Under review as a conference paper at ICLR 2026

EDIF: EDITING VIA DYNAMIC INTERACTIVE TUN-
ING WITH FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Although text-guided image editing (TIE) has advanced rapidly, most prior
works remain object-centric and rely on attention maps or masks to lo-
calize and modify specific objects. In this paper, we propose a method
of Editing via Dynamic Interactive Tuning (EDIF) that adaptively trades
off source-image structure and instruction fidelity in difficult scene-centric
editing settings. Unlike object editing, scene-centric editing is challenging
because the target cannot be clearly localized, and edits need to preserve
global structure. To cope with the limitation of TIE systems that typically
use a unified conditioning signal and ignore the block-wise variation in the
internal behavior of the model, we show that inside the model, the source-
image condition and the text-prompt embedding act with layer-dependent
directions and strengths. We also demonstrate both empirically and the-
oretically that the editing state can be diagnosed using the source image
signal-to-noise ratio and VLM logits, which indicate whether the edited
image faithfully reflects the intended editing prompt. By constructing a
Pareto line between these two objectives, EDIF adaptively modulates the
source-image and editing-text conditions, guiding each denoising step to
stay close to this line for balanced optimization. Extensive experiments on
ImgEdit, EmuEdit-Bench, and Places365 show that EDIF achieves state-
of-the-art performance in various scene-editing scenarios, including indoor
and outdoor environments.
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Figure 1: Comparison of edited images of EDIF from existing methods. Contrary to existing
methods that rely on unified editing condition and fail to balance structural preservation
and semantic alignment, EDIF exploits feedback signals (SNR and VLM logits) to monitor
the editing pathway and block-wise adaptively adjust editing condition at each step. This
per-step adaptation enables faithful and reliable edits.

1 INTRODUCTION

Recent advances in rectified-flow transformers have driven substantial progress in both image
generation and editing (Yang et al., 2024; Lipman et al., 2023; Labs et al., 2025). Existing
editing approaches, such as inversion-based (Rout et al., 2024; Wang et al., 2025), attention-
based (?), mask-guided (Couairon et al., 2022; Yu et al., 2023) and latent-based (Shuai
et al., 2024) methods, focus primarily on object-centric editing. However, scene-centric



Under review as a conference paper at ICLR 2026

a) Over Edit b) Under Edit ¢) Successful Edit Pareto Optimization
P
Pred X
N1 el N(OD +d N,
250 OD | i 289 z3% =
Zf‘m [ :
a a al\ 2|
o L = B 'S 'E i/
Zedit .. v
ool / L éﬁ
xedit Xe v N U X A S— =
Zéource i 9 % Zgource %“ ngxr Zéource h ngt m

Figure 2: Conceptual visualization of the editing pathway and EDIF’s Pareto-guided control.
(Left) (a) over-editing, (b) under-editing, and (c¢) successful editing. (Right) the Pareto line
that EDIF targets to achieve balanced, successful edits.

editing cannot localize specific regions, making existing approaches difficult to apply. Prior
scene-centric editing approaches attempt to work out this issue by training on large curated
datasets (Labs et al., 2025; Brooks et al., 2023), but this strategy is time-consuming and
has a low generalization.

As shown in Figure 2, the editing process can be categorized into three regimes: over-edit,
under-edit, and successful edit. For a successful edit, a balance between source preservation
and prompt fidelity is essential. Existing methods apply the condition strength across
the entire network uniformly, which is suboptimal for maintaining this balance. Instead,
we argue that adaptively modulating the condition strengths across blocks is necessary to
achieve this balance. To this end, we draw a Parcto line defined by the two objectives of
source preservation and editing fidelity and update condition strengths according to the
current editing state, thereby guiding each denoising step to converge closer to this line.
In particular, the preservation of the source is captured by the signal-to-noise ratio (SNR)
referenced by the source (SNRg,), while the fidelity of the editing is measured by VLM
logits.

SNR refers to the signal-to-noise ratio that quantifies the relative strength of the desired
signal compared to background noise. SNRsrc, derived from this idea, quantifies how much
information from the source image remains in the latent denoised. Empirically, latents on a
successful editing trajectory deviate less from the source than those from over-edited cases,
resulting in consistently higher SNRg,.. Therefore, we adopt SNRg,. as a reliable indicator
of the denoising state. VLM logits measure semantic agreement with the editing instruction,
allowing us to monitor whether the latent representations along the editing pathway align
with the editing prompt.

