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Abstract

Argument mining, dealing with the classifica-
tion of text based on inference and information,
denotes a challenging analytical task in the rich
context of Twitter (now X)), a key platform for
online discourse and exchange. Thereby, Twit-
ter offers a diverse repository of short messages
bearing on both of these elements. For text
classification, transformer approaches, particu-
larly BERT, offer state-of-the-art solutions. Our
study delves into optimizing the embeddings
of the understudied BERTweet transformer for
argument mining on Twitter and broader gener-
alization across topics. We explore the impact
of pre-classification fine-tuning by aligning
similar manifestations of inference and infor-
mation while contrasting dissimilar instances.
Using the TACO dataset, our approach aug-
ments tweets for optimizing BERTweet in a
Siamese network, strongly improving classifi-
cation and cross-topic generalization compared
to standard methods. Overall, we contribute the
transformer WRAPresentations and classifier
WRAP, scoring 86.62% F1 for inference detec-
tion, 86.30% for information recognition, and
75.29% across four combinations of these ele-
ments, to enhance inference and information-
driven argument mining on Twitter.

1 Introduction

Twitter (now X) is a global hub for opinions, news
and information and serves as a primary data source
for research, which had already recognized the
value of its user-generated content prior to its tran-
sition to X (Kwak et al., 2010; Boyd et al., 2010;
Castillo et al., 2011).

Argument Mining is primarily about text clas-
sification, considering the structure of arguments,
encompassing both informative and inferential ele-
ments (Palau and Moens, 2009; Peldszus and Stede,
2013; Lawrence and Reed, 2019).

For text classification, the pre-trained trans-
former BERT (Devlin et al., 2019) and its numer-
ous domain-specific derivatives, such as BERTweet

(Nguyen et al., 2020), achieve state-of-the-art per-
formance (Houlsby et al., 2019; Sun et al., 2019)
with a soft-max classification head added as addi-
tional layers. During the fine-tuning process, such
transformers are used to generate universal text
representations serving as contextualized language
features to inform the head, which in turn are fur-
ther specialized for the actual downstream task.

Thereby, the field of argument mining has also
witnessed the benefits of transformer models like
BERT for cross-topic classification (Bhatti et al.,
2021; Thorn Jakobsen et al., 2021) and argument
similarity (Reimers and Gurevych, 2019; Reimers
et al., 2019; Thakur et al., 2021) on the AFS (Misra
et al., 2016), UKP (Stab et al., 2018), and IBM-
Debater (Shnarch et al., 2018) corpus.

Besides the common methods of adjusting the in-
task performance through parameter tweaks (Lan
et al., 2019; You et al., 2019) or incorporating
augmentations (Kaushik et al., 2019; Anaby-Tavor
et al., 2019; Feng et al., 2021; Thakur et al., 2021),
multi-task learning is recommended as an addi-
tional fine-tuning strategy (Sun et al., 2019; Stab
et al., 2018). Thereby, multi-task learning denotes
a prior phase of fine-tuning representations on aux-
iliary tasks such as clustering or semantic similarity
before proceeding to the actual classification step
and is argued to effectively reduce a model’s sen-
sitivity to spurious correlations (Liu et al., 2019;
Tu et al., 2020), which in turn is key to cross-topic
argument mining (Thorn Jakobsen et al., 2021).

We believe that acquiring robust and meaning-
ful representations, in the sense of perceiving the
constituent elements of arguments, prior to classifi-
cation is particularly useful for the nuanced task of
argument mining when applied to diverse topics.

Generalizability in terms of cross-topic classifi-
cation is crucial for practical argument mining in
realistic scenarios, both in general research (Dax-
enberger et al., 2017; Stab et al., 2018) and specifi-
cally on Twitter (Schaefer and Stede, 2021), neces-



sitating models to focus on argument components
while avoiding reliance on spurious correlations
like topic words (Thorn Jakobsen et al., 2021).

