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Abstract

Large Language Models (LLMs) need compression to be serviceable on hardware-
limited devices, with the tradeoff being a reduction in performance, especially in
natural language comprehension. As a direct consequence, parameter-efficient
fine-tuning (PEFT) methods, previously used in task adaptation, are increasingly
being utilized for post-compression performance recovery; however, the overall
cost-benefit of these methods in this area is still unclear. In this work, we perform
a comprehensive experimental study on various PEFT methods on Llama and OPT
models with different compression approaches on a dedicated test suite aimed
at measuring a model’s performance, particularly in English comprehension. To
analyze our results, we propose two conjectures that differentiate the nature of the
compression damage on LLMs: one is that certain knowledge is forgotten (or
erased) after LLM compression; the other presumes that knowledge is internally
displaced. We found that the often-overlooked prompting holds a competitive
advantage against more advanced approaches such as LoRA. Furthermore, we
show we can extend prompting at minimal cost to latency by allowing multiple
prompts to be dynamically allocated to different inputs at inference time, leading
to even better or comparable post-compression performance recovery.

1 Introduction

Model compression techniques, such as quantization and sparsification, have since become increas-
ingly popular for reducing the size of LLMs without significantly compromising their performance.
Traditional approaches often involve post-compression re-training to mitigate performance losses
[6]. More recent ‘training-free’ compression methods, like GPTQ [5] and SparseGPT [4], promise
minimal impact on perplexity and standard task benchmarks. Nevertheless, recent studies [11] reveal
that these compressed models still suffer from reduced effectiveness in knowledge-intensive language
comprehension and generation tasks.

Parameter Efficient Fine Tuning (PEFT) methods [8, 7, 14] existed as a way to quickly and efficiently
adapt pre-trained models for domain-specific tasks by training on task-specific calibration data. We
note that it is quite trivial to extend such methods to performance recovery on pre-trained compressed
models with the purpose of on device deployment. What is not clear is the cost-effectiveness of these
approaches in this new setting, particularly when it is typical to have multiple adapters on-device.
This inhibits many PEFT methods, particularly Low-rank Adapters (LoRA), from being merged with
the underlying model’s weights due to on-device memory constraints, thus suffering from increasing
latency times.
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We also investigate into what transpires within a compressed model that leads to diminished per-
formance on tasks? Is this knowledge permanently lost in the compression process, or is it merely
obscured? Addressing these questions is not solely of theoretical interest; it has tangible implications
for devising strategies to effectively counteract the impacts of compression on model knowledge. We
hypothesize regarding the root cause of this performance degradation: the first posits that key knowl-
edge is forgotten (or erased) as a consequence of LLM compression, necessitating a re-learning
process with the addition of extra parameters [8]; the second hypothesis suggests that the knowledge
is merely internally displaced within the LLM. This implies that strategic redirection of knowledge
flow, potentially through input-side enhancements like prompting [23], could efficiently recover
model accuracy. A more comprehensive exploration of these ideas is presented in Section 2.2.

Showcasing these two hypotheses, we conducted extensive experiments to test two central hypotheses
of compressed LLM performance loss: “knowledge displaced” versus “knowledge forgotten” to
validate these hypotheses effectively. Furthermore, we recognize the potential of prompting for model
customization on the fly (simply pairing different inputs with different prompts within the same
batch). We, therefore, introduce an easy trick to utilize multiple prompts by allowing dynamic prompt
selection by input during inference. We called this trick Inference-time Dynamic Prompting or IDP.

We show that our trick with IDP is robust even at fairly short prompt lengths (Figure 6). Our
investigation into layer-wise cosine similarity (Figure 5) further revealed that, compared to baseline
attention patterns, prompt-tuning leads to significant divergences, whereas re-trained models tend to
align more closely with the baseline, despite achieving similar outcomes.

In summary, our contributions are:

• We critically examine the impact of compression on LLMs’ knowledge, formally raising the
conjectures of knowledge ’displacement’ versus ’forgetfulness’.

• We design experiments to endorse the hypothesis of “knowledge displaced" over “knowl-
edge forgotten". We also reveal a number of insights, including two different regimes of
performance recovery.

• By extending on existing prompting approach, IDP achieves similar performance recovery
to LoRA, at orders-of-magnitude lower parameter and latency overheads,

2 Background
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Figure 1: This figure presents a comparative analysis of the performance of compressed models using
GPTQ for quantization and SparseGPT for pruning. The models were compressed leveraging either
C4 or Wikitext datasets. Their average performance is depicted across a spectrum of nine tasks, each
representing diverse knowledge domains.