To determine how to control the editing pathway, we conduct blockwise ablation experiments
by selectively removing text or image conditioning from individual transformer blocks of the
model. Interestingly, we find that removing the condition on specific blocks can counter-
intuitively improve both source preservation and editing fidelity. This observation demon-
strates that the editing pathway can be effectively controlled through adaptive blockwise
adjustment of conditioning. Building on these insights, we propose EDIF, a feedback-driven
framework that addresses the dual objectives of source preservation and prompt fidelity
through stepwise Pareto optimization.

We extensively evaluate EDIF on ImgEdit-Bench (Ye et al., 2025), Emu Edit Bench (Sheynin
et al., 2023) and a Places365 based (Zhou et al., 2016) dataset with GPT-40 generated
prompts (Zhou et al., 2016) and demonstrate that EDIF consistently outperforms prior
methods in achieving a superior structure semantics trade-off and delivers more robust,
faithful scene-centric edits.

2 RELATED WORK

Text Instruction-based Image Editing Text instruction-based image editing (TIE)
has evolved through multiple approaches: attention-based (Fluxspace (Dalva et al., 2024),
FreeFlux (Wei et al., 2025b), MasaCtrl (Cao et al., 2023), Prompt-to-Prompt (Hertz
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Figure 3: Blockwise image and text condition zeroing experiment. We selectively zero out
either the image condition latents or the text condition latents within individual transformer
blocks to assess their respective contributions to image editing. The left column shows
results when image latents are zeroed and the right column shows results when text latents
are zeroed.

et al., 2023), Stable Flow (Avrahami et al., 2025)), inversion-based ( (Rout et al.,
2024), RFEdit (Wang et al., 2025), and FlowEdit (Kulikov et al., 2025)), mask-guided
(DiffEdit (Couairon et al., 2022), FlexEdit (Nguyen et al., 2024), Inpaint Anything (Yu
et al., 2023), Mag-Edit (Mao et al., 2023), SDEdit (Meng et al., 2022), UltraEdit (Zhao
et al., 2024), and Flux-text (Lan ct al., 2025)). While these strategies show strong perfor-
mance in object-centric editing, they face fundamental limitations in scene-centric editing,
where modification and preservation must occur at the same spatial location. The devel-
opment of scene-centric editing has mainly relied on training approaches such as Instruct-
Pix2Pix (Brooks et al., 2023), RefEdit (Pathiraja et al., 2025), InstructDiffusion (Geng
et al., 2023), MagicBrush (Zhang et al., 2024), OmniEdit (Wei et al., 2025a), FLUX.1
Kontext (Labs et al., 2025). However, such training-based methods suffer from limited gen-
eralization, as they require training whenever new domains or editing types are introduced,
making them highly inefficient in practice.

Multi-Objective Optimization In multi-objective optimization, a solution is considered
Pareto optimal if no objective can be improved without causing at least another objective
to deteriorate. Such solutions represent the best possible trade-offs among conflicting goals.
Recent methods such as PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2024), and Nash-
MTL (Navon et al., 2022) explicitly aim to find solutions on the Pareto front, while others
like GradNorm (Chen et al., 2018) balance gradients across tasks to indirectly mitigate
conflicts. PROUD (Yao et al., 2024) treats multi-objective generation jointly—rather than
optimizing each property independently—Dby steering samples to lic on the Pareto front of
conflicting objectives. Likewise, ParetoFlow (Yuan et al., 2025) guides flow-based sampling
to approximate the Pareto front.

3 METHOD

3.1  MOTIVATION

Our study focuses on Kontext (Labs et al., 2025), a DiT-based image editing model that
in a transformer block, processes source image and text condition independently. Kon-
text employs two types of transformer blocks: 19 dual-stream blocks and 38 single-stream
blocks (Peebles & Xie, 2023).