In this paper, we pioneer the optimization of the
understudied transformer BERTweet for argument
mining on Twitter. Thereby, we refine its linguistic
knowledge of tweets within the embedding space,
specializing BERTweet to better encode inference
and information across diverse topics.

Utilizing the TACO dataset (Feger and Di-
etze, 2023), offering initial baseline evaluations of
BERTweet for argument mining on Twitter, we op-
timize the model’s representation layers in a multi-
task approach by accentuating the contrast between
inference and information while centering similar
manifestations before the actual classification step.

We achieve this by configuring a Siamese
BERTweet network using SBERT (Reimers and
Gurevych, 2019). Applying contrastive loss (Had-
sell et al., 2006) and text augmentation tech-
niques (Wei and Zou, 2019), this network teaches
BERTweet to cluster tweet embeddings according
to their respective roles in argument mining, that
is, to generally encode the presence or absence of
both inference and information in the final repre-
sentations for classification.

Utilizing BERTweet’s enhanced embeddings, it
excels in both closed and cross-topic argument min-
ing on Twitter, outperforming standard methods
(Schaefer and Stede, 2021) in this domain.

Towards inference and information-driven argu-
ment mining on Twitter, we contribute!:

* A pre-classification fine-tuning approach for
BERTweet, enhancing its capacity to encode
information and inference for closed and
cross-topic argument mining on Twitter.

* An augmentation strategy to reduce spurious
entity and topic signals while increasing sen-
tence variability in tweets.

» WRAPresentations?, an enhanced BERTweet
embedding model driven by inference and in-
formation, achieved through contrastive opti-
mization on augmented TACO tweets.

« WRAP?, our tweet argument classifier leverag-
ing WRAPresentations for argument mining
across diverse topics on Twitter.

!Code: anonymous.4open.science/r/TACO-Fiesta

*huggingface.co/TomatenMarc/WR APresentations
*huggingface.co/TomatenMarc/WRAP

2 Twitter Arguments from Conversations

Our primary dataset, TACO (Feger and Dietze,
2023), encompasses 1,734 tweets from 200 en-
tire conversations spanning six topics: #Abortion
(25.9%), #Brexit (29.0%), #GOT (11.0%), #LOTR-
ROP (12.1%), #SquidGame (12.7%), and #Twit-
terTakeover (9.3%). So far, it stands as the sole
publicly available labeled tweet dataset tailored
for conversation-level inference and information
extraction, strategically addressing reply-pattern
nuances inherent to their conversational contexts.

Annotations were conducted by six experts ac-
cording to the Cambridge Dictionary* definitions,
differentiating inference as a guess that you make
or an opinion that you form based on the informa-
tion that you have and information as facts or de-
tails about a person, company, product, etc.. With
a robust agreement of 0.718 Krippendorff’s «, four
classes emerged of these elements: Reason (infer-
ence and information), Statement (inference with-
out information), Notification (information without
inference), and None (neither element).

Table 1 details the class distribution of TACO.

None
369 (21.28%)

Statement Notification
284 (16.38%) 500 (28.84%)

Reason
581 (33.50%)

Table 1: The class distribution of tweets in TACO.

On TACO, Vanilla BERTweet serves as the best
performing baseline, excelling with 74.45% F1 for
Reason, 56.66% F1 for Statement, 78.30% F1 for
Notification, and 80.56% F1 for None after fine-
tuning on these classes (Feger and Dietze, 2023).

