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Abstract
Argument mining, dealing with the classifica-001
tion of text based on inference and information,002
denotes a challenging analytical task in the rich003
context of Twitter (now X), a key platform for004
online discourse and exchange. Thereby, Twit-005
ter offers a diverse repository of short messages006
bearing on both of these elements. For text007
classification, transformer approaches, particu-008
larly BERT, offer state-of-the-art solutions. Our009
study delves into optimizing the embeddings010
of the understudied BERTweet transformer for011
argument mining on Twitter and broader gener-012
alization across topics. We explore the impact013
of pre-classification fine-tuning by aligning014
similar manifestations of inference and infor-015
mation while contrasting dissimilar instances.016
Using the TACO dataset, our approach aug-017
ments tweets for optimizing BERTweet in a018
Siamese network, strongly improving classifi-019
cation and cross-topic generalization compared020
to standard methods. Overall, we contribute the021
transformer WRAPresentations and classifier022
WRAP, scoring 86.62% F1 for inference detec-023
tion, 86.30% for information recognition, and024
75.29% across four combinations of these ele-025
ments, to enhance inference and information-026
driven argument mining on Twitter.027

1 Introduction028

Twitter (now X) is a global hub for opinions, news029

and information and serves as a primary data source030

for research, which had already recognized the031

value of its user-generated content prior to its tran-032

sition to X (Kwak et al., 2010; Boyd et al., 2010;033

Castillo et al., 2011).034

Argument Mining is primarily about text clas-035

sification, considering the structure of arguments,036

encompassing both informative and inferential ele-037

ments (Palau and Moens, 2009; Peldszus and Stede,038

2013; Lawrence and Reed, 2019).039

For text classification, the pre-trained trans-040

former BERT (Devlin et al., 2019) and its numer-041

ous domain-specific derivatives, such as BERTweet042

(Nguyen et al., 2020), achieve state-of-the-art per- 043

formance (Houlsby et al., 2019; Sun et al., 2019) 044

with a soft-max classification head added as addi- 045

tional layers. During the fine-tuning process, such 046

transformers are used to generate universal text 047

representations serving as contextualized language 048

features to inform the head, which in turn are fur- 049

ther specialized for the actual downstream task. 050

Thereby, the field of argument mining has also 051

witnessed the benefits of transformer models like 052

BERT for cross-topic classification (Bhatti et al., 053

2021; Thorn Jakobsen et al., 2021) and argument 054

similarity (Reimers and Gurevych, 2019; Reimers 055

et al., 2019; Thakur et al., 2021) on the AFS (Misra 056

et al., 2016), UKP (Stab et al., 2018), and IBM- 057

Debater (Shnarch et al., 2018) corpus. 058

Besides the common methods of adjusting the in- 059

task performance through parameter tweaks (Lan 060

et al., 2019; You et al., 2019) or incorporating 061

augmentations (Kaushik et al., 2019; Anaby-Tavor 062

et al., 2019; Feng et al., 2021; Thakur et al., 2021), 063

multi-task learning is recommended as an addi- 064

tional fine-tuning strategy (Sun et al., 2019; Stab 065

et al., 2018). Thereby, multi-task learning denotes 066

a prior phase of fine-tuning representations on aux- 067

iliary tasks such as clustering or semantic similarity 068

before proceeding to the actual classification step 069

and is argued to effectively reduce a model’s sen- 070

sitivity to spurious correlations (Liu et al., 2019; 071

Tu et al., 2020), which in turn is key to cross-topic 072

argument mining (Thorn Jakobsen et al., 2021). 073

We believe that acquiring robust and meaning- 074

ful representations, in the sense of perceiving the 075

constituent elements of arguments, prior to classifi- 076

cation is particularly useful for the nuanced task of 077

argument mining when applied to diverse topics. 078

Generalizability in terms of cross-topic classifi- 079

cation is crucial for practical argument mining in 080

realistic scenarios, both in general research (Dax- 081

enberger et al., 2017; Stab et al., 2018) and specifi- 082

cally on Twitter (Schaefer and Stede, 2021), neces- 083
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sitating models to focus on argument components084

