, some data, such as high-resolution images or texts, may not exhibit a
clear low-dimensional structure. In these cases, MPDR may require a separate representation learning
stage, as demonstrated in our CIFAR-100 experiment with ViT (Sec. 4.3). Third, MPDR is not
optimized for generating samples starting from a simple distribution, such as a Gaussian, while DRL
is. We may resort to longer-chain MCMC to generate samples from MPDR.
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A Consistency of MPDR

Let us denote our model for recovery likelihood as p(x|z̃; θ). We assume that this model is identifiable
(different model parameters correspond to different distribution) and correctly specified (there exists
θ∗ such that p(x|z̃; θ∗) = pdata(x|z̃)). We also assume that p(x|z̃; θ) is non-zero for all x, z̃, and
θ. Our objective is to maxθ

1
N

∑N
i=1 log p(xi|z̃i; θ) where (xi, z̃i) ∼ p(x, z̃) = pdata(x)p(z̃|x).

In the limit of N → ∞, the average converges to the expectation 1
N

∑N
i=1 log p(xi|z̃i; θ) →

E(x,x̃)[log p(x|z̃; θ)]. If we subtract E(x,x̃)[log p(x|z̃; θ∗)] which is constant with respect to θ, then
the expression can be written with respect to KL divergence as follows:

E(x,x̃)[log p(x|z̃; θ)− log p(x|z̃; θ∗)] =
∫

p(x, z̃) log
p(x|z̃; θ)
p(x|z̃; θ∗)

dxdz̃ (9)

= −
∫

p(z̃) KL(p(x|z̃; θ∗)||p(x|z̃; θ))dz̃ (10)

The maximum of Eq. 10 is 0, as the minimum of KL divergence is 0. The maximum is achieved if
and only if θ = θ∗. Note that p(z̃) is assumed to be constant with respect to θ.

Since we did not rely on the specifics of how a perturbation p(z̃|x) is actually performed, this
consistency result holds for any choices of the encoder fe and the noise magnitude σ, as long as the
recovery likelihood p(x|z̃; θ) remains non-zero for all x, z̃, and θ.

B Experimental Details and Additional Results

In this section, we provide detailed information on how each experiment is conducted and also
provide some additional supporting experimental results. The hyperparameters related to LMC is
summarized in Table 7. ConvNet architectures are provided in Table 8. The contents are organized
by the training dataset.

Table 7: Hyperparameters for LMC. Latent chain hyperparameters are denoted by Z and X indicates
visible chain hyperparameters. “scale (γ)" refers to the multiplicative scale factor on the perturbation
probability.

Experiment Z Steps Z Step Size Z Noise Z scale (γ) X Steps X Step Size X Noise X scale (γ)

MNIST
MPDR-S 2 0.05 0.02 0.0001 5 10 0.005 0
MPDR-R 5 0.1 0.02 0.0001 5 10 0.005 0

CIFAR-10
MPDR-S 10 0.1 0.01 0.0001 20 10 0.005 0
MPDR-R 10 0.1 0.01 0.0001 20 10 0.005 0

CIFAR-100 + ViT
MPDR-S 0 - - - 30 1 0.005 0.0001
MPDR-R 0 - - - 30 1 0.005 0.0001

DCASE 2020 (Toy Car, Toy Conveyor, Pump)
MPDR-R 0 - - - 5 10 0.005 0.0001
MPDR-IDNN 0 - - - 5 10 0.005 0.0001

DCASE 2020 (Fan, Slider, Valve)
MPDR-R 0 - - - 5 10 0.005 0.0001
MPDR-IDNN 20 0.1 0.01 0.0001 20 10 0.005 0.0001

MVTec-AD
MPDR-R 0 - - - 10 0.1 0.1 0.0001

ADBench
MPDR-R 1 0.1 0.05 0.0001 5 10 0.1 0.0001
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B.1 MNIST

B.1.1 Datasets

All input images are 28×28 grayscale, and each pixel value is represented as a floating number
between [0, 1]. Models are trained on the training split of MNIST2, excluding the digit designated
to be held-out. The training split contains 60,000 images, and the hold-out procedure reduces the
training set to approximately 90%. We evaluate the models on the test split of MNIST, which contains
a total of 10,000 images. For non-MNIST datasets used in evaluation, we only use their test split.
All non-MNIST datasets used in the experiment also follow the 28×28 grayscale format, similar to
MNIST.

