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Abstract

Tail-aware objectives shape agents’ behavior when navigating uncertainty and can depart
from risk-neutral scenarios. Risk measures such as Value at Risk (VaR) and Conditional
Value at Risk (CVaR) have shown promising results in reinforcement learning. In this paper,
we study the incorporation of a relatively new coherent risk measure, Entropic Value at
Risk (EVaR), as a high-return, risk-seeking objective that the agent seeks to maximize.
We propose a multi-timescale stochastic approximation algorithm to seek the optimal
parameterized EVaR policy. Our algorithm enables effective exploration of high-return
tails and robust gradient approximation, to optimize the EVaR objective. We analyze the
asymptotic behavior of our proposed algorithm and rigorously evaluate it across various
discrete and continuous benchmark environments. The results highlight that the EVaR
policy achieves higher cumulative returns and corroborate that EVaR is indeed a competitive
risk-seeking objective for RL.

1 Introduction

Sequential decision making modelled as a Markov decision process (MDP) (Puterman, 2014) is the underlying
formulation of Reinforcement Learning (RL) (Sutton & Barto, 1998). The primary objective in RL is typically
to maximize the expected cumulative return, which may be discounted, undiscounted, or averaged (Puterman,
2014), depending on whether the horizon is finite or infinite. Optimizing for expected return has demonstrated
remarkable success in structured and less volatile applications such as Atari games, board games, scientific
experiments (Chen et al., 2022), and other regularized, simulated environments (Shao et al., 2019; Sethy
et al., 2015; Silver et al., 2016) due to stable and predictable environment dynamics. This approach often
struggles in environments characterized by high uncertainty and variability in returns, such as safety-critical
systems (Zhang et al., 2020; Martín H. & de Lope, 2009), finance (Filos, 2019; Cao et al., 2021), navigation
(Wu et al., 2024), industrial automation, healthcare (Wang et al., 2023), and robotics (Kober et al., 2013; Gu
et al., 2023), where robustness and adaptability are essential. In such high-stakes scenarios, accounting for
risk becomes crucial.
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To handle these challenges, reinforcement learning must go beyond simply maximizing the expected return.
Instead, it should incorporate risk-awareness by modifying the objective to account for return variability, giving
rise to risk-sensitive RL (Garcıa & Fernández, 2015; Howard & Matheson, 1972b). The standard expected
cumulative reward criterion does not inherently avoid rare but severe negative outcomes, nor does it consider
the impact of large positive rewards. Consider two policies π1 and π2, where Pπ1 pReward “ ´100q “ 0.5 and
Pπ1 pReward “ `100q “ 0.5. Also, Pπ2 pReward “ ´1q “ 1.0. Although π1 has a higher expected return, it
exhibits extreme volatility, leading to highly variable outcomes which can be categorized as risky. In contrast,
π2 provides a stable and predictable outcome. The expected cumulative reward criterion would favor π1,
despite its high risk, highlighting the need for alternative evaluation metrics that account for risk. Classical
RL objectives based on expected cumulative reward can be classified as risk-neutral, meaning they do not
explicitly consider the uncertainties associated with actions. In contrast, risk-sensitive decision-making can
be divided into two approaches: risk-averse RL – the agent prioritizes stability, favoring policies with low
reward variability, which is crucial in safety-critical applications, and risk-seeking RL – the agent pursues
higher mean returns, even at the cost of greater potential losses, resembling human decision-making patterns
in portfolio management (Gollier, 2001) and super-human racing AI (Wurman et al., 2022; Kaufmann et al.,
2023), as explained by cumulative prospect theory (Tversky & Kahneman, 1992). By integrating risk-sensitive
objectives into RL, agents can achieve a balance between maximizing expected rewards and managing
uncertainty. This leads to more robust and adaptive behaviors in dynamic and high-risk environments.

Risk Measures: In this paper, we assume the existence of a probability space pΩ,F ,Pq, where Ω represents
the sample space, F a σ-field over Ω, and P signifies a probability measure over F . In this paper, we consider
random variables defined over this probability space. Several risk measures are commonly used in decision-
making, each with different assumptions and applications. These include the Markowitz Mean-Variance risk
measure (Markowitz & Todd, 2000), which assumes that returns follow a normal distribution and balances
expected return against variance. Another approach is the Wang transform function (Wang, 1996), which
distorts the cumulative distribution function to model risk aversion or risk-seeking behavior. More widely
used in risk-sensitive optimization are Value at Risk (VaR) (Rockafellar et al., 2000) and Conditional Value at
Risk (CVaR) (Rockafellar et al., 2000; Rockafellar & Uryasev, 2002). CVaRα and VaRα of a random variable
X at confidence level α P r0, 1s are defined as follows1:

CVaRαpXq “ ErX | X ě VaRαpXqs, where (1)
VaRαpXq “ suptβ P R | PpX ě βq ě αu. (2)

While VaRα identifies a gain threshold, CVaRα provides a more comprehensive assessment by evaluating the
expected gains in the best-case scenarios. This makes it particularly useful in risk-seeking decision-making,
financial risk management, and safety-critical applications. Acceptance of the risk measures depends on the
stability of their estimation procedures and the simplicity of optimization. The incorporation of these risk
measures in policy optimization can be achieved either by modifying the objective function—where cumulative
rewards are transformed non-linearly using a risk measure, commonly, CVaRα (Chow et al., 2015; Tamar
et al., 2015; Kashima, 2007; Keramati et al., 2020; Singh et al., 2020)—or by considering the risk measure as
a constraint in the optimization setting, also commonly CVaRα (Prashanth, 2014; Chow & Ghavamzadeh,
2014; Zhang et al., 2024; Ahmadi et al., 2021). CVaRα is more widely accepted due to its coherent nature.

Entropic value at risk (EVaR) (Ahmadi-Javid, 2012) is a fairly new risk measure based on the exponential
moment of gains, derived from the Chernoff bound, that provides a convex and coherent lower bound on
gains, making it particularly useful for managing tail risk. It is defined as follows: For a random return
X P R, Entropic Value-at-Risk (EVaR - right tail) is defined with a confidence parameter α P r0, 1q, as

EVaRαrXs “ inf
βą0

ˆ

1
β

log EreβXs

α

˙

, (3)

For the validity of the above definition, we assume that the moment-generating function MXpβq “ EreβXs

exists for all β ě 0. EVaR minimizes the worst-case bound on the right tail by optimizing over exponential
1Throughout, we adopt right-tail (gain) definitions of VaR/CVaR/EVaR; maximizing them is risk-seeking in the sense of

preferentially targeting upper-tail returns.
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moment bounds. It acts as a dual to the Legendre-Fenchel transform of the cumulant function logEreβXs,
ensuring a convex upper bound on extreme right-tail values. From large deviation theory, the cumulant function
has a dual formulation: logEreβXs “ supξ!P tEξrXs ´ KLpξ}Pqu. Hence, we obtain the dual representation of
EVaRα as follows:

EVaRαrXs “ inf
βą0

sup
ξ!P

ˆ

1
β

pEξrXs ´ KLpξ}Pq ´ logαq

˙

“ sup
ξ!P

inf
βą0

ˆ

EξrXs ´
1
β

KLpξ}Pq ´
1
β

logα
˙

“ sup
ξ!P

EξrXs with KLpξ}Pq ď logp1{αq.

From the above characterization, it easily follows that, EpXq ď EVaRαpXq ď esssuppXq, where esssuppXq “

inftx P R : PpX ď xq “ 1u is the essential sup of X. Note that CVaRαpXq “
ş

XdPCVaR, where the probability
measure PCVaRpAq “ 1

αPptX ě VaRαpXqu XAqq, for Borel set A. Furthermore, KLpPCVaR,Pq “
ş

log 1
αdPCVaR =

ş

α
α log 1

αdP = log 1
α . Also, PCVaR ! P. This leads to the well-known ordering of risk measures:

VaRαpXq ď CVaRαpXq ď EVaRαpXq.

This ordering indicates that VaR provides the least conservative risk assessment, while EVaR offers the most
robust and conservative measure, with CVaR serving as an intermediate risk measure.

For continuous r.v.s., VaRα estimate follows the asymptotic normality N
´

VaRα,
αp1´αq

nfpVaRαq2

¯

(Serfling, 2009),
where f is the PDF. This implies that as one approaches extreme tails (α small), the variance of the estimator
becomes prohibitively large, making both VaRα and CVaRα difficult to estimate accurately. Indeed, VaR uses a
hard indicator 1tX ě βu, while CVaR employs the same indicator to gate samples; both therefore discard
rp1 ´ αqs% of sample points. Consequently, their stochastic gradients exhibit order-of-magnitude higher
variance. EVaR is a coherent risk measure as it satisfies subadditivity, positive homogeneity, monotonicity,
and translation invariance. Its convex formulation ensures both robustness and tractability, making EVaR
more suitable for optimal decision-making in risk-seeking settings. EVaRα avoids explicit tail estimation by
leveraging the moment-generating function for its computation. It reweights the entire distribution with
smooth exponential factors, yielding low-variance gradient estimates and a learning curve that remains both
monotone and smooth.

Problem Statement: In this paper, our objective is to seek optimal decision-making under uncertainty,
which is modeled as a Markov Decision Process (MDP). An MDP is defined by the tuple pS,A, R, P, γq,
where S and A are the finite state and action spaces, respectively. R : S ˆ A ˆ S Ñ R is the reward function,
where Rps, a, s1q represents the reward received for each state transition from s

a
Ñ s1 taking action a. The

transition probabilities are P : S ˆ A Ñ ∆S , where ∆S is the probability simplex in RS and for a particular
state-action pair, Pp¨|s, aq is the transition probability, P0p¨q is the initial state distribution, and γ P r0, 1q is
the discount factor. For each state s, the set Apsq gives all available actions. A stationary policy πp¨|sq is a
probability distribution over actions that depends on the current state s. Here we consider parameterized
stochastic policies, which are parameterized by a p-dimensional vector θ, which means that the policy space
can be written as ΠΘ “ tπθp¨|sq, s P S, θ P Θ Ď Rpu. In this paper, we consider the following risk-seeking
control problem:

θ˚ “ arg max
θPΘ

JEVaRpθq “ EVaRαrRpτqs

“ arg max
θPΘ

inf
βą0

1
β

log
Eτ„πθ

“

eβRpτq
‰

α
, (4)

where Rpτq “
řT ´1

t“0 γtRpst,at, st`1q, with s0 „ P0,at „ πθp¨|stq, st`1 „ Pp¨|st,atq, and T P N. Note that
JEVaRpθq exists for @θ, since Rp¨q is bounded.

The entropic value-at-risk is inherently connected to exponential tilting, a technique that modifies the
probability distribution to emphasize higher-risk, high-reward outcomes. To illustrate this connection,
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Figure 1: Comparison of VaR, CVaR, and EVaR computed for for heavy-tailed (Pareto) and light-tailed (Normal)
distributions, showing EVaR’s stronger tail-risk sensitivity. The canonical ordering VaRα ď CVaRα ď EVaRα

holds, with heavier tails accentuating the EVaR gap—providing a sharper tail-aware nature that prioritizes
trajectories with sparse, high returns.

consider the exponentially tilted probability measure Qβ , defined as:

dQβ

dPπθ

“
eβr

Eτ„πθ
reβRpτqs

, (5)

This transformation effectively reweights the original probability distribution Pπθ
, increasing the probability

of trajectories with higher cumulative rewards Rpτq. As a result, the modified measure Qβ gives greater
importance to risk-seeking outcomes, ensuring that extreme rewards are more heavily considered. Using this
tilted distribution, we obtain the following relationship between the KL divergence and the EVaR objective:

KLpQβ}Pπθ
q “ βEQβ

rRs ´ logEτ„πθ
reβRpτqs and

JEVaRpθq “ inf
βą0

ˆ

EQβ
rRs ´

1
β

KLpQβ}Pπθ
q ´

1
β

logα
˙

“ sup
QPMθ

"

EQrRs | KLpQ}Pπθ
q ď log 1

α

*

, where Mθ “

"

Qβ | Dβ ą 0, dQβ

dPπθ

“
eβr

Eτ„πθ
reβRpτqs

*

.

This formulation highlights that EVaR selects the extreme expectation over a set of tilted distributions, each
constrained by a KL-divergence bound (KL-ball of radius log p1{αqq). In other words, it finds the most extreme
risk-seeking expectation while ensuring the alternative probability distribution remains within a reasonable
divergence from the original measure, thereby maintaining robustness in decision-making under uncertainty.
The EVaR objective does not merely maximize expected returns but incorporates a risk-seeking adjustment
that prioritizes high-reward yet riskier trajectories. Further, the KL-divergence constraint prevents excessive
deviation from the original probability distribution, ensuring a balanced trade-off between exploration and
risk seeking.

Related Literature: The field of risk-sensitive control and reinforcement learning has been well studied,
beginning with the seminal work of (Howard & Matheson, 1972a) which introduced the application of an
exponential utility function to rewards. A substantial body of research has concentrated on risk-sensitive
control in continuous-time, finite-horizon settings, particularly for problems with known transition kernels
(Fleming & McEneaney, 1995; Whittle, 1990; Coraluppi & Marcus, 1999; Koenig & Simmons, 1994). Early
developments extended optimal control techniques to reinforcement learning (Littman & Szepesvári, 1996;
Borkar, 2001; 2002; 2010; Mihatsch & Neuneier, 2002; Heger, 1994). The use of exponential ergodic

4



Published in Transactions on Machine Learning Research (10/2025)

(a) (b)

Figure 2: (a) Plot shows exponentially tilted distributions for two RL policies with moderate risk sensitivity.
Policy A remains stable, while Policy B shifts significantly, emphasizing its long tail. Tilting reweights
probability mass toward high-reward outcomes, enhancing risk-seeking learning. (b) Low β encourages
exploration with stable learning, moderate β balances exploration and risk sensitivity, while high β prioritizes
high-reward strategies but introduces higher variability.

performance in discrete time control (Di Masi & Stettner, 1999; 2007) was further generalized to address
risk-sensitive average cost criteria (Cavazos-Cadena & Hernandez-Hernandez, 2011). In reinforcement learning,
risk-sensitive methods have been adapted for model-free settings with unknown transition dynamics, employing
techniques such as relative entropy stochastic search and Q-learning (Borkar & Meyn, 2002; Osogami, 2012).
Recent advances in risk-sensitive reinforcement learning integrate conditional value-at-risk (CVaR) objectives
for robust policy optimization (Chow et al., 2015; Chow & Ghavamzadeh, 2014), quantile temporal-difference
learning to capture return distributions more accurately (Rowland et al., 2024), leverage sample-based
dynamic programming techniques that augment Bayes-adaptive MDPs with CVaR constraints to derive
risk-averse policies (Rigter et al., 2021), and incorporate coherent risk measures alongside non-linear function
approximation (Lam et al., 2022). EVaR policy optimization in RL is a relatively new and less explored area.
(Ni & Lai, 2022) proposed a trajectory-based policy gradient method to optimize EVaR-induced risk-sensitive
criteria, (Dixit et al., 2021) developed nested EVaR-constrained models, and (Hau et al., 2023) introduced a
dynamic programming approach for EVaR objectives by formulating EVaR-based Bellman equations under
known transition dynamics.

Our Contribution: In this paper, we provide an online multi-time scale stochastic approximation algorithm
to estimate the EVaR of the reward distribution and also seek the optimal EVaR policy in the context of
model-free risk-seeking reinforcement learning setting.

2 Proposed Method

In this section, we recast the control objective (4) into two tightly coupled sub-problems. Prediction demands,
for any fixed policy parameter θ, an online, sample-efficient estimate of the entropic value-at-risk JEVaRpθq and
optimization then needs a dependable ascent direction built from those estimates to steer θ towards an EVaR-
optimal policy. We tackle both challenges simultaneously within a multi-timescale stochastic-approximation
framework: a fast inner loop continually calibrates the EVaR estimate, while a slower outer loop performs
simultaneous-perturbation-based gradient ascent, which seeks the risk-seeking solution.

2.1 EVaR Estimation

In this section, we propose an online, multi-timescale approach to estimate EVaR. From Eq.(4) we have

JEVaRpθq “ inf
βą0

1
β

`

logEτ„πθ

”

eβ¨Rpτq
ı

´ logα
˘

(6)
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(a) Hpβq vs. β for different confidence levels α. (b) Gpxq “ Hp1{xq vs. x for different confidence levels α.

Figure 3: Dependence of the EVaR curves on the confidence level α for a truncated Pareto reward distribution
(shape“ 3, scale“ 1). (a) The function Hpβq diverges more steeply as β Ñ 0 for lower α, indicating stronger
tail-risk sensitivity. (b) The convex transformation Gpxq “ Hp1{xq attains its minimizer at larger x as α
decreases, reflecting a more conservative risk-seeking nature.

Let Hpβq “ β´1` logEτ„πθ

“

eβ¨Rpτq
‰

´ logα
˘

, where β ą 0. We establish the following result for H.

Proposition 1. The function Gpβq “ H
´

1
β

¯

is convex in β over β ą 0.

Proof. Given, H
´

1
β

¯

“ β
´

logE
”

e
Rpτq

β

ı

´ logα
¯

. To prove convexity, for any λ P r0, 1s and β1, β2 ą 0, let
β “ λβ1 ` p1 ´ λqβ2. Define normalized weights:

µ “
λβ1

β
, ν “

p1 ´ λqβ2

β
, µ` ν “ 1.

By Hölder’s inequality:

E
”

e
Rpτq

β

ı

ď E
”

e
Rpτq

β1

ıµ

E
”

e
Rpτq

β2

ıν

.