while avoiding reliance on spurious correlations085

like topic words (Thorn Jakobsen et al., 2021).086

In this paper, we pioneer the optimization of the087

understudied transformer BERTweet for argument088

mining on Twitter. Thereby, we refine its linguistic089

knowledge of tweets within the embedding space,090

specializing BERTweet to better encode inference091

and information across diverse topics.092

Utilizing the TACO dataset (Feger and Di-093

etze, 2023), offering initial baseline evaluations of094

BERTweet for argument mining on Twitter, we op-095

timize the model’s representation layers in a multi-096

task approach by accentuating the contrast between097

inference and information while centering similar098

manifestations before the actual classification step.099

We achieve this by configuring a Siamese100

BERTweet network using SBERT (Reimers and101

Gurevych, 2019). Applying contrastive loss (Had-102

sell et al., 2006) and text augmentation tech-103

niques (Wei and Zou, 2019), this network teaches104

BERTweet to cluster tweet embeddings according105

to their respective roles in argument mining, that106

is, to generally encode the presence or absence of107

both inference and information in the final repre-108

sentations for classification.109

Utilizing BERTweet’s enhanced embeddings, it110

excels in both closed and cross-topic argument min-111

ing on Twitter, outperforming standard methods112

(Schaefer and Stede, 2021) in this domain.113

Towards inference and information-driven argu-114

ment mining on Twitter, we contribute1:115

• A pre-classification fine-tuning approach for116

BERTweet, enhancing its capacity to encode117

information and inference for closed and118

cross-topic argument mining on Twitter.119

• An augmentation strategy to reduce spurious120

entity and topic signals while increasing sen-121

tence variability in tweets.122

• WRAPresentations2, an enhanced BERTweet123

embedding model driven by inference and in-124

formation, achieved through contrastive opti-125

mization on augmented TACO tweets.126

• WRAP3, our tweet argument classifier leverag-127

ing WRAPresentations for argument mining128

across diverse topics on Twitter.129

1Code: anonymous.4open.science/r/TACO-Fiesta
2huggingface.co/TomatenMarc/WRAPresentations
3huggingface.co/TomatenMarc/WRAP

2 Twitter Arguments from Conversations 130

Our primary dataset, TACO (Feger and Dietze, 131

2023), encompasses 1,734 tweets from 200 en- 132

tire conversations spanning six topics: #Abortion 133

(25.9%), #Brexit (29.0%), #GOT (11.0%), #LOTR- 134

ROP (12.1%), #SquidGame (12.7%), and #Twit- 135

terTakeover (9.3%). So far, it stands as the sole 136

publicly available labeled tweet dataset tailored 137

for conversation-level inference and information 138

extraction, strategically addressing reply-pattern 139

nuances inherent to their conversational contexts. 140

Annotations were conducted by six experts ac- 141

cording to the Cambridge Dictionary4 definitions, 142

differentiating inference as a guess that you make 143

or an opinion that you form based on the informa- 144

tion that you have and information as facts or de- 145

tails about a person, company, product, etc.. With 146

a robust agreement of 0.718 Krippendorff’s α, four 147

classes emerged of these elements: Reason (infer- 148

ence and information), Statement (inference with- 149

out information), Notification (information without 150

inference), and None (neither element). 151

Table 1 details the class distribution of TACO. 152

Reason Statement Notification None
581 (33.50%) 284 (16.38%) 500 (28.84%) 369 (21.28%)

Table 1: The class distribution of tweets in TACO.

On TACO, Vanilla BERTweet serves as the best 153

performing baseline, excelling with 74.45% F1 for 154

Reason, 56.66% F1 for Statement, 78.30% F1 for 155

Notification, and 80.56% F1 for None after fine- 156

tuning on these classes (Feger and Dietze, 2023). 157

3 Inference and Information-Driven 158

Representations for Mining Arguments 159

In text classification, transformers like BERTweet 160

use the final hidden state of the first token
[
CLS

]
161

as the sequence representation. Classification in- 162

volves a soft-max classifier added as an extension 163

after the final representation layer, determining la- 164

bel probabilities for a tweet t by evaluating the 165

likelihood of assigning a label y as: 166

p(y|h) = softmax(Ŵh) (1) 167

where, Ŵ signifies the task-specific weights 168

of the classification head, and h represents the 169

final representation of t obtained with the trans- 170

former. Achieved through pooling an entire se- 171

quence representation via
[
CLS

]
, h is expressed as 172

4dictionary.cambridge.org
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GW (t) = h, where the transformer is considered173