• KMNIST (KMNIST-MNIST) [55] 3 contains Japanese handwritten letters, pre-processed into the
same format as MNIST. The license of KMNIST is CC BY-SA 4.0.

• EMNIST (EMNIST-Letters) [56] contains grayscale handwritten English alphabet images. Its test
split contains 20,800 samples. No license information is available.

• For the Omniglot [57] dataset, the evaluation set is used. The set consists of 13,180 images. No
license information is available.

• We use the test split of FashionMNIST [58], which contains 10,000 images. The dataset is made
public under the MIT license.

• Constant dataset is a synthetic dataset that contains 28×28 images, where all pixels have the same
value. The value is randomly drawn from a uniform distribution over [0, 1]. We use 4,000 constant
images.

B.1.2 Autoencoder Implementation and Training

The encoder and the decoder used in MPDR, fe and fd, have the architecture of MNIST Encoder and
MNIST Decoder, provided in Table 8, respectively. We use the spherical latent space SDz−1 where
Dz = 32 for the main experiment. The autoencoder is trained to minimize the l2 reconstruction error
of the training data for 30 epochs with Adam of learning rate 1× 10−4. The batch size is 128 and
no data augmentation is applied. The l2 norm of the encoder is regularized with the coefficient of
1× 10−4. The same autoencoder is used for both MPDR-S and MPDR-R.

B.1.3 MPDR Implementation and Training

In MPDR-S, the energy function Eθ has the architecture of MNIST Encoder (Table 8) with Dz = 1.
The network is randomly initialized from PyTorch default setting and the spectral normalization is
applied. The energy function is trained with MPDR algorithm for 50 epochs. The learning rate is
1× 10−4. The batch size is 128. The perturbation probability scaling factor γ for the visible LMC
chain is set to zero. For an image-like data such as MNIST, the gradient of perturbation probability
∇x(||z̃ − fe(x)||2) introduces non-smooth high-frequency patterns resembling adversarial noise,
harming the stability of the training. Therefore, we only use non-zero γ in latent chains in MNIST
and CIFAR-10 experiments.

For MPDR-R, the energy function is initialized from (fe, fd) and then trained through MPDR
algorithm. The learning rate is set to 1 × 10−5. All the other details are identical to the MPDR-S
case.

B.2 Sensitivity to σ

As an ablation study for noise magnitude ensemble, we perform single-noise-magnitude experiment
for MPDR and examine MPDR’s sensitivity to the noise magnitude σ. We evaluate the OOD detection
performance of MPDR-S on the MNIST hold-out digit 9 setting with varying values of σ. Results are
shown in Table 9.

The choice of σ has a significant impact on MPDR’s OOD detection performance. In Table 9,
σ = 0.01 gives poor OOD detection performance, particularly with respect to the hold-out digit. The
performance generally improves as σ grows larger, but a large σ is not optimal for detecting EMNIST.

2http://yann.lecun.com/exdb/mnist/
3https://github.com/rois-codh/kmnist
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Table 8: Convolutional neural network architectures used in experiments. The parenthesis following
the network name indicates the activation function used in the network.

MNIST Encoder (ReLU)

Conv3(1, 32)
Conv3(32, 64)
MaxPool(2x)

Conv3(64, 64)
Conv3(64, 128)

MaxPool(2x)
Conv4(128, 1024)

FC(1024, Dz)

MNIST Decoder (ReLU)

ConvT4(Dz, 128)
Upsample(2x)

ConvT3(128, 64)
ConvT3(64, 64)
Upsample(2x)

ConvT3(64, 32)
ConvT3(32, 1)

Sigmoid()

CIFAR-10 Encoder 1

Conv4(3, 32, stride=2)
Conv4(32, 64, stride=2)
Conv4(64, 128, stride=2)

Conv2(128, 256, stride=2)
FC(256, Dz)