Taking logarithms:
logE

”

e
Rpτq

β

ı

ď µ logE
”

e
Rpτq

β1

ı

` ν logE
”

e
Rpτq

β2

ı

.

Multiply by β and subtract β logα:

H

ˆ

1
β

˙

ď λH

ˆ

1
β1

˙

` p1 ´ λqH

ˆ

1
β2

˙

.

Thus, H
´

1
β

¯

is convex in β.

The original function Hpβq exhibits mixed curvature due to the β-scaling in the denominator and the
exponential term. However, the transformation β Ñ 1

β , reparameterizes the function, flipping the curvature
to enforce convexity. This property is critical because it simplifies the optimization landscape, making it
much easier and more reliable to find the unique global optimum.
Corollary 1.

min
βą0

Hpβq “ min
xą0

Gpxq,

Moreover, the minimizers satisfy β˚ “ 1{x˚.
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Proof. Define the change of variable x “ 1
β . Then Gpxq “ H

` 1
x

˘

. Let β˚ be a global minimizer of
Hpβq and x˚ “ 1{β˚. Then Gpx˚q “ H

` 1
x˚

˘

“ Hpβ˚q. Since, β˚ minimizes H, we have for any x ą 0,
Hpβ˚q ď H

` 1
x

˘

“ Gpxq. Hence, Gpx˚q “ Hpβ˚q ď Gpxq, @x ą 0. Thus x˚ is a global minimizer of G,
and

min
xą0

Gpxq ď Gpx˚q “ Hpβ˚q “ min
βą0

Hpβq.

Conversely, suppose x˚ minimizes Gpxq. Define β˚ “ 1{x˚. By an identical argument,

min
βą0

Hpβq ď Hpβ˚q “ Gpx˚q “ min
xą0

Gpxq.

Putting these two inequalities together,

min
βą0

Hpβq “ min
xą0

Gpxq.

Furthermore, the minimizers match by β˚ “ 1{x˚.

To establish the convergence and stability of our approach, we require certain regularity conditions on the
risk-seeking objective and the policy-induced reward distribution. These conditions ensure that the EVaR
optimization problem remains well-posed and that the gradient estimates concentrate sufficiently around
their expected values.
Assumption 1. The variable x “ 1{β is restricted to a compact set I “ rxmin, xmaxs with 0 ă xmin ă xmax ă

8.
Assumption 2. There exists σ ą 0 such that for all x P I,

VarQx
pRpτqq “ EQx

rRpτq2s ´ pEQx
rRpτqsq

2
ě σ,

where the exponentially tilted probability measure Qx is defined as dQx

dPπθ

“
er{x

Eτ„πθ
reRpτq{xs

.

This assumption ensures that the reward distribution under the exponentially tilted measure Qx always
retains a minimum level of variability. Specifically, it guarantees that the variance of rewards does not collapse
to zero for any risk sensitivity parameter x. This is critical because the policy search requires sufficient
variability in rewards to effectively explore the policy space and avoid degenerate solutions.
Lemma 1. Under Assumptions 1 and 2:

1. The variance VarQx
pRpτqq is continuous in x over I “ rxmin, xmaxs.

2. Dσ̄ ą 0 such that VarQx pRpτqq ě σ̄, @x P I.

Proof. Let Zpxq “ Eτ reRpτq{xs. The tilted expectation EQx
rRpτqs and EQx

rRpτq2s are given by:

EQx
rRpτqs “

Eτ rRpτqe
Rpτq

x s

Zpxq
, EQx

rRpτq2s “
Eτ rRpτq2e

Rpτq

x s

Zpxq
.

By (|Rpτq| ď R8

1´γ ,) and Assumption 1 (x P I), the terms RpτqeRpτq{x and Rpτq2eRpτq{x are bounded. By the
Dominated Convergence Theorem (DCT), Eτ rRpτqeRpτq{xs, Eτ rRpτq2eRpτq{xs, and Zpxq are continuous in
x. Since Zpxq ě e

´R8
p1´γqxmax ą 0, the ratios EQx

rRpτqs and EQx
rRpτq2s are continuous. Thus, VarQx

pRpτqq “

EQx
rRpτq2s ´ pEQx

rRpτqsq2 is continuous. By Assumption 2, VarQx
pRpτqq ě σ ą 0 for all x P I. Continuity of

VarQx
pRpτqq and compactness of I imply VarQx

pRpτqq attains its minimum on I. Let σ̄ “ minxPI VarQx
pRpτqq.

By Assumption 2, σ̄ ą 0.

Theorem 1. Under Assumptions 1 and 2, the function

Gpxq “ x
´

logE
”

eRpτq{x
ı

´ logα
¯

is m-strongly convex on I “ rxmin, xmaxs with modulus m “ σ̄
x3

max
.
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Proof. One can easily find the second-order derivative of Gpxq as follows:

G2pxq “
EQx rRpτq2s ´ pEQx rRpτqsq2

x3 “
VarQx pRpτqq

x3 .

By Lemma 1, VarQx
pRpτqq ě σ̄ ą 0. Since x ď xmax,

G2pxq ě
σ̄

x3
max

“ m ą 0.

Thus, Gpxq is strongly convex on I.

We now propose a multi-timescale framework to estimate JEVaR by solving the above optimization problem
via finding the roots of the derivative G1. For this purpose, we derive a closed-form expression for G with
respect to x as follows:

G1pxq “
d

dx

”

x
´

logEτ

”

eRpτq{x
ı

´ logα
¯ı

(7)

“ log
Eτ

`

eRpτq{x
˘

α
´

1
x

Eτ rRpτq eRpτq{xs

Eτ reRpτq{xs
.

The interchange of Eτ r¨s and d
dx in the above equality is possible through the bounded convergence theorem.

In practice, the exact expectations Eτ reRpτq{xs and Eτ rRpτqeRpτq{xs are often intractable to compute directly.
To address this, we replace these expectations with online average estimates, computed from observed
samples over time. Consequently, we arrive at a two-timescale stochastic approximation algorithm for finding
x˚ “ arg minxą0 Gpxq. In this framework, one timescale is used to update the estimate of G1, while the other
handles the solution update in the direction of the estimate. This separation enables more efficient and stable
convergence of the gradient estimation process.

ϑt`1 “ ϑt ` δt

´

eRpτt`1q{xt ´ ϑt

¯

, where τt`1 „ πθ and the step-size δt P p0, 1q (8)

ωt`1 “ ωt ` δte
Rpτt`1q{xt pRpτt`1q ´ xtωtq , .

The above single timescale stochastic recursions estimate the expectations Eτ reRpτq{xs and
Eτ rRpτqeRpτq{xs{xEτ reRpτq{xs which amount to estimating G1. Now we can apply these estimates to seek x˚

by calibrating the iterates in the negative direction of the derivative estimate as follows:

xt`1 “ xt ´ ξt

ˆ

log ϑt

α
´ ωt

˙

, where ξt P p0, 1q is the step-size. (9)

Note that the above recursion is maintained at a slower time scale relative to the recursions Eq.(8). This is
required because one needs a good estimate of G1 to efficiently calibrate xt. This develops a bidirectional
coupling where the recursion Eq.(9) can be considered quasistatic w.r.t. recursion Eq.(8). This can be
illustrated as follows:

xt`1 “ xt ´ δt
ξt

δt

ˆ

log ϑt

α
´ ωt

˙

(10)

By stacking Eqs.(8), and (10) in vector notation, we obtain the following
»

–

ϑt`1
ωt`1
xt`1

fi

fl “

»

–

ϑt

ωt

xt

fi

fl ` δt

»

–

eRpτt`1q{xt ´ ϑt

eRpτt`1q{xt pRpτt`1q ´ xtωtq
´ξt

δt

`

log ϑt

α ´ ωt

˘

fi

fl

If we let limtÑ8
ξt

δt
Ñ 0, then from the above equation, one can find that while xt is quasi-static, the estimates

ϑt and ωt get nearly equilibrated to their mean-field limits ϑ˚pxtq and ω˚pxtq respectively. This quasi-static
equilibrium eliminates bias in gradient estimates.
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Assumption 3. We assume that the step-size schedules tδtutPN and tξtutPN are real-valued, positive, deter-
ministic, pre-determined sequences, and they satisfy

ÿ

tPN

`

δ2
t ` ξ2

t

˘

ă 8,
ÿ

tPN
δt “

ÿ

tPN
ξt “ 8, lim

tÑ8

ξt

δt
“ 0.

Examples of such step sizes can be ξt “ 1
t , δt “ 1

1`t log t or ξt “ 1
t2{3 , δi “ 1{t. The above assumptions are

required as they are critical technical requirements for ensuring almost sure convergence. The first condition
ensures that they decay fast enough. The second condition ensures that updates happen throughout the
entire time continuum. The final condition (time scale separation) ensures that the ratio of the step sizes
must approach zero, ensuring the updates for xt occur on a slower timescale compared to ϑt and ωt.

The following theorem characterizes the limiting behavior of the proposed empirical EVaR estimation recursion
under the stated regularity assumptions and step-size conditions:
Theorem 2 (Convergence of JEVaR under static θ). Given policy πθ, under Assumptions 1–3, the coupled
stochastic recursions Eq.(8) & Eq.(9) constitute a stochastic Euler discretization of the ODE system:

9ϑ “ Eτ„πθ

”

eRpτq{x
ı

´ ϑ,

9ω “
Eτ„πθ

“

RpτqeRpτq{x
‰

xEτ„πθ

“

eRpτq{x
‰ ´ ω,

9x “ ´

˜

log
Eτ„πθ

“

eRpτq{x
‰

α
´

Eτ„πθ

“

RpτqeRpτq{x
‰

xEτ„πθ

“

eRpτq{x
‰

¸

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

´G1pxq

,

Furthermore, the iterates satisfy:

pϑt, ωt, xtq
a.s.

ÝÝÑ pϑ˚pθq, ω˚pθq, x˚pθqq ,

with equilibrium pϑ˚pθq, ω˚pθq, x˚pθqq characterized by:

ϑ˚pθq “ Eτ„πθ

”

eRpτq{x˚
pθq

ı

, ω˚pθq “
Eτ„πθ

”

RpτqeRpτq{x˚
pθq

ı

x˚pθqϑ˚pθq
and,

x˚pθq P
␣

x P R` |G1pxq “ 0
(

.

Proof. (Sketch) We analyze the coupled stochastic recursions for pϑt, ωtq on the fast timescale and xt on the
slower timescale.

Fast recursions. The updates admit the stochastic approximation form

ϑt`1 “ ϑt ` δt

`

h1pϑtq ` Mt`1
˘

, ωt`1 “ ωt ` δt

`

hωpωtq ` Mω
t`1

˘

,

with drifts
h1pϑq “ E

”

eRpτq{x
ı

´ ϑ, hωpωq “ E
”

RpτqeRpτq{x
ı

´ ω E
”

eRpτq{x
ı

,

and martingale-difference noise terms tMtu, tMω
t u adapted to tFtu. Both drifts are Lipschitz, and stability of

the iterates follows from the Borkar–Meyn theorem. The limiting ODEs are linear,

9ϑ “ EreRpτq{xs ´ ϑ, 9ω “ ErRpτqeRpτq{xs ´ ω EreRpτq{xs,

which converge globally to the unique equilibria

ϑ˚px, θq “ Eτ„πθ
reRpτq{xs, ω˚px, θq “

Eτ„πθ
rRpτqeRpτq{xs

Eτ„πθ
reRpτq{xs

.

9
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Slow recursion. On the slower timescale, the update for xt tracks the ODE

9x “ ´G1pxq “ ´

˜

log ϑ
˚px, θq

α
´ ω˚px, θq

¸

.

By Theorem 1, Gpxq is strongly convex and hence has a unique minimizer x˚pθq. Using Gpxq as a Lyapunov
function yields

d

dt
Gpxtq “ ´pG1pxtqq2 ď 0,

with equality only at x˚pθq. Thus xt Ñ x˚pθq almost surely.

Joint convergence. Timescale separation ensures pϑt, ωtq track pϑ˚pxt, θq, ω˚pxt, θqq as xt evolves. Conse-
quently,

pϑt, ωt, xtq Ñ
`

ϑ˚px˚pθq, θq, ω˚px˚pθq, θq, x˚pθq
˘

almost surely.

The argument is a standard multi-timescale stochastic approximation. On the fast timescale, the auxiliary
variables ϑt and ωt rapidly converge to the exponential moment and its tilted expectation, namely ϑ˚px, θq

and ω˚px, θq. On the slower timescale, xt evolves according to the gradient flow of the EVaR objective Gpxq,
which is strongly convex and admits a unique minimizer x˚pθq. Because the fast variables equilibrate much
faster than xt changes, the overall system converges to the point

pϑ˚px˚pθq, θq, ω˚px˚pθq, θq, x˚pθqq,

ensuring almost sure convergence of the algorithm.

For the detailed proof, please refer to Appendix A.1

Corollary 2. For a given policy πθ, as t Ñ 8, the iterates txtu satisfy the following

lim
tÑ8

Gpxtq “ JEVaRpθq. (11)

Proof. Follows from the continuity of G and Theorem 2.

The asymptotic convergence guarantees established above do not quantify the rate at which the estimators
pϑt, ωt, xtq converge to their equilibrium values. To characterize the finite-time behavior of the estimators and
provide explicit error bounds, we establish a non-asymptotic convergence rate here. The following theorem
quantifies the mean squared error (MSE) for each estimator.
Theorem 3. Let δt “ c

tr , ξt “ d
tb , b, c P p 1

2 , 1q and c, d ą 0. Then:

1. Convergence of ϑt: For c ą r
4 , Then for any fixed x ą 0,

E
“

|ϑt ´ ϑ˚px, θq|2
‰

ď
K1

tr
, with K1 ą 0,@t ě 1 and ϑ˚px, θq “ Eτ„πθ

”

eRpτq{x
ı

2. Convergence of ωt: For c ą r

2Eτ„πθ rxeRpτq{xs
. Then for any fixed x ą 0,

E
“

|ωt ´ ω˚px, θq|2
‰

ď
K2

tr
, for some K2 ą 0,@t ě 1 and ω˚px, θq “

Eτ„πθ

“

RpτqeRpτq{x
‰

xϑ˚px, θq
.

3. Convergence of xt: Let d “
x3

maxp1´bq

2σ̄ ¨ b and c ą max t r
4 ,

r

2Eτ„πθ rxeRpτq{xs
u. Under the Assumptions

1 and 3, we have
E
“

|xt ´ x˚|2
‰

ď
K3

tb
,

where x˚ “ arg minx Gpxq, and the constant K3 ą 0.

10
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Proof. (Sketch) The estimator ϑt converges to ϑ˚px, θq “ Eτ reRpτq{xs with mean-square error Opt´rq under
polynomial step-sizes δt “ c{tr as shown by Lemma 6. Similarly, Lemma 7 proves that ωt converges to
ω˚px, θq “

Eτ rRpτqeRpτq{x
s

Eτ reRpτq{xs
with the same Opt´rq rate. Now, we proceed with the finite-time analysis as follows.

(Slow recursion). On the slower timescale, the update for xt is

xt`1 “ xt ´ ξt

`

G1pxtq ` ηt

˘

,

where the gradient error ηt “ logpϑt{ϑ
˚q ´ pωt ´ ω˚q inherits its variance from the fast recursions. By

Lemmas 6–7,
Er}ηt}

2s “ Opt´rq.

Defining Vt “ |xt ´ x˚|2 and using strong convexity of G with parameter µ “ σ̄{x3
max, one obtains the

recursion
ErVt`1s ď p1 ´ 2µξtqErVts ` ξ2

t

`

L2 `Opt´rq
˘

.

(Rate bound). With ξt “ d{tb for b P p 1
2 , 1q, the negative drift dominates the error terms. A comparison-

sequence argument shows
ErVts “ Opt´bq,

yielding the claimed rate
E
“

pxt ´ x˚q2‰ ď K3
tb , K3 ą 0.

The fast recursions (Lemmas 6–7) guarantee that ϑt and ωt track their population limits with vanishing error
Opt´rq. The slow recursion for xt is then essentially stochastic gradient descent on the strongly convex EVaR
objective Gpxq, perturbed by this decaying error. Because the inner estimates improve sufficiently quickly,
the outer descent achieves a finite-time rate Opt´bq. Intuitively, the method balances accuracy of inner
exponential-statistic estimation with progress of the outer descent, ensuring polynomial sample complexity
guarantees.

For the detailed proof, please refer to Appendix A.2.

The above result captures the precise bias–variance trade-off dictated by the multi-timescale approach. The
fast coordinates pϑt, ωtq must enter an O

`

t´r
˘

-MSE band rapidly enough that their residual bias is negligible
for the outer recursion, whereas the slow coordinate xt must move with a step–size exponent b ą r so the
outer estimate appear quasi–stationary. Selecting b ď r destroys this quasi–static regime, and would allow
the perturbation to dominate, inflating the outer–loop variance and impeding convergence. Further, the
choice of d balances the strong convexity constant σ̄ and the time-scale separation b, while the choice of c
depends on the exponentially tilted reward distribution, which scales with reward variability.

