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Abstract

Retrieval-augmented generation (RAG) effec-001
tively addresses issues of static knowledge and002
hallucination in large language models. Exist-003
ing studies mostly focus on question scenar-004
ios with clear user intents and concise answers.005
However, it is prevalent that users issue broad,006
open-ended queries with diverse sub-intents,007
for which they desire rich and long-form an-008
swers covering multiple relevant aspects. To009
tackle this important yet underexplored prob-010
lem, we propose a novel RAG framework,011
namely RichRAG. It includes a sub-aspect ex-012
plorer to identify potential sub-aspects of input013
questions, a multi-faceted retriever to build a014
candidate pool of diverse external documents015
related to these sub-aspects, and a generative016
list-wise ranker, which is a key module to pro-017
vide the top-k most valuable documents for the018
final generator. These ranked documents suf-019
ficiently cover various query aspects and are020
aware of the generator’s preferences, hence in-021
centivizing it to produce rich and comprehen-022
sive responses for users. The training of our023
ranker involves a supervised fine-tuning stage024
to ensure the basic coverage of documents, and025
a reinforcement learning stage to align down-026
stream LLM’s preferences to the ranking of027
documents. Experimental results on two pub-028
licly available datasets prove that our frame-029
work effectively and efficiently provides com-030
prehensive and satisfying responses to users.031

1 Introduction032

Large language models (LLMs) have revolution-033

ized how information is accessed online, shifting034

from returning ranked lists of relevant documents035

to directly generating answers to user queries. How-036

ever, they still suffer from hallucinations and infor-037

mation staleness issues, impacting the authenticity038

and reliability of generated answers. Retrieval-039

augmented generation (RAG) has emerged as a040

promising solution, empowering LLMs to lever-041

What constitutes rapping or "MCing"?

Rapping, also known as MCing or emceeing, is a vocal style in which 
the artist speaks lyrically and rhythmically, in rhyme and verse, 
over a beat or instrumental accompaniment.

Rapping, also known as MCing or emceeing, is a vocal style in 
which the artist speaks lyrically and rhythmically…
(General introduction)

The origins of rapping can be traced back to African-American 
music and oral traditions… (Origins)

There have been various definitions and characteristics of rapping 
over the years. Some sources define rapping as a form of "spoken 
or chanted rhyming lyrics with a strong rhythmic accompaniment.”… 
(Definition and Characteristics)

Rapping has evolved over time, incorporating various techniques 
such as triplets, flams, 16th notes, 32nd 
notes, syncopation… (Evolution and Variations)

In conclusion, rapping or MCing is a vocal style that is deeply 
rooted in African-American music… (Conclusion) 

Vanilla
RAG

RichRAG

Figure 1: An example of a scenario where a multi-
faceted query requires a comprehensive answer.

age reliable information from retrieved documents, 042

thereby returning more reliable responses. 043

Though some advanced techniques (Jiang et al., 044

2023; Asai et al., 2024; Wang et al., 2023d; Li 045

et al., 2024) have been proposed, existing studies 046

primarily focus on addressing specific problems 047

that require concise and definitive answers. How- 048

ever, user intents are complex and multi-faceted, 049

necessitating rich and comprehensive answers. As 050

Figure 1 shows, when a user inquires about rapping- 051

related information, a rich response about various 052

aspects of rapping, such as origins, characteristics, 053

and evolution could lead to a more satisfactory user 054

experience than a superficial description. 055

Our research is focused on developing effec- 056

tive RAG approaches to handle these more com- 057

plex user needs. We propose a RAG framework, 058

RichRAG, which is designed to offer diverse exter- 059

nal knowledge that comprehensively covers various 060

sub-aspects of multi-faceted queries, thereby en- 061

hancing the downstream generator (an LLM) to 062

yield rich responses. RichRAG first employs a sub- 063

aspect explorer to explicitly predict sub-aspects of 064

queries. Then, it adopts a multi-facet retriever to 065

build a broad pool of candidate documents covering 066

those identified sub-aspects. However, such redun- 067

dant candidates inevitably contain much irrelevant 068
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noise and are hard to handle completely by LLMs069