In diffusion models which composed of CNN based U-Nets, blockwise roles have been ex-
tensively investigated (Si et al., 2023; Li et al., 2023). By contrast, DiT-based architectures
is completely composed of transformer block, which is fundamentally different architecture.
The blockwise behavior remains comparatively underexplored.

To study blockwise functions in Kontext, we adopt an ablation-driven analysis. Using Chat-
GPT (OpenAl, 2024), we generated N=10 editing prompts for 30 source images, preparing
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Figure 4: The feedback driven EDIF pipeline is composed of 2 stages. In stage 1, a VLM
decomposes the user free-form prompt into key concepts, used to diagnose the editing latent.
Stage 2 proceeds in three steps: (1) run an initial inference and measure the source-image
SNR and VLM logits, (2) compare the state to the Pareto line and control condition strength
adaptively, and (3) inference with block-wise adapted model. This loop repeats until the
state enters the Pareto region, and the diffusion denoiser updates the latent.

a total of N=300 editing tasks. For each transformer block in Kontext, b € B, we performed
two types of zeroing experiments, as illustrated in Figure 3. We evaluated three metrics:
structural preservation via SSIM (Sara et al., 2019), instruction adherence via CLIP Di-
rectional Similarity (Gal et al., 2021), and perceptual quality via ImageReward (Xu et al.,
2023a).

The results, plotted in Figure 3, show that zeroing image condition or text condition in
certain blocks significantly increased the original image structure or editing performance,
while in some blocks it causes the degradation of image quality. These results are counter-
intuitive: one might expect that weakening the source-image condition would harm source
preservation, and zeroing the text-prompt condition would degrade instruction fidelity. How-
ever, our experiments show that, depending on the layer, zeroing can in fact be beneficial.
Based on these findings, we performed a complementary amplification test following the
same protocol. Rather than zeroing, we scale the condition strength by x2 at a single
block. Doubling image condition sometimes yields improved editing, while in text condition
doubling experiment, there is no noticable improvement.

This experiment yields two results. First, layers play distinct roles, and within each layer,
image and text conditioning behave differently. Second, instead of applying uniform con-
ditioning across layers, we tailor conditioning blockwise, which yields more reliable edits.
Guided by our ablation, we partition blocks into six groups: four under image condition-
ing—(G1) lowering aids structure preservation, (G2) lowering aids editing, (G3) scaling up
aids structure preservation, and (G4) scaling up aids editing—and two under text condi-
tioning—(G5) lowering aids structure preservation and (G6) lowering aids editing.

3.2 EDITING STATE DIAGNOSIS

As shown in Figure 2, editing results vary by sample. This implies that the conditions must
be adjusted per sample according to its current editing state. To monitor the state of editing
throughout denoising, we analyze two diagnostics (1) whether the source information zq is
preserved and (2) whether the instruction p is faithfully reflected.

SNR Signal Given source image z, one goal of editing is to preserve structure of xg.
Conventional SNR measures the amount of noise contained in an image. We extend this
definition and propose the source-based SNR. Given source image z¢, y; is the latent along
the editing pathway. We aim to measure how much of the signal of xq is present in y;.
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where p indexes pixel locations and ¢ is a small constant for numerical stability. Unlike
conventional SNR, which compares the current latent to the ground-truth clean image, our
extended source SNR compares the source image to the target image.

A higher SNRg,. indicates that the comparison latent retains more of the source image
signal. Experimentally, we observe that successful editing trajectories consistently exhibit
higher SNR;. than failed ones (see Supplementary C.2). It indicates that this signal is a
reliable diagnostic of structural fidelity during the denoising process.

VLM Logits Given editing prompt ¢, another goal of editing is for ¢ to be perceptible
in 9. To achieve this, as shown in Figure 2, ¢ must also be present in y;. How can
we determine whether the current state is properly following ¢? Conventionally, CLIP
Directional Similarity (CLIPg;,.) is used to assess editing success. However, it evaluates
the final clean edited image and thus does not reflect the state of latents along the editing
pathway, where substantial noise remains. In other words, CLIP g;; is ill-suited for diagnosing
intermediate, noisy latents.