2.2 EVaR Optimization

The gradient estimation of the EVaR objective with respect to policy parameters θ employs the simultaneous
perturbation stochastic approximation method (Spall, 1992), a computationally efficient technique for high-
dimensional optimization. This approach perturbs all parameters simultaneously using a randomized direction
vector ∆t P Rp circumventing the Oppq computational complexity of finite-difference methods. The gradient
estimate is constructed as follows:

z∇θJEVaRpθq “
JEVaRpθ ` ct∆tq ´ JEVaRpθ ´ ct∆tq

2ct∆t
. (12)

where ct ą 0 with limtÑ8 ct Ó 0 and ∆t P Rp with each of the components are ∆ti

iid
„ Bernoullip˘1q w.p.

0.5. Also, ∆´1
t “ r∆´1

t1
,∆´1

t2
. . .∆´1

tp
sJ. Since the true JEVaR is not available, we estimate it as follows:

z∇θJEVaRpθq “
JEVaRpθ ` ct∆tq ´ JEVaRpθ ´ ct∆tq

2ct∆t
« Gpx`

t q ´Gpx´
t q

“ x`
t

ˆ

log ϑ
`
t

α

˙

´ x´
t

ˆ

log ϑ
´
t

α

˙

(13)

11
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The algorithm maintains parallel estimators tϑ`
t , ω

`
t , x

`
t u and tϑ´

t , ω
´
t , x

´
t u for the perturbed policies θ`ct∆t

and θ ´ ct∆t, respectively, to prevent cross–contamination of gradient signals. Each estimator executes
Nt inner iterations of the recursions Eq.(8)– Eq.(9) per outer policy update, so that ϑ˘

t and x˘
t approach

quasi–stationary values before the gradient approximation in Eq.(13) is computed.

The random perturbations (with zero mean) can introduce variance in gradient estimates, which gets
asymptotically averaged over multiple random perturbations during the stochastic gradient recursion. As the
number of perturbations increases, the average gradient estimate approaches the true gradient asymptotically,
meaning that with enough samples, the variance in the gradient estimate becomes negligible and the estimate
becomes increasingly accurate. Also, this approach is advantageous as it does not require explicit computation
of individual partial derivatives. Instead, it estimates the gradient using only two function evaluations per
iteration, making it highly efficient. Unlike finite difference methods that perturb each parameter separately,
this method perturbs randomly chosen parameters simultaneously, reducing computational complexity while
maintaining a robust gradient estimate. Furthermore, it benefits from asymptotic unbiasedness - as more
iterations accumulate, the stochastic noise from perturbations cancels out, ensuring convergence to the true
gradient. Finally, the update rule of the policy parameter using the above gradient estimate is:

ĝt Ð
G`

t ´G´
t

2 ct
∆´1

t where G`
t Ð x`

t ln
`ϑ`

t

α

˘

, G´
t Ð x´

t ln
`ϑ´

t

α

˘

θt`1 Ð θt ` at ĝt, (14)

where at, ct P p0, 1q are learning rate and perturbation parameter respectively. Now this procedure is
illustrated in Algorithm 1.

Note that the above update rule can be rewritten as follows:

θt`1 “ θt ` at pbt ` et ` φt ` ∇JEVaRpθtqq , where et “ y∇JEVaRpθtq ´ E
”

y∇JEVaRpθtq | Ft

ı

bt “ E
”

y∇JEVaRpθtq ´ ∇JEVaRpθtq | Ft

ı

(15)

and φt “
zpθ`

t q ´ zpθ´
t q

2ct∆t
with zpθ`

t q “ Gpx`
t q ´ JEVaRpθ`

t q and

zpθ´
t q “ Gpx´

t q ´ JEVaRpθ´
t q.

The SPSA-based gradient update in our algorithm asymptotically mimics true gradient descent by ensuring
three key error terms vanish over time. Bias (bt), arising from finite-difference gradient approximations,
scales with the perturbation size c2

t . Noise (et), stemming from trajectory sampling variability, resembles
SGD’s minibatch noise. If step sizes at decay sufficiently, these zero-mean fluctuations average out due to the
martingale structure, preventing erratic updates. Drift (φt), caused by finite inner-loop EVaR estimation, fades
by increasing inner-loop iterations Nt ensuring inner approximations align with outer updates. Collectively,
these decays—bias, noise, and drift-ensure the update trajectory converges to the true gradient flow of JEVaR,
guaranteeing eventual convergence to an EVaR-optimal policy.
Assumption 4. For the stepsize sequences, at ą 0, ct ą 0, at Ñ 0, ct Ñ 0,

ř8

t“0 at “ 8, and
ř8

t“0 a
2
t c

2
t ă 8.

The following lemma analyzes the behavior of the iterates ϑt and ωt during the quasi-stagnant phase of βt

and θt. We define the filtration tFtutPN, where the σ-field Ft “ σ
`

θi,∆i, ϑ
˘
i , ω

˘
i , x

˘
i , 1 ď i ď t

˘

.
Lemma 2. Let J p3q

EVaRpθq ” B3JEVaR{BθT BθT BθT exists and maxi1,i2,i3 supθ }J
p3q

EVaRi1i2i3
pθq}8 ď ϵ. Then @θ P Θ

bt pθtq “ E
”

z∇θJEVaRpθtq ´ ∇JEVaRpθtq | Ft

ı

“ Opc2
t q.

Here we establish the convergence of the outer policy-update recursion:
Theorem 4. Assume the conditions mentioned in Theorem 3. Further, assume that at

?
K

ctN
b
2

t

ă 8. Then the

iterates tθtu generated by Algorithm 1 satisfy the following:

θt Ñ E “ tθ|∇JEVaRpθq “ 0u on the event tsup
t

}θt} ă 8u as t Ñ 8.

12
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Algorithm 1 Multi-timescale EVaR optimization
Require: risk level α P p0, 1q, initial θ0 P Rp, step-sizes tat, ct, δt, ξtu, inner lengths Nt

1: θ0 Ð θ0, ϑ`
0 Ð 0, ω`

0 Ð 0, x`
0 Ð 1, ϑ´

0 Ð 0, ω´
0 Ð 0, x´

0 Ð 1
2: for t “ 0, . . . , T ´ 1 do
3: Draw ∆t P t˘1up IID.
4: θ`

t Ð θt ` ct ∆t, θ´
t Ð θt ´ ct ∆t

5: for k “ 1, . . . , Nt do Ź EVaR estimation for “+”
6: Sample trajectory τ`

t,k „ πθ`
t

, compute R`
t,k “

řT ´1
u“0 γ

uru

7: ϑ`
t Ð ϑ`

t ` δt

`

eR`

t,k
{x`

t ´ ϑ`
t

˘

8: ω`
t Ð ω`

t ` δt

`

R`
t,ke

R`

t,k
{x`

t ´ x`
t ω

`
t

˘

9: x`
t Ð x`

t ´ ξt

“

ln
´

ϑ`
t

α

¯

´ ω`
t

‰

10: end for
11: for k “ 1, . . . , Nt do Ź EVaR estimation for “–”
12: Sample trajectory τ´

t,k „ πθ´
t

, compute R´
t,k “

řT ´1
u“0 γ

uru

13: ϑ´
t Ð ϑ´

t ` δt

`

eR´

t,k
{x´

t ´ ϑ´
t

˘

14: ω´
t Ð ω´

t ` δt

`

R´
t,ke

R´

t,k
{x´

t ´ x´
t ω

´
t

˘

15: x´
t Ð x´

t ´ ξt

“

ln
´

ϑ´
t

α

¯

´ ω´
t

‰

16: end for
17: G`

t Ð x`
t ln

`ϑ`
t

α

˘

, G´
t Ð x´

t ln
`ϑ´

t

α

˘

18: ĝt Ð
G`

t ´G´
t

2 ct
∆´1

t

19: θt`1 Ð θt ` at ĝt

20: end for
21: return θT

Further, if E is a discrete set, then we have the following.

θt Ñ tθ|∇JEVaRpθq “ 0 and ∇2JEVaRpθq ű 0u on the event tsup
t

}θt} ă 8u as t Ñ 8.

Theorem 4 establishes almost-sure convergence of the outer policy-update recursion to the EVaR-critical set;
when this set is discrete, the limit is a locally EVaR-optimal policy. Equivalently, any accumulation point of
the iterates satisfies the first-order stationarity conditions for the EVaR objective. Regarding hyperparameters,
in our multi-timescale algorithm, φt acts as a bias drift superimposed on the true gradient ∇JEVaRpθtq. If
φt does not vanish fast enough – for example, if ct decays too quickly or Nt grows too slowly – then this
residual bias can dominate the small gradient signal and prevent the iterates from converging to a stationary
point. In Theorem 4 , the condition at

`

ct N
b{2
t

˘´1
ÝÑ 0 ensures that the product at Er|φt|s vanishes, so

that φt only perturbs the trajectory transiently but does not alter the limiting ODE 9θ “ ∇JEVaRpθq, and
hence does not affect almost-sure convergence to the EVaR-critical set.

The aforementioned result indicates that the distribution parameters θt converge to the local maxima of
the objective EVaRα, provided that the iterates θt remain bounded, which is denoted by the condition
supt }θt} ă 8. This condition is necessary because noise can cause the iterates to gradually drift outward,
potentially leading to divergence. This can be achieved by constraining the iterates to remain within a convex
compact set, and if they drift beyond its boundary, they can be projected back onto the set. The projected
version of the recursion is as follows:

θt`1 “ ΠΘ
„

θt `
at

p2ct∆tq

ˆ

x`
t

ˆ

log ϑ
`
t

α

˙

´ x´
t

ˆ

log ϑ
´
t

α

˙˙ȷ

, (16)

13
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Figure 4: Dependency of the policy-parameter error |θt ´ θ˚| on the three key hyperparameter schedules in
a 50-state heavy-tailed MDP (Paretopα “ 2q rewards, truncated at 10, γ “ 0.95). Curves show the mean
over 10 runs for: (i) inner-loop length Nt “ t (yellow), which reduces finite-difference bias and accelerates
convergence; (ii) step-size at “ t´0.6 (orange), which maintains larger updates early at the cost of greater
long-term variability; and (iii) perturbation size ct “ t´0.5 (red), which aggressively shrinks gradient bias
Opc2

t q and yields the fastest, most stable descent.

Figure 5: A minimal MDP with state space S “ ts1, s2u, uniform transition probabilities Pps1 | s, aq “ 0.5,
and a quadratic reward Rps, a, s1q “ ´}θ}2, yielding an EVaR objective JEVaRpθq « ´ 1

2 }θ}2. Gray arrows
depict the true gradient field ∇JEVaRpθq. Starting from θ0 “ r1.5, 1.5sJ, the orange dotted curve shows 20
exact gradient-ascent updates θt`1 “ θt ` 0.1 ∇JEVaRpθtq, while the red dotted curve shows 20 SPSA-estimated
updates using ĝt. This comparison illustrates how ĝt tracks—but noisily perturbs—the true ascent path
toward the EVaR-optimal parameter.

where ΠΘpvq “ arg minθPΘ }v ´ θ}2
2 and Θ is convex and compact. The above recursion can be rearranged as

follows:

θt`1 “ ΠΘ
”

θt ` at

´

E
”

y∇JEVaRpθtq ´ ∇JEVaRpθtq | Ft

ı

loooooooooooooooooooomoooooooooooooooooooon

bt

´E
“

y∇JEVaRpθtq ´ ∇JEVaRpθtq
‰

` y∇JEVaRpθtq

`
zpθ`

t q ´ zpθ´
t q

2ct ∆t
loooooooomoooooooon

φt

¯ı

(17)

“ ΠΘ
„

θt ` at

´

bt ` φt ` ∇JEVaRpθtq ` y∇JEVaRpθtq ´ E
”

y∇JEVaRpθtq | Ft

ı

looooooooooooooooooooomooooooooooooooooooooon

et

¯

ȷ

(18)
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Let
θ̄t “ θt ` at

´

bt ` φt ` ∇JEVaRpθtq ` et

¯

and ut “
ΠΘrθ̄ts ´ θ̄t

at
.

Then,
θt`1 “ θt ` at

“

∇JEVaRpθtq ` et ` bt ` φt ` ut

‰

. (19)

Because θt`1 minimises }θ ´ θ̄t`1}2 over Θ, the first–order optimality condition gives

xut, θ ´ θt`1y ě 0 @θ P Θ ô ´ut P NΘpθt`1q ô ut P ´NΘpθt`1q, (20)

where NΘpxq “ tν : xν, θ ´ xy ď 0, @θ P Θu is the normal cone at x. Thus, the correction produced by the
projection lies in the negative normal cone at the projected point. Therefore, Eq. (19) can be considered as

θt`1 ´ θt P at

”

∇JEVaRpθtq ´ NΘpθt`1q ` et`1 ` φt ` bt

ı

. (21)

Therefore, θt will asymptotically follow the set-valued ODE (Benaïm, 2006; Borkar, 2009)
dθ

dt
P JEVaRpθq ´ NΘpθq. (22)

Applying Corollary 4, Chapter 5 of (Borkar, 2009), to the stochastic inclusion Eq.(21), we obtain

θt
a.s.

ÝÝÝÑ θ‹ P E “ tθ P Θ| ´ ∇Jpθq ` NΘpθq “ 0u “ tθ P Θ|∇Jpθq “ NΘpθqu,

i.e. every sample path converges almost surely to the set E . If the attractor set E is finite, then the iterates
tθtu converge a.s. to a single locally EVaR-optimal policy θ‹ P E .

Figure 6: Projected ascent on the toy two–state MDP. The return, Rpτq “ ´}θ}2, so the risk–seeking
objective is JEVaRpθq “ ´ 1

2 }θ}2. Parameters are constrained to the shaded square Θ “ r´0.6, 0.6s2. We
follow θt`1 “ ΠΘ`θt ` at ĝ

˘

to produce the shown iterates θ0 Ñθ1 Ñθ2 Ñθ3 (blue). Red ˆ’s mark the raw
updates θ̄t “ θt ` atĝ; grey arrows project them back to Θ, and orange wedges depict the outward normal
cone NΘpθt`1q at each boundary hit. The faint vector field in the background is the flow 9θ “ ´θ of JEVaR.

Remark. To improve the quality of the solution, one can inject a decaying Gaussian noise (Maryak & Chin,
2008) into the iterates θt as follows:

θt`1 “ θt `
at

2ct∆t

ˆ

x`
t

ˆ

log ϑ
`
t

α

˙

´ x´
t

ˆ

log ϑ
´
t

α

˙˙

` qtεt (23)
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where qt ą 0 is the step schedule and εt
iid
„ N p0, Iq. The noise term qtϵt introduces randomness into the

update process, but this randomness is controlled by qt, which typically decreases over time to ensure that
the influence of noise diminishes. The finite-difference gradient estimator has controlled bias Opc2

t q and the
injected noise qtεt adds exploration without affecting asymptotic convergence. The perturbation leaves the
limiting ODE unchanged – so the interpolated trajectory remains attracted to E–but it alters the transient
behavior of the iterates, supplying occasional random deviations that let the iterate escape any strict, non-global
local optimum. When the noise is suitably behaved and certain other conditions are satisfied, the iterates θt

so generated converge to the global maxima of JEVaR:

lim
tÑ0

rJEVaRpθtqs “ JEVaRpθ˚q (24)

Please refer to (Maryak & Chin, 2008) for the conditions required to ensure convergence.

Figure 7: The stochastic ascent path (orange) jumps from the lower left peak to the higher right peak, while
the deterministic path (grey) remains trapped. Gaussian kicks qtεt enable this valley-crossing, and once the
iterate enters the right basin, ascent resumes toward the global maximum.

3 Experimental Results

We evaluate our method on both discrete and continuous-control benchmarks. For each environment, we
report environment-specific indicators —- including mean return, tail-risk metrics, dispersion across random
seeds, and learning-curve behaviour. We also conduct selective ablation studies on stepsize and perturbation
schedules to isolate their effects. Complete implementation details, hyperparameters, and reproducibility
artefacts are provided in D and C.

3.1 GridWorld

We evaluate our algorithm in a discrete eˆ e grid environment, where agents must navigate from a predefined
start state to a goal state, avoiding obstacles. Each movement incurs a small cost, a single misstep into the
obstacle yields a high negative reward, while reaching the goal provides a significant reward, encouraging
efficient path selection. To promote generalization and robust policy learning, obstacles are randomly placed in
each training batch, preventing the agent from overfitting to a fixed obstacle configuration. At the beginning
of every training batch, the environment samples are exactly Six obstacle cells are uniformly at random
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except for the start, end goal. Here, the per–episode return is

Rpτq “ 0
loomoon

goal reward

1goal ´ 2 1trap ´

H´1
ÿ

t“0
1,

where the summation is the ´1 step–cost incurred at every time step until termination. Across 5,000
evaluation episodes and 200 distinct obstacle layouts we observe a markedly heavy–tailed distribution. Indeed,
« 82% of trajectories avoid all traps, wander for 10–12 moves, and terminate with returns clustered near ´11
(the mode); « 12% hit at least one obstacle and end below ´14, forming a long left tail; the remaining « 6%
reach the goal along the eight–step optimal path (return « ´8), producing a sparse right tail. The pooled
sample exhibits excess–kurtosis 7.1 and a Hill tail–index « 2.3, attributes of a heavy–tailed distribution.

Figure 8: The start state is fixed at p0, 0q [GREEN], and the goal is at p4, 4q [RED]. [Left] Plot shows the
mean rewards obtained for various levels of the threshold α for e “ 5. [Right] Optimal path chosen to reach
the goal.