due to limited input length. As a result, sorting out070

the top-k best documents from the candidate pool is071

critical to the success of the RichRAG framework.072

In further, we claim that a promising top-k rank-073

ing should have the following desirable features:074

(1) Comprehensiveness. Incentivizing LLM to gen-075

erate rich and reliable responses requires external076

documents to comprehensively cover various query077

aspects. Therefore, instead of predicting each docu-078

ment’s relevance independently, the ranking model079

should consider the relationship among documents080

to enhance the global coverage of the ranking list081

for query aspects. (2) Alignment with the LLMs’082

preferences. In RAG systems, the users of IR mod-083

els are LLMs instead of humans. Thus, the refer-084

ence order should be LLM-friendly, hence enhanc-085

ing the generator to produce satisfying responses.086

To achieve this, we devise a generative list-wise087

ranker based on encoder-decoder structures. It088

takes as input the user query, its identified sub-089

aspects, and all candidates, then directly generates090

top-k document IDs as final ranking lists. This091

structure offers two key advantages: (1) Global092

Document Modeling. The seq-to-seq model struc-093

ture equips the ranker to effectively model global094

interactions among candidates, queries, and sub-095

aspects, thereby capturing the overall utility of gen-096

erated ranking lists in covering the query’s multi-097

aspects. (2) Efficiency. Following the FiD struc-098

ture (Izacard and Grave, 2021), we parallelize the099

encoding of each candidate and further introduce100

pooling and reuse operations to the decoder module.101

These strategies significantly reduce the spatiotem-102

poral load of the ranker.103

The optimization of our ranker consists of two104

stages: The first is supervised fine-tuning (SFT). To105

enhance the coverage of generated ranking lists on106

query aspects, we devise a coverage utility function107

based on which to build silver generation targets108

(ranking lists of document IDs) for training sam-109

ples greedily. These silver targets allow us to SFT110

our ranker and ensure its basic ability. To further111

improve the ranking quality and align ranking lists112

with LLMs’ preferences, a reinforcement learning113

stage is introduced. We consider both the accuracy114

and comprehensiveness of generated responses to115

create reward values, and adopt the DPO (Rafailov116

et al., 2023) algorithm to optimize our ranker. In ad-117

dition, we devise a unilateral significance sampling118

strategy (US3) to build valuable training samples119

for stable optimization. Experiments on two public120

datasets prove that RichRAG can effectively and 121

efficiently generate more comprehensive answers 122

for multi-faceted queries than existing methods. 123

Our contributions are three-fold: 124

(1) We propose a RAG framework RichRAG to 125

explicitly model the query’s various sub-aspects, 126

thereby providing comprehensive long-form re- 127

sponses to satisfy the user’s rich intents. 128

(2) We develop an efficient generative list-wise 129

ranker that models the global gain of ranking lists 130

considering rich user intents, delivering promising 131

ranking lists for downstream LLMs. 132

(3) We devise the US3 approach to create reliable 133

and valuable training pairs for the DPO algorithm, 134

improving the quality and stability of optimization. 135

2 Related Works 136

2.1 Retrieval-augmented Generation 137

To ensure the effectiveness of RAG systems, previ- 138

ous studies mainly optimized retrievers and genera- 139

tors simultaneously (Izacard et al., 2024; Borgeaud 140

et al., 2022; Wang et al., 2023a; Arora et al., 2023; 141

Paranjape et al., 2022; Lewis et al., 2020; Lin et al., 142

2023; Asai et al., 2024). Recent researchers also 143

explored fixing LLMs and optimizing retrievers as 144

plug-in modules (Shi et al., 2023; Yu et al., 2023) 145

or introducing post-retrieval components, e.g., com- 146

pressors and rankers (Xu et al., 2023; Wang et al., 147

2023d; Li et al., 2024; Ke et al., 2024; Gao et al., 148

2024), to reduce the training cost. Some stud- 149

ies (Chan et al., 2024; Wang et al., 2024a; Khot 150

et al., 2023; Yao et al., 2023; Xu et al., 2024a) pro- 151

pose to decompose multi-hop questions into sub- 152

tasks and solve them step-by-step. These works 153

typically focus on breaking down complex ques- 154

tions with clearly stated user intents into simpler 155

questions. Our research, however, addresses a dif- 156

ferent scenario where user questions are broad and 157

encompass various potential sub-aspects not ex- 158

plicitly stated. Answering such questions usually 159

requires integrating diverse relevant information 160

to these underlying sub-aspects to fully respond 161

to the user’s potential information needs. Recent 162

studies (Rackauckas, 2024) also highlight the im- 163

portance of exploring users’ sub-intents, but its 164

simplistic pipeline fails to model global document- 165

intent interactions, leading to sub-optimal results. 166

2.2 Generative Ranking with LLM 167

Recently, the rise of LLMs allows researchers 168

to establish various generative ranking mod- 169
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els (Nogueira et al., 2020; Zhuang et al., 2023a;170

Sun et al., 2023; Tamber et al., 2023; Zhuang171

et al., 2023b; Qin et al., 2024), including point-172

wise (Nogueira et al., 2020; Zhuang et al., 2023a),173

pair-wise (Zhuang et al., 2023b; Qin et al., 2024),174

and list-wise (Tamber et al., 2023; Sun et al., 2023)175

models. To handle extensive document load, some176

generative list-wise methods (Sun et al., 2023; Tam-177

ber et al., 2023) adopt a sliding-window approach178

to iteratively generate final ranking lists. Some179

studies (Ke et al., 2024; Xu et al., 2024b) also ex-180

plore list-wise rankers in RAG systems but still fo-181

cus on scenarios with specific intents and answers,182

neglecting the depth and breadth of user questions.183

3 Method184

In this section, we demonstrate our RichRAG185

framework, which explicitly considers the sub-186

aspects of multi-faceted questions to provide di-187

verse and LLM-friendly external reference lists,188

thereby enhancing the richness and satisfaction of189

generated responses. Figure 2 (a) displays the over-190

all framework. We first define the problem, and191

then delve into the introduction of each component,192

including the sub-aspect explorer, the multi-faceted193

retriever, and the generative list-wise ranker.194

3.1 Problem Definition195

The basic RAG setting usually contains a knowl-196

edge corpus C, a fixed retriever R, and a fixed LLM197

serving as the generator, G. For a multi-faceted198

query, q, its various subordinate aspects are de-199

noted as S = {s1, . . . , sn}. These sub-aspects200

have corresponding sub-answers, which are de-201

noted as A = {a1, . . . , an}.1 The combination202

of these sub-answers forms the ground truth an-203

swer, a, which is long-form and responds to all204

sub-aspects. Existing RAG models primarily focus205

on retrieving relevant documents from the corpus206

and incorporating them into the LLM’s input to207

generate responses closely aligned with ground208

truth answers. In this study, we aim to make re-209

sponses, r, generated by RichRAG not only match210

the ground truth answers but also sufficiently cover211

individual sub-answers comprehensively, to ensure212

the responses’ richness and completeness.213

3.2 Sub-aspect Explorer214

Examining various sub-aspects under a user’s query215

could provide explicit insights into the user’s under-216

1The collection of sub-aspects and sub-answers is intro-
duced in Appendix A.

lying intents, thereby enabling more satisfactory 217

results for users (Santos et al., 2010; Dang and 218

Croft, 2012; Liu et al., 2020; Wang et al., 2023b). 219

We leverage LLMs to build our sub-aspect explorer, 220

E , due to their extensive world knowledge and ex- 221

cellent capabilities in language understanding and 222

generation. This module takes a prompt pse, which 223

instructs the LLM to predict the sub-aspects of the 224

input query, and a user’s query, q, as input and 225

generates a series of sub-aspects under the query: 226

Ŝ = {ŝ1, . . . , ŝm} = E(q, pse). (1) 227

To align the sub-aspect explorer with the output 228
format and the distribution of downstream data, we 229

fine-tune it using training queries and their labeled 230

sub-aspects. The target output is a concatenation of 231

labeled sub-aspects surrounded by square brackets: 232

o = [s1] . . . [sn]. Subsequently, we optimize the 233

sub-aspect explorer by the next token prediction 234

(NTP) loss function: 235

Lse = −
∑|o|

i=1
logP (oi|o1:i−1, q, pse). (2) 236

3.3 Multi-faceted Retriever 237

Given the query’s sub-aspects that represent the 238

user’s various potential sub-intents, we then use a 239

multi-faceted retriever to collect documents that are 240

relevant to various sub-aspects to build a diverse 241

candidate pool. This operation could filter out ap- 242

parent irrelevant documents and shrink the search 243

space of the subsequent ranker. The multi-faceted 244

retriever consists of the following two processes. 245

The first is a retrieval process, where we sepa- 246

rately retrieve top-N documents Di from the corpus 247

for each sub-aspect ŝi. To avoid the topic drift, we 248

concatenate each sub-aspect with the original query 249

to form a new query and retrieve as follows, 250

Di = R(q ◦ ŝi, C), (3) 251

where ◦ denotes concatenation and each document 252
in Di is associated with the sub-aspect, ŝi. 253

Next, a combination process is introduced to 254

merge all these retrieved documents to create the 255

candidate pool, P . Since some documents may be 256

retrieved multiple times by different sub-aspects, 257

to reduce the space-time burden of the ranker, we 258

treat the repeated documents as a single one, hence 259

the associated sub-aspects form a set, s(d): 260

P = M(D1:m) = {d1, . . . , dM},
s(di) = {ŝi1, . . . , ŝini

}.
(4) 261

M() denotes the combination and M is the max- 262

imum capacity of the pool. This candidate pool 263
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(a) The framework of our proposed method

(b) Training Stages of the Generative List-wise Ranker
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Figure 2: The overall framework of RichRAG. We describe the training stages of our ranker at the bottom.