3 Inference and Information-Driven
Representations for Mining Arguments

In text classification, transformers like BERTweet
use the final hidden state of the first token [C'LS]
as the sequence representation. Classification in-
volves a soft-max classifier added as an extension
after the final representation layer, determining la-
bel probabilities for a tweet ¢ by evaluating the
likelihood of assigning a label y as:

p(ylh) = softmaz(Wh) (1)

where, W signifies the task-specific weights
of the classification head, and h represents the
final representation of ¢ obtained with the trans-
former. Achieved through pooling an entire se-

quence representation via [C LS ] , his expressed as

*dictionary.cambridge.org
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Gyw (t) = h, where the transformer is considered
an independent function Gyy (t) with its distinct
weights W, taking ¢ as input. For the specific clas-
sification task, both W and W are jointly fine-tuned
by maximizing the log-probability of the correct
label, where h implicitly undergoes optimization.
For optimizing class assignments on TACO, we
emphasize the impact of specializing h for encod-
ing inference and information before classification.
Hence, we consider the pre-classification special-
ization of an embedding h as a contrastive problem
of semantic similarity, where tweets with similar
expressions of the text dimensions inference and in-
formation are brought closer together, while those
lacking in similarity are positioned farther apart.

3.1 Embedding Inference and Information

We measure the semantic similarity between two
tweet representations, denoted as h; and hs, using
cosine distance:

D(hl,hg) =1- COS(hl,hg) S [0, 2] 2)

a standard metric (Mikolov et al., 2013; Kim, 2014,
Tai et al., 2015; Chen and He, 2020) for assessing
text vector similarity. D(hi, h) reflects complete
equivalence at 0, orthogonality at 1, and absolute
dissimilarity at 2. Mainly defined by the cosine
similarity cos(hi,ha) € [—1,1], where —1 rep-
resents complete dissimilarity, 1 indicates equiva-
lence, and values closer to 0 suggest orthogonality,
this distance is length-independent and primarily
influenced by the angle between two embeddings.

Building on this circumstance, we assume that
the actual representation h of a tweet can be nor-
malized and lies on the n-sphere:

Sn)={heR™ :|n=1 @)

Transferred to the Cartesian nature of arguments
h = (inference,information), we consider
their representations to live on the unit sphere
h € S(1) (Wang and Isola, 2020; Khosla et al.,
2020; Chen and He, 2020). In h, 1 signifies full
presence, and —1 implies total absence of a com-
ponent. Consequently, an ideal class center on
the unit sphere heads towards the pole (1,1) for
Reason, (1, —1) for Statement, (—1, 1) for Noti-
fication, and (—1,—1) for None. A breakdown
of this is shown in the upper part of Figure 1, ac-
knowledging the realistic expectation that the ac-
tual embeddings may differ from the ideals while
the objective is to get them closer to them.

3.2 Contrastive Siamese Network
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Figure 1: Visualization of the employed Siamese
BERTweet architecture, with parameterized co-
sine distance Dyy(hy,hs) and contrastive loss
L(Dw, h1, h2,Y, m). Atop this architecture, the Carte-
sian embedding space for an argument representation
h = (inference,in formation) is presented as target.

To address semantic similarity, a prevalent strat-
egy involves enhancing representations through
learning a metric (Chopra et al., 2005; Xing et al.,
2002; Hadsell et al., 2006). Precisely, metric learn-
ing entails the implicit acquisition of a metric
Dyy (h1, he) parameterized by the weights W of
the representation model Gy (Chopra et al., 2005).

We seek to find W such that the target metric:

Dw(tl,tg) =1- COS(Gw(tl),Gw(tQ)) (4)

is smaller if 1, to are semantically similar, and
higher if not.

By utilizing the identical embedding function
Gw(t) (BERTweet) with shared weights W to
learn the metric, our architecture is referred to as
a Siamese network (Bromley et al., 1993; Chopra
et al., 2005). Similar and dissimilar tweet pairs are
provided as input to this network. To update the
weights and optimize the network’s performance, a
loss function is applied on top of this architecture.