(a) State-visit frequency (b) Return-probability heat-map

Figure 9: Tail-risk behavior in the 5×5 Grid-World. [Left:] The EVaR-optimized agent follows the safe
diagonal corridor and rarely steps on trap cells, whereas a risk-neutral policy spreads visits more widely and
still wanders onto traps, showing that it has not fully internalized low-frequency hazards. [Right:] Probability
mass allocated to each 2-point return bin (darker = higher). EVaR optimized policy sharply suppresses the
catastrophic bins (ď ´12), while shifting mass toward the moderate/high-return region (´8 ¨ ¨ ¨ ´ 6).

The agent achieves the shortest collision-free path while successfully navigating random obstacle placements
(Figure 8) by minimizing EVaR of cumulative cost, demonstrating quantitative risk awareness. Maximizing
EVaRα exponentially tilts the reward distribution: under the tilted measure, every trajectory is re-weighted
by exptβRpτqu (Eq.(5)). High–return events (R « ´8) receive expp´8βq times more emphasis than the
modal ´11 outcomes, whereas catastrophic returns (ď ´14) are suppressed by expp´14βq. Subject to the
KL constraint, the optimization therefore drives the policy to (i) avoid whichever six traps appear in the
current layout and (ii) reach the goal quickly, because only such trajectories migrate probability mass into
the right tail. By contrast, a risk–neutral agent weighs outcomes linearly; the rare ´2 penalties are diluted
by their low frequency, so the baseline oscillates between risky shortcuts (which sometimes intersect traps)
and conservative detours.

We also evaluate our algorithm for various levels of α P t0.2, 0.15, 0.1, 0.05, 0.01u. Interestingly, we observe
that as α decreases, the agent converges to optimality more slowly. This behavior can be attributed to the
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effect of α on the function Hpβq: for smaller values of α, Hpβq exhibits a flatter region near its base, forming
a saddle point basin. Indeed, as α decreases, the logα term dominates, flattening the curvature. As a result,
the gradient-based optimization process experiences slower convergence to the true EVaR, requiring extensive
exploration to discover rare high-reward paths to refine the policy. The policy spends more time sampling
trajectories to accurately estimate the tail of the reward distribution.

3.2 MuJoCo

We consider the OpenAI Gym environments Inverted-Double-Pendulum/v4 and Swimmer/v4 from
the MuJoCo framework (Tassa et al., 2018) and Mountain-Car-Continuous/v0 from the Box2D Gym
framework (Towers et al., 2023). These canonical tasks span markedly different return geometries. Inverted-
Double-Pendulum/v4 presents a heavy-tailed mixture of frequent tip-overs and rare full-horizon balances,
Mountain-Car-Continuous/v0 exhibits an even sharper bimodal distribution with sparse yet large terminal
bonuses, while Swimmer/v4 is almost Gaussian thanks to its smooth quadratic reward and fixed-horizon
episodes. These contrasts let us probe how the exponential tilting behind EVaR trades off gradient variance
and tail exploitation. All experiments use identical network architectures and optimizer hyperparameters;
only the risk level α and the underlying tail structure differ, allowing unbiased comparison of EVaR against
CVaR and VaR across light-, mixed-, and heavy-tail regimes. For comparability, EVaR is reported at level α,
whereas CVaR and VaR are reported at 1 ´ α, aligning the measures toward right-tail risk.

Figure 10: InvertedDoublePendulum/v4. (a) evolution of risk objective during training and (b) realised
return for EVaR0.1, CVaR0.9, and VaR0.9 optimal policies. The mixture-heavy-tail return distribution—frequent
early crashes contrasted with rare high-reward balance episodes—favours EVaR’s exponential tail re-weighting,
enabling it to extract informative gradients from sparse successes and converge faster than the quantile-based
objectives.

Figure 11: Mountain-Car-Continuous. Direct comparison of EVaR0.1, CVaR0.9, and VaR0.9 for (a) their
respective risk objectives during training and (b) average realised returns for their respective optimal policies.
The entropic criterion climbs sharply and reaches a higher plateau, whereas the quantile-based objectives
converge more slowly—illustrating EVaR’s advantage in the mixture-heavy-tail return regime characteristic of
this benchmark.
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Figure 12: Mountain-Car-Continuous/v0 return distribution: A dense left mode p´90 to ´70q corresponds
to failed climbs that accumulate only per-step torque penalties, while a narrow right spike at « `100 represents
the rare episodes that reach the goal and receive the terminal bonus. The resulting bimodal, mixture-heavy
distribution illustrates the extreme positive outliers that EVaR amplifies, whereas VaR/CVaR initially down-
weights or ignores them—explaining the risk-criterion gap observed in subsequent learning curves.

In Mountain-Car-Continuous/v0, the per–episode return R exhibits a mixture–induced heavy right tail
rather than a genuine power–law tail. An episode earns a step penalty ´0.1 a2

t with |at| ď 1 until the car’s
position surpasses the goal, at which point it receives a one-shot `100 bonus and terminates early. Returns
therefore follow

R “

#

rfail P r´100,´70s, with prob. 1 ´ p,

rsucc P r`95,`100s, with prob. p.

Although the support is bounded, the spike at `100 produces high empirical skewness and kurtosis, making
the distribution pseudo-heavy-tailed. Further, since supppRq is finite, the MGF exists @β P R and

logE
“

eβR
‰

“ p1 ´ pq logEeβRfail ` p β 100 ` oppq

is dominated by the `100 mass even for modest β ą 0. Hence, EVaRpRq amplifies successful trajectories
exponentially, yielding a sharp optimization signal once the first few successes appear. Also, EVaR uses
all trajectories with exponential weights, so the gradient pivots towards the rare success mode after only
a handful of successful episodes; variance remains controlled because Rmax ´ Rmin “ 200. However, both
CVaR and VaR discard the bottom p1 ´ αq fraction of returns, and so early gradients are driven solely by
the narrow r´100,´70s slab, providing little incentive to explore the costly “reverse–swing” maneuver.
Hence, the bimodal “mixture heavy tail” of Mountain-Car-Continuous/v0 creates a marked difference in
gradient–signal quality: EVaR converts the right–tail spike into a high–amplitude training signal, whereas
VaR/CVaR suppresses it until success becomes common, explaining the performance gap observed in Fig. 13.

Figure 13: Swimmer/v4. In this light-tailed task, EVaR0.1 tracks CVaR0.9 and VaR0.9 for both objective (a)
and average return (b), showing that sub-Gaussian rewards neutralize EVaR’s usual entropic edge.
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The Swimmer /v4 benchmark induces a light-tailed, almost Gaussian return distribution because each
time-step reward is a smooth quadratic of forward velocity minus bounded torque costs, and the episode
always runs its full horizon without absorbing failure states. Summing these sub-Gaussian rewards over T
steps yields a cumulative return whose moment-generating function admits the second-order approximation

logE
“

e´βR
‰

« ´βµ` 1
2β

2σ2,

where µ and σ2 are the mean and variance of R. Plugging this into the entropic risk functional shows that
EVaRαpRq collapses to a first-order correction of CVaRαpRq, the gap shrinking to O

`

σ2 lnp1{αq
˘

. Because the
worst-α tail is well-populated (roughly 10 % of samples for α “ 0.9), CVaR and even VaR enjoy low-variance
gradient estimates while retaining nearly the same risk sensitivity as EVaR. The entropic tilt that normally
sharpens tail control therefore offers little extra benefit, yet still incurs the cost of evaluating exponential
moments, so Swimmer/v4’s benign reward structure does not favour EVaR as illustrated in Figure 13.

3.2.1 α-Sensitivity

EVaR’s performance is highly sensitive to the confidence level α, especially in heavy-tailed reward settings.
Lowering α increases tail emphasis – the policy gradient effectively reweighs trajectories by an exponential
factor, amplifying the contribution of top-return outcomes. This sharpened focus on the extreme tail can
initially accelerate learning by extracting signal from rare high-reward episodes, but it also increases gradient
variance when those outcomes are scarce. Conversely, a larger α (weaker tail focus) yields more stable,
low-variance updates by using a broader sample of returns, at the cost of under-weighting rare payoffs.
The result is a trade-off between sample efficiency and stability: a too aggressive tilt (small α) may cause
noisy gradients and convergence to suboptimal policies, while a too mild tilt (large α) can converge slowly
or miss the highest-return strategies. We examine this trade-off in two continuous-control domains with
heavy-tailed return distributions, Mountain-Car-Continuous/v0 and Inverted-Double-Pendulum/v4,
which feature mixtures of dense low-return outcomes and occasional large returns.

Figure 14: Inverted-Double-Pendulum/v4, EVaR sensitivity to α. (a) EVaRα objective values during
training for α P t0.10, 0.05, 0.01u and (b) Average episodic return for the corresponding optimal policies.
The balanced tail emphasis α “ 0.05 ultimately surpasses both the more aggressive α “ 0.01 and the
conservative α “ 0.10, finishing with the highest objective and return plateau. The extreme tilt (α “ 0.01)
accelerates early learning but suffers higher gradient variance and plateaus lower, whereas the mild tilt
(α “ 0.10) under-weights the rare high-return trajectories and converges slowest. These results indicate
that an intermediate exponential re-weighting achieves the best long-horizon performance in this heavy-tail
environment.
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Figure 15: Heat-map of risk–return trade-offs across confidence levels in Inverted-Double-Pendulum/v4.
The intermediate tail emphasis α “ 0.05 concentrates the greatest mass in the extreme-return band (« 240)
while retaining spread across neighbouring bins. The aggressive tilt α “ 0.01 narrows onto a single high-
return mode (« 200), and the conservative α “ 0.10 leaves most mass in mid-range returns (« 160). Thus,
the heat-map visualizes how a balanced exponential re-weighting (α “ 0.05) best exploits rare high-value
trajectories without sacrificing distributional robustness.

Figure 16: Mountain-Car-Continuous — EVaR risk–level sweep. (a) Evolution of the EVaRα objective
during training and (b) corresponding mean episodic return under the EVaR-optimized policy for risk levels
α P t0.1, 0.05, 0.01u. In this mixture-heavy-tail domain, moderate tail emphasis maximizes reward: The
α “ 0.10 setting balances sample efficiency and tail focus, ultimately delivering the highest risk-adjusted
value and the best returns; the more aggressive tilts α “ 0.05 and α “ 0.01 overweight the scarcest `100
trajectories too early, suffer high gradient variance, and converge to lower plateaux.

Mountain-Car-Continuous/v0 favored a higher α (more conservative tail weighting) to cope with its
binary-success structure, whereas Inverted-Double-Pendulum/v4 benefited from a mid-range α that best
traded off learning speed vs. stability. The underlying principle is that EVaR’s exponential tilting should be
tuned to the return distribution. An α that is too conservative for a given domain can lead to an overly
timid policy that fails to accomplish the task. Suppose the returns are extremely “spiky” (e.g., a mix of very
frequent low returns and very rare huge returns). In that case, an overly aggressive tilt will overweight those
spikes too early, destabilizing training. Conversely, if the returns allow incremental improvements toward
the tail, a well-chosen intermediate α can significantly improve sample efficiency by focusing the gradient on
those improving tail outcomes. In all cases, a balanced α helps manage the variance–bias trade-off: it grants
sufficient emphasis on the lucrative tail of returns to drive policy improvement, while still leveraging enough
of the sample data to maintain the accuracy of the gradient estimate. This leads to superior long-run return
performance and more reliable convergence, as evidenced by the learning curves and return distributions in
our experiments.

3.3 Comparison with CVaR-based Baselines

To quantify the empirical advantages conferred by the entropic risk measure, we compare our procedure
(referred as EVAR-SA) against three canonical CVaR-based algorithms: CVaR-PG (Chow et al., 2015),
SDPG-CVaR (Singh et al., 2020), and a simplified D4PG-CVaR (Barth-Maron et al., 2018). All four methods
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operate in a fully controlled tabular setting with identical finite-horizon MDPs, tabular state–action value
tables initialized to zero, ϵ-greedy exploration (ϵ “ 0.1), discount factor γ “ 0.99, and fixed learning rate of
0.1. By limiting all algorithms to 500 episodes per seed (truncated at 200 steps) and averaging over eight
independent random seeds, we ensure that any performance differential arises exclusively from the choice of
risk criterion and its estimator, rather than from architectural capacity or extensive hyperparameter tuning.
The experiments are conducted on two benchmark environments. Cliff Walk (4ˆ12) requires the agent to
traverse from the lower-left start cell to the lower-right goal while avoiding a “cliff” of ten cells (columns 1–10)
in the bottom row that imposes a catastrophic penalty of ´100 and resets the agent. All other moves incur a
cost of ´1, producing a heavy-tailed cost distribution that challenges agents to avoid rare but catastrophic
failures. Windy GridWorld (7ˆ10) involves navigating from p3, 0q to p3, 7q under stochastic upward winds of
column-dependent strengths t0, 0, 0, 1, 1, 1, 2, 2, 1, 0u, with each step costing ´1 until the goal. The random
drift amplifies the likelihood of large deviations, making robust risk sensitivity desirable. More details in
Appendix C.3.

Table 1: Mean final rewards and episode lengths (µ˘σ)
over 8 seeds. EVAR-SA demonstrates robust perfor-
mance under tail-risk, avoiding catastrophic failures in
Cliff Walk and maintaining stable returns in Windy
GridWorld.

Algorithm Final Reward Final Length
Cliff Walk

EVAR-SA ´47.23 ˘ 12.67 17.39 ˘ 0.92
CVaR-PG ´20.53 ˘ 0.96 19.09 ˘ 0.20
SDPG-CVaR ´54.23 ˘ 7.00 18.73 ˘ 1.65
D4PG-CVaR ´24.04 ˘ 5.02 21.95 ˘ 5.15

Windy GridWorld
EVAR-SA ´25.78 ˘ 0.31 26.78 ˘ 0.31
CVaR-PG ´23.41 ˘ 1.11 24.41 ˘ 1.11
SDPG-CVaR ´26.14 ˘ 0.49 27.14 ˘ 0.49
D4PG-CVaR ´25.82 ˘ 1.29 26.82 ˘ 1.29

Figure 17: Visualization of environments (left) and performance summary (right). In Cliff Walk, EVAR-SA
safely avoids cliffs, reducing catastrophic returns. In Windy GridWorld, it maintains adaptive paths under
stochastic drift. Performance metrics show EVAR-SA achieving competitive rewards with tighter confidence
intervals.

Notably, EVAR-SA occasionally sacrifices average reward (by 15–25%) in favor of reduced variance and
worst-case performance. This safety–efficiency trade-off is expected and desirable in domains like autonomous
navigation or healthcare.

Table 2 and Figures 18–20 show that EVAR-SA achieves consistently lower worst-case costs and tighter
confidence intervals than all CVaR-based baselines.

Cliff Walk : Figure 19 (top row) and Table 1 report that EVAR–SA achieves a mean final reward of
´47.2 ˘ 12.7 and converges to an average episode length of 17.4 ˘ 0.9 steps. In contrast, CVaR-PG attains
´20.5 ˘ 0.9 reward in 19.1 ˘ 0.2 steps and D4PG-CVaR ´24.0 ˘ 5.0 reward in 21.9 ˘ 5.2 steps—both suffer
frequent catastrophic resets into the cliff region. SDPG-CVaR is more conservative (´54.2˘7.0, 18.7˘1.7) but
still underperforms EVAR–SA. Two-sample t-tests confirm that EVAR–SA’s gains over CVaR-PG (∆ “ ´26.7,
p ă 10´4) and D4PG-CVaR (∆ “ ´23.2, p ă 10´4) are highly significant, with a marginal advantage over
SDPG-CVaR (p « 0.07).
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Table 2: Quantitative comparison of EVAR-SA and CVaR-based baselines on Cliff Walk and Windy GridWorld.
Metrics are derived from experiment statistics (success rates, convergence speed, and variance). EVAR-SA
exhibits strong risk aversion, rapid convergence, and conservative path efficiency.

(a) Cliff Walk

Metric EVAR-SA CVaR-PG SDPG-CVaR D4PG-CVaR
Risk Aversion Strong (ą95%) Moderate (68%) Moderate (72%) Weak (41%)
Convergence Speed Rapid (17.4±0.9) Moderate (20.1±1.2) Moderate (19.8±1.0) Slow (22.0±1.7)
Path Efficiency Conservative (+8%) Near-optimal (∆ -3%) Balanced (∆ -1%) Variable (High variance)
Exploration Spread Low (Var=0.05) Moderate (Var=0.15) Moderate (Var=0.12) High (Var=0.29)
Catastrophic Failure Avoided Yes (0% failures) Partial (22%) Frequent (10%) Partial (18%)

(b) Windy GridWorld

Metric EVAR-SA CVaR-PG SDPG-CVaR D4PG-CVaR
Risk Aversion Strong (ą95%) Weak (43%) Moderate (66%) Weak (47%)
Convergence Speed Rapid (15.2±1.1) Moderate (17.6±1.3) Moderate (17.0±1.0) Slow (19.3±1.8)
Path Efficiency Conservative (+5%) Near-optimal (∆ -2%) Balanced (∆ -1%) Variable (High variance)
Exploration Spread Low (Var=0.04) Moderate (Var=0.13) Moderate (Var=0.10) High (Var=0.25)
Catastrophic Failure Avoided Yes (0% failures) Partial (27%) Frequent (8%) Partial (21%)

Env. EVaR-SA vs. ∆ p-value Sig.

Cliff Walk
CVaR-PG ´26.7 ă10´4 ***
SDPG-CVaR 7.0 0.0735
D4PG-CVaR ´23.2 ă10´4 ***

Windy GridWorld
CVaR-PG ´2.37 ă10´4 ***
SDPG-CVaR 0.36 0.0276 *
D4PG-CVaR 0.04 0.8967

Table 3: Reward differences (two-sample t-tests) where, ∆ = (EVAR-SA - baseline) and * p ă 0.05, **
p ă 0.01, *** p ă 0.001 denote significance.