CIFAR-10 Decoder 1

ConvT8(Dz, 256)
ConvT4(256, 128, stride=2, pad=1)
ConvT4(128, 64, stride=2, pad=1)

ConvT1(64, 3)
Sigmoid()

CIFAR-10 Encoder 2

Conv3(3, 128, pad=1)
ResBlock(128, 128, down=True)

ResBlock(128, 128)
ResBlock(128, 256, down=True)

ResBlock(256, 256)
ResBlock(256, 256, down=True)

ResBlock(256, 256)
GlobalAvgPool()

FC(256, Dz)

CIFAR-10 Decoder 2

ConvT4(Dz, 128)
ResBlock(128, 128, up=True)
ResBlock(128, 128, up=True)
ResBlock(128, 128, up=True)

Conv3(128, 3, pad=1)

Selecting a single optimal σ will be very difficult, and therefore, we employ noise magnitude ensemble
which can hedge the risk of choosing a suboptimal value for σ.

B.2.1 Sensitivity to Dz

As an ablation study for manifold ensemble, we investigate the sensitivity of MPDR to the choice
of the latent space dimensionality of the autoencoder. We evaluate the OOD detection performance
of MPDR-S on the MNIST hold-out digit 9 setting with varying values of Dz. Table 10 presents
the results. Consequently, MPDR runs stably for a large range of Dz, producing decent OOD
performance. One hypothesis is that, for MNIST, it is relatively easy for these autoencoders to capture
the manifold structure of MNIST sufficiently well.

Meanwhile, we do observe that the choice of Dz affects OOD performance in an interesting way.
Increasing Dz enhances AUPR for certain OOD datasets but deteriorates AUPR for others. For
example, AUPR of Omniglot is increased with larger Dz, but AUPR of EMNIST, FashionMNIST, and
Constant dataset decreases. No single autoencoder is optimal for detecting all outlier datasets. This
observation motivates the use of manifold ensemble, employed in non-MNIST MPDR experiments.

B.2.2 Note on Reproduction

For an autoencoder-based outlier detector, denoted as “AE" in Table 1, we use the same autoencoder
used in MPDR with Dz.

NAE is reproduced based on its public code base4.

We tried to reproduce DRL on MNIST but failed to train it stably. The original paper and the official
code base also does not provide a guidance on training DRL on MNIST.

B.3 CIFAR-10 OOD Detection

B.3.1 Datasets

All data used in CIFAR-10 experiment are in the 32× 32 RGB format. Models are only trained on
CIFAR-10 training set, and evaluated on the testing set of each dataset.

• CIFAR-10 [59] contains 60,000 training images and 10,000 testing images. Models are trained on
the training set. We don’t use its class information, as we consider only unsupervised setting. No
license information available.

4https://github.com/swyoon/normalized-autoencoders
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Table 9: Sensitivity to σ. MPDR-S is run with an autoencoder with varying values of noise magnitude
σ. AUPR against various outlier datasets are presented. For MNIST 9, we present the standard
deviation computed over the last 10 epochs.

σ MNIST 9 KMNIST EMNIST Omniglot FashionMNIST Constant

0.01 0.098 ± 0.009 0.667 0.827 0.940 0.944 0.895
0.1 0.330 ± 0.063 0.983 0.995 0.971 0.994 0.998
0.2 0.522 ± 0.053 0.999 0.993 0.997 0.999 1.000
0.3 0.558 ± 0.039 1.000 0.990 0.997 1.000 1.000

Table 10: Sensitivity to Dz. MPDR-S is run with an autoencoder with varying values of Dz. AUPR
against various outlier datasets are presented. For MNIST 9, we present the standard deviation
computed over the last 10 epochs. Noise magnitude ensemble is applied.

Dz MNIST 9 KMNIST EMNIST Omniglot FashionMNIST Constant

16 0.611 ± 0.041 0.979 0.996 0.958 0.999 1.000
32 0.525 ± 0.039 0.999 0.994 0.994 0.999 1.000
64 0.512 ± 0.048 0.999 0.993 0.998 0.998 0.999
128 0.505 ± 0.051 0.999 0.991 0.999 0.988 0.946
256 0.590 ± 0.041 0.996 0.983 0.996 0.958 0.866

• SVHN [60] is a set of digit images. Its test set containing 26,032 is used in the experiment. The
dataset is non-commercial use only.