To address the size and latency challenges of LLMs, we focus on compressing model parameters.
Compressive techniques are generally divided into two categories: compression-aware training and
post-training compression. We concentrate on post-training compression, especially relevant for
extremely large models where full training or fine-tuning is prohibitively expensive.

Quantization reduces the model’s footprint by lowering the bit precision of its weights [5, 24, 22],
which also accelerates inference due to less demanding computations. Sparsification, or pruning,
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involves selectively removing weight elements or masking activation values [4, 9, 10] to eliminate
less important parts, thereby reducing computational overhead or enhancing throughput.

Using GPTQ and SparseGPT for model compression, Figure 1 shows a performance drop when
lowering bit counts or parameters, except for int8 quantization. This aligns with claims that these
methods are optimized for the largest LLMs [5, 4]. The limitations observed in smaller—but still
substantial—LLMs underscore the need for additional post-compression performance improvements
beyond parameter adjustment. We provided further details on our hypothesis in Appendix section B.

3 Testing Baseline methods

3.1 Basic settings

We utilize OPT-6.7b [26] and Llama-7b [20] as foundational models, both featuring an embedding
size (denoted as e) of 4096. For compression, we apply GPTQ [5] and SparseGPT [4] to achieve
3-bit quantization and 50% pruning, respectively. In our discussion, we will primarily focus on
the quantization approach, as the pruning process exhibits a very similar pattern. For more details
regarding fine-tuning of LoRA and/or Prompt / Prefix-tuning, please see our Appendix.

3.2 Cost-effectiveness comparison between baseline methods

Table 1: This table summarizes the results for 3-bit GPTQ across all nine tasks for multiple fine-
tuning baselines. World, Common, and Language are performance averages across tasks within those
knowledge domains. Average is the average performance across all nine tasks.

Model Type Param arcE arcC sciq webqs triviaqa World piqa Common hellaswag lambada winogrande Language Average
Llama-7b — — 71.46 37.71 92.60 17.96 33.02 50.55 76.01 76.01 53.11 68.58 67.48 63.06 57.55
Llama-7b lora 4.4M 70.08 37.12 93.50 17.67 34.11 50.50 77.04 77.04 54.47 70.48 67.40 64.12 57.99
Llama-7b lora 6.7M 71.09 36.69 93.00 17.47 34.73 50.60 76.44 76.44 54.55 70.23 67.09 63.96 57.92
Llama-7b lora 8.9M 70.62 37.12 93.30 17.86 34.86 50.75 76.77 76.77 54.27 70.33 67.40 64.00 58.06
Llama-7b prompt 0.1M 71.97 38.40 92.90 20.47 33.20 51.39 75.84 75.84 53.75 69.45 67.17 63.46 58.13
Llama-7b prompt 0.2M 71.51 38.31 92.10 21.11 34.56 51.52 75.84 75.84 53.92 69.69 68.75 64.12 58.42
Llama-7b prompt 0.4M 72.01 39.16 91.80 21.60 34.43 51.80 75.95 75.95 54.33 69.49 67.01 63.61 58.42
Llama-7b ptune 3.1M 70.24 36.77 91.40 14.42 30.42 48.65 75.73 75.73 53.40 66.49 63.77 61.22 55.85
Llama-7b ptune 6.5M 69.57 34.81 91.30 15.55 30.65 48.38 75.30 75.30 52.98 64.84 63.22 60.35 55.36
Llama-7b ptune 13.1M 69.32 34.73 88.70 16.14 27.84 47.35 74.59 74.59 52.01 64.35 64.17 60.18 54.65