collects potentially valuable documents that suffi-264

ciently cover various sub-aspects of the query.265

3.4 Generative List-wise Ranker266

Though we have collected plenty of candidates267

related to various sub-aspects, directly providing268

these massive documents to the generator is chal-269

lenging due to the extensive processing burden and270

potential noisy information. Consequently, we de-271

vise a ranking model that targets to sort out the272

top-k most valuable documents from the candidate273

pool. These ranked documents should collectively274

cover the query’s various sub-aspects and adhere to275

the preferences of the generator, hence enhancing276

the response performance. To equip our ranker with277

the ability to globally model relationships among278

candidates, we build it upon a generative model,279

T5 (Raffel et al., 2020), which views all candidates,280

sub-aspects, and the query as input and directly281

generates a top-k ranking list of document ID (do-282

cid) tokens. For each candidate, di, we concatenate283

it with the original query, q, its associated sub-284

aspects, s(di) = {ŝi1, . . . , ŝini
}, and some special285

tokens to formulate an input sequence:286

Ii = [Di] ◦ q ◦ [Q] ◦ ŝi1 ◦ [E] . . . ŝini
◦ [S] ◦ di, (5)287

where [Di] is the docid token indicating the i-th288
candidate, [Q] denotes the end of the query, [E]289

separates each sub-aspect, and [S] denotes the end290

of associated sub-aspects. Inspired by FiD struc-291

ture (Izacard and Grave, 2021), the encoder mod-292

ule, Enc(), encodes candidate sequences in parallel293

to ensure high efficiency. Furthermore, since the 294

ranker’s generation space is limited to docid tokens 295

instead of the whole vocabulary, we use the pool- 296

ing operation Pool() to extract the encoded output 297

of docid tokens ei as relevance representations of 298

candidates. They are then connected and entered 299

into the decoder Dec() to generate the ranking list: 300

[Dr(1)], . . . , [Dr(k)] = Dec([e1; . . . ; eM ]),

ei = Pool(Enc(Ii)),
(6) 301

where r(i) project the rank position i into the index 302

of the document ranked at the i-th position. This 303

pooling operation could significantly reduce the 304

time-space burden of the decoder. 305

Additionally, we implement a reuse strategy on 306

the language model (LM) head layer to reduce un- 307

necessary load and enhance the modeling accuracy. 308

It sets the LM head layer’s projection matrix F, 309

which maps generated hidden states to probabilis- 310

tic token spaces, to be d×M , (M is the maximum 311

number of candidates). Furthermore, our prelimi- 312

nary experiments imply that randomly initializing 313

the value of F is hard to optimize due to limited 314

training samples. Therefore, we define its value 315

using relevance representations of candidates to 316

simplify optimization difficulty, hence improving 317

the ranking performance. Thus, the probability of 318

the t-th token is computed as below, 319

pt(d) = Softmax
(
M(htF/τ)

)
,F = [e1; . . . ; eM ], (7) 320

where ht is generated hidden states of the t-th to- 321

ken and τ is temperature to control the sharpness 322
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of distribution.M() denotes a masking mechanism323

to set the probabilities of previously generated doc-324

uments to zero, avoiding repetition. To ensure the325

ranker’s performance, we employ a two-stage op-326

timization. We demonstrate it in the following327

sections and visualize it in Figure 2 (b).328

3.4.1 Supervised Fine-tuning329

To address the problem of the vast searching space330

of possible permutation, a major challenge for list-331

wise ranking algorithms, we adopt a greedy algo-332

rithm to build silver target ranking lists for each333

training instance, supporting supervised fine-tuning334

of the ranker. Specifically, we devise a coverage335

utility function, Φt(d), to measure the incremental336

gain in aspect coverage for each remaining docu-337

ment, d, conditioned on previously selected ones,338

L∗
t−1. The greedy selection is presented as follows,339

L∗
t = L∗

t−1 ∪ d∗t , d∗t = argmaxd∈P/L∗
t−1

Φt(d),

Φt(d) =
∑n

i=1
wt

iϕ(d, ai).
(8)340

Φt(d) considers the current importance of each sub-341

aspect wt
i and the candidate’s coverage for each342

sub-aspect ϕ(d, ai). The coverage function ϕ() is343

implemented by the rouge-score between d and the344

i-th sub-answer ai. The current importance of sub-345

aspects is measured by calculating their coverage346

by previous t− 1 selected documents using the fol-347

lowing function with sum normalization Norm():348

wt
i = 1−Normi(maxd̃∈L∗

t−1
ϕ(d̃, ai)), (9)349

The silver target list, L∗
k, allows us to supervise350

fine-tune the ranker via the NTP task:351

Lsft = −
∑k

t=1
log p(d∗t |q,P, Ŝ, L∗

t−1). (10)352

p(d∗t |q,P, Ŝ, d∗1:t−1) is the generation probability353

of the t-th target docid conditioned on the current354

question, the candidate pool, the sub-aspects, and355

the previously target documents. It is calculated by356

our ranking module.357

3.4.2 Reinforcement Learning358

After supervised fine-tuning, aligning ranking lists359

with LLM-preferred order is critical to enhance the360

final response quality. Therefore, we use an RL361

strategy to explore better ranking possibilities.362

• Reward Function. We treat the quality of fi-363

nal responses as the reward of provided ranking364

lists to model LLM’s preferences. Since we expect365

the generated responses to cover all sub-answers366

from all sub-aspects, besides using the rouge score 367

ϕ() to calculate the matching between responses 368

r and golden answers a, we further introduce a 369

com-rouge score, ϕc() to measure the coverage of 370

responses on sub-answers, A. The reward function 371

∇(L) of a ranking list L is produced as: 372

∇(L) = ϕ(r, a) + ϕc(r,A),

ϕc(r,A) =
∑n

i=1
δiϕ(r, ai), r = G(q, L).

(11) 373

r is the response from the generator, G(), given the 374

query q and ranked top-k documents L. δi denotes 375

the normalized length of the sub-answer to value 376

the sub-answer’s weight. 377

Then, we adopt the Direct Preference Optimiza- 378

tion (DPO) (Rafailov et al., 2023) algorithm to en- 379

sure the optimization stability. Its training samples 380

consist of a series of prediction pairs pre-generated 381

by the policy model, namely the ranker in our study. 382

Each pair contains a winner and a loser prediction, 383

namely generated ranking lists, which are assessed 384

by their rewards. Thus, DPO pairwise optimizes 385

the policy model to discriminate the better one 386

among a prediction pair. 387

• Data Construction. To build valuable training 388

pairs, we introduce the unilateral sample signifi- 389

cance strategy (US3). First, this approach generates 390

a greedy search ranking list and multiple sampled 391

ranking lists for each training data, obtaining their 392

rewards via Equation (11). Then, US3 follows two 393

rules when forming DPO training pairs: (1) Unilat- 394

erality: One prediction is from greedy search (used 395

in inference) to provide a baseline for discerning 396

better optimization directions, and the other from 397

sampling search. (2) Significance: The reward gap 398

between the predictions must exceed a threshold µ 399

to ensure the pair’s value, thereby reducing errors 400

from pairs with similar performance that may not 401

reflect ranking quality, but noise. 402

• Optimization. Given built training pairs, we 403

optimize the ranker using the following DPO ob- 404

jective function: 405

LDPO = − E
(x,yw,yl)∼D

[log σ(β log
πθ(yw|x)πf (yl|x)
πf (yw|x)πθ(yl|x)

