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Abstract
Human episodic memory enables the retrieval of tempo-
rally organized past experiences. Retrieval cues can tar-
get both semantic content and temporal location, reflect-
ing the multifaceted nature of episodic recall. Existing
computational models provide mechanistic accounts for
how temporally organized memories of the recent past
(seconds to minutes) can persist in neural activity. How-
ever, it remains unclear how episodic memories can be
stored and retrieved while preserving temporal structure
within and across episodes. Here, we propose a com-
putational model that uses a spectrum of synaptic decay
rates to store temporally organized memories of the re-
cent past as an episodic timeline. We characterize how
the memories can be retrieved using either a memory of
the recent past, specific semantic cues, or temporal ad-
dressing. This approach thus bridges short-term work-
ing memory and longer-term episodic storage, offering
a computational model of how synaptic dynamics can
maintain temporally structured events.

Keywords: Episodic Memory; Working Memory; Laplace
Transform; Associative Learning

Introduction
The ability to encode and retrieve episodic memories is a crit-
ical faculty of human cognition. Episodic memories are com-
monly characterized by vividly remembering a particular ex-
perience, including the temporal organization of the events
during the episode (Tulving, 2002, 1993; Dickerson & Eichen-
baum, 2010; Hasselmo, 2013; Moscovitch et al., 2016; Ran-
ganath, 2024; Michaelian, 2024). The retrieval process itself
involves a combination of intertwined semantic and temporal
cues. For instance, imagine being in the aisle of a supermar-
ket chain trying to remember where to find the milk. Assuming
you have been to multiple stores belonging to the same chain
and the location of the milk varies from store to store, you
might have to rely on either semantic or temporal cues. If you
rely on semantic cues, you might look around and gather more
information about the particular store to probe your memory
and retrieve the required information. If you use episodic
memory, you might try to isolate a particular experience of
being in that store and use that memory to retrieve the loca-
tion of the milk. To retrieve a particular experience, you might
use semantic cues from your surroundings or temporal cues,
such as recalling being in that store a month ago. All of these
strategies might lead to a successful outcome. To further illus-
trate the importance of temporal retrieval of episodic memory,
imagine waking up in a hotel room at night. Even in complete

darkness, with no cues about your location or the day, you can
recall recent events. This suggests that memories are tempo-
rally organized, enabling retrieval based on temporal recency,
even beyond the scope of short-term neural activity.

The temporal organization of memory has been extensively
studied in multiple experimental paradigms. The temporal
contiguity effect in free recall (Kahana, 1996) shows that af-
ter recalling an item from the list, participants tend to recall an
item that was in its temporal proximity during encoding. Com-
putational models of this process commonly include binding of
the gradually changing temporal context with the present input
(Howard & Kahana, 2002; Polyn et al., 2009; B. Sederberg et
al., 2010). In judgment of recency (Hacker, 1980; Hintzman,
2005), when comparing which of two probes was presented
more recently, participants show response time profiles that
depend only on the lag of a more recent probe (Hacker, 1980;
Tiganj et al., 2022; Maini et al., 2022), consistent with the hy-
pothesis that they are scanning a mental timeline of the past
(Howard et al., 2015). Similarly, in a judgment of imminence
task where, after learning a probabilistic sequence, partici-
pants choose which of two probes they believe will appear
sooner, the response times depend on the lag on the more im-
minent probe. This is consistent with the hypothesis that the
timeline of the past has been input to the associative learn-
ing mechanisms producing a timeline of the future (Tiganj et
al., 2021). Critically, for both past and future, the response
times grew sublinearly with the lag, resembling logarithmic
compression, consistent with Weber-Fechner’s law (Fechner,
1860; Portugal & Svaiter, 2011).

The role of time as a governing principle for organizing
episodic memories has been extensively investigated in cog-
nitive neuroscience studies. It has been reported that neural
activity in the hippocampus during recall reinstates the neural
activity observed during encoding, indicating the retrieval of
temporal context through a neural “jump back in time” (Howard
et al., 2012; Folkerts et al., 2018; Lohnas et al., 2023; Broit-
man & Kahana, 2024). Research on other mammals has also
revealed the ability to jump back in time and retrieve tempo-
ral context, much like humans (Crystal & Suddendorf, 2019;
Crystal, 2024).

Here we propose a computational model that unifies these
different properties of human memory and extends them
across a wide range of temporal scales, from seconds to days.
Specifically, the proposed model describes (1) how temporally
organized sequences of recent past can be stored in episodic
memory (2) how such memory representation can be retrieved
using either semantic or temporal cues.



Related work and background: Constructing a
log-compressed memory timeline of the recent past
using Laplace and inverse Laplace transform

Our approach builds on prior modeling work, which proposed
that memory of the recent past can be maintained through
gradually changing neural activity (leaky integrators with a
spectrum of time constants), giving rise to sequences of neu-
ral activity that encode a timeline of what happened when
over the recent past (Shankar & Howard, 2012; Howard et
al., 2014). The fundamental idea behind this approach is that
given a set of neurons with exponentially decaying impulse
responses with a spectrum of time constants, their instanta-
neous firing rates will encode an approximation of the real-
domain Laplace transform. Thus, the input function over time
is encoded into the instantaneous firing rates of a set of neu-
rons.