an independent function GW (t) with its distinct174

weights W , taking t as input. For the specific clas-175

sification task, both Ŵ and W are jointly fine-tuned176

by maximizing the log-probability of the correct177

label, where h implicitly undergoes optimization.178

For optimizing class assignments on TACO, we179

emphasize the impact of specializing h for encod-180

ing inference and information before classification.181

Hence, we consider the pre-classification special-182

ization of an embedding h as a contrastive problem183

of semantic similarity, where tweets with similar184

expressions of the text dimensions inference and in-185

formation are brought closer together, while those186

lacking in similarity are positioned farther apart.187

3.1 Embedding Inference and Information188

We measure the semantic similarity between two189

tweet representations, denoted as h1 and h2, using190

cosine distance:191

D(h1, h2) = 1− cos(h1, h2) ∈ [0, 2] (2)192

a standard metric (Mikolov et al., 2013; Kim, 2014;193

Tai et al., 2015; Chen and He, 2020) for assessing194

text vector similarity. D(h1, h2) reflects complete195

equivalence at 0, orthogonality at 1, and absolute196

dissimilarity at 2. Mainly defined by the cosine197

similarity cos(h1, h2) ∈ [−1, 1], where −1 rep-198

resents complete dissimilarity, 1 indicates equiva-199

lence, and values closer to 0 suggest orthogonality,200

this distance is length-independent and primarily201

influenced by the angle between two embeddings.202

Building on this circumstance, we assume that203

the actual representation h of a tweet can be nor-204

malized and lies on the n-sphere:205

S(n) = {h ∈ Rn+1 : ∥h∥ = 1} (3)206

Transferred to the Cartesian nature of arguments207

h = ⟨inference, information⟩, we consider208

their representations to live on the unit sphere209

h ∈ S(1) (Wang and Isola, 2020; Khosla et al.,210

2020; Chen and He, 2020). In h, 1 signifies full211

presence, and −1 implies total absence of a com-212

ponent. Consequently, an ideal class center on213

the unit sphere heads towards the pole ⟨1, 1⟩ for214

Reason, ⟨1,−1⟩ for Statement, ⟨−1, 1⟩ for Noti-215

fication, and ⟨−1,−1⟩ for None. A breakdown216

of this is shown in the upper part of Figure 1, ac-217

knowledging the realistic expectation that the ac-218

tual embeddings may differ from the ideals while219

the objective is to get them closer to them.220

3.2 Contrastive Siamese Network 221

BERTweet

Pooling

pull

push

Pooling

BERTweet

Figure 1: Visualization of the employed Siamese
BERTweet architecture, with parameterized co-
sine distance DW (h1, h2) and contrastive loss
L(DW , h1, h2, Y,m). Atop this architecture, the Carte-
sian embedding space for an argument representation
h = ⟨inference, information⟩ is presented as target.

To address semantic similarity, a prevalent strat- 222

egy involves enhancing representations through 223

learning a metric (Chopra et al., 2005; Xing et al., 224

2002; Hadsell et al., 2006). Precisely, metric learn- 225

ing entails the implicit acquisition of a metric 226

DW (h1, h2) parameterized by the weights W of 227

the representation model GW (Chopra et al., 2005). 228

We seek to find W such that the target metric: 229

DW (t1, t2) = 1− cos(GW (t1), GW (t2)) (4) 230

is smaller if t1, t2 are semantically similar, and 231

higher if not. 232

By utilizing the identical embedding function 233

GW (t) (BERTweet) with shared weights W to 234

learn the metric, our architecture is referred to as 235

a Siamese network (Bromley et al., 1993; Chopra 236

et al., 2005). Similar and dissimilar tweet pairs are 237

provided as input to this network. To update the 238

weights and optimize the network’s performance, a 239

loss function is applied on top of this architecture. 240

To attain the goal of increasing the differenti- 241

ation between similar and dissimilar pairs, it is 242

suggested to employ the contrastive loss (Chopra 243

et al., 2005; Hadsell et al., 2006): 244
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L(DW ,h1, h2, Y,m) =245