To attain the goal of increasing the differenti-
ation between similar and dissimilar pairs, it is
suggested to employ the contrastive loss (Chopra
et al., 2005; Hadsell et al., 2006):



L(Dw ,hi,ho,Y,m) =
1

(Y) 5 Du(ha, ha)*+ 5)

(1- Y)%{maa:((), m — Du(hy, b)) }2

where, hj,hg are two representations
(Gw(ti) = h;) of different tweets t1,t2 to
be optimized given Dy (hq, ho) as metric. Y de-
notes the binary label indicating if £, to are similar
(Y = 1) or contrasting (Y = 0). Furthermore, a
margin value m > 0 is introduced as the minimal
distance between two contrasting tweets.

When establishing m, our objective was to
set Dy (hi,h2) in a way that maximizes con-
trast between dissimilar pairs while avoiding over-
estimation of their true distance. Focusing on
Dy (h1,h2) € [0,1], representing positive simi-
larity, we selected m = 0.5. This choice intuitively
represents the minimum threshold for high similar-
ity, yielding optimal results in our study.

With m = 0.5 we ensure that even if a represen-
tation closely matches an ideal center but is labeled
as dissimilar, the optimized representation pushes
60° away and into an adjacent quadrant.

3.3 Augmentation of TACO

In the initial phase of processing TACO data, we
generated a unique copy for each tweet through
augmentation, denoted as A-TACO. Employing
EDA (Easy Data Augmentation) techniques (Wei
and Zou, 2019) of (1) synonym replacement, ran-
dom (2) insertion, (3) swap, and (4) deletion, this
procedure segregates our total ground truth into
A-TACO, for optimization the embedding space of
BERTweet prior to classification, and TACO, des-
ignated for fine-tuning and evaluating classifiers.

Maintaining independence between optimization
and evaluation data is crucial to avoid spurious cor-
relations (Thorn Jakobsen et al., 2021) and ensure
that the data includes essential signals for class
representations, thus enabling broad generalization
across varying sentence structures and cross-topic
evaluations for classifiers.

Following technique (1), we utilized spaCy> to
identify all entities and specific words related to the
six topics in the TACO dataset. Subsequently, we
replace these words with the [M ASK } token, a
placeholder commonly used by BERT-like models,
including BERTweet, for predicting missing words.

Shttps://spacy.io

In particular, we utilized BERTweet as a fill-
mask model to generate new tokens for those
masked in the input sequence (Kumar et al., 2020).

To introduce word choice variability while mini-
mizing semantic changes, random replacement of
10-90% of all words is applied using techniques (2-
4). The optimal coherence, indicated by an average
cosine distance of ~0.08 between the [C’LS] to-
kens of tweets and augmentations, is observed at a
10% replacement rate, maintaining overall seman-
tic consistency while increasing sentence variabil-
ity. Again, step 1 is applied to avoid reintroducing
topic words. An example of the resulting tweet
augmentation is shown in Table 2.

Elon Musk ready with *Plan B’ if Twitter rejects his

TACO offer Read @USER Story | HTTPURL #ElonMusk
#ElonMuskTwitter #TwitterTakeover HTTPURL
A-TACO Wenger ready with 'Plan B’ as Wenger rejects his

offer - HTTPURL via @USER

Table 2: An augmented Notification demonstrating en-
tity replacement, topic word removal related to #Twit-
terTakeover, and altered sentence structure for enhanced
anonymity, particularly at the end.

4 Experimental Setup

This section outlines the protocols used for eval-
vating and optimizing BERTweet’s embedding
space with A-TACO and follow-up classification
on TACO. Our primary objective is to acquire en-
hanced semantic similarity, with a specific empha-
sis on overall F1, while considering recall for gen-
eralizability to unseen topics.

4.1 Models

In our approach, it is important to differentiate be-
tween the pre-classification fine-tuning for special-
izing embeddings and their subsequent fine-tuning
tailored for mining arguments on TACO.

For both tasks, we utilize the Vanilla BERTweet
model®, with 12 transformer blocks and 12 self-
attention heads processing sequences of up to 128
tokens, consistent with the baseline evaluation
model of TACO (Feger and Dietze, 2023).