By inverting this Laplace transform, we can recover a tem-
porally structured representation of the input history. The
Laplace transform can be inverted through a linear transfor-
mation, converting neurons with exponentially decaying firing
rates into neurons with sequentially activated, bell-shaped im-
pulse responses. These sequentially activated neurons con-
stitute a time-addressable metric space in the sense that each
neuron is characterized by the peak time of its impulse re-
sponse, hence coding an approximation of the input function
that much time in the past. Critically, the model gives rise to
scale-invariant sequential activations: neural activations are
rescaled versions of each other—each stretched proportion-
ally to its peak time. Time constants of the exponential decay
are chosen such that the resulting inverse transform has loga-
rithmically spaced peaks. The scale-invariance of the impulse
response and the log-spacing of the peaks implies that the
memory representation itself is logarithmically compressed.
When observed across the log axis, it is supported by equally
wide and equidistant sequential activations. This means that
the more recent past is encoded with higher temporal resolu-
tion than the more distant past (Fig. 1).

Previous modeling work also addressed building associa-
tive memory using the log-compressed timeline (Shankar &
Howard, 2012). Specifically, the associative memory stored in
synaptic weights binds the temporal context encoded within
the log-compressed timeline with the current input. Af-
ter learning, this associative memory representation can be
probed with the current temporal context, resulting in the pre-
diction of the next stimulus. Furthermore, the Laplace trans-
form can be translated into the future by modulating the recur-
rent weights of exponentially decaying cells: this can speed
up the decay enabling the system to compute the future val-
ues of the memory representation (assuming no new inputs)
(Shankar et al., 2016; Tiganj, Gershman, et al., 2019; Goh et
al., 2022). Importantly, since it mirrors the past, the predic-
tion is also log-compressed. This means the more imminent
future is represented with a higher temporal resolution than
the more distant future. These properties enabled previous
modeling work to account for effects observed in a variety of

behavioral tasks including serial scanning in temporal judg-
ment tasks (Tiganj et al., 2021; Tiganj, Cruzado, & Howard,
2019; Howard et al., 2015) and recency and contiguity effects
in free recall (Howard et al., 2015).

The utility of the Laplace code for constructing a represen-
tation of the future has led to computational models of multi-
scale reinforcement learning, where the representation of fu-
ture time can be integrated to compute the estimated value of
a particular choice (Tiganj, Gershman, et al., 2019; Momen-
nejad & Howard, 2018; Tano et al., 2020; Masset et al., 2025;
Howard et al., 2024; Sousa et al., 2025; Maini & Tiganj, 2025).

Constructing an episodic timeline using a Laplace
transform implemented through gradually changing
synaptic weights

We extend the previous work by addressing fundamental lim-
itations: associative memory averages past experiences in
such a way that it is not possible to retrieve individual episodic
memories. We propose a computational model for storing
temporally organized episodic memories that also relies on
the use of Laplace transform. However, in addition to using
the Laplace transform to store memory of the recent past in
neural activity, we also use it to store the history of those
memories using synaptic weights. We achieve this by having
associative weights decay with a spectrum of time constants,
encoding the history of changes in the associative memory.
We illustrate how inverting the Laplace transform results in
the log-compressed timeline of episodic memories where in-
dividual episodic memories can be accessed using temporal
or semantic cues.

Computational Model
In this section, we present a computational model that uni-
fies working and episodic memory by leveraging multi-scale
synaptic dynamics.1 We begin by showing how a set of neu-
rons with exponentially decaying impulse responses can im-
plement a log-compressed representation of the recent past
(the “working memory timeline”) via a Laplace transform.
Next, we describe how associative learning linking this work-
ing memory representation to current inputs, allows the sys-
tem to capture and predict temporal relationships. By translat-
ing the memory representation in the working memory time-
line into the future and iteratively probing the associative mem-
ory we create a timeline of the future. We extend this frame-
work to store entire episodes by encoding changes in the as-
sociative weights themselves, effectively creating an “episodic
timeline” such that individual episodes can be retrieved using
either temporal or semantic cues.

Working memory timeline

To build a neural representation of the recent past (i.e., work-
ing memory), we create a timeline: an ordered set of neurons
where each neuron encodes the input value from a specific

1The code implementation can be found at: https://github
.com/cogneuroai/episodic-timeline

https://github.com/cogneuroai/episodic-timeline
https://github.com/cogneuroai/episodic-timeline


Figure 1: Log-compressed neural impulse responses. The responses are shown with respect to linear (left panel) and logarithmic
(right panel) time axes. The peaks are log-spaced and the responses are scale-invariant: the width of the impulse responses
increases linearly with their peak time. When displayed on a log-axis, the peaks are equidistant and the impulse responses are
equally wide.

Figure 2: Illustration of the working memory timeline. An input sequence of 7 one-hot encoded letters is presented sequentially
(f(t)). The letter presentation is marked with the white color of the letter box. Each letter has a corresponding working memory
representation consisting of sequentially activated neurons. Each box under a letter symbol represents an individual neuron in
the matrix f̃(t). The level of activation is coded with shades of gray such that brighter shades represent higher activation. When
the last letter is presented, f̃(t) contains a compressed timeline that stores what happened when. To appreciate the compression
of the timeline, notice that the white trace of activity in the memory representation is curved and gradually spreads from letters
that were presented more recently to letters that were presented less recently. While this example is made particularly simple to
illustrate the concept, in general, f(t) does not have to be a one-hot vector, and its magnitude can take any value.

time in the past. More formally, given an input vector f(t)
composed of N elements (i = 1...N), the working memory is
represented as a matrix f̃(t) of dimension L×N, where L is
the number of units ( j = 1...L) composing the timeline. At any
time t = t ′, f̃(t ′) holds a memory of the input signal, f(t < t ′).
Rows j of f̃(t) correspond to temporally smoothed values of
f(t) in the past. While the past could be stored veridically such
that the j-th row of f̃(t) stores the value of f(t) at a specific
discrete step t − j in the past, that would not be biologically
plausible. Such memory would fundamentally differ from hu-
man memory, which is characterized by gradual decay and
whose temporal resolution is governed by the Weber-Fechner

law.
Hence, here we construct a scale-invariant logarithmically

compressed memory of the recent past, using the same ap-
proach as Shankar & Howard (2012). This means that the
j-th row of f̃(t) stores a temporally smoothed value of f(t)
centered around

∗
τ j time in the past. Scale-invariance of the

representation is accomplished through the increasing width

of the temporal windows (proportional to
∗
τ j) and having the

centers of the windows
∗
τ j be logarithmically spaced. This re-

sults in equal width and uniform spacing along the log-time
axis (Fig. 1). Properties of such working memory in response
to a temporal sequence of inputs are illustrated in Fig 2.