• Texture [61] dataset, also called Describable Textures Dataset (DTD), contains 1,880 test images.
The images are resized into 32×32. No license information available.

• CelebA [62]5 is a dataset of cropped and aligned human face images. The test set contains 19,962
images. The dataset is for non-commercial research purposes only. We center-crop each image
into 140× 140 and then resize it into 32× 32.

• Constant dataset is a synthetic dataset that contains 4,000 32×32 RGB monochrome image. All
32×32 pixels have the same RGB value which is drawn uniform-randomly from [0, 1]3.

• CIFAR-100 [59] contains 60,000 training images and 10,000 testing images. No license information
available.

B.3.2 Autoencoder Implementation and Training

The autoencoders for CIFAR-10 experiment have an architecture of “CIFAR-10 Encoder 1" and
“CIFAR-10 Decoder 1" in Table 8 with Dz = 32, 64, 128. Each autoencoder is trained for 40 epoch
with learning rate 1 × 10−4 and batch size 128. During training the autoencoders, we apply the
following data augmentation operations: random horizontal flipping with the probability of 0.5,
random resize crop with the scale parameter [0.08, 1] with the probability 0.2, color jittering with
probability of 0.2, random grayscale operation with the probability 0.2. The color jittering parameters
are the same with the one used in SimCLR [63] (brightness 0.8, contrast 0.8, saturation 0.8, hue
0.4, with respect to torchvision.transorms.ColorJitter implementation). The l2 norm of
an encoder is regularized with the coefficient of 0.00001. The same autoencoder is used for both
MPDR-S and MPDR-R. To boost the performance, we heuristically introduce sample replay buffer
for negative samples and apply data augmentation in the middle of LMC.

B.3.3 MPDR Implementation and Training

The energy function in MPDR-S is “CIFAR-10 Encoder 2" with Dz = 1. The energy function in
MPDR-R is “CIFAR-10 Encoder 2" and “CIFAR-10 Decoder 2" with Dz = 1. In MPDR-R, the
energy function is pre-trained by minimizing the reconstruction error of the training data for 40
epochs. Only random horizontal flip is applied and no other data augmentation is used. Similarly to
the MNIST case, we set γ = 0 for the visible LMC chain.

5https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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B.3.4 Note on Reproduction

For Improved CD, we train a CIFAR-10 model from scratch using the training script provided by
the authors without any modification 6. We use the model with the best Inception Score to compute
AUROC scores.

For DRL, we use the official checkpoint for T6 CIFAR-10 model 7 and compute its energy to perform
OOD detection.

Also for NVAE, we use the official CIFAR-10 checkpoint provided in the official repository 8. We
use negative log-likelihood as the outlier score. Due to computational budget constraint, we could
only set the number of importance weighted sample to be one –num_iw_samples=1.

As in MNIST, we use the official CIFAR-10 checkpoint of NAE provided by the authors.

B.4 CIFAR-100 OOD Detection on Pretrained Representation

B.4.1 Datasets

CIFAR-100, CIFAR-10, SVHN, and CelebA datasets are used and are described in the previous
section. Each image is resized to 224 × 224 and fed to ViT-B_16 to produce a 768-dimensional
vector. MD and RMD operate with this vector. For other methods, the 768D vector is projected onto
a hypersphere.

B.4.2 Autoencoder Implementation and Training

Each encoder and decoder is an MLP with two hidden layers where each layer contains 1024
hidden neurons. The leaky ReLU activation function is used in all hidden layers. We use Dz =
128, 256, 1024. The autoencoders are trained to minimize the reconstruction error of the training
data. During training, the Gaussian noise with the standard deviation of 0.01 is added to each training
sample. The l2 norm of the encoder’s weights are regularized with the coefficient of 1× 10−6.

B.4.3 MPDR Implementation and Training

The energy functions are also MLPs. The energy function of MPDR-S has the same architecture as
the encoder of the autoencoder with Dz = 1. The energy function of MPDR-R is an autoencoder
with the latent dimensionality of 1024. The energy functions are trained for 30 epochs with the
learning rate of 1× 10−4.