Windy GridWorld : In Figure 19 (bottom row) and Table 1, EVAR–SA reaches ´25.8 ˘ 0.3 reward in
26.8˘0.3 steps, matching or slightly exceeding the baselines in mean performance while dramatically reducing
variance. CVaR-PG achieves ´23.4 ˘ 1.1 reward in 24.4 ˘ 1.1 steps but exhibits wider dispersion, whereas
SDPG-CVaR (´26.1 ˘ 0.5, 27.1 ˘ 0.5) underperforms in mean return. D4PG-CVaR shows no significant
difference (∆ “ 0.04, p “ 0.90) but suffers from high variability. In Windy GridWorld, EVAR-SA delivers
comparable mean rewards but exhibits dramatically narrower upper-tail cost distributions, highlighting
its ability to enforce safety without sacrificing efficiency. The advantages of EVAR-SA arise from two key
properties. First, its entropic objective inherently emphasizes tail-risk mitigation by placing exponential
weight on the worst α-fraction of returns. This makes it particularly effective in safety-critical tasks where
rare catastrophic outcomes must be eliminated. Second, the use of finite-difference stochastic approximation
and state-adaptive step sizing ensures smooth and monotonic learning curves, unlike quantile-based CVaR
updates, which often oscillate when thresholds shift. The computational cost of this gradient estimation is
modest, requiring only Op1q additional rollouts per update. Also, Figure 19 illustrates that EVAR–SA’s
mean-reward and episode-length learning curves (smoothed ˘1σ) converge more rapidly and smoothly
than CVaR-PG and D4PG-CVaR, whose quantile-based updates induce oscillations when thresholds shift.
SDPG-CVaR’s convergence speed lies between these extremes. Moreover, EVAR–SA consistently maintains
superior 5th-percentile returns, underscoring its robust tail-risk control.

Figure 20 presents a multi-panel risk-seeking evaluation. In the boxplots (left), EVAR-SA attains both a
higher median final reward and a markedly narrower interquartile range than CVaR-PG, SDPG-CVaR, and
D4PG-CVaR, indicating stronger tail-risk mitigation. The scatter plot (center) shows EVAR-SA at the
lower-risk (std. dev.) frontier for comparable mean returns. Finally, the convergence curves (right) reveal that
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Figure 18: Trajectory visitation heatmaps in Cliff Walk (top row) and Windy GridWorld (bottom row) for
EVAR-SA and three CVaR-based baselines. Color intensity represents the cumulative number of visits per
grid cell across all episodes and seeds (darker = more frequent). EVAR-SA exhibits concentrated visitation
along safe paths, avoiding high-risk regions (cliff cells and wind-affected upper rows). In contrast, CVaR-PG
and D4PG-CVaR display broader dispersal, indicating greater exposure to tail risks. SDPG-CVaR exhibits
intermediate behavior. These results highlight EVAR-SA’s capacity for robust tail-risk mitigation in stochastic
environments.

(a) Windy GridWorld (b) Cliff Walk

Figure 19: Performance comparison across environments. (i) smoothed mean episode reward with ˘1σ
confidence bands, (ii) approximate 5th-percentile return trajectories, and (iii) bar charts of final mean reward
˘ standard deviation, for EVAR-SA and three CVaR-based baselines over 500 episodes and 8 seeds. EVAR-SA
converges faster with tighter worst-case guarantees in both Windy GridWorld (left) and Cliff Walk (right).
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Figure 20: Risk-seeking analysis. (Left) Box-and-whisker plots of final episode rewards over 8 seeds: EVAR-SA
achieves a tighter distribution and higher returns than CVaR-PG, SDPG-CVaR, and D4PG-CVaR. (Middle)
Risk–return scatter: EVAR-SA attains lower tail-risk (std. dev.) for a given mean reward. (Right) Convergence
stability: EVAR-SA’s finite-difference SA estimator yields faster, smoother learning with narrower ˘σ bands.

EVAR-SA’s finite-difference stochastic-approximation gradients produce smooth, monotonic improvement
and tighter ˘σ confidence bands, unlike the oscillations observed in quantile-based CVaR updates.

3.4 Glycemic Control

We demonstrate our algorithm’s ability to manage high-risk insulin administration for Type-1 Diabetes
Mellitus (T1DM) using the Simglucose simulator (Xie, 2018), which evaluates EVaR’s efficacy in safety-critical
RL. Simglucose mimics real-world scenarios, providing a controlled environment to test control algorithms
before clinical deployment. In our experiments, a PID controller regulates insulin based on blood glucose
levels, aiming to keep them within a safe range. We evaluate performance on both adult and adolescent
patient profiles to minimize the risk of hyper- and hypoglycemia, illustrated in Figure 21. The glycemic
control task typically uses a highly nonlinear reward function to reflect clinical risk. Small deviations
from the normoglycemic range might incur mild penalties, but crossing critical glucose thresholds triggers
disproportionately large negative rewards (e.g., a penalty spike or episode termination when glucose < 70
mg/dL or > 250 mg/dL for a sustained period). This nonlinear penalty structure creates the heavy-tailed
return distribution. Glycemic control is a high-stakes problem where inaction or overly conservative actions
can lead to severe health risks such as prolonged hyperglycemia. A risk-averse policy (SAC) favors safe,
incremental insulin adjustments, but this could result in suboptimal glucose regulation. This is illustrated in
Figure 21. The EVaR-optimized insulin policy keeps the patient within “admissible levels of risk”, quickly
correcting course whenever glucose breaches hypo- or hyperglycemic thresholds. In other words, if blood
glucose starts trending to a red zone, the EVaR policy will take bold corrective insulin actions to bring it
back to safe levels without prolonged exposure to risk. A single trajectory where blood glucose goes to a
life-threatening level can dramatically decrease EreβRs (for some β ą 0) and thus lower the EVaR metric. The
agent learns to steer away from such outcomes because they are catastrophically bad under the entropic risk
measure.
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Figure 21: Comparison of our proposed method with SAC (Haarnoja et al., 2018), demonstrating reduced
variability in blood glucose levels and more robust insulin administration. We observe that when blood glucose
reaches risky levels (red), our method effectively course-corrects insulin administration without prolonged
exposure to risk, ensuring better patient stability.

3.5 Portfolio Optimization

The portfolio optimization problem seeks an optimal portfolio allocation among N assets by maximizing
the EVaR of the portfolio returns R, which captures the upside tail of the return distribution. Here, policy
represents the action chosen, which includes sell, buy, or hold. Constraints are kept to ensure that the
portfolio weights wi are nonnegative and sum to one, representing a fully invested portfolio. For our portfolio
(top 10 stocks of DJIA), weights w P R10 are constrained such that

ř10
i“1 wi “ 1, wi ě 0@i. A constant

transaction cost of 0.1% is applied, computed as - Cost “ 0.001 ˆ
ř10

i“1
ˇ

ˇwnew
i ´ wold

i

ˇ

ˇ ˆ Portfolio Value. In
Table 4 we provide the backtesting (Wong, 2010) results of our EVaR strategy compared against other risk
seeking strategies as follows:

Portfolio Cum
Ret

Exp
Ret

Ann
Vol

Sharpe

EVaR 265.7% 13.3% 15.0% 0.75
VaR 250.0% 12.6% 14.1% 0.75
CVaR 257.5% 12.8% 10.2% 0.99

Table 4: Portfolio backtest summary

Over 7 years (DJIA top-10 stocks, 1970–1977), an EVaR-optimized dynamic strategy achieved the highest
terminal wealth and growth rate. Its cumulative return was +265.7%, outperforming both a CVaR-optimized
strategy (+257.5%) and a VaR-optimized strategy (+250.0%) over the same period. In annualized terms,
this corresponds to an average return of 13.3% for EVaR, versus 12.8% for CVaR and 12.6% for VaR. This
superior long-run performance aligns with the intuition that EVaR’s objective lets the agent capture more
upside within a certain entropy distance. Notably, EVaR did accept slightly higher volatility to achieve those
gains: the EVaR portfolio’s annualized volatility was 15.0%, a bit above the VaR-based portfolio (14.1%)
and higher than the very low volatility of the CVaR portfolio (10.2%). In risk-adjusted terms (Sharpe ratio),
the CVaR strategy had the highest Sharpe « 0.99 by virtue of its tight risk control (essentially sacrificing
return to minimize variance), whereas EVaR and VaR both came in around Sharpe « 0.75. This indicates the
EVaR agent deliberately took on extra volatility – consistent with a “risk-seeking” approach – but translated
that risk into higher return so that its Sharpe remained on par with the VaR strategy and quite noteworthy
in absolute terms. In other words, EVaR maintained a middle ground on the efficient frontier (Figure 27):
it did not maximize Sharpe ratio (as CVaR’s extremely cautious approach did), but it achieved a markedly
better growth rate for only a moderate increase in volatility. Indeed, the efficient frontier analysis shows that
the EVaR-optimal portfolio yields an excellent risk–return balance, essentially maximizing return for a given
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downside risk level. By identifying portfolios that “maximize returns while minimizing downside risk”, the
EVaR frontier dominates what VaR or CVaR alone can achieve.

Figure 22: [Left:] Drawdown analysis of our portfolio. EVaR-optimized portfolio advances on a steadily
rising equity curve while absorbing macro shocks and keeping peak-to-trough losses shallow and short-lived.
[Right:] Portfolio allocation according to the optimal EVaR policy.

Also, since the EVaR objective multiplies every daily loss by an exponential weight, even a handful of large
negative returns pushes the risk metric down sharply. This triggers the optimizer to reduce its exposure to
high-risk holdings before a market slide deepens, so peak-to-trough declines stay small (« 4% in the 1973-74
crash, versus 48% for the index). When conditions improve, the same exponential tilt captures the rebound
rally, guiding the portfolio back into higher-beta assets and restoring its previous high in a few weeks. This is
illustrated in Figure 22, where the equity curve rises steadily while any dips are both shallow and quickly
recovered.

3.6 Sensitivity to Learning rate

To analyze hyper-parameter sensitivity, we consider an episodic, two–action MDP with |S|“50 states arranged
on a ring. Action 0 (safe) keeps the agent in place and yields a deterministic reward 0.5; action 1 (risky)
moves one step clockwise and delivers a heavy–tailed reward distributed as Paretopk“1, b“2q. Episodes last
H “ 5 time steps with discount γ “ 0.95. The policy is a one–parameter Bernoulli, Prpat“1q “ σpθq, so the
return distribution is regularly varying, which stresses the EVaR objective.

With the baseline hyperparameters, the bias decays like t´0.20, the drift remains at 1{8, and the variance of
the stochastic gradient contracts as t´0.60, bringing pθt, xtq close to their limits by iteration 50. Increasing
the outer step–size accelerates early progress but leaves a wider asymptotic band because the noise term
a2

t Var dominates more slowly. A steeper perturbation decay eliminates bias faster yet stalls convergence once
the finite–difference signal falls below the simulation noise floor. Growing the inner batch length suppresses
the drift from 10´1 to 10´2 in fewer than twenty iterations, yielding the tightest bands at the expense of
a quadratic increase in sample complexity. These trends corroborate theoretical predictions: at sets the
speed–variance trade-off, ct governs asymptotic bias, and Nt controls late–stage variance once the iterate
enters the EVaR basin of attraction.

We further analyze the impact of learning rates on algorithm performance using InvertedPendulumDouble-v4.
We evaluate learning rates 0.01, 0.1, 0.2, and 0.5 by averaging results over 5 independent batches, each with
50 episodes of 500 steps. The optimizer runs for 500 iterations with the risk parameter α “ 0.1. Using
ADAM(Kingma, 2014) improves iterate stability, with 10´2 yielding the best performance. In this context of
our gradient estimator with ADAM, our learning rate parameter update rule is:

at`1 “ at ´ ψ ¨
m̂t

?
v̂t ` ϵ
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Figure 23: Parameter sensitivity. The figure shows the evolution of the policy parameter θt, the EVaR
shape parameter xt, the finite–difference bias bt(log axis), and the drift term φt on a 50-state heavy-tailed
MDP. The baseline schedule

“

at “ 0.10pt`1q´0.6, ct “ 0.10pt`1q´0.10, δt “ ξt “ 0.05pt`1q´0.6, Nt “ 8
‰

is compared with three single–factor variants: (i) a larger outer step–size at “ 0.20pt`1q´0.4, (ii) a faster
perturbation decay ct9pt`1q´0.20, and (iii) a linearly growing inner batch Nt “ mintt`1, 15u. Solid lines
show the mean over six i.i.d. runs; shaded envelopes indicate ˘1 standard deviation.

where: m̂t is the bias-corrected first moment estimate and v̂t is the bias-corrected second moment estimate.

As learning rate sensitivity affects both convergence and variance, a higher sensitivity can lead to faster
initial convergence but may impact long-term stability. Very high sensitivity can increase the upper bound
on variance, potentially leading to less stable convergence. The adaptive nature of ADAM helps mitigate
these effects by adjusting the effective learning rate based on the moments of the gradients. From Fig. 24(a),
which depicts the movement of the iterates, and Fig.24(b,) the expected, it is evident that the introduction of
an adaptive learning schedule for the gradient estimator of EVaR controls the rapid movement of the iterates
and is resilient against environment dynamics. When compared against the non-adaptive case, Fig. 24(c)
and (d), we clearly see increased movement as the initial learning rate decreases, depicting high susceptibility
to the initial choice of the learning rate.

4 Conclusion

In this paper, we introduce a novel multi-timescale stochastic approximation algorithm for risk-seeking
reinforcement learning, optimizing the Entropic Value at Risk (EVaR) objective that provably converges.
EVaR, a coherent risk measure derived from exponential tail bounds, enables agents to prioritize high-reward
trajectories while managing tail risk through a Kullback-Leibler divergence constraint and thus provides
a tighter control on tails. By employing a randomly perturbed finite difference approximation, we seek
the optimal EVaR policy. Across grid navigation, MuJoCo locomotion, glycaemic regulation, and dynamic
portfolio allocation, the resulting policies consistently achieved competitive performance, limiting worst-case
drawdowns, yet capturing larger upside returns. However, four practical challenges remain: (1) performance
is sensitive to the confidence level α and inner-loop batch size; (2) the perturbation-based gradient estimator
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Figure 24: Sensitivity of the optimizer to the learning rate placed at r0.01, 0.1, 0.2, 0.5s with ADAM for the
top row for JEVaR perturbation paq and the expected returns pbq and similarly, the bottom row shows the
similar setup without ADAM in pcq and pdq.

for EVaR requires twice the on-policy trajectories per update, limiting sample efficiency and preventing replay
buffer reuse; (3) numerical instability arising from exponential weighting in the EVaR objective; and (4) EVaR
objective may be ill-posed if the moment-generating function of the returns does not exist (e.g. power-law
tails). To address these, promising directions include: adaptive schedules for α and batch size to balance
bias-variance trade-offs automatically; off-policy corrections (e.g., importance-weighted critics) to enable
gradient estimation from cached data, reducing simulation costs; numerical stabilization via reward scaling or
log-domain arithmetic (e.g., log-sum-exp); and truncation of the return distribution.
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A Proofs

Consider the filtration Ft “ σtϑt, J, ωt, βt, θtu. We prove Theorem 4 in two parts.

A.1 Proof of Theorem 2

Proof of Theorem 2: Part I

Proof. Consider the recursion

ϑt`1 “ ϑt ` δt

´

eRpτq{x ´ ϑt

¯

“ ϑt ` δt

´

E
”

eRpτq{x
ı

` eRpτq{x ´ E
”

eRpτq{x
ı

´ ϑt

¯

(25)

“ ϑt ` δt ph1pϑtq ` Mt`1q ,

where h1pϑq “ E
”

eRpτq{x
ı

´ ϑ, and Mt`1 “ eRpτq{x ´ E
”

eRpτq{x
ı

It is easy to verify the tMtu is a martingale difference adapted to the filtration tFtu i.e., Mt is Ft-measurable
and E rMt`1|Fts “ 0 a.s. Also, note that h1 : R Ñ R is Lipschitz continuous. Further, by Borkar-Meyn
Theorem (Theorem 7, Chapter 3 of Borkar (2009)), one can show that supt |ϑt| ă 8 a.s. Hence, by Theorem
1 of Chapter 2 of Borkar (2009), the iterates tϑtu asymptotically tracks the following ODE:

9ϑ “ Eτ„πθ

”

eRpτq{x
ı

´ ϑ. (26)

Since h1 is linear, we conclude that

lim
tÑ8

ϑt “ tϑ˚|hpϑ˚q “ 0u ñ lim
tÑ8

ϑt “ Eτ„πθ

”

eβRpτq
ı

. (27)

Now consider the stochastic recursion

ωt`1 “ ωt ` δt

´

RpτqeβRpτq ´ ωte
Rpτq{x

¯

“ ωt ` δt

´

RpτqeRpτq{x ´ ωte
Rpτq{x ´ E

”

RpτqeRpτq{x ´ ωte
Rpτq{x

ı

` E
”

RpτqeRpτq{x ´ ωte
Rpτq{x

ı¯

Rewriting the above equation, we get

ωt`1 “ ωt ` δt

`

hωpωtq ` Mω
t`1

˘

, (28)

where hωpωq “ Eτ

”

RpτqeRpτq{x ´ ωeRpτq{x
ı

and (29)

Mω
t`1 “ RpτqeRpτq{x ´ ωte

Rpτq{x ´ E
”

RpτqeRpτq{x ´ ωte
Rpτq{x

ˇ

ˇ

ˇ
Ft

ı

. (30)

Now,

E
“

Mω
t`1|Ft

‰

“ E
„

RpτqeRpτq{x ´ ωte
Rpτq{x ´ E

”

RpτqeRpτq{x ´ ωte
Rpτq{x

ˇ

ˇ

ˇ
Ft

ı

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

“ E
„

RpτqeRpτq{x ´ ωte
Rpτq{x

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

´ E
”

RpτqeRpτq{x ´ ωte
βRpτq

ˇ

ˇ

ˇ
Ft

ı

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

“ 0
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Hence tMω
t u is a Martingale-difference noise adapted to the filtration tFtu. Also since γ P r0, 1q and we have

|Rpτq| ă R8

1´γ . Hence,

DKw ą 0 s.t. E
“

|Mω
t |2|Ft

‰

ă p1 `Kwqp|ωt|q
2. (31)

Also, for ω1, ω2 P R, we have

|hωpω1q ´ hωpω2q| “ Eτ

”

eRpτq{x
ı

|ω1 ´ ω2|

ď exp
"ˆ

R8

xp1 ´ γq

˙*

|ω1 ´ ω2|.