The embedding model BERTweet, enhanced
through the application of contrastive loss within
the Siamese network using A-TACO, is referred to
as WRAPresentations.

Distinct from our multi-task approach, we in-
troduce Augmented BERTweet, which undergoes

®huggingface.co/vinai/bertweet-base
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pre-classification fine-tuning using the same tweets
of A-TACO as WRAPresentations but directly opti-
mizes p(y|h) through standard cross-entropy loss.

For classification on TACO, we utilize TF-IDF
representations, where word frequency is widely
recognized as a feature in strong baselines for argu-
ment mining on Twitter, which are Support Vector
Machine (SVM) (Addawood and Bashir, 2016), Lo-
gistic Regression (LR) (Bosc et al., 2016; Dusmanu
etal., 2017), and Random Forest (RF) (Dusmanu
et al., 2017). These models go beyond consider-
ing individual words by incorporating tweet-related
features like emoji, URL, and hashtag frequencies.
Despite this, their potential for cross-topic general-
izability remains unexplored.

For each classifier, we evaluate the average class
length for classification to examine linguistic fea-
ture acquisition.

4.2 Pre-Classification Fine-Tuning

To enhance BERTweet’s embeddings, we chose
TACO’s golden tweets with flawless annotation
agreement, accounting for 70.30% of all tweets,
with class distribution remaining largely consistent.

For the final evaluation, we employ original
golden tweets for #Abortion but augmentations of
golden tweets for the remaining five topics during
fine-tuning. #Abortion is chosen as the holdout
topic due to its highest dissimilarity when com-
pared to the remaining topics, posing a greater
challenge for classification (Thorn Jakobsen et al.,
2021). This provides initial insights into cross-
topic generalization and the efficacy of fine-tuning
with augmentations and predicting given real
tweets. Pairs are formed for all tweet combina-
tions, denoting tweets of the same class as similar
Y =1 and those of different classes as dissimilar
Y =0, yielding more dissimilar than similar pairs.

For the final validation set, 86,142 pairs were
generated. The optimization data, divided into fine-
tuning and test sets with a stratified 60/40 ratio,
yielded 307,470 and 136,530 candidate pairs, re-
spectively. To ensure a balance between similar
and dissimilar pairs, we chose the largest possible
set such that both similar and dissimilar pairs are
equally represented (Bromley et al., 1993; Chopra
et al., 2005) while maintaining all tweets of the
respective splits.

In total, 162,064 pairs were obtained for fine-
tuning, 71,812 for testing, and 53,560 for final vali-
dation of the enhanced BERTweet representations
prior to classification.

For all transformer models, we performed fine-
tuning over 5 epochs using an A100 GPU with
40GB of memory, a batch size of 32, and a learning
rate of 4e~5, which proved to be optimal for all
models. The Siamese BERTweet network is im-
plemented using SBERT (Reimers and Gurevych,
2019) as depicted in the lower part of Figure 1.

Additionally, we performed fine-tuning on
WRAPresentations using both [C’LS] pooling,
later employed for classification, and [M EAN |
pooling, which is recommended for improved sen-
tence embeddings (Reimers and Gurevych, 2019).

4.3 Argument Mining on TACO

We evaluate the practicality of BERTweet’s special-
ized embeddings on TACO, given the three argu-
ment mining tasks of (1) inference detection, (2)
information recognition, and (3) classification of
all four tweet classes, with a concurrent aim for
cross-topic generalization.

For task (3), we trained a feed-forward neural
network with two linear layers on top of each em-
bedding model, undergoing 5 additional fine-tuning
epochs with the best performing parameters hav-
ing a learning rate of 4e~® and batch size of 8,
corresponding to the best model and parameters re-
ported for TACO (Feger and Dietze, 2023). Again,
we used a single A100 GPU with 40GB of mem-
ory. Thereby, the results for tasks (1) and (2) are
aggregations specific to class elements of task (3)
predictions, focusing on inference or information.