Figure 3: (a) Schematic of the working memory network. (b) Response of the neurons in the network to two brief pulses. Input
signal fi(t) arrives into a set of recurrent nodes Fj,i(t) whose states approximate the Laplace transform Fi(s). The units operate
on a spectrum of analytically computed rate constants s j. A second layer inverts the transform and outputs a scale-invariant
timeline f̃ j,i(t). Neurons in the output layer are activated sequentially with the receptive fields increasing in a scale-invariant
way. This means that at any moment t ′, the activity of the neurons in the output layer encodes a compressed temporal history
of the input signal (note that the input signal can be any function of time, brief pulses are chosen for simplicity). The output

representation has a metric structure (each unit j has its fixed place in the sequence, corresponding to time
∗
τ j in the past).

To construct scale-invariant log-compressed f̃(t) in a time-
local fashion (meaning without the need to explicitly store past
values in a buffer), we use a recurrent neural network followed
by a feedforward layer. Fig. 3a illustrates the structure of the
network for a single input feature fi(t). The input signal fi(t)
is fed into a set of L recurrent units Fj,i(t) that encode an
approximation of the Laplace transform, which we denote col-
lectively as Fi(t). The transform is implemented through units
acting as leaky integrators with different decay rates s j. In
continuous time, the dynamics are:

dFj,i(t)
dt

=−s jFj,i(t)+ fi(t) (1)

This uses fixed, analytically computed parameters (the decay
rates s j), avoiding biologically non-plausible learning rules like
backpropagation through time as in standard RNNs. For sim-
ulations using discrete time steps ∆t, this differential equation
is implemented as:

Fj,i(t) = (1− s j∆t)Fj,i(t−∆t)+ fi(t)∆t (2)

Here j = 1...L indexes the Laplace units, i = 1...N indexes
the input features, and s ∈ RL is a vector composed of L log-
spaced decay rate values s j. The dimension of the state ma-
trix F(t) is L×N, the same as f̃(t).

The Laplace transform can be inverted into f̃(t) through a
feedforward network (denoted as operator L−1) with analyti-
cally computed weights. For instance, this can be done using
Post’s inversion formula, with a fixed integer k:

f̃ j,i(t)≡ L−1[Fj,i(t)] =
(−1)k

k!

(
k
∗
τ j

)k+1
dkF·,i(·,s)

dsk

∣∣∣∣∣∣
s=k/

∗
τ j
(3)

where F·,i(·,s) represents the analytically continued Laplace

transform derived from the states Fj,i(t), and
∗
τ j is related to

the j-th decay rate (s j = k/
∗
τ j) and defines the center of the

temporal receptive field for the j-th timeline unit.
Critically, while f̃(t ′) and F(t ′) contain the same amount of

information about f(t < t ′), f̃(t ′) represents this information
in the form of a metric space (indexed by j, corresponding to

time
∗
τ j in the past), making navigation through time analogous

to navigation through neural space spanned by f̃. We note
that alternatively to Post inversion formula, several other tech-
niques to invert the Laplace transform exist, including CME
(Horváth et al., 2020), CME-R (Mészáros & Telek, 2022), and
the Gaver-Stehfest method (Gaver, 1966; Stehfest, 1970), of-
ten offering better numerical stability (see Appendix for fur-
ther discussion on alternative approaches to computing the
inverse).

The impulse response (response to input fi(t ′) = δ(t)) of
the j-th timeline unit for input i, f̃ j,i(t) is given by:

f̃ j,i(t) =
kk+1

k!
1
t

(
t
∗
τ j

)k+1

e
−k t
∗
τ j (for t > 0) (4)

The peak time of f̃ j,i(t) can be found by taking the partial
derivative with respect to t, equating it to zero, and solving for

t: ∂ f̃ j,i(t)/∂t = 0→ t =
∗
τ j. Therefore, each neuron j in f̃(t)

peaks at
∗
τ j, making

∗
τ j effectively an internal representation

of time in the past. Fig. 4 shows an example of an input se-
quence composed of orthogonal stimuli (top row) encoded in
f̃(0) (bottom row). The width of the temporal receptive fields
decreases with k — large k makes the inverse more precise
resulting in narrower impulse response, but leading to larger
sensitivity to noise in F when computing the inverse (see Ap-



pendix for further discussion on the impact of noise).

Figure 4: Illustration of working memory storing a sequence of
orthogonal stimuli. At time t = 0, memory trace f̃(0) (bottom
row) encodes a log-compressed history of the input sequence
(top row). Note the higher resolution for the more recent past.
Each dot in the bottom row corresponds to the activity of an

individual neuron f̃ j,i(0), plotted relative to its peak time
∗
τ j.