B.4.4 Sensitivity to γ

We examine how γ affects MPDR’s performance. As seen in Table 11, MPDR shows the best
performance on the small γ regime, roughly from 0.0001 to 0.001. Setting too large γ is detrimental
for the performance and often even incurs training instabilities. It is interesting to note that γ = 0 also
gives a decent result. One possible explanation is that γ = 0 reduces the negative sample distribution
pθ(x|z̃) to the model distribution pθ(x), which is still a valid negative sample distribution for training
an EBM.

Table 11: Sensitivity of γ, demonstrated in CIFAR-100 experiment. AUROC values are displayed.

γ CIFAR10 SVHN CelebA

0 0.8580 0.9931 0.8456
0.0001 0.8626 0.9932 0.8662
0.001 0.8639 0.9918 0.8625
0.01 0.8496 0.9894 0.8576
0.1 0.8186 0.9424 0.8511

6https://github.com/yilundu/improved_contrastive_divergence
7https://github.com/ruiqigao/recovery_likelihood
8https://github.com/NVlabs/NVAE
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Table 12: MVTec-AD detection and localization task in the unified setting. AUROC scores (percent)
are computed for each class. UniAD and DRAEM results are adopted from [39]. The largest value in
a task is marked as boldface.

Detection Localization
MPDR (ours) UniAd[39] DRAEM [40] MPDR (ours) UniAd[39] DRAEM[40]

Bottle 100.0 99.7 97.5 98.5 98.1 87.6
Cable 95.5 95.2 57.8 95.6 97.3 71.3

Capsule 86.4 86.9 65.3 98.2 98.5 50.5
Hazelnut 99.9 99.8 93.7 98.4 98.1 96.9
Metal Nut 99.9 99.2 72.8 94.5 94.8 62.2

Pill 94.0 93.7 82.2 94.9 95.0 94.4
Screw 85.9 87.5 92.0 98.1 98.3 95.5

Toothbrush 89.6 94.2 90.6 98.7 98.4 97.7
Transistor 98.3 99.8 74.8 95.4 97.9 65.5

Zipper 95.3 95.8 98.8 96.2 96.8 98.3
Carpet 99.9 99.8 98.0 98.8 98.5 98.6
Grid 97.9 98.2 99.3 96.9 96.5 98.7

Leather 100.0 100 98.7 98.5 98.8 97.3
Tile 100.0 99.3 98.7 94.6 91.8 98.0

Wood 97.9 98.6 99.8 93.8 93.2 96.0

Mean 96.0 96.5 88.1 96.7 96.8 87.2

B.5 MVTec-AD Experiment

We use MPDR-R with a single manifold (i.e., without the manifold ensemble). Both the manifold
and the energy are a fully connected autoencoder of 256D spherical latent space. For input-space
Langevin Monte Carlo, the number of MCMC steps, the step size, and the noise standard deviation
are 10, 0.1, and 0.1, respectively. No latent chain is used. The manifold is trained for 200 epochs with
Adam of learning rate 1e-3, and the energy is trained for 20 epochs with Adam of learning rate 1e-4.

B.6 Acoustic Anomaly Detection

B.6.1 Dataset

The dataset consists of audio recordings with a duration of approximately 10 seconds, obtained
through a single channel and downsampled to 16kHz. Each recording includes both the operational
sounds of the target machine and background noise from the surrounding environment. The addition
of noise was intended to replicate the conditions of real-world inspections, which often occur in noisy
factory environments. The dataset covers six types of machinery, including four sampled from the
MIMII Dataset (i.e., valve, pump, fan, and slide rail) and two from the ToyADMOS dataset (i.e.,
toy-car and toy-conveyor).