]. (12) 406

D is the training set built by US3, where the input 407

of each data is x = {q, Ŝ,P} and the output is a 408

pair of ranking lists, with yw and yl as winner list 409

and loser list respectively. πθ denotes the policy 410

model that needs to be optimized and πf represents 411

the original policy model with fixed parameters, 412

and its role is to avoid optimization trajectory ex- 413

cessively deviating from the basic model. 414
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Settings Models WikiPassageQA WikiAsp

F1 R2 RL BS CR2 CRL F1 R2 RL BS CR2 CRL

Predicted
Sub-aspects

Close-book .2132 .0324 .0989 .8417 .0397 .1714 .2037 .0114 .0581 .7967 .0128 .0834

No Ranker .3372 .1191 .2065 .8491 .1310 .2969 0.3029 .0479 .0923 .8073 .0502 .1257
RankT5 .3502 .1313 .2123 .8536 .1441 .3027 0.3079 .0481 .0932 .8063 .0504 .1263
LDIST .3487 .1325 .2140 .8523 .1447 .3044 .3377 .0479 .0923 .8114 .0624 .1376
LiT5 .3473 .1291 .2118 .8514 .1413 .3033 .3341 .0594 .1037 .8125 .0620 .1399

RAG-Fusion .3316 .1146 .2029 .8467 .1261 .2913 .3219 .0547 .0976 .8116 .0572 .1324
+RankT5 .3448 .1278 .2122 .8510 .1402 .3015 .3123 .0507 .0939 .8091 .0532 .1277
+LDIST .3400 .1253 .2114 .8494 .1394 .3022 .3327 .0587 .1021 .8122 .0612 .1380
+LiT5 .3386 .1226 .2071 .8491 .1347 .2987 .3344 .0589 .1017 .8137 .0616 .1373

BGM .3465 .1191 .2065 .8547 .1537 .2983 .2969 .0472 .0920 .8061 .0497 .1242
RichRAG .3638 .1538 .2316 .8549 .1664 .3225 .3610 .0678 .1094 .8194 .0706 .1458

Golden
Sub-aspects

No Ranker .3763 .1667 .2650 .8544 .1809 .3600 .3325 .0655 .1277 .8116 .0688 .1671
RankT5 .3854 .1760 .2734 .8569 .1887 .3673 .3329 .0632 .1244 .8107 .0665 .1637
LDIST .3867 .1766 .2728 .8558 .1906 .3680 .3609 .0792 .1354 .8163 .0826 .1767
LiT5 .3926 .1844 .2808 .8558 .1991 .3724 .3564 .0801 .1385 .8165 .0834 .1795

RAG-Fusion .3808 .1764 .2740 .8554 .1901 .3687 .3658 .0790 .1376 .8187 .0825 .1762
+RankT5 .3866 .1825 .2774 .8572 .1972 .3702 .3511 .0718 .1289 .8155 .0751 .1693
+LDIST .3894 .1851 .2787 .8610 .1996 .3734 .3690 .0791 .1366 .8190 .0825 .1767
+LiT5 .3915 .1906 .2842 .8567 .2053 .3776 .3676 .0800 .1369 .8190 .0833 .1770

BGM .3723 .1686 .2723 .8537 .1824 .3651 .3296 .0642 .1282 .8104 .0677 .1666
RichRAG .4174 .2247 .3055 .8637 .2392 .4015 .3951 .0942 .1456 .8256 .0976 .1863

Table 1: Overall results of all models. The best and second-best results are in bold and underlined, respectively.

4 Experiment415

4.1 Datasets and Metrics416

Datasets. We conduct our experiments on417

two publicly available datasets that focus on418

multi-document summarization and long-form419

query-answer (QA) respectively, i.e., WikiPas-420

sageQA (Hayashi et al., 2021) and Wiki-421

Asp (Hayashi et al., 2021). WikiPassageQA offers422

human-annotated quality-evaluated questions and423

long-form answers. We chose this dataset because424

its answers are generally comprehensive, related425

to various aspects of questions, and the answer426

length is fairly long. WikiAsp dataset is devised427

for generating aspect-based summaries of entities428

from 20 domains. We follow (Jiang et al., 2023) to429

convert it into open-domain QA settings. To sup-430

port our experiments, we first operate some data431

pre-processing to ensure that each piece of data con-432

tains the question, ground truth answer, sub-aspects433

of the question, and their sub-answers. The process434

details and statistical information of datasets are435

demonstrated in Appendix A.436

Metrics. To measure the matching scores of mod-437

els’ responses with long-form ground truth answers,438

we select F1, Rouge(-2 and -L), and BERT-Score439

as evaluation metrics.Furthermore, we leverage the440

com-rouge score, which is introduced in Eq. 11, to441

assess the coverage of responses on sub-answers. 442

We implement ϕ() in Eq. 11 by Rouge-2, and -L 443

to build Com-Rouge-2 and -L evaluation metrics. 444

For briefness, F1, R2, RL, BS, CR2, and CRL 445

are utilized to represent these metrics. Follow- 446

ing (Wang et al., 2023c), we also leverage GPT-4 to 447

conduct a pairwise evaluation of our method with 448

baseline models to confirm its effectiveness further. 449

To comprehensively evaluate the effectiveness of 450

our proposed ranking algorithm, we also provide 451

the ranking performance comparison and analysis 452

in Appendix C 453

4.2 Baselines 454

To evaluate the effectiveness of our framework, we 455

first build baselines with different RAG framework 456

settings: (1) Close-book setting without external 457

reference support. (2) “Retrieve-Generation” set- 458

ting without ranking stage, namely No Ranker. (3) 459

“Retrieve-Rerank-Generation” setting with various 460

ranking algorithms, including RankT5 (Nogueira 461

et al., 2020; Zhuang et al., 2023a), a point-wise 462

T5-based ranking model, LDist (Izacard et al., 463

2024), a widely-used ranking algorithm in RAG 464

systems (Izacard et al., 2024; Shi et al., 2023), 465

and LiT5 (Tamber et al., 2023), a list-wise rank- 466

ing model using slide-window-based ranking strat- 467

egy. These baselines directly retrieve external 468
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Figure 3: Results of the GPT-4-based evaluation comparing our method with baseline models.