OPT-6.7b — — 64.77 29.01 89.40 9.50 17.90 42.12 75.24 75.24 48.57 65.34 63.54 59.15 51.47
OPT-6.7b lora 4.7M 63.55 28.75 88.50 11.42 18.84 42.21 76.22 76.22 49.14 66.16 63.46 59.59 51.78
OPT-6.7b lora 7.1M 64.27 29.01 89.20 11.07 18.95 42.50 75.90 75.90 48.89 66.50 64.40 59.93 52.02
OPT-6.7b lora 9.4M 64.06 29.35 88.20 13.24 18.90 42.75 76.01 76.01 49.12 66.64 63.93 59.90 52.16
OPT-6.7b prompt 0.1M 64.27 28.41 89.80 10.73 18.22 42.50 76.01 76.01 49.05 65.34 63.22 59.20 51.79
OPT-6.7b prompt 0.2M 64.94 28.84 89.90 10.88 18.80 42.67 75.63 75.63 49.13 65.96 63.77 59.62 51.98
OPT-6.7b prompt 0.4M 64.60 28.50 89.70 11.52 18.76 42.62 76.12 76.12 48.82 65.90 63.54 59.42 51.94
OPT-6.7b ptune 3.1M 63.05 28.84 89.00 10.73 18.39 42.00 75.95 75.95 48.38 64.68 60.85 57.97 51.10
OPT-6.7b ptune 6.5M 62.88 28.58 88.80 10.43 18.34 41.81 75.79 75.79 48.54 65.17 60.93 58.21 51.05
OPT-6.7b ptune 13.1M 62.54 29.18 88.60 10.43 18.37 41.82 75.52 75.52 48.72 65.32 63.38 59.14 51.34

Table 2: This table summarizes the results for 50% unstructured sprase using SparseGPT across
all nine tasks for multiple fine-tuning baselines. World, Common, and Language are performance
averages across tasks within those knowledge domains. Average is the average performance across
all nine tasks.

Model Type Param arcE arcC sciq webqs triviaqa World piqa Common hellaswag lambada winogrande Language Average
Llama-7b — — 70.33 37.03 93.50 14.07 28.88 48.76 77.04 77.04 51.68 74.54 68.03 64.75 57.23
Llama-7b lora 4.4M 71.04 37.63 91.90 14.47 33.28 49.66 76.99 76.99 53.98 70.95 67.17 64.03 57.49
Llama-7b lora 6.7M 70.79 36.69 92.40 15.85 33.02 49.75 76.71 76.71 53.91 71.03 68.03 64.32 57.60
Llama-7b lora 8.9M 71.04 37.88 92.10 14.86 32.85 49.75 77.20 77.20 54.01 70.70 68.03 64.25 57.63
Llama-7b prompt 0.1M 71.59 38.74 93.10 15.21 29.66 49.66 77.04 77.04 53.48 71.24 67.48 64.07 57.50
Llama-7b prompt 0.2M 71.38 38.57 92.20 14.86 30.48 49.50 77.15 77.15 53.75 71.76 67.09 64.20 57.47
Llama-7b prompt 0.4M 71.38 38.31 92.60 14.86 30.86 49.60 77.31 77.31 53.97 70.99 67.17 64.04 57.49
Llama-7b ptune 3.1M 63.17 32.59 88.20 11.81 24.60 44.07 72.63 72.63 50.18 64.97 56.91 57.35 51.67
Llama-7b ptune 6.5M 67.17 34.90 88.70 12.11 24.74 45.52 74.76 74.76 50.36 65.59 59.12 58.36 53.05
Llama-7b ptune 13.1M 65.78 31.40 87.20 11.61 21.97 43.59 74.21 74.21 49.77 63.87 59.43 57.69 51.69

OPT-6.7b — — 63.01 28.41 89.40 9.69 17.79 41.66 75.19 75.19 47.67 70.56 63.93 60.72 51.74
OPT-6.7b lora 4.7M 64.06 29.61 88.60 10.58 18.26 42.22 75.57 75.57 48.52 66.60 64.33 59.82 51.79
OPT-6.7b lora 7.1M 63.93 29.78 88.20 10.14 18.48 42.11 75.90 75.90 48.58 66.45 64.56 59.86 51.78
OPT-6.7b lora 9.4M 62.84 29.86 88.30 10.33 18.79 42.02 75.41 75.41 48.76 66.49 65.19 60.15 51.77
OPT-6.7b prompt 0.1M 63.09 28.58 90.70 12.30 18.75 42.68 75.14 75.14 48.40 68.78 63.69 60.29 52.16
OPT-6.7b prompt 0.2M 63.68 29.44 90.60 12.40 18.36 42.90 75.24 75.24 48.58 67.86 63.22 59.89 52.15
OPT-6.7b prompt 0.4M 64.06 29.27 89.60 12.80 19.12 42.97 75.19 75.19 48.49 67.49 63.61 59.86 52.18
OPT-6.7b ptune 3.1M 61.03 28.50 86.90 13.09 19.46 41.80 72.74 72.74 46.44 62.08 59.67 56.06 49.99
OPT-6.7b ptune 6.5M 63.01 29.86 88.00 9.40 17.10 41.47 75.08 75.08 47.84 64.89 61.80 58.18 50.78
OPT-6.7b ptune 13.1M 60.94 29.10 88.60 13.53 19.95 42.42 73.39 73.39 46.93 62.68 62.19 57.27 50.81