Our classifier evaluation uses two distinct config-
urations to examine the impact of specialized em-
beddings and their adaptability to additional class
adjustments (Peters et al., 2019).

In the first setup (Frozen), freezing embeddings
allowed us to assess the benefits attributable to pre-
classification fine-tuning. In the second setup (Dy-
namic), embeddings underwent further fine-tuning
during classification head optimization, where we
assessed their adaptability to task-specific learning.
Success in this context signifies a model’s ability
to leverage knowledge encoded in fine-tuned em-
beddings before classification and adapt them to
the classes specific to inference and information.

We employed a 6-fold shuffled cross-validation,
maintaining consistent splits for all classifiers
across the six topics of TACO, to establish an
upper-bound (Thorn Jakobsen et al., 2021). This
closed-topic validation was then compared with
cross-topic validation, where each of the six topics
served as a unique testing set, and the remaining



five topics were utilized for fine-tuning (Bosc et al.,
2016; Daxenberger et al., 2017; Stab et al., 2018).
Lower performance is expected in cross-topic vali-
dation, as classifiers are exposed to unseen topics.

5 Results

In this section, we assess the impact of the special-
ized embeddings for closed and cross-topic classi-
fication on TACO.

5.1 Results Pre-Classification Fine-Tuning

Model P R F1
Vanilla BERTweet-[C LS| 50.00 | 100.00 | 66.67
Augmented BERTweet- [C’LS] 65.69 | 86.66 | 74.73
WRAPresentations-[C' LS| 66.00 | 84.32 | 74.04
WRAPresentations-[M EAN| | 63.05 | 88.91 | 73.78

Table 3: Evaluating within-class similarity and between-
class separability of fine-tuned [C’LS] representations
on A-TACO towards TACO'’s holdout topic #Abortion.
WRAPresentations, with [M EAN } pooling in fine-
tuning, show pessimistic scores but achieve a higher
F1 score of 74.07% if tested with [M EAN]| pooling.

After pre-classification fine-tuning to enhance
semantic similarity, we evaluate the optimized em-
bedding models for classifying tweet pairs as simi-
lar or dissimilar given Dyy (t1, t2).

All fine-tuning strategies outperformed Vanilla
BERTweet in terms of F1, compare Table 3.

We excluded WRAPresentations with [CLS]
pooling for follow-up classification due to the ab-
sence of discernible benefits in F1 compared to
Augmented BERTweet and WRAPresentations us-
ing [M EAN ] pooling for pre-classification fine-
tuning, also showing a higher recall at 88.91%.

Hence, we will refer to WRAPresentations-
[MEAN] as WRAPresentations.

In comparing Augmented BERTweet and
WRAPresentations, both models show similar over-
all performance in terms of F1, but diverge in their
emphasis on precision and recall. The results sug-
gest that contrastive fine-tuning of representations
is not inherently superior to directly optimizing
p(y|h) with augmented tweets. However, this strat-
egy enhances recall, with further distinctions ex-
pected in downstream task evaluations.

Nonetheless, we assume that the enhanced re-
call at this stage is already a first indicator for
later generalizations of classifications across top-
ics. Additionally, we confirmed the effectiveness of
pre-classification fine-tuning with A-TACO when
applied to real tweets from an unseen topic.

Furthermore, we visually explored BERTweet’s
embedding space before and after fine-tuning, uti-
lizing [CLS } representations of all original tweets
in TACO, as depicted in Figure 2(a).

Applying t-SNE for dimensional reduction
(van der Maaten and Hinton, 2008; Jawahar et al.,
2019), comparing Vanilla BERTweet with WRAP-
resentations showed enhanced class quadrant den-
sity, compare Figure 2(a), suggesting an improve-
ment of class semantics given inference and infor-
mation for a majority of tweets. Similar patterns,
albeit at smaller numbers, are observed for Aug-
mented BERTweet, see Figure 2(b).