documents based on the original queries. RAG-469

Fusion (Rackauckas, 2024) proposes retrieving470

documents from various sub-aspects and provid-471

ing the final ranking lists via a simple reciprocal472

rank fusion algorithm (Cormack et al., 2009). We473

set this framework as a basic baseline to compare474

the superiority of our proposed framework when475

explicitly considering query-aspects. We combine476

it with the above ranking algorithms to build vari-477

ous advanced versions of RAG-Fusion, e.g., RAG-478

Fusion+RankT5, etc. BGM (Ke et al., 2024) is a479

recent RAG framework that introduces PPO strat-480

egy to fine-tune list-wise ranking model based on481

the LLM’s feedback. Due to limited space, we de-482

scribe the implementation details in Appendix B.483

4.3 Overall Results484

To fully evaluate the effectiveness of our proposed485

framework, RichRAG, we utilize two settings to486

conduct experiments, the first one we provide the487

predicted sub-aspects to retriever and ranker while488

in the second one, we provide the golden sub-489

aspects to unlock the RichRAG’s powers in the490

fullest extent possible. We present the overall re-491

sults in Table 1 and Figure 3, and have the follow-492

ing conclusions:493

(1) Whether given predicted or golden sub-494

aspects, RichRAG shows the best performance.495

This phenomenon confirms the ability of our496

framework to explore and leverage user’s sub-497

intents underlying the issued multi-faceted ques-498

tions, hence providing comprehensive responses.499

However, existing RAG systems solely consider500

query-document relevance without relationships501

among candidates, blocking their potential to un-502

derstand user’s various sub-intents and limiting the503

richness of final responses.504

(2) Compared to list-wise ranking algorithms,505

our method still illustrates better performance.506

Though there exist several list-wise ranking algo-507

rithms in the RAG community, such as LiT5 and508

BGM, these algorithms do not explicitly model the509

interactions among candidates from the perspective 510

of comprehensiveness of the user intent coverage. 511

Without such explicit guidance, these algorithms 512

may be trapped in a locally optimal solution, hence 513

impacting the overall quality of ranking lists. 514

(3) With golden sub-aspects, RAG-Fusion set- 515

tings often outperform settings only considering 516

the original question’s retrieved documents. It re- 517

veals the importance of modeling the questions’ 518

sub-aspects in RAG systems for generating rich and 519

reliable responses. However, with predicted sub- 520

aspects, the RAG-Fusion variants do not outper- 521

form corresponding baselines without RAG-Fusion. 522

This may be due to the gap between predicted sub- 523

aspects and annotated sub-aspects. However, in 524

real applications, the user’s sub-intents may be di- 525

verse while we can only label some of them in 526

datasets to evaluate model performances. There- 527

fore, how to deal with such a gap between realistic 528

and human annotation is still an open problem and 529

will be further investigated in our future study. 530

4.4 Ablation Studies 531

In order to evaluate the role of our key modules, we 532

further conduct the following ablation studies with 533

results presented in Figure 4. This figure shows the 534

decline degrees of the ablation models compared 535

with the complete RichRAG. 536

(1) To confirm the importance of explicitly con- 537

sideration of user’s sub-intents, i.e.question’s sub- 538

aspects. We further construct a variant, w/o SA, 539

by directly ranking the retrieved documents of the 540

original question without considering the candi- 541

date pool, P . The significantly worse results than 542

RichRAG further prove the importance of explic- 543

itly considering the various sub-intents underlying 544

multi-faceted questions, which is beneficial for pro- 545

viding comprehensive responses for users. 546

(2) In our study, we propose a generative list- 547

wise ranking module to generate LLM-preferred 548

comprehensive ranking lists. To prove its advan- 549

tages, we replace it with another list-wise algo- 550
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Figure 4: Ablation results of RichRAG on two datasets.

rithm, LiT5, in our framework to build a vari-551

ant, w/o GLR. We find that it still underperforms552

RichRAG. This result validates the advantages of553

our model structure, i.e.the ability to potentially554

model global interactions among various candi-555

dates with sub-aspects. While the sliding-window-556

based list-wise algorithm still has defects on it,557

hence limiting the performance.558

(3) To confirm the role of alignment with LLMs’559

preferences, we build a variant of our framework,560

w/o. RL, which only supervised fine-tunes our561

ranker without the RL optimization. The declined562

performance proves that the LLMs’ preferences are563

different from humans’ preferences. As a result, it564

is vital for RAG systems to align the LLMs’ pref-565

erences to enhance the overall quality of the final566

responses generated from LLMs.567

(4) To ensure the robustness and quality of the568

DPO algorithm, we propose a US3 approach to569

build the pairwise training samples for it. To con-570

firm its effect, we replace it by randomly creat-571

ing the training pairs for the RL stage, building a572

variant, namely w/o US3. The worse result than573

RichRAG proves the usefulness of this strategy. It574

suggests that the US3 approach can create more575

reliable training pairs by ensuring the meaning-576

ful comparison between predictions of our ranker,577

hence optimizing it in a promising direction.578

4.5 Efficiency Analysis of Ranking Algorithms579

We previously confirmed the advantages of consid-580

ering various sub-aspects in RAG systems. How-581

ever, with extensive candidate documents, the effi-582

ciency of ranking modules is also important. There-583

fore, we compare the query latency of our ranker584

to point-wise and list-wise ranking algorithms, LD-585

IST and LiT5, to test their efficiency. First, we586

demonstrate their changes in query latency with the587

candidate amount in Figure 5 (a). Obviously, our588

ranker has comparable efficiency and trend with589

the point-wise ranking algorithm. However, the590
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Figure 5: Efficiency experiments of different models.

time overhead of LiT5 rises more sharply along 591

with the improvement of the candidate amount. 592

This phenomenon proves that our ranker could pro- 593

vide a better trade-off between effectiveness and 594

efficiency. Furthermore, since our ranker gener- 595

ates docids step-by-step, we further provide the 596

trends of query latency with different generated 597

document numbers and show the trend lines of dif- 598

ferent amounts of candidate documents in Figure 5 599

(b). It can be found that as the number of ranked 600

documents increases, all trendlines rise slowly, and 601

the gap between different candidate counts (CCnt) 602

is limited to 1 second. This phenomenon further 603

proves the robustness of our ranker’s efficiency 604

across diverse ranking settings. 605

Due to limited space, we provide further analysis 606

studies in Appendix C, D, E, F and G. 607

5 Conclusion 608

In this study, we proposed a new RAG framework, 609

RichRAG, to comprehensively consider the vari- 610

ous sub-intents underlying users’ broad questions, 611

hence providing all-sided long-form responses for 612

users. Specifically, we introduced a sub-aspect ex- 613

plorer to predict the potential sub-aspects contained 614

by questions representing the user’s sub-intents. 615

According to sub-aspects and a fixed retriever, we 616

could build extensive and diverse candidate pools. 617

To provide comprehensive and LLM-preferred 618

ranking lists, we designed a generative list-wise 619

ranking model. It effectively and efficiently en- 620

codes the global relationships between candidates 621

and multi-aspects, thereby offering global optimal 622

ranking lists to LLMs. To ensure the ranking qual- 623

ity, we utilized a two-stage training process involv- 624

ing supervised fine-tuning and RL optimization. 625

Furthermore, we devised a US3 approach to cre- 626

ate useful and reliable training samples to ensure 627

the effectiveness of the DPO algorithm. Extensive 628

experiments on two public datasets confirm the 629

effectiveness and efficiency of RichRAG. 630
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Limitations631