Learning temporal relationships via associative
memory
We use Hebbian associative memory to construct a three-
dimensional tensor M(t) that stores associations between the
input f(t) and the memory of the recent past f̃(t). We define
M(t) as an N×N×L tensor, where Mi′,i, j(t) represents the

association from input feature i at timeline position j (time
∗
τ j

ago) to current input feature i′. Change in M(t) at every time
step (in discrete time ∆t) can thus be written as an outer prod-
uct between f(t) and f̃(t):

∆Mi′,i, j(t) = fi′(t) f̃ j,i(t) (5)

This change represents the association formed at time t. It is
then accumulated into the associative memory tensor:

M(t) = M(t−∆t)+∆M(t) (6)

When probed with the memory representation of the recent
past f̃(t) at time t, M(t) provides a prediction p(t) of the input
vector:

pi′(t) =
N

∑
i=1

L

∑
j=1

Mi′,i, j(t) f̃ j,i(t) (7)

In order to predict more than one step into the future, we
perform time translation of the working memory towards the
future, effectively constructing an estimate of the future state
of temporal context f̃(t + δ). To achieve this, we use the fact
that time translation is easily doable in the Laplace domain. It
is based on the fact that the impulse response of Fj,i(t) is an
exponentially decaying function (e−s jt ). If the input fi(t) be-
comes zero after time t, we can compute the time-translated
value of Fj,i(t) at time t +δ by applying the decay:

Fj,i(t +δ) = e−s jδFj,i(t) (8)

This computation can be performed using a diagonal ma-
trix Rδ where Rδ

j, j = e−s jδ, such that the vector Fi(t + δ) =

RδFi(t).
Consequently, we can compute a time-translated version of

the working memory f̃(t +δ) by applying the inverse Laplace
transform operator (Eq. 3) to the time-translated Laplace state
F(t +δ).

If we now probe the current associative memory M(t) with
the memory representation translated into the future f̃(t +δ),
we obtain a prediction p(t + δ) of the input at δ time in the
future:

pi′(t +δ) =
N

∑
i=1

L

∑
j=1

Mi′,i, j(t) f̃ j,i(t +δ) (9)

Figure 5: Illustration of prediction based on associative mem-
ory M. Since in this example the input f consists of a single
sequence, associative memory M is sufficient for success-
ful prediction. The associative memory is probed following
the repetition of the green stimulus (location marked with the
dashed line and letter ’M’ in the top row). The negative side
of the bottom plot corresponds to the memory trace f̃, while
the positive side corresponds to the prediction pδ. While the
green stimulus is in the memory, prediction unfolds first for
blue (which has a relatively high temporal resolution) and then
for the temporally more distant purple stimulus.

An example of constructing p(t + δ) is provided in Fig. 5.
A three-dimensional one-hot input is presented in a sequence
(top row). The sequence is used to compute M(t) as de-
scribed in Eq. 6. After the first element of the sequence is
presented again, p(t + δ) is computed following Eq. 9 for a
set of log-spaced δ values (bottom row). p(t +δ) successfully
predicts the time of occurrence of the following two stimuli with
a temporal resolution that gradually decays (due to log-spaced
δ). The amplitude of the peaks of the prediction falls as power-

law function of
∗
τ j: 1/

∗
τ j.

To illustrate the limitations of predicting using M(t) that oc-
cur due to averaging, we created an example with two se-
quences, each composed of three orthogonal inputs (Fig A1).
The first element of each of the two sequences was the same.
That element was later repeated (third time), and following
the repetition, we computed p(t +δ). The resulting prediction



now predicts elements from both sequences — the prediction
traces overlap. This illustrates that only associative memory
M(t) is not sufficient to recover individual episodes.

Episodic memory timeline
We create an episodic memory timeline by encoding the his-
tory of changes in associative memory weights. This time-
line captures when each memory association was modified,
enabling the retrieval of specific episodes. To achieve this,
we use the same Laplace framework, but this time with the
changes in the associative strengths ∆M(t) (Eq. 5) as inputs
to the leaky integrators which compute a log-spaced approx-
imation of the Laplace transform, E(t). Here E(t) integrates
∆M(t) using leaky integrators with very slow decay rates σl .
In continuous time, the dynamics for each element (i′, i, j) and
each episodic decay rate index l (where l = 1...Le) would be:

dEi′,i, j,l(t)
dt

=−σlEi′,i, j,l(t)+∆Mi′,i, j(t) (10)

where σ ∈ RLe is a vector composed of Le log-spaced values
σl that determine the rate of decay of units in E(t). Since
∆Mi′,i, j(t) is computed in discrete steps based on f̃(t), the
practical implementation uses discrete time steps ∆t:

Ei′,i, j,l(t) = (1−σl∆t)Ei′,i, j,l(t−∆t)+∆Mi′,i, j(t) (11)

Here, E(t) is a four-dimensional tensor, with dimensions
N×N×L×Le. Unlike working memory, which stores memory
representations over a relatively short time (spanning seconds
to minutes), E(t) stores changes in the weights with large time
constants τ′l ≈ 1/σl , spanning days and beyond (see discus-
sion on biological plausibility of slow synaptic changes). Crit-
ically, because σ contains logarithmically spaced rates, this
representation can be constructed with resources that scale
with the logarithm of the largest temporal scale.

We can then compute the inverse Laplace transform M̃(t)
similarly as for the working memory. Applying Post’s inversion
formula (using fixed k) along the last dimension (l = 1...Le)
yields the episodic timeline tensor:

M̃i′,i, j,l(t)≡ L−1[Ei′,i, j,l(t)]

=
(−1)k

k!