(Y )
1

2
Dw(h1, h2)

2+ (5)246

(1− Y )
1

2
{max(0,m−Dw(h1, h2))}2247

where, h1, h2 are two representations248

(GW (ti) = hi) of different tweets t1, t2 to249

be optimized given DW (h1, h2) as metric. Y de-250

notes the binary label indicating if t1, t2 are similar251

(Y = 1) or contrasting (Y = 0). Furthermore, a252

margin value m > 0 is introduced as the minimal253

distance between two contrasting tweets.254

When establishing m, our objective was to255

set DW (h1, h2) in a way that maximizes con-256

trast between dissimilar pairs while avoiding over-257

estimation of their true distance. Focusing on258

DW (h1, h2) ∈ [0, 1], representing positive simi-259

larity, we selected m = 0.5. This choice intuitively260

represents the minimum threshold for high similar-261

ity, yielding optimal results in our study.262

With m = 0.5 we ensure that even if a represen-263

tation closely matches an ideal center but is labeled264

as dissimilar, the optimized representation pushes265

60◦ away and into an adjacent quadrant.266

3.3 Augmentation of TACO267

In the initial phase of processing TACO data, we268

generated a unique copy for each tweet through269

augmentation, denoted as A-TACO. Employing270

EDA (Easy Data Augmentation) techniques (Wei271

and Zou, 2019) of (1) synonym replacement, ran-272

dom (2) insertion, (3) swap, and (4) deletion, this273

procedure segregates our total ground truth into274

A-TACO, for optimization the embedding space of275

BERTweet prior to classification, and TACO, des-276

ignated for fine-tuning and evaluating classifiers.277

Maintaining independence between optimization278

and evaluation data is crucial to avoid spurious cor-279

relations (Thorn Jakobsen et al., 2021) and ensure280

that the data includes essential signals for class281

representations, thus enabling broad generalization282

across varying sentence structures and cross-topic283

evaluations for classifiers.284

Following technique (1), we utilized spaCy5 to285

identify all entities and specific words related to the286

six topics in the TACO dataset. Subsequently, we287

replace these words with the
[
MASK

]
token, a288

placeholder commonly used by BERT-like models,289

including BERTweet, for predicting missing words.290

5https://spacy.io

In particular, we utilized BERTweet as a fill- 291

mask model to generate new tokens for those 292

masked in the input sequence (Kumar et al., 2020). 293

To introduce word choice variability while mini- 294

mizing semantic changes, random replacement of 295

10-90% of all words is applied using techniques (2- 296

4). The optimal coherence, indicated by an average 297

cosine distance of ~0.08 between the
[
CLS

]
to- 298

kens of tweets and augmentations, is observed at a 299

10% replacement rate, maintaining overall seman- 300

tic consistency while increasing sentence variabil- 301

ity. Again, step 1 is applied to avoid reintroducing 302

topic words. An example of the resulting tweet 303

augmentation is shown in Table 2. 304

TACO
Elon Musk ready with ’Plan B’ if Twitter rejects his
offer Read @USER Story | HTTPURL #ElonMusk
#ElonMuskTwitter #TwitterTakeover HTTPURL

A-TACO
Wenger ready with ’Plan B’ as Wenger rejects his
offer - HTTPURL via @USER

Table 2: An augmented Notification demonstrating en-
tity replacement, topic word removal related to #Twit-
terTakeover, and altered sentence structure for enhanced
anonymity, particularly at the end.