In this work, we identified an underexplored but632

important scenario of RAG systems, where multi-633

faceted questions require rich and comprehensive634

responses satisfying various related sub-aspects. To635

handle these situations, we developed a framework,636

namely RichRAG to equip RAG models with the637

ability to generate rich and satisfying responses for638

multi-faceted questions. We acknowledge the fol-639

lowing limitations of our current study that present640

opportunities for future investigations.641

First, though we built an aspect explorer to iden-642

tify users’ sub-intents underlying multi-faceted643

questions, it is still shallow and there is a gap be-644

tween predicted sub-aspects and real intents. This645

is because the user’s intents are usually diverse and646

vary from person to person. Even though we an-647

notated some sub-aspects in data samples, these648

may only cover a sub-set. Therefore, in this study,649

we mainly focus on how to provide a promising650

reference permutation given the user’s potential651

sub-intents for enhancing the final generation to652

comprehensively respond to these sub-intents. Sec-653

ond, since the situation is still underexplored, few654

suitable datasets are available. The datasets we655

used in our study were chosen by carefully investi-656

gating the data samples’ content and converted by657

some operations to a suitable data format. There-658

fore, the diversity of experiment datasets is limited.659

In the future, we will pay more attention to the eval-660

uation and annotation of user intent exploration in661

such scenarios to support further study.662
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A Data Pre-process 945

Specifically, for the WikiPassageQA dataset, we 946

prompt GPT-4 to generate appropriate and accurate 947

sub-aspects and sub-answers for each data point to 948

support our study, where sub-answers are split from 949

the original long-form answers and sub-aspects 950

are closely related to original questions and sub- 951

answers. The content of the prompt is shown in 952

Prompt G. To ensure the quality of reformulated 953

WikiPassageQA, the prompt of GPT-4 is decided 954

via the following steps: 955

(1) Human-Annotated Demonstrations: We first 956

selected five data examples and manually annotated 957

their sub-aspects and sub-answers. These human- 958

annotated examples are used as demonstrations to 959

prompt the GPT-4 to generate satisfied results. 960

(2) Calibration with Human verification: Then, 961

we randomly sampled 50 examples and used them 962
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as calibration examples. Specifically, we cease-963

lessly adjusted the content of the prompt based964

on the generation quality of these calibration ex-965

amples until we thought the generation quality of966

these examples was satisfied. The satisfaction rate967

of human evaluation was 94%.968

The WikiAsp dataset is devised for generating969

aspect-based summaries of entities from 20 do-970

mains. Each piece of data is built from a Wikipedia971

article, consisting of various aspects of this article972

and aspect-based summaries. Each target summary973

corresponds to an aspect. We follow (Jiang et al.,974

2023) to convert it into open-domain QA settings975

and introduce some additional operations to make976

it suitable for our experimental settings. Firstly,977

samples with more than two aspects are retained,978

and the remaining parts are removed to ensure the979

multifaceted nature of the experimental samples.980

Then, due to the expensive costs of experiments and981

the large amount of the whole dataset, we evenly982

sample subsets from each domain to build the ex-983

perimental samples and split training, validation,984

and test sets according to the ratio of 10:1:1. Fi-985

nally, we insert the title of the original Wikipedia986

article into a template: “Generate a summary about987

title” to mimic the real question format, hence con-988

structing the question of each sample data. The989

aspects and aspect-based summaries are treated as990

sub-aspects of the question and sub-answers. We991

concatenate these sub-answers to build the long-992

form answer for each sample.993

The statistical information of our datasets is pre-994

sented in Table 2.

Items WikiPassageQA

Train Validation Test

Count 3,311 415 416
Avg. Q Len 9.53 9.70 9.44
Avg. A Len 148.14 145.93 146.1
Avg. SubCnt 3.77 3.77 3.78
Avg. Sub Q Len 6.34 6.25 6.29
Avg. Sub A Len 62.84 62.32 61.99

Items WikiAsp

Train Validation Test

Count 8,613 859 867
Avg. Q Len 7.01 6.97 6.94
Avg. A Len 201.7 216.26 200.44
Avg. SubCnt 2.38 2.41 2.40
Avg. Sub Q Len 1.28 1.28 1.29
Avg. Sub A Len 229.36 240.6 221.91

Table 2: Statistical information of datasets.

995

B Implementation Details 996

The sub-aspect explorer is implemented by Llama- 997

2-7B-chat (Touvron et al., 2023). We set the 998

learning rate as 5e-5, batch size as 64, and use 999

AdamW (Loshchilov and Hutter, 2019) to fine-tune 1000

it. For the multi-faceted retriever, the number of 1001

retrieved documents for each sub-aspect is set as 1002

50. The maximum capacity of the pool is 290 for 1003

WikipasssageQA and 270 for WikiAsp. For the 1004

generative list-wise ranker, We base on Flan-T5- 1005

base (Chung et al., 2022) to initialize it and rerank 1006

the top-10 final documents as provided external 1007

knowledge for the generator. In the SFT stage, 1008

we set the learning rate as 5e-5, batch size as 64, 1009

temperature τ as 0.1, and optimize the ranker to 1010

generate top-10 ranked document IDs with AdamW 1011

algorithm. In the RL stage, Llama-2-13B-chat is 1012

chosen as the generator, G, providing reward feed- 1013

back to the policy model. Then, we set µ as 0.1 to 1014

build 6,000 training pairs for the DPO algorithm. 1015

The batch size and learning rate are set as 32 and 3e- 1016

6 respectively to further optimize our ranker via the 1017

DPO strategy. We followed (Izacard et al., 2024) 1018

to consider the Dec. 20, 2021, Wikipedia dump as 1019

our knowledge base and utilize BGE-en-base (Xiao 1020

et al., 2023) as our fixed retriever. All our baselines 1021

are optimized and evaluated by the same training, 1022

validation, and test datasets. Since the WikiAsp 1023

dataset has no relevance labels on documents, for 1024

each query,we view the documents whose matching 1025

score (the average of rouge scores evaluated by the 1026

ground truth answer) is higher than 0.5 as relevant 1027

documents to support the training of our baseline 1028

ranking models. Our experiments are conducted 1029

on the platform with four NVIDIA A100-SXM4- 1030

80GB GPUs. We will release our codes upon the 1031

acceptance of our study. 1032

C Ranking Performance 1033

To prove the effectiveness of our proposed list-wise 1034

ranking module, we also evaluate the ranking mod- 1035

ules’ performance of our method and baselines. We 1036

indicate the types of ranking algorithms, including 1037

point-wise and list-wise. We further implement a 1038

pairwise version of the RankT5 model by using the 1039

following training objective to optimize it: 1040

L =
∑

d1,d2∈D,R(d1)>R(d2)

max(0, s(d2)− s(d1) + γ), γ = 1,
1041

where D denotes the candidate documents, R(d) 1042

represents the relevance label of the document and 1043
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Models WikiPassageQA WikiAsp