(
k
τ′l

)k+1 dkEi′,i, j,·(·,σ)
dσk

∣∣∣∣∣
σ=k/τ′l

(12)

Here τ′l = k/σl represents the characteristic center time of
the temporal receptive field for the l-th unit of the episodic
timeline. M̃(t) is an N×N×L×Le tensor, where M̃i′,i, j,l(t)
represents the associative strength (i, j)→ i′ formed around
t− τ′l time in the past.

Having episodic memory M̃(t), it is possible to use a
content- or time-addressable approach to “jump back in time”
and retrieve the episodic memory corresponding to a specific
past time. This involves selecting a specific index ε ∈ {1...Le}
that corresponds to the desired time point τ′ε in the past. Given
the retrieved memory slice M̃(ε)(t) (where the last index l is

fixed to ε), the predictions pε(t + δ) can be constructed in a
similar way as before (Eq. 9), but using the retrieved episodic
associations:

pε

i′(t +δ) =
N

∑
i=1

L

∑
j=1

M̃i′,i, j,ε(t) f̃ j,i(t +δ) (13)

where index ε denotes the specific temporal location along the
episodic timeline being retrieved.

Figure 6: Illustration of prediction based on episodic mem-
ory M̃. The input consists of two different sequences (first
consists of green followed by red followed by yellow and the
second consists of green followed by blue followed by pur-
ple) and a repetition of the green stimulus. The prediction is
made at time 0, following the repetition of the green stimu-
lus. The arrow in the top row indicates the location of “jump
back in time” (selected index ε) where the episodic memory
is selected. This results in temporal separation of the two
sequences and prediction of the elements from the first se-
quence (red followed by yellow). Interference is rather small
since the amplitudes of the blue and purple traces (which be-
long to the second sequence, far from the selected index ε)
are much smaller than amplitudes of the red and yellow traces
(which are close to the selected index ε).

We demonstrated retrieval of episodic memories and result-
ing predictions pε(t + δ) on several examples, similar to the
examples we investigated earlier. In Fig 6, we show two se-
quences of three orthogonal stimuli, with the first stimulus be-
ing common for each of the two sequences and then repeated
for the third time. The prediction is generated when episodic
memory is retrieved from the end of the first sequence (i.e.,
selecting ε corresponding to τ′ε around that time): following
the stimulus repetition, it retrieves the remaining items in the
first sequence.

Similarly, when episodic memory is retrieved soon after the
second sequence (selecting the appropriate ε), the prediction
produces elements from the second sequence, demonstrating
good temporal isolation of different episodes (Fig A2). We fur-
ther tested this with sequences composed of 7 stimuli (Fig 7).
While the high proximity of the two sequences and a relatively
large number of stimuli is causing some interference, the ele-
ments from the first sequence (the center of episodic retrieval,



selected ε, in this example) have a much stronger presence in
the retrieved sequence than the elements from the second se-

quence (note that 1/
∗
τ j attenuation of the amplitude in f̃(t +δ)

makes it more difficult to distinguish relative amplitudes of the
elements later in the sequence).

To illustrate the properties of the model for non-orthogonal,
more realistic examples, we conducted an experiment where
the inputs to the model were CLIP (Radford et al., 2021) em-
beddings of video frames (we used LAION-5B (Schuhmann
et al., 2022) pretrained CLIP embeddings). Specifically, to
emphasize the capability of separating individual episodes,
we designed the video to include two episodes with overlap-
ping contexts (Fig. 8 and Fig. A3). The video consisted of
990 frames, each embedded as a 512-element long vector.
Each episode was 215 frames long. Vector τ′l consisted of 20
log-spaced values from 5.0 to 80 seconds (corresponding to

60 to 955 frames), and vector
∗
τ consisted of 16 log-spaced

values from 1.0 to 12 seconds (corresponding to 12 to 143
frames). Probing M̃ with that context and the particular time
stamp (e.g., trying to remember where did you go for vacation
a year ago) results in correct retrieval of the target location.
This was not the case when probing the associative memory
M since it averages individual episodes and cannot utilize the
temporal information.

Figure 7: Illustration of prediction based on episodic memory
M̃ for a long sequence of seven orthogonal stimuli. After blue
stimulus is repeated for the third time (a little before time 0), at
time 0, the episodic memory is retrieved from within the first
sequence (ε corresponds to time within first sequence). The
prediction mostly reflects the content of the first sequence.
Some interference from the second sequence is also notice-
able due to temporal proximity of the second sequence to ε.

Biological Plausibility and Implementation

A key assumption of our model is the availability of synap-
tic processes that operate over a wide, logarithmically-spaced
spectrum of timescales. This aligns with biological observa-
tions. For instance, synaptic plasticity mechanisms like long-
term potentiation (LTP) are known to unfold across multiple
phases, from early forms lasting minutes to hours, to later,

Figure 8: Illustration of prediction based on associative mem-
ory M and episodic memory M̃ for a sequence of non-
orthogonal stimuli derived from CLIP embeddings of egocen-
tric video frames. The input to the model consists of two dis-
tinct episodes with partially overlapping contexts. The top row
shows several representative frames with indicators for two
episodes (Paris and London trip). The second row shows a
part (8 out of 512 elements) of the CLIP vectors used as input
f to the model. In the first episode, the video input starts with
a dark hotel room with a closed curtain, and the person gets
up from the bed and opens the curtain to reveal the cityscape
of Paris. In the second episode, everything is the same ex-
cept that the revealed cityscape is the one of London. The
two episodes are spaced by random images. After more ran-
dom frames, the temporal context of the dark hotel room is
repeated (semantic cue) and it becomes part of the working
memory timeline (f̃) that is used to probe the episodic timeline
(M̃). The three rows below the input demonstrate that by pro-
viding temporal context and a temporal pointer, the episodic
timeline is able to identify a correct episode. First, probing M
with the temporal context reveals a mixed prediction of both
Paris and London since M simply averages distinct episodes.
However, probing M̃ with the temporal context and specifying
a temporal pointer to a time point near Paris or London trip
(e.g., “Where was that trip I took a year ago” and selecting
appropriate index ε corresponding to one year in the past), re-
sults in the prediction of the correct city. The plots show the
temporal context of the recent past f̃ and prediction pδ as a

function of the internal log-compressed timeline spanned by
∗
τ

as well as a bar plot indicating the average magnitude of the
prediction for each of the cities. See Fig. A3 for a visualization
of the prediction built using each τ′l of the episodic timeline.