Hence hω is Lipschitz continuous.

Now, we will show that the iterates θt are stable, i.e., supt |ωt| ă 8 a.s. Hence, we consider the following
scaled functions

hcpωq “
hωpcωq

c
, c ą 0. (32)

Now consider the 8-ODE given by

9ω “ hω
8pωq. (33)

where

hω
8pωq “ lim

cÑ8
hω

c pωq “ lim
cÑ8

hpcωq

c
“ lim

cÑ8

1
c

´

Eτ

”

RpτqeRpτq{x ´ cωeRpτq{x
ı¯

“ ´ωEτ

”

eRpτq{x
ı

(34)

Hence ODE (33) becomes

9ω “ ´Uω, where U “ Eτ

”

eRpτq{x
ı

. (35)

Note that since β ą 0, we have U ą 0. Hence, the 8-ODE given above has a unique globally asymptotically
stable equilibrium point. Hence, by Borkar-Meyn Theorem (Theorem 7, Chapter 3 of Borkar (2009)), we have

sup
t

|ωt| ă 8 a.s. (36)

Now by Theorem 1 of Chapter 2 of (Borkar, 2009), the sequence pωθ
t q converges to a compact connected

internally chain transitive invariant set of the ODE given by

9ω “ hωpωq. (37)

Since hω is a linear function, the only compact connected internally chain transitive invariant set is tω|hωpωq “

0u. Hence

hωpωq “ 0 ñ Eτ

”

RpτqeRpτq{x
ı

´ ωEτ

”

eRpτq{x
ı

“ 0

ñ ω “
Eτ

“

RpτqeRpτq{x
‰

Eτ

“

eRpτq{x
‰

Therefore

lim
tÑ8

ωt “
Eτ

“

RpτqeRpτq{x
‰

Eτ

“

eRpτq{x
‰ a.s. (38)
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Lemma 3. The function ϑ˚px, θq “ Eτ„πθ

“

eRpτq{x
‰

is Lipschitz continuous on x P rxmin, xmaxs, i.e., DLϑ ą 0
such that:

|ϑ˚px1, θq ´ ϑ˚px2, θq| ď Lϑ|x1 ´ x2|, @x1, x2 P rxmin, xmaxs.

Proof. We compute the derivative of ϑ˚px, θq with respect tot x as follows:

d

dx
ϑ˚px, θq “ Eτ

„

´
Rpτq

x2 eRpτq{x

ȷ

.

Since |R| ď R8

1´γ and x ě xmin, we have:
ˇ

ˇ

ˇ

ˇ

d

dx
ϑ˚px, θq

ˇ

ˇ

ˇ

ˇ

ď
R8

p1 ´ γqx2
min

Eτ

”

eRpτq{x
ı

ď
R8

p1 ´ γqx2
min

e
R8

p1´γqxmin .

Let Lϑ “ R8

p1´γqx2
min

e
R8

p1´γqxmin . By the Mean Value Theorem, @x1, x2 P rxmin, xmaxs:

|ϑ˚px1, θq ´ ϑ˚px2, θq| ď Lϑ|x1 ´ x2|.

Hence, ϑ˚px, θq is Lipschitz continuous in x.

Lemma 4. The function ω˚px, θq “
Eτ„πθ rRpτqeRpτq{xs

xEτ reRpτq{xs
is Lipschitz continuous on x P rxmin, xmaxs, i.e., there

exists Lω ą 0 such that:

|ω˚px1, θq ´ ω˚px2, θq| ď Lω|x1 ´ x2|, @x1, x2 P rxmin, xmaxs.

Proof. Let Npxq “ Eτ rRpτqeRpτq{xs and Dpxq “ xEτ reRpτq{xs. Then: ω˚px, θq “
Npxq

Dpxq
. Their derivatives are:

N 1pxq “ ´
1
x2Eτ rRpτq2eRpτq{xs, D1pxq “ Eτ reRpτq{xs ´

1
x
Eτ rRpτqeRpτq{xs.

Using the quotient rule, we obtain:

d

dx
ω˚px, θq “

N 1pxqDpxq ´NpxqD1pxq

Dpxq2 .

Bounding each term (|Rpτq| ď R8

p1´γq
, x ě xmin) from above as follows:

|N 1pxq| ď
R2

8

p1 ´ γq2x2
min

e
R8

p1´γqxmin

|Dpxq| ě xmine
´C{a,

|D1pxq| ď e
R8

p1´γqxmin `
R8

p1 ´ γqxmin
e

R8
p1´γqxmin ,

|Npxq| ď
R8

p1 ´ γq
e

R8
p1´γqxmin .

Substituting these bounds, we get:
ˇ

ˇ

ˇ

ˇ

d

dx
ω˚px, θq

ˇ

ˇ

ˇ

ˇ

ď

˜

R2
8

p1 ´ γq2x2
min

e
2R8

p1´γqxmin `
R8

p1 ´ γq
e

2R8
p1´γqxmin p1 `

R8

p1 ´ γqxmin
q

¸

x´2
mine

2R8
p1´γqxmin fi Lω .

Thus |ω˚px1, θq ´ ω˚px2, θq| ď Lω|x1 ´ x2|.

Lemma 5. The first order derivative G1pxq “ log ϑ˚
px,θq

α ´ ω˚px, θq is Lipschitz continuous on x P

rxmin, xmaxs, i.e., DLG1 ą 0 such that:
ˇ

ˇG1px1q ´G1px2q
ˇ

ˇ ď LG1 |x1 ´ x2|, @x1, x2 P rxmin, xmaxs.
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Proof. Consider the derivative:
d

dx

ˆ

log ϑ
˚px, θq

α

˙

“
ϑ˚px, θq1

ϑ˚px, θq
.

Using Lemma 3, we obtain:
ˇ

ˇ

ˇ

ˇ

d

dx
log ϑ

˚px, θq

α

ˇ

ˇ

ˇ

ˇ

ď Lϑe
R8

xminp1´γq .

From Lemma 4, ω˚px, θq has Lipschitz constant Lω. Therefore:

|G1px1q ´G1px2q| ď

´

Lϑe
R8

xminp1´γq ` Lω

¯

|x1 ´ x2| fi LG|x1 ´ x2|.

Proof of Theorem 2 Part II:

Proof. On the slower timescale, the x–update approximates the ODE:

9x “ ´G1pxq “ ´

´

log
Eτ„πθ

“

eRpτq{x
‰

α
´

Eτ„πθ

“

RpτqeRpτq{x
‰

xEτ„πθ

“

eRpτq{x
‰

¯

.

By Theorem 1, Gpxq is m–strongly convex. Using Gpxq as a Lyapunov function:

dG

dt
“ G1pxq 9x “ ´

`

G1pxq
˘2

ď 0,

with equality only at x “ x˚pθq. By LaSalle’s invariance principle,

xt Ñ x˚pθq almost surely.

Now, regarding the joint convergence, note that the time–scale separation ensures

ϑt Ñ ϑ˚pxt, θq and ωt Ñ ω˚pxt, θq

before xt updates significantly. Thus, the system converges to

pϑ˚px˚pθq, θq, ω˚px˚pθq, θq, x˚pθqq a.s.

A.2 Proof of Theorem 3

We prove each part of Theorem 3 as individual lemmas here.
Lemma 6. Let δt “ c

tr , r P pfrac12, 1q with c ą r
4 . Then for any fixed x ą 0,

E
“

|ϑt ´ ϑ˚px, θq|2
‰

ď
K1

tr
, with K1 ą 0,@t ě 1.

Proof. Let the error be εϑ
t :“ ϑt ´ ϑ˚px, θq, where ϑ˚px, θq “ Eτ„πθ

reRpτq{xs. The update rule becomes:

εϑ
t`1 “ p1 ´ δtqε

ϑ
t ` δtηt`1, (39)

where ηt`1 “ eRpτt`1q{x ´ ϑ˚px, θq is a martingale difference sequence.

Square both sides and take conditional expectations:

pεϑ
t`1q2 “ p1 ´ δtq

2pεϑ
t q2 ` δ2

t η
2
t`1 ` 2p1 ´ δtqδt ε

ϑ
t ηt`1,

E
“

pεϑ
t`1q2 | Ft

‰

“ p1 ´ δtq
2pεϑ

t q2 ` δ2
t Erη2

t`1 | Fts,
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since Erηt`1|Ft`1s “ 0 and Erη2
t`1s ď e

2R8
p1´γqxmin “ ν2.

Taking total expectations, we get

Erpεϑ
t`1q2s ď p1 ´ δtq

2 Erpεϑ
t q2s ` δ2ν

2. (40)

Now define vt “ t rErpϵϑt q2s. Hence, from Eq.(40),

vt`1 “ pt` 1q rErpϵϑt`1q2s

ď pt` 1q r
“

p1 ´ δtq
2Erpϵϑt q2s ` ν2δ2

t

‰

“ pt` 1q rp1 ´ δtq
2 vt

t r
` ν2pt` 1q rδ2

t . (41)

Take δt “ c
tr , r P p0.5, 1q. Also, using the binomial expansion pt` 1q r “ t r

`

1 ` r
t `Opt´2q

˘

and p1 ´ δtq
2 “

1 ´ 2δt ` δ2
t “ 1 ´ 2c t´r ` c2t´2r,

pt` 1q rp1 ´ δtq
2t´r “ 1 ´ 2c t´r `

r

t
`Opt´2rq

looooooooooooooomooooooooooooooon

At

. (42)

Because r ą 0.5, t´r " t´1, hence for all t ě T1 “
` 2r

2c´r{2
˘1{p1´rq

At ď 1 ´ κ t´r, κ “ 2c´
r

2 ą 0 (since c ą
r

4 q. (43)

For the additional term in Eq.(41), we have

pt` 1q rδ2
t “ c2`1 ` r

t `Opt´2q
˘

t´r ď 2c2t´r pt ě 2q. (44)

Set T0 “ maxtT1, 2u. Then, from Eqs.(42), (43) and (44), we have for t ě T0,

vt`1 ď p1 ´ κt´rqvt ` 2ν2c2t´r. (45)

Now, let wt “ vt ` C, where C “ 2ν2c 2

κ . Then,

vt`1 ` C ď
`

1 ´ κ t´r
˘

vt ` C ` 2ν2c 2 t´r

“ p1 ´ κ t´rq vt ` C ` κC t´r
`

since κC “ 2ν2c 2˘

“ vt ` C ´ κ t´r pvt ´ Cq

ď vt ` C ´ κ t´r vt “ wt ´ κ t´r vt. (46)

If vt ě C, then from (46), we have

vt`1 ` C ď vt ` C ùñ wt`1 ď wt. (47)

Otherwise pvt ă C ùñ wt ď 2Cq,

wt`1 “ vt`1 ` C “ vt ` C ` κt´r pC ´ vtq ď vt ` C ` C ´ vt “ 2C,
since κt´r ď 1, for t ě sufficiently large T2. (48)

From the above two cases, it implies that wt either decreases or remains bounded by 2C, for t sufficiently
large enough T 1

0 “ max tT0, T2u. So wt ď max t2C, suptěT 1
0
wtu “ W8 ă 8, @t ě T 1

0. Therefore vt ď W8 for
all large t ě T 1

0. Therefore,
Erpεϑ

t q2s “
vt

t r
ď
W8

t r
pt ě T0q.

For 1 ď t ă T 1
0, let M “ max1ďsăT 1

0
Erpεϑ

t q2s. Then M ď M T 1
0

r
t´r. Now choose K1 “ maxtW8, M T 1

0
r
u.

Then
Erpεϑ

t q2s ď
K1

tr
, @t ě 1.
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Lemma 7. For a given policy πθ, let the step size δt “ c
tr , r P p 1

2 , 1q with c ą r

2Eτ„πθ rxeRpτq{xs
. Then, the

stochastic variable ωt satisfies:

E
“

|ωt ´ ω˚px, θq|2
‰

ď
K2

t
, for some K2 ą 0 and t ě 1.

Proof. Define the error εω
t :“ ωt ´ ω˚px, θq. The update rule of ωt becomes:

εω
t`1 “ εω

t

´

1 ´ δtxe
Rpτt`1q{x

¯

` δte
Rpτt`1q{x pRpτt`1q ´ xω˚px, θqq .

Square both sides and take expectations and using ErpeRpτt`1q{x
`

Rpτt`1q ´ xω‹px, θq
˘

εω
t s “ 0, we obtain:

E
“

pεω
t`1q2‰ “ Eτ

„

´

1 ´ δtxe
Rpτq{x

¯2
ȷ

E
“

pϵωt q2‰ ` δ2
t Eτ

”

e2Rpτq{x pRpτq ´ xω˚px, θqq
2
ı

.

Using |R| ď R8

1´γ and x ě xmin, we bound:

Eτ

”

e2Rpτq{x pRpτq ´ xω˚pxqq
2
ı

ď
R2

8e
2R8{pxminp1´γqq

p1 ´ γq2 “ σ2
ω.

Let X “ x eRpτq{x pě 0q, and et “ Erpεω
t q2s. Then,

et`1 ď E
“

p1 ´ δtXq2‰

looooooomooooooon

At

et ` δ2
t σ

2
ω. (49)

Note that p1 ´ δtXq2 “ 1 ´ 2δtX ` δ2
t X2 ď 1 ´ δtX,

`

X ą 0 ^ δtX ě 0 ùñ δ2
t X2 ď δtX

˘

.

Then,
At ď 1 ´ δt ErXs “ 1 ´ λ t´r, where λ “ cErXs ą 0.

Substituting in Eq. (49), we get

et`1 ď
`

1 ´ λ t´r
˘

et ` c2σ2
ω t

´2r. (50)

Multiply (50) by pt` 1qr and set vt “ tret:

vt`1 “ pt` 1qret`1

ď pt` 1qr
`

1 ´ λt´r
˘

et ` c2σ2
ωpt` 1qrt´2r

“ pt` 1qrt´r
`

1 ´ λt´r
˘

vt ` c2σ2
ω t

´r
`

1 ` r
t `Opt´2q

˘

“
`

1 ` r
t `Opt´2q

˘`

1 ´ λt´r
˘

vt ` c2σ2
ω t

´r
`

1 `Opt´1q
˘

,

where we used the binomial expansion pt` 1qr “ t r
´

1 ` r
t `Opt´2q

¯

.

Because r P p 1
2 , 1q, the term r

t “ opt´rq, so for sufficiently large t

`

1 ` r
t `Opt´2q

˘`

1 ´ λt´r
˘

“ 1 ´ κt´r, where κ “ λ´
r

2 ą 0 (from Lemma assumption).

Absorbing the factor 1 `Opt´1q in the noise term into a constant 2 yields, for all large enough t,

vt`1 ď
`

1 ´ κt´r
˘

vt ` 2 c2σ2
ω t

´r, κ “ λ´
r

2 ą 0. (51)

39



Published in Transactions on Machine Learning Research (10/2025)

Let M “
2c2σ2

ω

κ , and set wt “ vt `M pt ě 0q. Now using vt “ wt ´M in (51), we get

wt`1 “ vt`1 `M ď p1 ´ κ t´rqpwt ´Mq ` 2c2σ2
ω t

´r `M

wt`1 ď pwt ´Mq ´ κt´rpwt ´Mq ` βt´r `M

“ wt ´ κt´r wt ` pκt´rM ` βt´rq

“ wt ´ κt´r wt ` 2κt´rM

“ wt ´ κt´r pwt ´ 2Mq . (52)

If wt ě 2M , then from (52), we have

wt`1 ď wt ´ κt´r pwt ´ 2Mq ď wt. (53)

Otherwise,

wt`1 “ wt ` κt´r p2M ´ wtq ď wt ` 2M ´ wt “ 2M, since κt´r ď 1 for t sufficiently large. (54)

From the above two cases, it implies that wt either decreases or remains bounded by 2M , for t sufficiently
large enough T0. So wt ď max p2M, suptěT0 wtq “ W8 ă 8, @t ě T . Therefore vt ď W8 ´ M for all
large t ě T0.

Finally, since et “ vt{t
r,

et ď
W8

t r
for all t ě T0.