MAP N1 N3 N5 N10 NCOM MAP N1 N3 N5 N10 NCOM

Retriever .3201 .2476 .2933 .3498 .3951 .7006 .1780 .1003 .1678 .1953 .2294 .3926
RankT5 (point) .5200 .4808 .5176 .5424 .5916 .7865 .3712 .3230 .3704 .3942 .4043 .4739
RankT5 (pair) .3602 .2740 .3367 .3863 .4298 .7395 .3299 .2088 .3274 .3717 .3894 .5297
LDIST (point) .5346 .5024 .5261 .5573 .5979 .7608 .4051 .3668 .4078 .4213 .4280 .5043
LiT5 (list) .3756 .2813 .3661 .3968 .4412 .7465 .2757 .1696 .2742 .3142 .3318 .5442

RAG-Fusion .2632 .1923 .2348 .2754 .3317 .5771 .2040 .1188 .1844 .2271 .2608 .4415
+RankT5 (point) .3962 .3510 .3831 .4238 .4641 .6543 .1591 .0681 .1411 .1742 .2177 .4610
+RankT5 (pair) .3946 .3029 .3669 .4202 .4758 .6717 .3297 .2376 .3249 .3583 .3869 .4992
+LDIST (point) .3746 .3245 .3654 .3951 .4385 .6370 .3345 .2987 .3241 .3505 .3733 .5138
+LiT5 (list) .3114 .2308 .2811 .3244 .3839 .6547 .2737 .1995 .2606 .3014 .3255 .5196

BGM (list) .2614 .2476 .2480 .2626 .2864 .7988 .1382 .0727 .1152 .1497 .1921 .3887
RichRAG (list) .5444 .5240 .5359 .5663 .6035 .8065 .4880 .4556 .4962 .5047 .5067 .8935

Table 3: Overall ranking results. The best and second-best results are in bold and underlined, respectively.

s(d) is the predicted score of the document.1044

Specifically, we select some widely-used met-1045

rics, MAP and NDCG@k(k=1,3,5,10) to assess the1046

ability to predict the document relevance of models.1047

Furthermore, our model not only focuses on doc-1048

ument relevance but also the comprehensiveness1049

of the provided ranking lists. Thus, we propose a1050

novel ranking metric, Normalized Comprehensive-1051

ness (NCOM), to assess the comprehensiveness of1052

ranking lists, following the way to build the sil-1053

ver ranking targets (introduced in Section 3.4.1).1054

This metric considers both the document relevance1055

and the coverage of ranking lists on sub-aspects,1056

hence reliably evaluating the comprehensiveness1057

of ranking lists. Its calculation is presented below:1058

Given a question q, its sub-answers {a1, ...an},1059

a pool of candidate document P , a ranking list1060

generated by a ranking model, L = [d1, ..., dK ],1061

and a silver ranking list, L∗, generated by Eq. 81062

in our paper, we calculate the generated and silver1063

ranking lists’ comprehensiveness scores as follow:1064

COM(L) =
K∑
t=1

n∑
i=1

wt
i · ϕ(dt, ai),

wt
i = 1−Normi( max

d∈L[:t]
ϕ(d, ai))

(13)1065

where wt
i denotes the importance of i-th sub-1066

aspects at the t-th step (which is the same as the1067

Equation 9 in our paper.), and ϕ(·, ·) calculates the1068

similarity between two sentences, i.e., average of1069

Rouge-2, and Rouge-L scores.1070

The final normalized comprehensiveness score
is computed by normalizing COM(L) by
COM(L∗):

NCOM = COM(L)/COM(L∗).

The evaluation results are shown in Table 2. From 1071

the experimental results, we can find that our 1072

method outperforms all types of ranking algorithms 1073

on both datasets and all metrics, especially on 1074

NCOM. This phenomenon proves that our rank- 1075

ing model could consider the document’s relevance 1076

and list comprehensiveness simultaneously, hence 1077

providing comprehensive external knowledge and 1078

stimulating LLMs to generate better responses. We 1079

also notice that even though LiT5 and BGM are 1080

list-wise ranking models, their optimization does 1081

not explicitly consider the relationships among doc- 1082

uments and, hence cannot provide satisfactory re- 1083

sults. It also confirms the superiority of our pro- 1084

posed training algorithm. 1085

D Impact of Sub-aspect Amount 1086

To test the generalization of our framework with 1087

different sub-aspects numbers, which represent dif- 1088

ferent search scenarios, we further split the test 1089

dataset into different sub-sets according to the num- 1090

ber of sub-aspects. Questions with a sub-aspect 1091

amount less than two are divided into the narrow 1092

set, questions with a sub-aspect amount less than 1093

four are divided into the middle set, and the remain- 1094

ing questions are divided into the broad set. The 1095

models’ performances on these subsets are shown 1096

in Figure 7. Evidently, our framework outperforms 1097

all baselines on all subsets. This result verifies the 1098

robustness of our framework with diverse search 1099

scenarios. Furthermore, we find that the overall re- 1100

sults on the broad set are worse than the remaining 1101

two sets. This phenomenon implies that the scenar- 1102

ios involving various potential user sub-intents are 1103

harder to handle than specific user intents, which 1104

need to be further investigated in the future. 1105
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Figure 6: Trend of model performance as Top-K changes on both two dataset.
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Figure 7: Subset experiments with different sub-aspect
amounts.