We adopt a VLM-based alternative to CLIP g;, for diagnosing intermediate states. We query
the VLM to assess whether y; follows the instruction. Empirically, even though v, is in a
noisy state, VLM logits are more stable than CLIP ;. : the CLIP-based score often fluctuates
across time-steps and proves unstable as a feedback signal, VLM logits remain consistent
and reliable, making them better suited for guiding editing. Therefore, we use VLM logits
to verify whether the latent accurately follows the prompt or not. (see Supplementary
Section D.3). Here, VLM logits refers not to a binary yes/no output but to the softmax
score for the yes response.

3.3 EDIF PIPELINE

Scene-centric image editing is a multi-object task that preserves the structure of the source
image xg while applying a scene-change editing prompt c. We frame these two objectives
on a Pareto frint and, during editing, diagnose progress using the source SNR SNRg,. and
VLM logits. If the current state falls outside the Pareto region, we adjust the image and
text condition strengths blockwise. Following iterative diffusion denoising, this procedure
yields the final edited image.

Prompt Decomposition User-provided prompts contain not only target editing concepts
but also source image descriptions and redundant details, which can obscure the intended
edit. To enable VLM-based evaluation, we first decompose the prompt into key concepts
and compute VLM logits to verify whether the latent in the editing pathway aligns with the
prompt.

VLM extracts the core editing concept from each sentence and adding add or make as task
with key concept. For example, the free-form prompt ’change this cafe into a lavender field’
is transformed into the key command add lavender field. Compared to the original user
prompt, the reduced key concept prompt, composed solely of essential editing concepts,
was experimentally verified to be more appropriate to evaluate whether the latent was well
edited in ablation 4.5.

Denoising Step To assess whether the structure of z( is preserved in y;, and whether
changes occur according to ¢, we use SNRg. and VLM logit. Accurate diagnosis requires
that y; be properly configured; therefore, we first obtain the predicted clean image.

26 = 215 - ,f9(2t7ta ZOazc)a
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which follows directly from the DiT-based rectified-flow objective. Here, fg denotes the
rectified flow—matching model, and zo denotes the source-image latent. However, Z{ (the
decoded version of 2) can be noisy depending on the denoising timestep. When noise is
high, dual signals can be unreliable. To obtain a cleaner proxy, we compare &{, with a pixel
space reconstruction &} from the current latent (i.e., decoded from Z2;) and choose the one
with the higher SNR (Further details are provided in the Supplementary Section D.1.)

We then compute SNRg. and the VLM logits on y; for diagnosis. EDIF compares the
current state against the Pareto front. If it falls outside the Pareto region, it blockwise
adaptively updates the strengths of the image and text conditions following our zeroing
experiment. More concretely, when the SNR deviates substantially from the Pareto line,
we scale up the conditioning in G3 and scale down in G1 and G5. When the VLM logit
deviates, we scale up in G4 and scale down in G2 and G6, thus adapting conditioning per
block. Using the updated model, we then infer at the current timestep and iterate this
procedure until the SNRg,. and VLM logits approach the Pareto front. (For details on
the model update, see Figure 4.) Through this iterative process, EDIF achieves edits that
satisfy the multi-objective criteria.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Comparison models. We compare EDIF against TIE methods spanning diffusion and
transformer based. These include Stable Diffusion v1.5-based (InstructDiffusion Geng et al.
(2023), MagicBrush Zhang et al. (2024), InfEdit Xu et al. (2023b), InstructPix2Pix Brooks
et al. (2023))(IP2P), SD3-based RefEdit Pathiraja et al. (2025), SDXL-based OmniEdit Wei
et al. (2025a), and SteplX-Edit Liu et al. (2025), which leverages VLM guidance, and our
baseline Kontext Labs et al. (2025), which is based on Flux (Kang et al., 2025)

Dataset. We evaluate EDIF on two public benchmarks and one scene-editing dataset that
we constructed. For benchmarks, we use the scene-related portions of ImgEdit Bench (Ye
et al., 2025) and Emu Edit Bench (Sheynin et al., 2023), filtering instructions that re-
quest global/background/style changes. For a deeper scene-focused analysis, we derive a
scene-centric set from Places365 (Zhou et al., 2016). We sample 100 validation images
and automatically generate 20 edit instructions per image with GPT-4o, yielding 2,000
image-instruction pairs.