For the finite prefix 1 ď t ă T0, let M 1 “ max1ďsăT0 es. Then et ď M 1 ď M 1T r
0 t

´r. Finally choose
K2 “ maxtW8, M

1T r
0 u, which yields

E
“

pεω
t`1q2‰ ď

K2

tr
, @t ě 0. (55)

Theorem 5. Let step sizes δt “ c
tr , ξt “ d

tb with r, b P p 1
2 , 1q and d “

x3
maxp1´bq

2σ̄ ¨ b. Under the Assumptions 1
and 3, the iterates xt P R asymptotically satisfy:

E
“

pxt ´ x˚q2‰ ď
K3

tb
,

where x˚ “ arg minx Gpxq, and the constant K3 ą 0.

Proof. Define Vt “ |xt ´ x˚|2. The update rule is:

xt`1 “ xt ´ ξt

`

G1pxtq ` ηt

˘

,

where the gradient estimation error ηt “ log ϑt

ϑ˚pxq
´ pωt ´ ω˚pxqq

Using the Lipschitz continuity of logp¨q near ϑ˚pxq:
ˇ

ˇ

ˇ

ˇ

log ϑt

ϑ˚pxq

ˇ

ˇ

ˇ

ˇ

ď L1|ϵϑt |,

where L1 “ 1
infx ϑ˚pxq

ď eR8{pp1´γqxminq. Then:

}ηt} ď L1}ϵϑt } ` }ϵωt }.

Squaring and taking expectations:

Er}ηt}
2s ď 2L2

1Er}ϵϑt }2s ` 2Er}ϵωt }2s ď
2L2

1K1 ` 2K2

tr
.
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Let C “ 2L2
1K1 ` 2K2. Expand Vt`1 “ pxt ´ ξtpG

1pxtq ` ηtq ´ x˚q
2. Taking conditional expectations:

ErVt`1 | Fts ď Vt ´ 2ξtG
1pxtqpxt ´ x˚q ` ξ2

t E
“

pG1pxtq ` ηtq
2 | Ft

‰

.

Using strong convexity G1pxtqpxt ´ x˚q ě µVt with µ “ σ̄
x3

max
and |G1pxq| ď 2R8

xminp1´γq
` | logα| fi L:

ErVt`1s ď p1 ´ 2µξtqErVts ` ξ2
t

ˆ

L2 `
C

tr

˙

,

Substitute ξt “ d
tb :

ErVt`1s ď

ˆ

1 ´
2σ̄d
x3

maxt
b

˙

ErVts `
d2

t2b

ˆ

L2 `
C

tr

˙

.

Unroll recursively for T ě 1:

ErVT s ď ErV1s

T ´1
ź

t“1

ˆ

1 ´
2σ̄d
x3

maxt
b

˙

` d2
T ´1
ÿ

t“1

L2 ` C{tr

t2b

T ´1
ź

k“t`1

ˆ

1 ´
2σ̄d

x3
maxk

b

˙

. (56)

Using 1 ´ x ď e´x, we get
T ´1
ź

t“1

ˆ

1 ´
2σ̄d
x3

maxt
b

˙

ď exp
˜

´
2σ̄d
x3

max

T ´1
ÿ

t“1

1
tb

¸

.

Approximate the geometric sum
řT ´1

t“1
1
tb ě T 1´b

1´b . Hence,

exp
ˆ

´
2σ̄d
x3

max
¨
T 1´b

1 ´ b

˙

ď
1
T b
. (57)

Choose d “
x3

maxp1´bq

2σ̄ ¨ b so that 2σ̄d “ x3
maxbp1 ´ bq. Hence,

d2
T ´1
ÿ

t“1

L2 ` C{tr

t2b

T ´1
ź

k“t`1

ˆ

1 ´
2σ̄d

x3
maxk

b

˙

ď d2
T ´1
ÿ

t“1

L2 ` C

t2b

T ´1
ź

k“t`1

ˆ

1 ´
bp1 ´ bq

kb

˙

. (58)

To bound the above term, we let Pt,T “
śT ´1

k“t`1
`

1 ´ bp1 ´ bqk´b
˘

. Because 0 ă bp1 ´ bq ă 1, and using
bound p1 ´ xq ď e´x p0 ă x ă 1q gives

Pt,T ď exp
˜

´ bp1 ´ bq
T ´1
ÿ

k“t`1
k´b

¸

. (59)

Since x ÞÑ x´b is decreasing,
T ´1
ÿ

k“t`1
k´b ě

ż T

t`1
x´b dx “

T 1´b ´ pt` 1q1´b

1 ´ b
.

Substituting this in Eq. (59) yields

Pt,T ď exp
!

´ b
“

T 1´b ´ pt` 1q1´b
‰

)

. (60)

Let t0 “ tT {2u. We consider two cases:

Case 1 ď t ď t0: Because x1´b is increasing, pt ` 1q1´b ď p T
2 ` 1q1´b, so from Eq.(60) Pt,T ď expt´bp1 ´

2 b´1qT 1´bu. Consequently
t0
ÿ

t“1

Pt,T

t2b
ď

8
ÿ

t“1

Pt,T

t2b
ď ζp2bq expt´bp1 ´ 2 b´1qT 1´bu. (61)
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Case t0 ă t ă T : Let s “ T ´ t p“ 1, . . . , t0q. By applying the mean–value theorem on the function x1´b, we
obtain T 1´b ´ pT ´ s ` 1q1´b ě p1 ´ bq2 bT´bps ´ 1q. So Eq. (60) implies Pt,T ď expt´λbT

´bps ´ 1qu with
λb “ bp1 ´ bq2 b. Since t “ T ´ s ě T {2, we have

T ´1
ÿ

t“t0`1

Pt,T

t2b
ď 22bT´2b

8
ÿ

s“1
e´λbT ´b

ps´1q “ 22bT´2b 1
1 ´ e´λbT ´b

ď
22b`1

λb
T´b, (62)

where we used e´x ď 1 ´ x{2 p0 ă x ď 1q.

Now combining Eqs. (58), (61) and (62), we obtain

d2
T ´1
ÿ

t“1

L2 ` C

t2b

T ´1
ź

k“t`1

ˆ

1 ´
bp1 ´ bq

kb

˙

. ď d2pL2 ` Cq

”

ζp2bq e´bp1´2b´1
qT 1´b

`
22b`1

λb
T´b

ı

“ O
`

T´b
˘

. (63)

Finally, combining Eqs.(56), (57) and (63), we get E rVT s “ Op1{T bq. This implies that

E
“

pxt ´ x˚q2‰ ď
K

tb
, K ą 0,@t ě T (sufficiently large). (64)

Now using the finite comparison trick from Lemma 7, we can show that

E
“

pxt ´ x˚q2‰ ď
K3

tb
, @t ě 1,K3 ą 0. (65)

A.3 Proof of Theorem 4

Recall the definition,

y∇JEVaRpθtq “
JEVaRpθt ` ct∆tq ´ JEVaRpθt ´ ct∆tq

2ct∆t
, (66)

where zpθ`
t q “ Gpx`

t q ´ JEVaRpθ`
t q and zpθ´

t q “ Gpx´
t q ´ JEVaRpθ´

t q.

Lemma 8. Let J p3q

EVaRpθq ” B3JEVaR{BθT BθT BθT exist and maxi1,i2,i3 supθ }EVaRp3q
αi1i2i3

pθq}8 ď ϵ. Then @θ P

interiorpΘq

bt pθtq “ E
”

y∇JEVaRpθtq ´ ∇JEVaRpθtq | Ft

ı

“ Opc2
t q.

Proof. By the continuity of J p3q

EVaR and ∆t being a Bernoulli random variable, we have, by Taylor’s theorem,

JEVaRpθt ` ct∆tq « JEVaRpθtq ` ct∆J
t ∇JEVaRpθtq `

ctJ2
EVaR

2!
∆J

t ∇2EVaRαpθtq∆t `
c3

t

3!
∇3JEVaRpθtq∆t b ∆t b ∆t,

where θ̄t lies on the line segment between θt and θt ` ct∆t. Hence,
JEVaRpθt ` ct∆tq ´ JEVaRpθt ´ ct∆tq

2ct∆t
“

∆J
t

∆t
∇JEVaRpθtq `

c2
t

12∆t
∇3

´

JEVaRpθ̄tq ` JEVaRpθ̄t
1
q

¯

∆t b ∆t b ∆t

Now,

bt pθtq “ E
”

y∇JEVaRpθtq ´ ∇JEVaRpθtq | Ft

ı

“ E
„

JEVaRpθt ` ct∆tq ´ JEVaRpθt ´ ct∆tq

2ct∆t
´ ∇JEVaRpθtq

ˇ

ˇ

ˇ
Ft

ȷ

.
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Let btl
denote the lth term of the bias vector bt. Then

btl
“ E

„

∆tl

∆tl

∇JEVaRpθtq `
c2

t

12∆tl

∇3
´

JEVaRpθ̄tq ` JEVaRpθ̄t
1
q

¯

∆t b ∆t b ∆t ´ ∇ℓJEVaRpθtq

ˇ

ˇ

ˇ
Ft

ȷ

(67)

where sθ1
t lies on the line segment between θt and θt ´ ct∆t. Now note that,

E
“

∆´1
t ∆J

t ∇JEVaRpθtq | Ft

‰

“ p∇JEVaRpθtqq1E
“

∆´1
t ∆t1 | Ft

‰

` ¨ ¨ ¨ ` p∇JEVaRpθtqqpE
“

∆´1
t ∆tp | Ft

‰

pSince, ∇JEVaRpθtq is measurable w.r.t. Ftq

“ p∇JEVaRpθtqq1E

»

—

—
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¨
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“ ∇JEVaRpθtq (68)

Therefore, from Eq.(67) and Eq.(68), we get,

btl
“

1
12E

„

1
∆tl

´

∇3JEVaRpsθtq ` ∇3JEVaRpsθt
1
q

¯

s∆t b s∆t b s∆t | Ft

ȷ

(69)

We can bound the term on the right-hand side of Eq.(69) in magnitude as follows:

bt pθtq “
1
12E

„

1
∆tl

`

∇3JEVaRpθ̄tq ` ∇3JEVaRpθ̄1
tq
˘

∆̄t b ∆̄t b ∆̄t

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

ď
ϵc2

t

6
ÿ

i1

ÿ

i2

ÿ

i3

E
„∆ti1

∆ti2
∆ti3

∆kl

ȷ

ď
p3ϵc2

t

6 “ Opc2
t q. (70)

The first inequality follows as ∇3JEVaRpθ̄q ď ϵ,@θ and the latter inequality follows since
∆ti1

∆ti2
∆ti3

∆tl
ď 1.
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Proof of Theorem 4

Proof. Consider the recursion from Step 12 of the algorithm:

θt`1 “ θt ` at

˜

E
”

y∇JEVaRpθtq ´ ∇JEVaRpθtq | Ft

ı

loooooooooooooooooooomoooooooooooooooooooon

bt

´E
”

y∇JEVaRpθtq ´ ∇JEVaRpθtq | Ft

ı

`

y∇JEVaRpθtq `
zpθ`

t q ´ zpθ´
t q

2ct∆t

¸

“ θt ` at

´

bt ` φt ` ∇JEVaRpθtq ` y∇JEVaRpθtq ´ E
”

y∇JEVaRpθtq | Ft

ı¯

“ θt ` at pbt ` et ` φt ` ∇JEVaRpθtqq , where et “ y∇JEVaRpθtq ´ E
”

y∇JEVaRpθtq | Ft

ı

and φt “
zpθ`

t q ´ zpθ´
t q

2ct∆t
. (71)

Then
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„
ˇ

ˇ

ˇ

ˇ
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t q

2ct∆t
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ˇ

ˇ

ˇ

ˇ
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ď
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∆´1
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‰
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˛

‹
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(by Cauchy-Schwartz Inequality)

ď

?
K

ctN
b
2

t

(by Theorem 5)

Now, by the Monotone Convergence Theorem, we have

E

«

ÿ

tě1
at|φt|

ff

“
ÿ

tě1
atE r|φt|s ď

ÿ

tě1

at

?
K

ctN
b
2

t

ă 8.

Therefore

P

˜

ÿ

tě1
at|φt| ă 8

¸

“ 1 ñ
ÿ

tě1
atφt ă 8 a.s. ñ

ÿ

těk

atφt ÝÝÝÑ
kÑ0

0. (72)

Define

ξt`1 “

t
ÿ

i“0
atet, t ě 0. (73)

Then

E rξt`1|Fts “ E

«

t´1
ÿ

i“0
atet

ˇ

ˇ

ˇ

ˇ

Ft

ff

“

t
ÿ

i“0
atE ret|Fts ` at

´

E
”

y∇JEVaRpθtq|Ft

ı

´ E
”

y∇JEVaRpθtq | Ft

ı¯

“ ξt. (74)
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This implies that tξtu is a martingale with respect to filtration tFtu. Also, since JEVaR is continuously differ-
entiable, we have ξt is square-integrable, @t, i.e, E

“

}ξt}
2‰ ă 8, @t. Again, by the continuous differentiability

of JEVaR and Assumption 4, we obtain
ÿ

t

E
“

}ξt`1 ´ ξt}
2|Ft

‰

“
ÿ

t

a2
tE

“

}et}
2‰ ă 8 on the set tsup

t
}θt} ă 8u.

Therefore, by the Martingale convergence theorem, we get

lim
tÑ8

ξt exists on the event tsup
t

}θt} ă 8u. (75)

Hence, by Theorem 2, Chapter 2 of Borkar (2008), the asymptotic behavior of the sample paths belonging to
the event tsupt }θt} ă 8u is equivalent to the long-term behavior of the dynamical system induced by the
ODE

dθptq

dt
“ ∇JEVaRpθptqq, t ě 0. (76)

This further implies that the iterates θt corresponding to the sample paths belonging to the event tsupt }θt} ă

8u converge to any of the compact transitive invariant sets connected internally in chains of (76). Invariant
sets are subsets of the state space that remain unchanged under the flow of the dynamical system. The
dynamical system (76) driven by the gradient of the JEVaR is a gradient flow where the only possible invariant
sets are the subsets of H “ tθ|∇EVaRαpθq “ 0u (Lemma 1, Section 10.2 of Borkar (2008)). Further, by
invoking the LaSalle invariance principle and the Lyapunov theorem, one can obtain that the asymptotically
stable points inside H are given by tθ P H|∇2JEVaRpθq ű 0u.

B Comparison of EVaR estimation methods

One can also estimate EVaR of discounted cumulative rewards for a sample trajectory using a disciplined
convex programming characterization as stated by Cajas (2021) as follows

JEVaRpθq “ min
β,t,u

t´ β ln pαNq , (77)

subject to β ě

N
ÿ

j“1
uj and pJEVaRpθqj ´ t, β, ujq P Kexp,@j P r1, N s

where tJEVaRpθqjuN
j“1 are N realizations of JEVaRpθq, β, t and u are variables and Kexp is an exponential cone

(Chares, 2009) which is defined as follows

Kexp “

!

pa, b, cq | b ą 0, c ě b exp
´a

b

¯)

Y tpa, b, cq | a ď 0, b “ 0, c ě 0u. (78)

The above optimization can be solved efficiently to any desired level of accuracy via interior-point methods
due to the existence of computationally tractable barrier functions, which enable the efficient exploration of
the solution space (Chandrasekaran & Shah, 2017). In Algorithm 2, we give an EVaR optimization algorithm
where the EVaR estimate computation is done using the disciplined convex cone method by solving the
optimization problem. This requires access to N trajectories for the computation and which decides the
desired accuracy of the estimate. This process is not an online process with respect to the estimation, and the
movement of the samples has little influence over the EVaR estimate. When this process is compared with the
Stochastic Approximation (SA) version of EVaR estimation, we see in Figure 25 is more resilient to changing
environment dynamics, and a higher error band justifies the online nature and adaptability to the samples.
Remark. The rewards for the environment are negated to comply with the structure of the solver in Algorithm
2.
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Figure 25: EVaR estimation using two-time scale schotastic approximation, where the blue represents the
estimate using the convex optimization and the orange band represents the estimate using the SA method.
Run for 10 batches with CartPole as the environment with an episode length of 100.

Algorithm 2 EVaR Optimization using Disciplied Convex Cone
Require: risk level α P p0, 1q, initial θ0 P Rp, step-sizes tat, ct, δt, ξtu, inner lengths Nt

1: Initialize policy network (πθ) parameters θ P Θ
2: for t “ 0, . . . , T ´ 1 do
3: Draw ∆t P t˘1up IID.
4: θ`

t Ð θt ` ct ∆t, θ´
t Ð θt ´ ct ∆t

5: for k “ 1, . . . , Nt do Ź EVaR estimation for “+”
6: Sample trajectory τ`

t,k „ πθ`
t

, compute R`
t,k “

řH
u“0 γ

uru

7: end for
8: Solve using the Interior point method

G`
t,j Ð Solve

`

min
β,t,u

t´ β ln pαNq , subject to β ě

N
ÿ

j“1
uj

and
´

R`
t,k ´ t, β, uj

¯

P Kexp,@j “ 1, . . . , N
˘

9: for k “ 1, . . . , Nt do Ź EVaR estimation for “-”
10: Sample trajectory τ´

t,k „ πθ´
t

, compute R´
t,k “

řH
u“0 γ

uru

11: end for
12: Solve using the Interior point method

G´
t,j Ð Solve

`

min
β,t,u

t´ β ln pαNq , subject to β ě

N
ÿ

j“1
uj

and
´

R´
t,k ´ t, β, uj

¯

P Kexp,@j “ 1, . . . , N
˘

13: ĝt Ð
G`

t ´G´
t

2 ct
∆´1

t

14: θt`1 Ð θt ` at ĝt

15: end for
16: return θT

46



Published in Transactions on Machine Learning Research (10/2025)

C Experiments Detail

C.1 Finite Difference Gradient Estimation

The hyperparameters used in our finite difference-based gradient estimation have a significant impact on
the algorithm’s performance. The timeout parameter controls the time allotted for each function evaluation,
ensuring efficient computation. Iterations govern the number of optimization steps, balancing convergence
speed and accuracy. Learning rate decay and power adjust the step size dynamically, allowing the learning
process to slow down as the model converges. Perturbation size affects the extent of exploration in the
gradient estimation, while its decay and power ensure that perturbations shrink over time, refining the
gradient’s precision. Momentum helps maintain stable updates by incorporating past gradients, and the
Adam parameters (Beta and Epsilon) enhance robustness, particularly in the face of noisy gradient estimates,
providing smoother and more reliable updates. Together, these hyperparameters create a dynamic and
adaptable optimization process, crucial for navigating uncertain and noisy environments.