B.6.2 Preprocessing

We follow the standard preprocessing scheme used in the challenge baseline and many of challenge
participants. The approach involves the use of Short Time Fourier Transform (STFT) to transform
each audio clip into a spectrogram, which is then converted to Mel-scale. We set the number of
Mel bands as 128, the STFT window length as 1024, and the hop length (i.e., the number of audio
samples between adjacent STFT columns) as 512. This configuration results in a spectrogram with
128 columns that represented the number of Mel bands. To construct the final spectrogram, the mel
spectra of five consecutive frames are collected and combined to form a single row, resulting in a
spectrogram with 640 columns. Each row of the spectrogram is sampled and used as input to the
models under investigation, with a batch size of 512, meaning that 512 rows were randomly selected
from the spectrogram at each iteration. We standardize all data along the feature dimension to zero
mean and unit variance.
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B.6.3 Performance Measure

We refer to the scoring method introduced in [41] and use the area under the receiver operating
characteristic curve (AUROC) and partial-AUROC (pAUROC) as a quantitative measure of perfor-
mance. pAUROC measures the AUC over the area corresponding to the false positive rate from 0 to
a reasonably small value p, which we set in all our experiments as 0.1. Each measure is defined as
follows:

AUROC =
1

N−N+

N−∑
i=1

N+∑
i=j

H(Aθ(x
+
j )−Aθ(x

−
i )) (11)

pAUROC =
1

⌊pN−⌋N+

⌊pN−⌋∑
i=1

N+∑
i=j

H(Aθ(x
+
j )−Aθ(x

−
i )) (12)

where {x−
i }

N−
i=1 and {x+

j }
N+

j=1 are normal and anomalous samples, respectively, ⌊·⌋ indicates the
flooring function, and H(·) represents a hard-threshold function whose output is 1 for a positive
argument and 0 otherwise.

B.6.4 Implementation of Models

We utilize a standard autoencoder model provided by DCASE 2020 Challenge organizers and compare
it to our approach. The model comprises a symmetrical arrangement of fully-connected layers in
the encoder and decoder; 5 fully connected hidden layers in the input and 5 in the output, with
128-dimensional hidden layers and 32-dimensional latent space. In addition, we incorporate the
IDNN model, which predicts the excluded frame using all frames except the central one instead of
reconstructing the entire sequence. The IDNN model outperforms the autoencoder on non-stationary
sound signals, i.e., sounds with short durations. The model consists of a encoder and decoder, which
is similar to the components of an autoencoder but has an asymmetric layout; 3 fully-connected
hidden layers that contract in dimension (64, 32, 16) are used in the encoder and 3 layers that expand
in dimension (16, 32, 64) compose the decoder. The architectural design of each model follows the
specifications outlined in their respective papers.

The MPDR models used for the experiment, MPDR-R and MPDR-IDNN, consists of an ensemble
of autoencoders and an energy function, where the terms "R" and "IDNN" specify whether an
autoencoder of IDNN is used to compute the energy, respectively. Each autoencoder consists of an
encoder, spherical embedding layer, decoder; the encoder and decoder consist of 3 fully-connected
layers each, with 1024-dimensional hidden space and a latent space with a dimension chosen among
32, 64, or 128. The autoencoder energy function used in the experiment is built using layers 5
fully-connected encoder layers and 5 decoder layers, whose hidden layers have 128 nodes and latent
layer is composed of 32 nodes. The layers of IDNN are indentical to that of the autoencoder version,
except for the input and output layers whose dimensions differ and add up to the total number of
sampled frames. LMC hyperparameters used are listed in Table 7.

C Empirical Guidelines for Implementing MPDR

Here, we present empirical tips and observations we found useful in achieving competitive OOD
detection performance with MPDR. The list also includes heuristics that did not work when we tried.

• The training progress can be monitored by measuring an OOD detection metric (i.e., AUROC)
computed between test (or validation) inliers and synthetic samples uniformly sampled over the
autoencoder manifold M. During a successful and stable run, this score tends to increase smoothly.

• Metropolis-style adjustment for LMC [64] did not improve OOD performance.
• The choice of activation function in the energy function affects the OOD detection performance

significantly. We found that ReLU and LeakyReLU provide good results in general.
• In image datasets, stopping the training of the autoencoder manifold before convergence improves

OOD detection performance.
• A longer Markov chains, both visible and latent, do not always lead to better OOD detection

performance.
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• A larger autoencoder does not always lead to better OOD detection performance.
• A larger energy function does not always lead to better OOD detection performance.
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