Evaluation Protocol. For ImgEdit Bench we follow its protocol that uses vi-
sion—language models to score instruction following preservation and quality. Following the
evaluation protocol of Emu Edit Bench, we report CLIPy; and CLIP,,; evaluate compli-
ance with the editing instruction and CLIP;,,, measure structural preservation of the source
image to the edited image. We also compute Image Reward (ImgRWD) (Xu et al., 2023a)
to assess the quality of the edited image. In addition, we evaluate with VIE-Score (Ku
et al., 2024) which reports Semantic Consistency (SC), reflecting how well the edit follows
the prompt and Perceptual Quality (PQ) that captures naturalness.

4.2 EXPERIMENTS ON IMGEDIT-BENCHMARK

Table 1 summarizes the performance on ImgEdit-Bench. MagicBrush, InfEdit, IP2P, and
RefEdit obtain relatively low PQ scores, indicating limited visual authenticity and natu-
ralness. In contrast, SteplX and Kontext achieve a higher PQ, producing more naturally-
looking results. For the VLM-based evaluation, we use Qwen2.5-VL (Yang et al., 2025)
to score the output. SteplX and Kontext achieve high quality scores but show somewhat
lower source-structure preservation. EDIF, while slightly below Kontext in quality, achieves
higher preservation with more balanced between editing fidelity and source preservation.

Figure 5 provides qualitative evidence. For the snowy instruction, InstructDiff, InfEdit,
CosXL, and SteplX-Edit do not convincingly convey winter characteristics. MagicBrush,
RefEdit, and Kontext often break the scene structure, producing edits that diverge from
the source. Only IP2P and our method follow the instructions with preserving the source.
However, IP2P transfers fine details too literally, resulting in unnatural outputs.
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ImgEdit-Bench
VLM-Based VIE Score Metric-Based
Method Base  Instruct? Preservel Quality? SCT  PQt CLIPgy T CLIPgy T CLIPjye T SSIMT ImgRWDT  FID|

Instruct-Diff ~ SD1.5 3.840 3.900 2992 5165 5.035  0.109 0.078 0.700 0.825 0.271 274.959
MagicBrush ~ SD1.5 4.120 3.510 3.524 4913 4.994 0272 0.140 1.232 0.725 0.235 275.239
InfEdit SD1.5 3.810 3.990 3.001 4844 4844  0.182 0.320 0.709 0.656 0.371 274.729

Data

1P2p SD1.5 3.680 3.910 3113 4.829 4992  0.108 0.240 0.821 0.641 0.240 274.799
RefEdit-SD3 SD3 4.020 4.010 3.374 5117 4967  0.278 0.340 1.082 0.929 0.689 275.139
CosXL SDXL 4.240 4.310 3.624  5.544 5.065  0.311 0.209 0.971 0.873 0.701 203.586
SteplX-Edit DiT+VLM  4.240 3.620 4.220 4.852 5.071 0.301 0.210 1.928 0.664 0.319 275.359
Kontext Flux 4.292 3.559 4121 4925 5.075  0.389 0.259 0.863 0.641 0.813  194.558
EDIF Flux 4.319 3.707 4115 5179 5050 0.410 0.228 1.990 0.991 0.836  275.438
Emu Edit Bench Places365

Method  CLIPgy T CLIPyy T CLIPjyg T ImgRWD?T SCT PQtT  CLIPgy T CLIPuy T CLIPyg T ImgRWDtT SCt  PQt
Instruct-Diff  0.131 0.157 0.754 0.152 4.832 3971 0.101 0.127 0.730 0.123 4102 4.012
MagicBrush — 0.193 0.205 0.854 0.164 4.832  3.971 0.120 0.110 0.854 0.120 41.832  4.847
InfEdit 0.209 0.295 0.788 0.056 5.063  4.255 0.175 0.140 0.788 0.104 5.053 5.058
P2p 0.185 0.280 0.787 0.104 4902 4.085 0.280 0.060 0.857 0.112 4902 4.961

RefEdit-SD3  0.180 0.203 0.765 0.121 5.005 4.114 0.303 0.300 0.765 0.198 5.005 4.878
CosXLs 0.210 0.289 0.824 0.197 5.227 4112 0.120 0.118 0.824 0.120 5.227  4.801
Step1X-Edit  0.215 0.297 0.803 0.241  5.332 4.104 0.227 0.295 0.710 0.149 5.012 5.042
Kontext 0.240 0.288 0.801 0.247 4210 4.451 0.358 0.279 0.701 0.211 4877 5.138
EDIF 0.260 0.292 0.821 0.244 5.110  4.415 0.381 0.310 0.911 0201 5.750 5.501

Table 1: The experimental results are reported on three datasets. The first table presents
the results on ImgEdit-Bench, the left side of the second table shows the results on EmuEdit-
Bench, and the third table reports the results on Places365.