protein-synthesis-dependent forms persisting for days or even
weeks (Frey et al., 1988; Abraham, 2003). Evidence sug-



gests this may reflect a continuum of plasticity decay rates
rather than just two discrete categories, potentially supported
by dynamic processes like receptor trafficking (Dong et al.,
2015). This spectrum of timescales provides biological mo-
tivation for the spectrum of decay rates σl underpinning the
episodic timeline (M̃).

Addressing how specific past episodes are ‘read out’ from
the slow synaptic traces could correspond biologically to the
reactivation of a specific memory engram or cell assembly
formed during that past episode (Rao-Ruiz et al., 2021; Josse-
lyn & Tonegawa, 2020). Such engrams, potentially involving
functionally connected cell ensembles across brain regions,
are thought to undergo persistent changes during encoding
and be reactivated by relevant cues during retrieval. The sub-
sequent probing step (Eq. 13) can then be interpreted as the
influence of this reactivated engram’s specific synaptic weight
configuration (M̃) on current neural activity patterns (f̃), lead-
ing to pattern completion or prediction based on that unique
past context.

In addition to biological support for diverse associative
timescales, the core computational mechanisms underlying
the Laplace transforms also align with plausible biological im-
plementations. The required leaky integrators with long, ex-
ponentially decaying time constants (F nodes) are consis-
tent with neurons exhibiting decaying persistent firing, poten-
tially supported by specific ionic currents like the CAN current
(Tiganj et al., 2015). Additionally, detailed circuit modeling has
shown how the inverse Laplace transform operation (L−1

k ), re-
quired to produce the timeline representations (f̃), can be in-
stantiated in a network using specific patterns of local excita-
tory and inhibitory connections that respect Dale’s Law (Liu
et al., 2019). Recent work suggests that these transform-
approximating weights could potentially emerge through self-
supervised learning, particularly under constraints like lo-
cal connectivity and shared synaptic weights (Alipour et al.,
2025).

Discussion

We developed a computational model of memory that uni-
fies working memory and episodic memory into a common
mathematical framework. The central innovation is represent-
ing both working and episodic memories as timelines operat-
ing on different timescales. Working memory encodes a log-
compressed representation of recent inputs by way of sequen-
tially activated neural activity that approximates the Laplace
and the inverse Laplace transforms of the input sequence.
Critically, these short-lived traces allow the system to learn,
via Hebbian synaptic changes, temporal associations—what
happened when—over seconds to minutes. Episodic memory
is then formed by tracking the history of the changes in those
synaptic weights, creating a longer-lasting record of which as-
sociations were formed and when they were formed.

By storing the history of weight changes rather than just
the final weights, the model can retrieve an individual episode
rather than a superposition or average of multiple experi-

ences. Traditional associative memories often collapse over-
lapping inputs into a fused representation, making it difficult
to isolate the specific sequence of events from a single oc-
currence. Here, the episodic timeline decouples one episode
from another, because each set of weight changes is stamped
with its own time signature via a spectrum of slow decays. The
result is an ability to recover which episode occurred and in
what chronological order.

The nature of memory storage and capacity in this Laplace-
based timeline model differs fundamentally from attractor net-
work models, such as classic or modern Hopfield networks
(Hopfield, 1982; Krotov & Hopfield, 2016; Ramsauer et al.,
2020). Attractor networks define capacity primarily by the
number of distinct patterns that can be stored as stable states
and retrieved via convergence based on content cues. Inter-
ference typically arises from pattern overlap, and exceeding
capacity can lead to catastrophic forgetting or spurious states
(Grossberg, 2020; Amit & Amit, 1989). In contrast, the pro-
posed timeline model does not store discrete patterns as at-
tractors. Its ’capacity’ is reflected in the temporal resolution of
the stored history; memory fidelity decreases systematically
for events further in the past due to logarithmic compression,
rather than abruptly failing when a specific number of patterns
is exceeded. Interference is thus primarily temporal rather
than based on pattern similarity alone, and retrieval relies on
accessing specific points along the compressed temporal rep-
resentation.

The model presented here builds directly upon frameworks
that have successfully captured data in a variety of behav-
ioral tasks, including temporal judgment tasks and free re-
call (Howard & Kahana, 2002; Howard et al., 2015; Tiganj
et al., 2021). Specifically, the Hebbian associative memory
component of our model (Eq. 6) is analogous to the asso-
ciative structures used in prior temporal context and Laplace
transform models. Our current work inherits capabilities of
these models for experiments where the memory is tested
shortly after list presentation. The key innovation here—the
episodic timeline generates specific predictions and explains
ability to recall individual lists when tasks are conducted over
longer timescales (e.g., across hours or days). Formal simula-
tions comparing the model to data from such extended recall
paradigms remain an important direction for future work.