In Table 1 and Table 2, we compare the performance and efficiency (in parameters) of our baseline
methods. From the results, especially those highlighted in green, we draw several conclusions:
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Performance Recovery Our tests show that most techniques provide modest performance gains
in both quantization and pruning scenarios, except for prefix-tuning ("ptune"), which decreased
performance across all tasks. Quantization generally recovers performance better than pruning.
GPTQ shows an average improvement of 1%, while SparseGPT sees a smaller gain of 0.37%, likely
due to the stricter limitations of parameter removal in pruning. Notably, prompting excels in both
scenarios, offering higher-than-average recovery even with minimal parameters.

Knowledge Domain Adaptation Categorizing tasks into world knowledge, common reasoning,
and language understanding, we find that redirection methods like prompting outperform integrated
approaches like LoRA for world knowledge tasks. This suggests that input redirection effectively
restores factual knowledge in compressed models. In contrast, tasks requiring nuanced understanding,
such as language comprehension, benefit more from LoRA’s additional parameters and external
knowledge, though the performance difference remains small—under 0.2

4 Extending Prompting With Dynamic Prompting
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Figure 2: Using a 3-bit quantized Llama-7b model
fine-tuned on C4 dataset, we contrast the average
accuracy across nine tasks against its word’s per-
plexity score across various prompt lengths. A
longer sequence length improves perplexity but
does not always sustain better performance.

Figure 2 reveals a growing perplexity-to-
performance gap as prompts lengthen, reinforc-
ing findings from [11] and highlighting the lim-
itations of using perplexity alone as a perfor-
mance measure. We find that longer prompts
struggle to scale performance, suggesting that
effective prompting depends more on aligning
the right prompt to the right input than simply
extending a single prompt. This mirrors ensem-
ble methods but avoids the training-heavy ap-
proaches seen in [13] and [17], increasing train-
ing time and inference costs.

To address these issues, we propose Inference-
time Dynamic Prompting (IDP), a technique for
one-shot input-to-prompt matching that mini-
mizes latency impact. IDP aligns prompts more
accurately to inputs with minimal computational
overhead, offering a notable boost in perfor-
mance recovery for compressed models.

4.1 The IDP Methodology

mask

Token’s Attention Prompt Mask Token’s value

Figure 3: IDP is a straightforward alterations
to the existing weighted sum operation. Using
the existing attention matrix for prompt selec-
tion, IDP accomplishes its objectives without
incurring any additional parameter costs.

In prompt tuning, we introduce an additional to-
ken sequence, termed as P , preceding the input se-
quence to improve the predicted output likelihood,
Prθ(Y |[P ;X]), where θ are the static parameters.
The sequence P = p1, p2, ...pn is defined by its learn-
able parameters, θp ∈ Rn×e, with n being the prompt
tokens count and e as their embedding size.

When we extend to a collection of m prompts, rep-
resented as Z = P1, P2, ..., Pm, each prompt has
distinct trained parameters. Thus, the modified like-
lihood of Y becomes Pr(Y |[Z;X]). Let’s consider
the layer-wise token attention as A ∈ Rb×h×tk×tk,
where tk stands for the combined token count of Z
and X . For simplicity, we’ll take b and h as one.

To facilitate Inference-time Dynamic Prompting, we introduce two modifications to A: Firstly,
we prevent interactions among the prompts in Z by setting their inter-attention, A[Zi:Zj ], to −∞.
This constraint is twofold: Individual prompts have distinct training and do not share contextual
relevance. Mixing them during inference can alter their inherent definitions, affecting the performance.
Additionally, by eliminating inter-prompt attention, we can pre-cache the KV (Key, Value) for the
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prompts; this enables us to amortize the cost of processing. Secondly, for dynamic prompt selection,
we measure the mean attention from input-to-prompt and select the prompt attracting the maximum
overall input attention: ({A[Zi:X]|∀i ∈ [1,m]). In the final phase of the self-attention mechanism,
we use an attention mask to discard any unintended prompts, ensuring they do not modify the main
input sequence and improve our inference latency. The process is depicted in Figure 3.