4 Experimental Setup 305

This section outlines the protocols used for eval- 306

uating and optimizing BERTweet’s embedding 307

space with A-TACO and follow-up classification 308

on TACO. Our primary objective is to acquire en- 309

hanced semantic similarity, with a specific empha- 310

sis on overall F1, while considering recall for gen- 311

eralizability to unseen topics. 312

4.1 Models 313

In our approach, it is important to differentiate be- 314

tween the pre-classification fine-tuning for special- 315

izing embeddings and their subsequent fine-tuning 316

tailored for mining arguments on TACO. 317

For both tasks, we utilize the Vanilla BERTweet 318

model6, with 12 transformer blocks and 12 self- 319

attention heads processing sequences of up to 128 320

tokens, consistent with the baseline evaluation 321

model of TACO (Feger and Dietze, 2023). 322

The embedding model BERTweet, enhanced 323

through the application of contrastive loss within 324

the Siamese network using A-TACO, is referred to 325

as WRAPresentations. 326

Distinct from our multi-task approach, we in- 327

troduce Augmented BERTweet, which undergoes 328

6huggingface.co/vinai/bertweet-base
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pre-classification fine-tuning using the same tweets329

of A-TACO as WRAPresentations but directly opti-330

mizes p(y|h) through standard cross-entropy loss.331

For classification on TACO, we utilize TF-IDF332

representations, where word frequency is widely333

recognized as a feature in strong baselines for argu-334

ment mining on Twitter, which are Support Vector335

Machine (SVM) (Addawood and Bashir, 2016), Lo-336

gistic Regression (LR) (Bosc et al., 2016; Dusmanu337

et al., 2017), and Random Forest (RF) (Dusmanu338

et al., 2017). These models go beyond consider-339

ing individual words by incorporating tweet-related340

features like emoji, URL, and hashtag frequencies.341

Despite this, their potential for cross-topic general-342

izability remains unexplored.343

For each classifier, we evaluate the average class344

length for classification to examine linguistic fea-345

ture acquisition.346

4.2 Pre-Classification Fine-Tuning347

To enhance BERTweet’s embeddings, we chose348

TACO’s golden tweets with flawless annotation349

agreement, accounting for 70.30% of all tweets,350

with class distribution remaining largely consistent.351

For the final evaluation, we employ original352

golden tweets for #Abortion but augmentations of353

golden tweets for the remaining five topics during354

fine-tuning. #Abortion is chosen as the holdout355

topic due to its highest dissimilarity when com-356

pared to the remaining topics, posing a greater357

challenge for classification (Thorn Jakobsen et al.,358

2021). This provides initial insights into cross-359

topic generalization and the efficacy of fine-tuning360

with augmentations and predicting given real361

tweets. Pairs are formed for all tweet combina-362

tions, denoting tweets of the same class as similar363

Y = 1 and those of different classes as dissimilar364

Y = 0, yielding more dissimilar than similar pairs.365

For the final validation set, 86,142 pairs were366

generated. The optimization data, divided into fine-367

tuning and test sets with a stratified 60/40 ratio,368

yielded 307,470 and 136,530 candidate pairs, re-369

spectively. To ensure a balance between similar370

and dissimilar pairs, we chose the largest possible371

set such that both similar and dissimilar pairs are372

equally represented (Bromley et al., 1993; Chopra373

et al., 2005) while maintaining all tweets of the374

respective splits.375

In total, 162,064 pairs were obtained for fine-376

tuning, 71,812 for testing, and 53,560 for final vali-377