E Analysis of LLMs’ Preferences1106

We mentioned that in the system of RAG, the down-1107

stream users of IR systems are no longer humans,1108

but LLMs. To align the LLMs’ reading preferences1109

on the provided information, we introduce the RL1110

stage to further capture LLMs’ preferences on the1111

order of ranking lists. Furthermore, another angle1112

of the differences between human and LLM users1113

is that traditional IR systems usually provide dis-1114

tinct documents for users and assume that users1115

will carefully read the document containing infor-1116

mation if she is interested in a certain document.1117

However, such a reading habit may not be suit-1118

able for LLMs. It may be important for LLMs to1119

repeat some important information when provid-1120

ing retrieved knowledge (Ke et al., 2024). Such a1121

paradigm is hard to implement by traditional rank-1122

ing models based on individual relevance score1123

sorting. However, it is easy to accomplish for our1124

generative ranking model. Therefore, we waive the1125

constraint of ensuring that the next ranked docu-1126

ment has not been previously selected. The cor- 1127

responding results are illustrated in Figure 8. In- 1128

terestingly, releasing of repetition constraint could 1129

bring significant improvement to our model. The 1130

potential reason may be that repetition of impor- 1131

tant information could avoid the introduction of 1132

irrelevant information and attract more attention 1133

of LLMs to repeated important information, which 1134

enhances the LLMs’ confidence in it. This enables 1135

LLMs to provide more reliable responses accord- 1136

ing to this important knowledge. Similar results 1137

can also be found in (Wang et al., 2024b). It further 1138

confirms the importance of repetition with potential 1139

emphasis and denoising effect. 1140

F Impact of Number of External 1141

Documents 1142

To further investigate the impact of different num- 1143

bers of external knowledge on RAG performance, 1144

we vary the value of K and conduct corresponding 1145

experiments on our model and a baseline model 1146

that directly treats the top-k retrieved documents 1147

as provided references for the generator. We set 1148

the maximum value to 14 due to the limited input 1149

length of the generator. The performance trendlines 1150

of the two models are shown in Figure 6. We fur- 1151

ther provide the trendlines of our model’s improve- 1152

ment at each point with red lines. By comparison, 1153

we find that our model generally outperforms the 1154

baseline with different top-k numbers, which con- 1155

firms the superiority of RichRAG. In addition, it is 1156

clear that the performance of the baseline usually 1157
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Figure 8: Comparison with and without repeated con-
straints

improves with the initial increase in top-k values.1158

This phenomenon suggests that the baseline can-1159

not rank the valuable documents at the forefront.1160

Therefore, important documents can only be in-1161

corporated into the generator’s input when the top1162

value becomes larger. However, our model is capa-1163

ble of accurately ranking the valuable documents1164

at the top of the ranking. Consequently, even with1165

a small k-value, it still demonstrates excellent per-1166

formance. The improvement trendlines also imply1167

that with limited external references, our model1168

could show better response performance due to1169

better ranking abilities.1170

G Case Study1171

To validate that our proposed framework has the1172

ability to provide rich and comprehensive re-1173

sponses for multi-faceted questions, we further1174

demonstrate a case study to compare the gener-1175

ated responses of RichRAG and an RAG baseline1176

that directly generates responses based on retrieved1177

documents. In Box G, we provide the input ques-1178

tion, its labeled sub-aspects, and predictions from1179

different compared models. The parts of gener-1180

ated responses are highlighted by different colors1181

to indicate the comprehensiveness of different re-1182

sults. According to the visualized results, it is1183

obvious that RichRAG could predict the query’s1184

sub-aspects accurately and provide rich responses1185

that satisfy these potential intents. However, the1186

baseline model only offers a general and incom-1187

plete response without in-depth consideration of1188

the various underlying intentions of the user, which1189

may implicitly impact user satisfaction. This re-1190

sult further proves the ability of RichRAG to iden-1191

tify and explicitly model the query’s sub-aspects,1192

thereby providing satisfying ranking results to en-1193

hance the richness and comprehensiveness of gener-1194

ated responses. This result also reveals that though1195

LLMs have the potential ability to generate compre-1196

hensive answers, comprehensive ranking lists that 1197

correctly cover the query’s sub-aspects can better 1198

stimulate LLMs’ ability to generate comprehensive 1199

responses. This can also be verified by our quan- 1200

titative experiments where our model exhibits the 1201

best performance among baselines. 1202
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Box E: A case to show the richness and comprehensiveness of our model’s generated responses.

Query: Generate a summary about Instant Mom.
Sub-aspects: production, reception

Baseline Response:
Instant Mom is a talk show that focuses on various aspects of motherhood, including child-rearing,
homemaking, and personal growth. The show features a variety of segments, including MomStop,
which provides pressure-free bonding moments between mothers and their children, and Momstyle,
which showcases different techniques in child rearing and domestic engineering. The show
also includes 24/7, which celebrates the non-stop nature of motherhood, and Mom and Me, an
inspiring tribute to the kindness and love of mothers. Additionally, the show features practical tips
for homemakers and parents, as well as interviews with celebrity mothers and experts in child
development. The show is certified by moms and features independent reviews and expert advice
to provide a comprehensive resource for mothers.

RichRAG Response:
Based on the given sources, here is a summary of Instant Mom:
Instant Mom is a television show that aired on Nickelodeon from 2013 to 2015. The show was
created by Howard Nemetz and starred Tia Mowry-Hardrict as Stephanie, a young woman who
becomes the legal guardian of her three nieces and nephews after her sister and brother-in-law die
in a car accident. The show follows the challenges and adventures of Stephanie and her new family
as they navigate life and try to move forward after their loss.
The show received positive reviews, with Emily Ashby of Common Sense Media giving it 4 out
of 5 stars and Brian Lowry of Variety comparing it to Trophy Wife. The show also featured a
production report, which is a filmmaking term for a form filled out each day of production to
summarize what occurred. The show was produced by Nickelodeon and was filmed in various
locations in Los Angeles.
Overall, Instant Mom is a heartwarming and humorous show that explores the complexities of
family and the challenges of raising children. With its talented cast and engaging storylines, it is a
great choice for families and young audiences looking for a fun and entertaining show.
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Prompt E: Annotate question aspects and split long-form answers into corresponding sub-answers

Your task is to adjust the results of query-facets mining. The query-facets are extensions of the
original query in various generic perspectives, rather than some specific facts. Given a query that
requires information from multiple query-facets, you should return all query-facets of the query
to fully answer it query. Note that each query has at least two query-facets. I will give you the
long-form answer to the original query to help you explore query-facets based on the perspectives
of its answer. But refrain from using the additional information from the answer to generate the
query-facets. Then you should segment the original long-form answer into several sub-answers
that each are paired with a query-facet. Please return each query-facet of the original query and its
corresponding sub-answers. The query-facets and sub-answers should be one-to-one and returned
in JSON format. You need to follow the following rules:
1. The answers are only used to help you determine the generic direction. You mustn’t generate
query-facets based on the contents of answers and the facets mustn’t contain the answers’
additional information beyond the input query.
2. Sub-answers are constructed by segmenting the original answer, you cannot generate or reorder
the original answer to create sub-answers.
3. The sub-answers should be complete. You must ensure that when the sub-answers are joined
together in order, the complete original answer should be formed.
4. The generated query-facets should be sufficiently generic and contain no specific information
about the sub-answers.
5. **You should ensure that generated query-facets cover all perspectives original answer.**
6. **You should ensure that all sub-answers cover all contents of the original answer.**
7. **The number of query surfaces must range from 2 to 7.**
8. **You should ensure that each query-facet is sufficiently generic and can be easily derived from
the original query.**
9. **You should ensure each query-facet contains no information from the answer.**
10. **You should rewrite or combine the query-facets to be more generic if some query-facets do
not meet the above requirements.**
11. The returned results should be in JSON format and contain the following key: results, which
is a list of JSON data. Each item of results should contain the following keys: query-facet, and
sub-answer.
12. I will give you some demonstrations, you should learn the pattern of them to mine query-facets
and split sub-answers.

**Demonstration**
{demonstrations}
Query: {query}
Answer: {answer}
Results:
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