Despite its conceptual strengths, our model leaves sev-
eral open questions. One limitation is that we have not
fully explored capacity constraints or noise effects in large-
scale implementations. Biological systems may use approxi-
mate versions of these transforms, leading to errors or inter-
ference in retrieving older memories. Additionally, we have
not explicitly modeled the role of hippocampal-cortical inter-
actions, which are known to underlie long-term consolida-
tion processes. Integrating these processes—especially re-
play or offline consolidation—could provide a richer account
of how short-term working memory traces become stabilized
into lasting episodic memories.
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Appendix
The appendix provides pseudocode detailing the core compu-
tations of the model for encoding and retrieval, supplemental
figures, a discussion on robustness to noise and a table listing
descriptions of all the notations used throughout the paper.

Algorithm 1 Episodic Timeline Model: Initialization and time
step update during encoding

Input: Input dimensions N, WM timeline units L, EM time-
line units Le, Post’s inversion parameter k, WM decay
rates s ∈ RL, EM decay rates σ ∈ RLe , time step ∆t.
Initialize:

1: Set WM Laplace states F(0) to zero matrix (L×N)
2: Set Associative memory M(0) to zero tensor (N×N×L)
3: Set EM Laplace states E(0) to zero tensor (N×N×L×

Le)
4: Precompute Inverse Laplace operator weights Winv based

on k and s for f̃ (implementing Eq. 3)
5: Precompute Inverse Laplace operator weights We,inv

based on k and σ for M̃ (implementing Eq. 12)

6: procedure TIMESTEPUPDATE(t, f(t))
// Update Working Memory Components

7: for all input features i ∈ {1..N} do
8: for all WM Laplace units j ∈ {1..L} do
9: Fj,i(t)← (1− s j∆t)Fj,i(t−∆t)+ fi(t)∆t ▷ Eq.

2
10: end for
11: Compute f̃i(t) from Fi(t) using Winv ▷ Apply Eq. 3
12: end for

// Update Associative Memory
13: for all target features i′ ∈ {1..N} do
14: for all source features i ∈ {1..N} do
15: for all WM timeline units j ∈ {1..L} do
16: ∆Mi′,i, j(t)← fi′(t) f̃ j,i(t) ▷ Eq. 5
17: end for
18: end for
19: end for
20: M(t)←M(t−∆t)+∆M(t) ▷ Eq. 6

// Update Episodic Memory Components
21: for all indices (i′, i, j) do ▷ Dimensions N×N×L
22: for all EM Laplace units l ∈ {1..Le} do
23: Ei′,i, j,l(t) ← (1 − σl∆t)Ei′,i, j,l(t − ∆t) +

∆Mi′,i, j(t) ▷ Eq. 11
24: end for
25: end for
26: end procedure

Algorithm 2 Model retrieval and prediction functions
1: procedure PREDICTFUTURE(t,δ) ▷ Predict input at time

t +δ

// Compute time-translated working memory state
2: Initialize f̃(t +δ) (matrix L×N)
3: for all input features i ∈ {1..N} do
4: Initialize Fi(t +δ) (vector L×1)
5: for all WM Laplace units j ∈ {1..L} do
6: Fj,i(t +δ)← e−s jδFj,i(t) ▷ Eq. 8
7: end for
8: Compute f̃i(t +δ) from Fi(t +δ) using Winv ▷

Apply Eq. 3
9: end for

// Probe associative memory M(t) with future state
10: Initialize prediction p(t +δ) (vector N×1)
11: for all target features i′ ∈ {1..N} do
12: pi′(t +δ)← ∑

N
i=1 ∑

L
j=1 Mi′,i, j(t) f̃ j,i(t +δ) ▷ Eq. 9

13: end for
14: return p(t +δ)
15: end procedure

16: procedure PREDICTFROMEPISODE(t,ε,δ) ▷ Predict
input at t +δ from episode ε

// Compute episodic memory state for selected episode ε

17: Initialize M̃(ε)(t) (tensor N×N×L) ▷ Represents
M̃i′,i, j,ε(t)

18: for all indices (i′, i, j) do ▷ Dimensions N×N×L
19: Compute M̃i′,i, j,ε(t) from Ei′,i, j,·(t) using We,inv ▷

Apply Eq. 12 for l = ε

20: Assign M̃(ε)
i′,i, j(t)← M̃i′,i, j,ε(t)

21: end for
// Compute time-translated working memory state f̃(t +δ)

22: (Same computation as lines 3-9 in PREDICTFUTURE
procedure)

23: f̃(t +δ)← computed future WM state
// Probe retrieved episodic memory M̃(ε)(t) with future
state

24: Initialize prediction pε(t +δ) (vector N×1)
25: for all target features i′ ∈ {1..N} do

26: pε

i′(t +δ)← ∑
N
i=1 ∑

L
j=1 M̃(ε)

i′,i, j(t) f̃ j,i(t +δ) ▷ Eq.
13

27: end for
28: return pε(t +δ)
29: end procedure



Figure A1: Illustration of prediction based on associative
memory M for orthogonal stimuli. The input consists of two
different sequences (first consists of green followed by red fol-
lowed by yellow and the second consists of green followed
by blue followed by purple) and a repetition of the green ele-
ment. Associative memory M leads to the prediction of both
sequences simultaneously (note the overlapping lines in the
second row after time 0) without the ability to retrieve an indi-
vidual sequence (individual episodic memory).

Figure A2: Illustration of prediction based on episodic memory
M̃. Similar to Fig. 6, the arrow indicates the location of “jump
back in time” (ε). The episodic memory contains ordered rep-
resentation of the recent past (the content of working memory
from that moment in the past) resulting in temporal isolation of
the second sequence. Thus prediction is the strongest for the
elements from the second sequence.