4.2 Comparing results with baseline prompting

Table 3: This table summarizes the results for 3-bit GPTQ across all nine tasks for multiple fine-tuning
for IDP. For IDP we allow input to select between two different prompts one is 50 tokens and the
other 100 tokens long. Note that the prompts used for IDP are fine-tuned independently with identical
settings as previously described.

Model Type Param arcE arcC sciq webqs triviaqa World piqa Common hellaswag lambada winogrande Language Average
Llama-7b prompt 0.1M 71.97 38.40 92.90 20.47 33.20 51.39 75.84 75.84 53.75 69.45 67.17 63.46 58.13
Llama-7b prompt 0.2M 71.51 38.31 92.10 21.11 34.56 51.52 75.84 75.84 53.92 69.69 68.75 64.12 58.42
Llama-7b prompt 0.4M 72.01 39.16 91.80 21.60 34.43 51.80 75.95 75.95 54.33 69.49 67.01 63.61 58.42
Llama-7b IDP 0.6M 72.43 39.76 92.50 19.83 36.39 52.18 76.44 76.44 53.96 70.25 67.56 63.92 58.79
OPT-6.7b prompt 0.1M 64.27 28.41 89.80 10.73 18.22 42.50 76.01 76.01 49.05 65.34 63.22 59.20 51.79
OPT-6.7b prompt 0.2M 64.94 28.84 89.90 10.88 18.80 42.67 75.63 75.63 49.13 65.96 63.77 59.62 51.98
OPT-6.7b prompt 0.4M 64.60 28.50 89.70 11.52 18.76 42.62 76.12 76.12 48.82 65.90 63.54 59.42 51.94
OPT-6.7b IDP 0.6M 64.18 28.67 90.40 11.96 19.05 42.85 76.17 76.17 49.03 66.82 63.22 59.69 52.17

In Table 3 we compare the performance of IDP with standard prompting in quantization settings.
As observed with green highlight, this simple extension outperforms standard prompting in nearly
all settings. Additionally, when we examined the link between the method’s parameter size and
performance, as detailed in Figure 4. Our findings show that IDP is much more efficient than LoRA
for compression recovery. For example, when fine-tuning the Llama-7b model with QPTQ settings,
LoRA’s parameters range between 4.4 to 8.9 million, while IDP uses only around 0.8 million, leading
to substantial space savings of 81% to 91% — a notable 20-fold reduction.
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Figure 4: GPTQ models’ average accuracy across nine
tasks vs. number of trainable parameters.

Additionally, prompting tends to have a
faster inference speed. Basic inference test-
ing shows prompting incurs at most 0.37s
versus LoRA’s 0.62s for an input batch of
16 and a sequence length of 1024 – this is a
substantial 60% improvement in speed.
Despite the smaller size, IDP generally
sees a modest average improvement of 1%
across the nine tasks evaluated. For further
details on the performance and parameter
size, refer to Table 1 and Figure 4, and our
appendix provides a detailed explanation
of how the total number of parameters was
calculated for both LoRA and IDP.

Finally, we underscore the robustness of
IDP’s performance, irrespective of prompt
in Figure 6. This figure reveals a variance
of less than 1% in average accuracy per-
formance, yet with a 5-fold reduction in

token size. Notably, even with a modest average of 20 tokens, IDP adeptly facilitates performance
recovery, surpassing the compressed baseline. This evidence positions IDP as not only efficient in
parameter utilization but also as a resilient mechanism for enhancing performance in the wake of
model compression. For further ablation studies on IDP, please refer to our Appendix.

5 Conjectures Analysis and Abalation Studies

5.1 Evaluating Knowledge Forgetfulness and Displacement

We employed a detailed visualization of the layer-wise attention and activation matrices to validate
our hypothesis. Opting for cosine similarity over magnitude differences as our analytical tool, we
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Figure 5: Cosine similarity compares the self-attention and token activation at each layer to an
uncompressed baseline using different fine-tuning techniques. A higher cosine score means it’s closer
to the baseline.
aim to understand the distribution differences rather than magnitude. Our findings are presented in
Figures 5, and 6, leading to several key observations:
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Figure 6: This figure illustrates the average per-
formance over nine tasks using IDP. Results show
IDP maintains relatively stable performance work-
ing with various average prompt sizes.