dation of the enhanced BERTweet representations378

prior to classification.379

For all transformer models, we performed fine- 380

tuning over 5 epochs using an A100 GPU with 381

40GB of memory, a batch size of 32, and a learning 382

rate of 4e−5, which proved to be optimal for all 383

models. The Siamese BERTweet network is im- 384

plemented using SBERT (Reimers and Gurevych, 385

2019) as depicted in the lower part of Figure 1. 386

Additionally, we performed fine-tuning on 387

WRAPresentations using both
[
CLS

]
pooling, 388

later employed for classification, and
[
MEAN

]
389

pooling, which is recommended for improved sen- 390

tence embeddings (Reimers and Gurevych, 2019). 391

4.3 Argument Mining on TACO 392

We evaluate the practicality of BERTweet’s special- 393

ized embeddings on TACO, given the three argu- 394

ment mining tasks of (1) inference detection, (2) 395

information recognition, and (3) classification of 396

all four tweet classes, with a concurrent aim for 397

cross-topic generalization. 398

For task (3), we trained a feed-forward neural 399

network with two linear layers on top of each em- 400

bedding model, undergoing 5 additional fine-tuning 401

epochs with the best performing parameters hav- 402

ing a learning rate of 4e−5 and batch size of 8, 403

corresponding to the best model and parameters re- 404

ported for TACO (Feger and Dietze, 2023). Again, 405

we used a single A100 GPU with 40GB of mem- 406

ory. Thereby, the results for tasks (1) and (2) are 407

aggregations specific to class elements of task (3) 408

predictions, focusing on inference or information. 409

Our classifier evaluation uses two distinct config- 410

urations to examine the impact of specialized em- 411

beddings and their adaptability to additional class 412

adjustments (Peters et al., 2019). 413

In the first setup (Frozen), freezing embeddings 414

allowed us to assess the benefits attributable to pre- 415

classification fine-tuning. In the second setup (Dy- 416

namic), embeddings underwent further fine-tuning 417

during classification head optimization, where we 418

assessed their adaptability to task-specific learning. 419

Success in this context signifies a model’s ability 420

to leverage knowledge encoded in fine-tuned em- 421

beddings before classification and adapt them to 422

the classes specific to inference and information. 423

We employed a 6-fold shuffled cross-validation, 424

maintaining consistent splits for all classifiers 425

across the six topics of TACO, to establish an 426

upper-bound (Thorn Jakobsen et al., 2021). This 427

closed-topic validation was then compared with 428

cross-topic validation, where each of the six topics 429

served as a unique testing set, and the remaining 430
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five topics were utilized for fine-tuning (Bosc et al.,431

2016; Daxenberger et al., 2017; Stab et al., 2018).432

Lower performance is expected in cross-topic vali-433

dation, as classifiers are exposed to unseen topics.434

5 Results435

In this section, we assess the impact of the special-436

ized embeddings for closed and cross-topic classi-437

fication on TACO.438

5.1 Results Pre-Classification Fine-Tuning439

Model P R F1
Vanilla BERTweet-

[
CLS

]
50.00 100.00 66.67

Augmented BERTweet-
[
CLS

]
65.69 86.66 74.73

WRAPresentations-
[
CLS

]
66.00 84.32 74.04

WRAPresentations-
[
MEAN

]
63.05 88.91 73.78

Table 3: Evaluating within-class similarity and between-
class separability of fine-tuned

[
CLS

]
representations

on A-TACO towards TACO’s holdout topic #Abortion.
WRAPresentations, with

[
MEAN

]
pooling in fine-

tuning, show pessimistic scores but achieve a higher
F1 score of 74.07% if tested with

[
MEAN

]
pooling.