Robustness, Noise Considerations, and Alternative
Methods

The practical implementation and biological plausibility of the
model depend on its robustness to noise and parameter vari-
ations. The inversion of the Laplace transform, particularly
via Post’s formula (Eq. 3, 12), can be sensitive to noise and
requires careful implementation, including the choice of the
parameter k and the discretization of the decay rates (s j or
σl).

The effects of noise in a similar linear system based on
Laplace transforms were analyzed by Shankar & Howard

Figure A3: Illustration of prediction based on episodic mem-
ory for a sequence of non-orthogonal stimuli derived from
CLIP embeddings of egocentric video frames. The input to
the model consists of two distinct episodes with partially over-
lapping contexts. The top row shows several representative
frames with indicators for two episodes (Paris and London
trip). The second row shows part (8 out of 512 elements)
of the CLIP vectors used as input f to the model. In the first
episode, the video input starts with a dark hotel room with
a closed curtain, and the person gets up from the bed and
opens the curtain to reveal the cityscape of Paris. In the sec-
ond episode, everything is the same except that the revealed
cityscape is the one of London. The two episodes are spaced
by random images. After more random frames, the temporal
context of the dark hotel room is repeated (semantic cue) and
becomes part of the working memory timeline (f̃) that is used
to probe the episodic timeline (M̃). The last row indicates a
prediction built in this way for each value of the log-spaced τ′l
(note the higher resolution for the more recent past). We dis-
play only the outputs of the prediction for the three cities, two
of which were experienced in the previous episodes (Paris and
London) and one that was not present in the input and served
as a distractor (Rome). The predictions are normalized, so
they sum up to 1. The prediction is near 1 for both Paris and
London when τ′l corresponds to the times around Paris and
London trips.

(2012). Specifically, Shankar & Howard (2012) analyzed noise
in a working memory model that only compute M, not the M̃.
However, since M̃ is also computed using the Laplace and
inverse Laplace transform, general properties regarding the
impact of the noise still apply. The analysis from Shankar &
Howard (2012) suggests several important properties relevant
to this model:

Input Noise: Noise originating in the input layer (f(t)), if
correlated across the Laplace units (e.g., sensory noise af-
fecting all Fj,i for a given i similarly), is transmitted linearly to
the timeline representation (f̃(t) or M̃(t)) without significant
amplification.

Internal Noise: Uncorrelated noise affecting individual
leaky integrator states (Fj,i or Ei′,i, j,l) can be amplified dur-



ing the inverse transform step (Eq. 3, 12), particularly if the
discretization step (∆s or ∆σ) is small relative to the scale of
noise variations. This highlights potential sensitivity to errors
or fluctuations in the decay rates (σl or s j) or their spacing.

Prediction Robustness: Despite potential amplification
in the timeline representation, Shankar & Howard (2012)
showed that uncorrelated internal noise is strongly sup-
pressed when computing the final prediction (p(t + δ) or
pε(t + δ)) via the associative memory readout (Eq. 9, 13).
This suppression increases with the order k of the Post’s
formula approximation, suggesting that the behavioral output
(prediction) can be more robust than the internal timeline rep-
resentation itself.

Inversion Operator Noise: Noise or imprecision in the
weights implementing the inverse Laplace transform can di-
rectly affect the timeline representation and subsequent pre-
dictions. Stable noise might preserve timing but break scale
invariance, while fluctuating noise could introduce variability in
prediction timing. Methods such as Concentrated Matrix Ex-
ponential (CME) (Horváth et al., 2020), CME-R (Mészáros &
Telek, 2022), and the Gaver-Stehfest method (Gaver, 1966;
Stehfest, 1970) exist and may offer different trade-offs be-
tween accuracy, computational cost, and noise robustness in
practical implementations.

Taken together, these findings suggest that while the inter-
nal representations might be sensitive to certain types of noise
or parameter imprecision (like time-constant spacing), the as-
sociative readout mechanism provides a degree of robustness
for predictions relevant to behavior.



Symbol Meaning / Dimensions

N Number of input features (length of f(t))
L Working-memory (WM) timeline units ( j = 1 . . .L)
Le Episodic-memory (EM) timeline units – size of the 4th dimension of M̃
f(t), fi(t) Input vector and its i-th component at time t
f̃(t), f̃ j,i(t) WM timeline matrix (L×N) and its entry ( j, i)
F(t), Fj,i(t) Laplace-layer states (leaky integrators), matrix L×N
s j Decay rate of WM integrator j
∗
τ j Peak time of WM unit j;

∗
τ j = k/s j

k Order used in Post’s inverse Laplace formula
M(t), Mi′,i, j(t) Associative-memory tensor (N×N×L) and its element
∆Mi′,i, j(t) Incremental weight change at time t
E(t) Laplace states for EM timeline (N×N×L×Le)
σl Decay rate of EM integrator l
τ′l Peak time of EM unit l; τ′l = k/σl

M̃(t), M̃i′,i, j,l(t) EM timeline tensor after inverse transform (four-tensor)
ε Index (1 . . .Le) of episodic slice selected at retrieval
δ Look-ahead interval used for future prediction

Rδ Diagonal time-translation matrix; Rδ
j, j = e−s jδ

p(t +δ) Predicted input vector at t +δ from standard associative memory
pε(t +δ) Predicted vector at t +δ using episodic slice ε

∆t Discrete simulation time-step (numerical integration)

Table A1: List of notations used throughout the paper. Bold symbols denote vectors or tensors; subscripts i, i′, j, l select specific
components.
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