Source Instruct-Diff MagicBrush InfEdit 1P2P RefEdit CosXL Step1X Kontext EDIF
o X (TS " - v pn

A café in a cherry-blossom scene

Figure 5: Visualization of editing results. The leftmost column shows the source image;
subsequent columns show model outputs. From top to bottom, rows correspond to the
editing result on ImgEdit-Bench, HQ-Edit, and Places365 results. The last row show the
editing result on indoor scene image.

4.3 EXPERIMENTS ON EMUEDIT

While the overall trends on EmuEdit are consistent with those on ImgEdit-Bench, EDIF
shows a distinctive advantage on this benchmark. As illustrated in Figure. 5, no baseline
produced a natural transformation for the instruction Hello Kitty idol in front of a temple.
Most edits either failed to realize the concept or exhibited conspicuous artifacts. Except
for Step1X and Kontext, the baselines tended to preserve the original tennis racket shape,
resulting in an unsuccessful rendering of the Kitty idol. SteplX did realize the idol but
hallucinated the background buildings, while Kontext failed to preserve the source content.
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In contrast, EDIF successfully executed the instruction, indicating that the feedback-driven
procedure can handle this challenging task reliably. In contrast, EDIF followed the text
prompt while preserving scene plausibility, yielding a more natural and faithful edit.

Editing Pathway. In Fig-
ure 6, we compare the edit-
ing pathways of EDIF and
Kontext (Labs et al., 2025).
While Kontext exhibits over-
editing even at early denois-
ing steps and ultimately fails
to preserve the source, EDIF

VLM Logit

. ——}“‘

"' =
“Change the road into a forest”

% ""4

ufps W e

dynamically adjusts condi-
tioning strength, producing
edits that align with the
prompt while retaining struc-
tural fidelity. EDIF adap-

Figure 6: Editing pathway analysis of Kontext and EDIF.
The left side illustrates intermediate images along the de-
noising trajectory, while the right side shows the correspond-
ing SNR and VLM logit curves over timesteps. Red lines
denote Kontext and blue lines denote EDIF.

tively tunes the conditioning
to correct low initial SNR and steer SNR and VLM logits toward the Pareto frontier, achiev-
ing a balanced trade-off between semantic alignment and structural preservation.

4.4 EXPERIMENTS ON PLACES365

3;1(;7 BVL;’;C;E diﬁgﬁ;ﬁ;"glvaﬁ:;: Method  Strength CLIPgy + CLIPgy 7 CLIPimg © ImgRWDT
on Places365 within ImgEdit- 0.3 0.310 0.332 0.877 0.892
Bench. Table 1 summarizes 0.5 0.275 0.320 0.928 0.929
the results, and Figure 5 illus- Uniform 1 0.276 0.317 0.932 0.911
trates examples in the third 0.276 0.331 0.925 0.937
TOW. InstructDiff exhibits 3 0.274 0.307 0.910 0.893
reduced naturalness and no- Dynamic 0.378 0.301 1.125 0.901

ticeably degraded image qual-
ity.  MagicBrush, RefEdit,
and Kontext tend to over-
edit, collapsing source struc-
ture and producing outputs
that diverge from the orig-
inal content.  InfEdit and
CosXL often under-edit, re-
sulting in minimal changes to
the scene. TP2P and Stepl1X-
Edit frequently deviate from
the prompt and fail to deliver
balanced edits. In contrast, our EDIF preserves the core structure while following the urban-
scene instruction effectively. These observations align with results on the other datasets,
where Kontext, MagicBrush, and RefEdit sacrifice preservation due to aggressive edits,
CosXL and InfEdit retain too much of the original, and InstructDiff and Step1X-Edit yield
somewhat awkward modifications.