After pre-classification fine-tuning to enhance440

semantic similarity, we evaluate the optimized em-441

bedding models for classifying tweet pairs as simi-442

lar or dissimilar given DW (t1, t2).443

All fine-tuning strategies outperformed Vanilla444

BERTweet in terms of F1, compare Table 3.445

We excluded WRAPresentations with
[
CLS

]
446

pooling for follow-up classification due to the ab-447

sence of discernible benefits in F1 compared to448

Augmented BERTweet and WRAPresentations us-449

ing
[
MEAN

]
pooling for pre-classification fine-450

tuning, also showing a higher recall at 88.91%.451

Hence, we will refer to WRAPresentations-452 [
MEAN

]
as WRAPresentations.453

In comparing Augmented BERTweet and454

WRAPresentations, both models show similar over-455

all performance in terms of F1, but diverge in their456

emphasis on precision and recall. The results sug-457

gest that contrastive fine-tuning of representations458

is not inherently superior to directly optimizing459

p(y|h) with augmented tweets. However, this strat-460

egy enhances recall, with further distinctions ex-461

pected in downstream task evaluations.462

Nonetheless, we assume that the enhanced re-463

call at this stage is already a first indicator for464

later generalizations of classifications across top-465

ics. Additionally, we confirmed the effectiveness of466

pre-classification fine-tuning with A-TACO when467

applied to real tweets from an unseen topic.468

Furthermore, we visually explored BERTweet’s 469

embedding space before and after fine-tuning, uti- 470

lizing
[
CLS

]
representations of all original tweets 471

in TACO, as depicted in Figure 2(a). 472

Applying t-SNE for dimensional reduction 473

(van der Maaten and Hinton, 2008; Jawahar et al., 474

2019), comparing Vanilla BERTweet with WRAP- 475

resentations showed enhanced class quadrant den- 476

sity, compare Figure 2(a), suggesting an improve- 477

ment of class semantics given inference and infor- 478

mation for a majority of tweets. Similar patterns, 479

albeit at smaller numbers, are observed for Aug- 480

mented BERTweet, see Figure 2(b). 481

Numerically, WRAPresentations improved 482

tweet order by 38% for Reason, 37% for Statement, 483

and 41% for Notification over Vanilla BERTweet. 484

Despite a -2% decrease in the None class quadrant, 485

it remains predominant, as shown in Figure 2(b). 486

Augmented BERTweet closely matches WRAP- 487

resentations, excelling by 6% for None but lagging 488

behind by -6% for Reason, -12% for Statement and 489

-13% for Notification. 490

5.2 Results Classification and Generalization 491

For our comparisons, we continue to present the 492

outcomes of the Random Forest classifier as the 493

most effective baseline and the average class length 494

as a minimal-performance indicator. Furthermore, 495

for publication, we refer to the classifier based on 496

WRAPresentations as WRAP, while maintaining 497

the term WRAPresentations for consistency. 498

When turning to the closed-topic validation, 499

WRAPresentations outperforms all classifiers ex- 500

cept task (1), where dynamic embeddings in Aug- 501

mented BERTweet exhibit performance nearly 502

equivalent, as demonstrated in the upper half of 503

Table 4. Quantitatively, WRAPresentations yields 504

86.88% F1 for task (1), 81.54% F1 for task (2), 505

and 71.07% F1 for task (3) when frozen. Dynami- 506

cally optimizing embeddings, WRAPresentations 507

achieves 86.62% F1 for task (1), 86.30% F1 for 508

task (2), and 75.29% F1 for task (3). 509

Shifting our attention to the more demanding 510

task of cross-topic validation, assessing a classi- 511

fier’s ability to generalize to unseen topics, WRAP- 512

resentations demonstrates superior performance 513

over all evaluations, thereby achieving 86.83% F1 514

for task (1), 81.54% F1 for task (2), and 70.93% 515

F1 for task (3) when frozen. With dynamically ad- 516

justed embeddings, it achieves 86.27% F1 for task 517

(1), 84.90% F1 for task (2), and 73.54% F1 for task 518

(3), compare lower half of Table 4. 519
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(b) Distribution of classes within the projected quadrants of the expected ⟨inference, information⟩ space.

Figure 2: Investigation on the impact of BERTweet’s fine-tuning for the transfer of class semantics onto the expected
⟨inference, information⟩ space in terms of the

[
CLS

]
tokens for tweet classification. Considering the classes,

(a) highlights the tightening of tweet embeddings towards their respective ideal class poles. Considering the
distribution of tweets, (b) emphasizes that each expected quadrant corresponds to the anticipated majority class.

Inference Information Multi-Class
Model Frozen Dynamic Frozen Dynamic Frozen Dynamic

Closed-Topic (6-fold) Validation
Length 62.34 71.47 38.26
RF + TF-IDF 76.12 80.56 55.65
Vanilla BERTweet 73.12 84.54 66.49 83.55 42.87 71.05
Augmented BERTweet 84.49 86.68 79.22 84.57 67.07 73.80
WRAPresentations 86.88 86.62 81.54 86.30 71.07 75.29

Cross-Topic (6-fold) Validation
Length 61.99 71.55 38.17
RF + TF-IDF 73.93 80.16 53.29
Vanilla BERTweet 70.28 83.15 66.15 82.22 39.00 68.12
Augmented BERTweet 84.20 84.25 79.38 83.31 66.41 69.99
WRAPresentations 86.83 86.27 81.54 84.90 70.93 73.54

Table 4: Macro F1 scores of each classifier for inference and information detection, and all four classes.
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Reason Statement Notification None
Model Frozen Dynamic Frozen Dynamic Frozen Dynamic Frozen Dynamic

Closed-Topic (6-fold) Validation
Length 61.68 20.19 14.47 56.72
RF + TF-IDF 69.35 17.30 63.35 72.62
Vanilla BERTweet 66.05 74.98 00.00 53.99 43.80 77.62 61.63 77.62
Augmented BERTweet 74.50 76.82 49.53 58.37 70.95 80.28 73.29 79.71
WRAPresentations 77.34 78.14 58.66 60.96 72.61 79.36 75.67 82.72