Numerically, WRAPresentations improved
tweet order by 38% for Reason, 37% for Statement,
and 41% for Notification over Vanilla BERTweet.
Despite a -2% decrease in the None class quadrant,
it remains predominant, as shown in Figure 2(b).

Augmented BERTweet closely matches WRAP-
resentations, excelling by 6% for None but lagging
behind by -6% for Reason, -12% for Statement and
-13% for Notification.

5.2 Results Classification and Generalization

For our comparisons, we continue to present the
outcomes of the Random Forest classifier as the
most effective baseline and the average class length
as a minimal-performance indicator. Furthermore,
for publication, we refer to the classifier based on
WRAPresentations as WRAP, while maintaining
the term WRAPresentations for consistency.

When turning to the closed-topic validation,
WRAPresentations outperforms all classifiers ex-
cept task (1), where dynamic embeddings in Aug-
mented BERTweet exhibit performance nearly
equivalent, as demonstrated in the upper half of
Table 4. Quantitatively, WRAPresentations yields
86.88% F1 for task (1), 81.54% F1 for task (2),
and 71.07% F1 for task (3) when frozen. Dynami-
cally optimizing embeddings, WRAPresentations
achieves 86.62% F1 for task (1), 86.30% F1 for
task (2), and 75.29% F1 for task (3).

Shifting our attention to the more demanding
task of cross-topic validation, assessing a classi-
fier’s ability to generalize to unseen topics, WRAP-
resentations demonstrates superior performance
over all evaluations, thereby achieving 86.83% F1
for task (1), 81.54% F1 for task (2), and 70.93%
F1 for task (3) when frozen. With dynamically ad-
justed embeddings, it achieves 86.27% F1 for task
(1), 84.90% F1 for task (2), and 73.54% F1 for task
(3), compare lower half of Table 4.
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(a) t-SNE embeddings of tweet class [C’ LS ] tokens before and after fine-tuning given inference and information.
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(b) Distribution of classes within the projected quadrants of the expected (in ference, information) space.

Figure 2: Investigation on the impact of BERTweet’s fine-tuning for the transfer of class semantics onto the expected
(inference,in formation) space in terms of the [CLS] tokens for tweet classification. Considering the classes,
(a) highlights the tightening of tweet embeddings towards their respective ideal class poles. Considering the
distribution of tweets, (b) emphasizes that each expected quadrant corresponds to the anticipated majority class.

Inference Information Multi-Class
Model Frozen Dynamic Frozen Dynamic Frozen Dynamic
Closed-Topic (6-fold) Validation
Length 62.34 71.47 38.26
RF + TF-IDF 76.12 80.56 55.65
Vanilla BERTweet 73.12 84.54 66.49 83.55 42.87 71.05
Augmented BERTweet 84.49 86.68 79.22 84.57 67.07 73.80
WRAPresentations 86.88 86.62 81.54 86.30 71.07 75.29
Cross-Topic (6-fold) Validation
Length 61.99 71.55 38.17
RF + TF-IDF 73.93 80.16 53.29
Vanilla BERTweet 70.28 83.15 66.15 82.22 39.00 68.12
Augmented BERTweet 84.20 84.25 79.38 83.31 66.41 69.99
WRAPresentations 86.83 86.27 81.54 84.90 70.93 73.54

Table 4: Macro F1 scores of each classifier for inference and information detection, and all four classes.