1 When compared to LoRA, the attention mech-
anism of both prompting/IDP markedly diverges
from the baseline, hinting at a potential contex-
tual redirection. Conversely, the activation pat-
terns echo similarities with LoRA. Given that
LoRA incorporates a residual network at ev-
ery layer to maintain congruity and prompting
only at the self-attention, this semblance is un-
expected.

2 These observations imply that prompting/IDP
can tap into latent knowledge within the model.
This is further supported by the data in Table 1
and Table 2, which show a propensity of prompt-
ing/IDP for tasks involving world knowledge.
These tasks rely on the model’s internal knowl-
edge base, reinforcing our conclusion about the
efficacy of prompting/IDP in accessing embed-
ded information.

3 Additionally, IDP demonstrates remarkable
consistency in information retrieval. As evidenced in Figure 6, it maintains stable performance across
a range of prompt sizes. This suggests that even with fewer tokens, knowledge rerouting via IDP
remains effective, opening avenues for future optimizations and refinements in its application.

4 Finally, our analysis of prefix-tuning indicates its tendency to align with the original attention
patterns of the model. However, as shown in Figure 5, its activation patterns significantly deviate,
hinting at a potential shortfall in redirecting knowledge.

These insights strongly endorse the notion of “redirection" as the more effective mechanism for
recovering performance in compressed models.

6 Conclusion and Limitations

This study examines the impact of compression on LLMs and explores mitigation strategies through
two hypotheses: knowledge forgotten and knowledge displaced. We focus on parameter-efficient
methods like LoRA and introduce Inference-time Dynamic Prompting (IDP), a lightweight enhance-
ment to traditional prompting. Our results show that IDP and prompting perform on par or better than
LoRA while being smaller and faster. Visualization of embeddings indicates that instruction-based
redirection effectively recovers lost knowledge. However, IDP requires pre-generated KV caches and
is limited to prompts with high initial performance.
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A Fine-tuning and Hyper parameter settings

Baseline Methods: To recover performance, we employed three methodologies: prompt-tuning
[13], prefix-tuning [14], and LoRA [8]. For consistent benchmarks across these techniques, we
establish the following fine-tuning criteria: 1) The aggregate count of training tokens is limited to
40,960,000 tokens. Our decision on the total token count draws inspiration from [23]. 2) In alignment
with [5], we use AdamW as our optimization algorithm. We choose a learning rate of 2e-4 with a
weight decay set at 1e-5. All three methods are then fine-tuned using compressed LLM following
the described settings with LLama-7b and OPT-6.7b. When fine-tune, we aim to keep the number
of parameters as low as possible to be more suitable for on-device deployment. This means for
input-side augmentation methods like Prompt/Prefix-tuning, we test with 26, 50 and 100 tokens
prompts; LoRA we tested with 2, 3 and 4 feature dimensions.

Fine-tuning Dataset: We calibrate each baseline methods on C4 [18] and Wikitext [15] and select
the results which maximize the test results. To maintain a controlled experimental space, our fine-
tuning of various baseline techniques is restricted to the identical dataset used initially to calibrate
our model compression.

Validation Tasks: To gauge the model’s ability in English comprehension , we identify a suite of
evaluation tasks that encapsulate three fundamental domains of cognition: world knowledge, common
reasoning, and language understanding. Among the many available tasks, we distilled our focus to a
curated list of nine that we deemed most representative.

For the domain of world knowledge, our chosen evaluative tasks were ARC-challenge & ARC-easy
[3], SCIQ [21], WebQS [1], and TriviaQA [12]. Tapping into the breadth of language understanding

8



benchmarks, we centered our attention on Hellaswag [25], Lambada [16], and WinoGrande [19].
Lastly, for common reasoning, we identified PIQA [2] as our touchstone. Notably, all the tasks we
adopted are structured in a multiple-choice format.

B Our Conjectures

The primary drawback (of most) current advancements in LLM compression is their heavy reliance on
perplexity as their primary metric to evaluate performance claims. Perplexity is a statistical measure
of how confident a model is at predicting a text sample by quantifying the model’s uncertainty, where
lower perplexity is better. Recent work by (author?) [11] has demonstrated this strategy’s flaw
by showcasing significant performance degeneration on various LLMs at 50% sparsity yet having
relatively good perplexity measures. This performance-to-perplexity gap necessitates comprehensive
downstream tasks to validate the model’s performance.