Cross-Topic (6-fold) Validation
Length 61.78 19.32 14.49 57.09
RF + TF-IDF 68.61 13.33 62.75 68.46
Vanilla BERTweet 63.57 73.15 00.00 47.40 35.79 74.92 56.64 77.01
Augmented BERTweet 75.18 75.10 46.34 51.74 71.61 75.71 72.50 77.42
WRAPresentations 77.13 77.05 57.62 58.33 73.05 78.45 75.91 80.33

Table 5: F1 scores of the classifiers for identifying the four classes used in inference and information detection.

Further, WRAPresentations clearly improved520

performance for Statement, the least common and521

most difficult class to predict when comparing the522

remaining classifiers. Thereby, all other classi-523

fiers perform below or slightly above chance agree-524

ment for closed-topic validation and generaliza-525

tion across topics for this class, where Vanilla526

BERTweet even achieved 00.00% F1 when frozen,527

showcasing the necessity for adjusting classifiers528

and embeddings to specific classes, see Table 5.529

6 Discussion530

WRAPresentations consistently outperforms all531

models, with the exception of a marginal -0.06% F1532

decrease compared to Augmented BERTweet with533

dynamic representations for task (1) of closed-topic534

evaluation, while totally excelling across topics.535

Augmented BERTweet performs stronger in de-536

tecting instances without inference, as demon-537

strated by the substantial 9.33% F1 increase for538

the Notification class with dynamic embeddings,539

see upper half of Table 5. Considering that tasks540

(1) and (2) are aggregations derived from the re-541

sults of task (3), WRAPresentations enhances the542

overall performance of task (3) for achieving the543

best results, prioritizing an improvement in task (2)544

while incurring a slight decrease in task (1).545

This effect emerges as further refinements for546

additional classification improvements can partially547

replace the enriched understanding of inference and548

information in tweets, exposing unconsidered class549

features during optimization of the head.550

However, examining WRAPresentations’ frozen551

states, superior in closed and cross-topic validation,552

underscores the advantages of our pre-classification553

fine-tuning focused on semantic similarity in tweets 554

for enhanced classification strength, see Table 4, 5. 555

Due to our multi-task fine-tuning approach, 556

BERTweet can employ more robust embeddings for 557

both classification scenarios, showcasing adaptabil- 558

ity and generalizability across all three argument 559

mining tasks on Twitter, including challenging in- 560

stances like identifying the Statement class. 561

7 Conclusion and Ongoing Work 562

Our pre-classification multi-task fine-tuning ap- 563

proach considerably improves the specification of 564

embeddings of BERTweet to encode diverse mani- 565

festations of inference and information, especially 566

supporting the classification of tweets in TACO. 567

BERTweet’s optimized embeddings, enhanced 568

through contrastively learning semantic similarity, 569

offer improved adaptability to actual class signals 570

and support cross-topic generalization when com- 571

pared to conventional argument mining on Twitter. 572

In this regard, we can successfully contribute 573

WRAPresentations, a contrastively optimized em- 574

bedding model, and the advanced classification 575

model WRAP for inference and information-driven 576

argument mining across diverse topics on Twitter. 577

We also provide grounds for assuming that the 578

augmentation of tweets constitutes a valuable asset 579

within this domain of research. 580

Given our results demonstrating successful pre- 581

classification fine-tuning with tweet augmentations 582

and strong performance on original tweets, we 583

pose the broader question of the necessity of using 584

tweets for argument mining on Twitter, exploring 585

whether tweet-like instances from other domains 586

alone are sufficient. 587
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Limitations593

For our work, we report the following limitations:594

The field of argument mining on Twitter is sub-595

ject to Twitter’s data regulations, which allow only596

the publication of tweet identifiers but not their text.597

This poses challenges to the reproducibility of re-598

search and the potential loss of data due to deleted599

tweets when retrieved via their identifiers through600

the Twitter API, which provides a limited 1,500601

free queries per month. However, for our study,602

we were able to obtain all preserved tweets from603

TACO by contacting the authors.604
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