Reason Statement Notification None
Model Frozen Dynamic Frozen Dynamic Frozen Dynamic Frozen Dynamic
Closed-Topic (6-fold) Validation
Length 61.68 20.19 14.47 56.72
RF + TF-IDF 69.35 17.30 63.35 72.62
Vanilla BERTweet 66.05 74.98 00.00 53.99 43.80 77.62 61.63 77.62
Augmented BERTweet 74.50 76.82 49.53 58.37 70.95 80.28 73.29 79.71
WRAPresentations 77.34 78.14 58.66 60.96 72.61 79.36 75.67 82.72
Cross-Topic (6-fold) Validation
Length 61.78 19.32 14.49 57.09
RF + TF-IDF 68.61 13.33 62.75 68.46
Vanilla BERTweet 63.57 73.15 00.00 47.40 35.79 74.92 56.64 77.01
Augmented BERTweet 75.18 75.10 46.34 51.74 71.61 75.71 72.50 77.42
WRAPresentations 7713 77.05 57.62 58.33 73.05 78.45 75.91 80.33

Table 5: F1 scores of the classifiers for identifying the four classes used in inference and information detection.

Further, WRAPresentations clearly improved
performance for Statement, the least common and
most difficult class to predict when comparing the
remaining classifiers. Thereby, all other classi-
fiers perform below or slightly above chance agree-
ment for closed-topic validation and generaliza-
tion across topics for this class, where Vanilla
BERTweet even achieved 00.00% F1 when frozen,
showcasing the necessity for adjusting classifiers
and embeddings to specific classes, see Table 5.

6 Discussion

WRAPresentations consistently outperforms all
models, with the exception of a marginal -0.06% F1
decrease compared to Augmented BERTweet with
dynamic representations for task (1) of closed-topic
evaluation, while totally excelling across topics.

Augmented BERTweet performs stronger in de-
tecting instances without inference, as demon-
strated by the substantial 9.33% F1 increase for
the Notification class with dynamic embeddings,
see upper half of Table 5. Considering that tasks
(1) and (2) are aggregations derived from the re-
sults of task (3), WRAPresentations enhances the
overall performance of task (3) for achieving the
best results, prioritizing an improvement in task (2)
while incurring a slight decrease in task (1).

This effect emerges as further refinements for
additional classification improvements can partially
replace the enriched understanding of inference and
information in tweets, exposing unconsidered class
features during optimization of the head.

However, examining WRAPresentations’ frozen
states, superior in closed and cross-topic validation,
underscores the advantages of our pre-classification

fine-tuning focused on semantic similarity in tweets
for enhanced classification strength, see Table 4, 5.
Due to our multi-task fine-tuning approach,
BERTweet can employ more robust embeddings for
both classification scenarios, showcasing adaptabil-
ity and generalizability across all three argument
mining tasks on Twitter, including challenging in-
stances like identifying the Statement class.

7 Conclusion and Ongoing Work

Our pre-classification multi-task fine-tuning ap-
proach considerably improves the specification of
embeddings of BERTweet to encode diverse mani-
festations of inference and information, especially
supporting the classification of tweets in TACO.

BERTweet’s optimized embeddings, enhanced
through contrastively learning semantic similarity,
offer improved adaptability to actual class signals
and support cross-topic generalization when com-
pared to conventional argument mining on Twitter.

In this regard, we can successfully contribute
WRAPresentations, a contrastively optimized em-
bedding model, and the advanced classification
model WRAP for inference and information-driven
argument mining across diverse topics on Twitter.

We also provide grounds for assuming that the
augmentation of tweets constitutes a valuable asset
within this domain of research.

Given our results demonstrating successful pre-
classification fine-tuning with tweet augmentations
and strong performance on original tweets, we
pose the broader question of the necessity of using
tweets for argument mining on Twitter, exploring
whether tweet-like instances from other domains
alone are sufficient.
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Limitations

For our work, we report the following limitations:

The field of argument mining on Twitter is sub-
ject to Twitter’s data regulations, which allow only
the publication of tweet identifiers but not their text.
This poses challenges to the reproducibility of re-
search and the potential loss of data due to deleted
tweets when retrieved via their identifiers through
the Twitter API, which provides a limited 1,500
free queries per month. However, for our study,
we were able to obtain all preserved tweets from
TACO by contacting the authors.
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