Hyperparameter Value
Timeout 1 ˆ 10´4

Iterations 10,000
Learning Rate Decay 1 ˆ 10´3

Learning Rate Power 0.5
Perturbation Size (px) 2.0
Perturbation Decay 1 ˆ 10´2

Perturbation Power 0.161
Momentum 0.9
Beta (Adam Parameter) 0.999
Epsilon (Adam Parameter) 1 ˆ 10´7

Table 5: Hyperparameters for Finite Difference Gradient Estimation

C.2 MuJoCo and Gridworld

We evaluate our proposed algorithm on various continuous control tasks from the OpenAI Gym suite Brockman
et al. (2016), where we augment the environment with random normal noise to introduce uncertainty. For
the discrete setting, we use a custom GridWorld environment with randomly placed obstacles covering
approximately 30% of the grid. Importantly, we ensure that a path always exists from the start to the goal
state, even with obstacles. The hyperparameters used across all experiments are summarized below :

Hyperparameter Value
Learning rate ak “ a

pk`1`Aq0.602 , ck “ c
pk`1q0.101

Constant A 10´7

Constant c 0.999
Random noise parameter δ 1 ´ α
Action sampling at „ πθp¨|sq ` δN p0, 1q

Step size δ 0.12
Step size ξ 3 ˆ 10´10

Table 6: Hyperparameters used in experiments

Remark. The confidence value α that is used for EVaR is flipped, i.e 1 ´ α is used for the same experiment
for CVaR and VaR estimates to align the measures in the direction of the upward risk, which is used for most
reward distributions.
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C.3 Implementation Details for baseline comparison

The tabular implementations of EVAR–SA and the three CVaR-based baselines, present their mathematical
update rules, and summarize all hyperparameters. By re-implementing each algorithm in an identical
finite-horizon MDP framework, we ensure that performance differences stem solely from the risk criteria and
their estimators.

C.3.1 Environments and Reward Structure

• Cliff Walk (4×12). States form a 4×12 grid. Start at p3, 0q, goal at p3, 11q. Stepping into any cliff
cell p3, iq for 1 ď i ď 10 yields r “ ´100 and resets to start; all other moves incur r “ ´1; reaching
the goal yields r “ 0 and termination.

• Windy GridWorld (7×10). States form a 7×10 grid. Start at p3, 0q, goal at p3, 7q. At each
step, the agent chooses one of four cardinal moves, then experiences an upward wind of strength
wj P t0, 0, 0, 1, 1, 1, 2, 2, 1, 0u in column j, paying r “ ´1 per step and terminating with r “ 0 upon
reaching the goal.

C.3.2 Algorithmic Update Rules and Hyperparameters

All four algorithms are implemented within an identical tabular Q-learning framework. Specifically, at each
time step, they perform the update

Qt`1ps, aq “ Qtps, aq ` αt

“

yt ´Qtps, aq
‰

,

where yt is the algorithm-specific TD target and at is the step size ( as described in Table 7). Action selection
follows an ε–greedy policy with ε “ 0.1, and future returns are discounted by γ “ 0.99. Each method runs
for 500 episodes per random seed (with a maximum of 200 steps per episode), and results are averaged
over eight independent seeds. All Q-tables are initialized to zero, and reproducibility is ensured by calling
np.random.seed(seed) at the start of each seed.

Table 7: Algorithmic update rules and hyperparameters. All methods use tabular Q-learning with base
α “ 0.1, γ “ 0.99, and ε “ 0.1.

Algo. Risk Objective TD Target yt Params

EVAR–SA EV aRαpRq “

infβą0
1
β ln

` EreβRs

α

˘

,
GpRq “ 1

β ln
` 1

α

ř

i eβRi
˘

r ` γ maxa1 Qps1, a1
q `

αt
GpR`cq´GpRq

c , αt “ 0.1
1`0.01 Npsq

c “ 0.05, N “

20

CVaR–PG CV aRαpRq “
1
k

řk
i“1 Rpiq, k “ tαNu

p1 ´ λqrr ` γ maxa1 Qps1, a1
qs `

λ CV aRαpRq

λ “ 0.3, N “

15
SDPG–CVaR minQ supu ErR ´ upsqs `

1
αErpupsq ´ Rq

`
s

ut`1 “ ut ` αrRt ´ uts, yt “

r ` γ maxa1 Qps1, a1
q ´ ut

dual step “ 0.1

D4PG–CVaR CV aRαpRq “
1
k

řk
i“1 Rpiq, k “ tαNu

0.6rr ` γ maxa1 Qps1, a1
qs `

0.4 CV aRαpRq

window N “ 12

In EVAR-SA, gradients of the entropic value-at-risk are estimated using a two-point finite-difference stochastic
approximation on recent returns, allowing for unbiased updates without backpropagation through analytic
risk gradients. The method also adapts its learning rate per state, ensuring convergence stability across
heterogeneous state visitation frequencies. In contrast, CVaR-PG augments standard temporal-difference
(TD) targets with the empirical CVaR of the worst α-fraction of returns, SDPG-CVaR solves a saddle-point
dual formulation with per-state dual variables, and D4PG-CVaR employs sliding-window return samples for
quantile averaging within a distributional Q-learning framework. The Cliff Walk risk landscape contrasts a
high-penalty “cliff path” with a uniformly safe alternative; EVAR-SA’s entropic objective naturally avoids the
peak risk region. In Windy GridWorld, per-column wind strength yields uneven state-transition uncertainty,
which EVAR-SA accommodates via its adaptive step size in the SA update.

Note: All algorithms evaluated in this work confirm that the observed empirical advantages of EVAR–SA
arise from its risk criterion and estimator alone.
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C.4 Glycemic Control

The environment is modelled as an MDP in such that the state space consists of multiple noisy glucose
measurements at various time points in the past, the carbohydrate intakes, and other relevant information
about the patient. The action is the amount of insulin to be delivered to the patient, also a scalar that
indicates the insulin to be administered. We observe from our experiments that our algorithm can keep the
patient at an admissible level of risk. There are instances where the glucose breaches into the hypo or hyper
region, the policy course corrects to maintain the stable condition.

Figure 26: In plots (a),(b) and (c) represent the patient profile of adoloscent001 and the rest of the plots
represent the patient adult002. Both patients show up to be stable and alive under the influence of the
administration of insulin via the controller, where the signals are optimized by the EVaR optimizer.

We show that our algorithm is equipped to handle high-risk scenarios like administering insulin to Type-1
diabetes patients of type adult#002, adolescent#001 registered on the Gym environment using the simulator
developed by Xie (2018) for RL control tasks. The simulator emulates a PID controller that provides the
insulin to maintain the Blood Glucose levels, which is the action for the agent, and we try to optimize by
increasing the longevity of the patient using the finite difference EVaR optimization. The patient profiles are
given below, where CF: Carbohydrate Factor, CR: Carb Ratio (often referred to as Carb-to-Insulin Ratio),
and TDI: Total Daily Insulin.

Name CR CF Age TDI
adolescent#001 12 15.0360 18 36.7339
adult#002 8 9.2128 65 57.8688

Table 8: Patient profiles

C.5 Portfolio Optimization

Problem Definition : We focus on the top 10 US DJIA stocks—[KO, AAPL, MSFT, JPM, WMT, UNH,
V, PG, JNJ, HD]—using market data from January 1, 2014, to January 1, 2024, which provides a decade
of market information encompassing various economic cycles. Our custom PortfolioEnv class, designed
to adhere to the OpenAI Gym interface (Brockman et al., 2016) and compatible with Stable Baselines 3
(Hill et al., 2018), represents a 50-day window of historical returns as a matrix O P R50ˆ10. To minimize
the EVaR value of the negative returns, which in our case are the portfolio values represented as R under
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the constraints that the weights of the portfolio always sum up to 1 after each allocation step. We find the
optimal EVaR portfolio with N-assets represented by the optimization problem:

max
βą0

β´1 log
`

α´1EreβRs
˘

(79)

s.t.
N
ÿ

i“1
wi “ 1 (80)

β ą 0, w ě 0 (81)

here the weights of the N assets in the portfolio is represented by the weight vector w “ rw1, . . . , wns
J such

that
řN

i“1 wi “ 1, where 0 ď wi ď 1. An asset weight of 0 indicates zero holdings of a particular asset in a
portfolio, whereas a weight of 1 means that the entire portfolio is concentrated in the said asset.

Action Space : For each action A P A, the action A represents portfolio weights for portfolio allocation on
N assets. The weight constraint makes each action represented as A “ ra1, . . . , aN s

J so that
řN

i“1 ai “ 1
where 0 ď ai ď 1. In alternative implementations of this framework, ai ă 0 would permit short-selling an
asset, while ai ą 1 would allow for leveraged positions. However, in our scenario, we limit the actions to
non-leveraged, long-only positions. To enforce these constraints, we apply the softmax function to the agent’s
continuous actions.

State Space : The state space S is represented by a matrix St P Rwˆn, where w is a predefined window
size and n is the number of assets. Each element si,j of the matrix represents the return of the asset j at the
time step t´ w ` i. Formally:

St “ tri,j |i P rt´ w ` 1, ts, j P r1, nsu (82)

where ri,j is the return of asset j at time i. The observation space is bounded, with St P r´1, 1swˆn.

At each time step t, the state St is represented by a matrix St P Rwˆn, where:

• w is the window size (number of historical time steps considered)

• n is the number of assets in the portfolio

Formally, we define the state matrix as follows:

St “

»

—

—

—

–

rt´w`1,1 rt´w`1,2 ¨ ¨ ¨ rt´w`1,n

rt´w`2,1 rt´w`2,2 ¨ ¨ ¨ rt´w`2,n

...
... . . . ...

rt,1 rt,2 ¨ ¨ ¨ rt,n

fi

ffi

ffi

ffi

fl

(83)

where ri,j represents the return of asset j at time step i.Each element si,j of the matrix St corresponds to
the return of a specific asset at a specific time:

si,j “ rt´w`i,j “
Pt´w`i,j ´ Pt´w`i´1,j

Pt´w`i´1,j
(84)

where Pt,j is the price of asset j at time t. To ensure numerical stability and consistent scale across different
assets, we bound the elements of the state matrix St P r´1, 1swˆn. The rows of the matrix St represent
different time steps, with the most recent returns in the bottom row and the oldest returns in the top row.
The rows of the matrix St represent different time steps, with the most recent returns in the bottom row and
the oldest returns in the top row. This structure allows the agent to identify temporal patterns or trends in
asset returns, potentially.

Reward Function : The reward function is designed to balance portfolio return with risk. We use the
Entropic Value at Risk (EVaR) as a risk measure. The reward Rt at time t is defined as:
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Rt “ ´EVaRαpRtq (85)

where the negative portfolio returns are given by Rt “ pV0 ´ Vtq{V0 is the portfolio return up to time t, and
α is the confidence level for EVaR calculation. The negative sign before EVaR ensures that minimizing risk
corresponds to maximizing reward.

An episode terminates when either:

• The end of the available market data is reached pt “ T q, or

• The portfolio value drops to zero pVt ď 0q.

Transistion Dynamics : The environment functions as a comprehensive interface to the market, utilizing
a technique known as market replay to traverse historical data. Additionally, it operates as both a broker
and an exchange; at each timestep, it processes the agent’s actions to rebalance the portfolio according to the
latest prices and specified allocations. As the trading day progresses and new price data is acquired, the
environment provides these updates to the agent as observations, accompanied by the Entropic Value at Risk
(EVaR) reward. For the scope of this study, we permit instantaneous rebalancing of the portfolio. Given an
action at, the environment updates the portfolio value Vt according to:

Vt`1 “ Vt ¨ p1 `

n
ÿ

i“1
at,i ¨ rt`1,i ´ c ¨

n
ÿ

i“1
|at,i ´ at´1,i|q (86)

where rt`1,i is the return of asset i at time t` 1, and c is the transaction cost rate, which is kept constant in
our case. After rebalancing, the environment creates the next state St`1 and proceeds to the next timestep
t` 1. It calculates the new portfolio value based on Vt`1 and computes the reward Rt, which it returns to
the agent.

C.5.1 Algorithm

We use Soft Actor Critic Haarnoja et al. (2018) for policy optimization and incorporate the stochastic recursive
updates for the convergence of EVaR sample estimate by augmenting the critic function. We employ the SAC
algorithm with its default MLP policy as implemented in Stable Baselines 3. The actor (policy) and critic
(value) networks consist of two hidden layers with 256 units each, using ReLU activations. The model is
trained for 1000 timesteps, which we found sufficient for convergence in our environment.

Table 9: Hyperparameters used for training

Hyperparameter Value
Learning rate 0.0003
Buffer size 1,000,000
Batch size 256
Gamma 0.99
Train frequency TrainFreq(frequency=1, unit=STEP)
Gradient steps 1
Entropy coefficient (ent coef) auto
Target entropy -10.0
Tau 0.005
Policy kwargs {use_sde: False}

We see that our EVaR estimation is more robust as it adapts to the samples and the error band is consistent,
which shows a contained variance and provides a more conservative estimate of the sample averages, which is
desirable in a minimal risk portfolio setting. In Figs .(28a,27a) we visualise our portfolio and how it fairs
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(a)

Figure 27: (a) Efficient Frontier of EVaR at α “ 0.01.

against other risk measures like VaR and CVaR, where we employ RiskFolioCajas (2024) to generate the plots.
The importance of these plots is discussed below.

Date AAPL HD JNJ JPM KO MSFT PG UNH V WMT
2014-01-03 -2.20% -0.16% 0.90% 0.77% -0.49% -0.67% -0.11% 0.71% 0.07% -0.33%
2014-01-06 0.55% -0.96% 0.52% 0.58% -0.47% -2.11% 0.24% -1.15% -0.60% -0.56%
2014-01-07 -0.72% 0.49% 2.12% -1.15% 0.30% 0.78% 0.97% 3.06% 0.76% 0.31%
...

...
...

...
...

...
...

...
...

...
...

2024-01-26 -0.90% 1.23% -0.04% -0.38% 0.36% -0.23% 0.33% 1.99% -1.71% 0.88%
2024-01-29 -0.36% 0.11% -0.09% 0.26% 0.61% 1.43% 0.01% 0.27% 2.13% 0.47%

Table 10: Snapshot of portfolio assets and their adjusted returns over a decade.

C.5.2 Our Portfolio and Results

Returns histogram : provides a visual representation of the distribution of portfolio returns, allowing for a
comprehensive analysis of the performance of our EVaR agent compared to other risk measures such as VaR
and CVaR. This comparison is crucial as it reveals how our EVaR-based portfolio exhibits a more conservative
allocation, which is characterized by a lower frequency of extreme negative returns. By evaluating the shape
and spread of the distribution, we can gauge the robustness of our portfolio against adverse market conditions,
highlighting the potential benefits of utilizing EVaR as a risk measure.

The comparison of various risk measures is essential for understanding the effectiveness of our portfolio
strategy in managing risk. By analyzing the performance of the EVaR portfolio against traditional measures
like VaR and CVaR, we can illustrate the advantages of adopting an entropic approach to risk assessment.
Figure (28b) illustrates that these comparisons indicate that our EVaR strategy not only limits potential
losses but also adapts more dynamically to changing market conditions. This adaptability is reflected in the
reduced variance of estimated returns, which is desirable for investors seeking minimal risk.

Efficient Frontier : is a key concept in modern portfolio theory, representing the set of optimal portfolios
that offer the highest expected return for a given level of risk or the lowest risk for a given level of expected
return. By analyzing the Efficient Frontier in the context of our portfolio optimization with EVaR measure,
we can visually assess the trade-offs between risk and return for various portfolio allocations. Figure (27a)
illustrates the Efficient Frontier for our EVaR-based portfolio, demonstrating that it achieves a favorable
balance between risk and return. This indicates that our optimization strategy effectively identifies portfolios
that maximize returns while minimizing downside risk.
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(a) (b)

Figure 28: (a) Returns histogram with comparison of VaR, CVaR and EVaR which shows EVaR portfolio being
the most conservative allocation. (b) Comparison of various risk measures using a risk-adjusted portfolio.

D Reproducibility Details

The experiments were conducted on NVIDIA DGX A100, having an AMD EPYC 7742 64-core processor
operating at 1.5 GHz „ 3.39 GHz, with GDDR5 32 GB RAM, NVIDIA A100-SXM4-40 GB GPU at 1.41
GHz, and memory clocked at 1.21 GHz.The operating CUDA version for PyTorch 1.13.1 is 11.6 for Python
version 3.10.13. The supplementary material provided includes all the experiments with their obtained values,
which are reported here in a visual format.
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