Table 2: Scores for fixed and dynamic latent strength scal-
ing.

Figure 7: The first column shows the source image. (a) Re-
sult when a fixed strength is uniformly applied. (b) Result
from EDIF with dynamic adjustment.

Conditioning Control Strategy. EDIF dynamically adjusts the condition strength at
each inference timestep, whereas CFG uses a single global scale. We evaluate two settings
on 20 randomly sampled Places365 images (Zhou et al., 2016) with the same prompts as
in the main Places365 experiments. First, we apply a fixed scaling factor uniformly to text
embeddings across all layers, sweeping it from 0.3 to 3.0. Second, the EDIF case, where
adaptively controls the strength as inference.

Table 2 and Figure 7 show the results. When a fixed scaling factor is applied uniformly
across layers, the editing performance degrades, producing low CLIPg4;, and CLIP,,;. In
contrast, adapting the scaling factor per block leads to successful edits. These experiments
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empirically demonstrate that layers have distinct roles, and therefore, uniform scaling cannot
satisfy the trade-off between original structure preservation and editing fidelity.

User Study We conducted a user study to further as- .
sess the quality of editing. A total of 20 source images “| | trtion Aoy
were sampled, and participants were asked to evaluate os Visual Naturalism
four outputs per case (the original image and edits pro-
duced by three models). Each comparison included three
questions: (1) structural consistency, (2) prompt fidelity, ”

and (3) naturalness of the edit. Although CosXL per- 0

forms relatively well in structural preservation, it often

struggles to produce faithful edits. EDIF effectively main-

tains the structure of the source image while following o0 CosXL Kontext Ours
the editing instructions, whereas Kontext tends to over- Figure 8: Result of the user
edit and shows lower structural consistency. Refer to Ap- study comparing three models.
pendix E.2 for experiment details.

4.5 COMPLEX EDITING PROMPT
Pareto-Line Construc-
tion. SNR-based feedback
is an iterative tuning method
aimed at the Pareto front. To
examine how the construction
of the Pareto frontier affects
performance, we conduct
experiments in which the
structural threshold 7 on the
Pareto frontier is varied from ? eitne

1.0 to 4.0. Figure 9: Ablation study: (a) effect of Pareto-line

Figure. 9 shows the result. construction, and (b) precise prompt effeict in VLM
Without feedback, structural feedback.

integrity collapses and edits

fail. With a small threshold such as 7=1.0, the overall layout of the source image is pre-
served, and as 7 increases, structural preservation increases steadily. 7 indeed acts as a
practical control of the condition strength.

[

User Provided Prompt
Keyconcept Concise Prompt

048 050 052 054 056 058 060

Key Concept Extraction. We compare VLM feedback using the decomposed reduced
key-concept prompts against raw free-form prompts. As shown in Figure 9, raw free-form
prompts often restate attributes of the source image, which can artificially inflate the yes
logits even when little or no editing actually occurs. In contrast, the key-concept prompt
provides stricter judgments, resulting in lower yes logits. This yields more robust evaluations
across various user prompts, while also producing logits that are more stable throughout
the denoising process.

5 CONCLUSION

We introduce EDIF, a feedback driven algorithm for scene-centric image editing. Given a
source image and a textual editing prompt, EDIF set a Parcto line for editing two objectives
of preserving the source image structure and achieving prompt fidelity. Along the denoising
trajectory, EDIF diagnoses the latent at every step, checking whether the source signal is
retained and whether the prompt semantics are faithfully expressed. Following the state,
EDIF adaptively adjusts transformer conditioning to steer the editing trajectory onto, and
keep it within, the Pareto line. Unlike prior approaches that apply identical controls uni-
formly across all layers, EDIF performs blockwise control whose strength scaling are adapted
based on the trajectory’s position relative to the Pareto line. We provide a theoretical analy-
sis of the diagnostic signals that drive these control decisions, and we empirically show that
the procedure is robust. Quantitative and qualitative evaluations on ImgEdit, EmuEdit,
and Places365 demonstrate state-of-the-art performance across diverse scene-editing tasks.
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