B.1 Forgotten, or Displaced? A Two-Way Argument

• Forgetfulness implies that the compression process irrevocably eliminates certain knowledge.
Integrating an external knowledge source becomes essential to recuperate performance, as
this process essentially replenishes the lost information.

• Displacement posits that the inherent knowledge within these models is not irrevocably
erased but instead shifted internally, leading to the inefficacy of the established inference
pathways. In this context, input-side augmentation or instructions are needed to “redi-
rect" the internal self-attention. This enables the re-engagement of the pre-existing, albeit
repositioned, knowledge in the compressed LLM, thereby aiding in the recuperation of its
performance.

We position LoRA [8] and prompting to correlate respectively with our hypothesis on “knowledge
forgotten" and “knowledge displaced." LoRA tackles “forgetfulness" by fundamentally altering the
model’s structure, specifically the weights in the self-attention and feedforward neural network (FFN)
layers, thereby reintegrating knowledge lost due to compression. Prompting, in contrast, operates
by subtly influencing the self-attention mechanism without changing the underlying weights, thus
redirecting the model’s existing but less accessible knowledge.

C Abalation Studies

Table 4: This table includes results for our Inference-time Dynamic Prompting strategy. To illustrate
its effectiveness, we also include the results of the individual prompts used along with naive soft-
prompts concatenation. 26 and 100 refers to the number of tokens in our prompts.

Model arcE arcC sciq webqs triviaqa World piqa Common hellaswag lambada winogrande Language Average
OPT-6.7b/26 64.94 28.84 89.90 10.88 18.80 42.67 75.63 75.63 49.13 65.96 63.77 59.62 51.98
OPT-6.7b/100 64.02 27.90 89.50 11.32 18.37 42.22 76.39 76.39 48.81 65.42 63.22 59.15 51.66
OPT-6.7b/Concat 63.80 28.50 89.40 12.30 19.55 42.71 75.79 75.79 48.92 64.72 63.85 59.16 51.87
OPT-6.7b/IDP 64.18 28.67 90.40 11.96 19.05 42.85 76.17 76.17 49.03 66.82 63.22 59.69 52.17
Llama-7b/26 71.97 38.40 92.90 20.47 33.20 51.39 75.84 75.84 53.75 69.45 67.17 63.46 58.13
Llama-7b/100 71.51 38.31 92.10 21.11 34.56 51.52 75.84 75.84 53.92 69.69 68.75 64.12 58.42
Llama-7b/Concat 71.17 37.80 92.30 16.88 33.84 50.40 74.92 74.92 53.34 67.18 66.46 62.33 57.10
Llama-7b/IDP 71.63 38.65 92.60 21.60 33.84 51.66 76.01 76.01 53.97 69.67 68.98 64.21 58.55

We used IDP strategy with two distinct prompts of differing lengths, both trained using the same
dataset to streamline our experimental parameters. We subsequently evaluated against our task
benchmark, with the comprehensive findings cataloged in Table 4. In a complementary visual aid,
Figure 7 highlights the percentage differences in performance against the baseline quantized models,
providing an at-a-glance understanding of the performance gains across individual tasks.

Our analysis showed that IDP subtly enhances average accuracy. This is evident in our results with
OPT and Llama models, where IDP showed a modest improvement of 0.5% and 0.42%, respectively.
This contrasted with the outcomes of basic prompt concatenation, which yielded only a 0.16%
increase and even a decrease of −1.03%. While these findings, detailed in Table 4, might not be
groundbreaking, they highlight the potential of zero-shot input-to-prompt matching for compression
recovery for various knowledge domains.
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Figure 7: This graph shows the percentage performance improvement using two prompts at various
lengths compared to a 3-bit quantized baseline for the OPT and LLama models. We’ve also showcased
results from our IDP method, which selects prompts dynamically using the same two prompts. Small
and Large correspond to 26 and 100 tokens respectively.

Further, in our examination of quantized foundation models, as shown in Figure 7, we noted areas
where IDP demonstrated a slight but consistent superiority. Specifically, OPT models showed this
incremental benefit in tasks such as Sciq, Triviqa, and Webqs, all falling within the world knowledge
domain. Similarly, the Llama models exhibited slight improvements in tasks like Webqs, Arc, and
Winogrand, with gains ranging between 1%-1.5%.
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper poses no societal risk.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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