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Abstract

We present an application of neural-symbolic
learning to argument mining. We use Logic
Tensor Networks to train neural models to
jointly fit the data and satisfy specific domain
rules. Our experiments on a corpus of scien-
tific abstracts indicate that including symbolic
rules during the training process improves clas-
sification performance, compliance with the
rules, and robustness of the results.

1 Introduction

Argument Mining (AM) stemmed from Natural
Language Processing (NLP) and Knowledge Rep-
resentation and Reasoning (Cabrio and Villata,
2018), with the goal of automatically extracting ar-
guments and their relations from natural language
texts (Lippi and Torroni, 2016). Like in most areas
of NLP, deep learning has recently pushed the en-
velope also in AM. Yet, many challenges still stand
open, as argumentation involves tasks such as rea-
soning, debate and persuasion, which cannot be eas-
ily addressed by deep architectures alone, sophisti-
cated as they may be. For that reason, Galassi et al.
(2019) argue that a combination of symbolic and
sub-symbolic approaches could leverage significant
advances in AM. They illustrate the point using
two neural-symbolic (NeSy) frameworks, DEEP-
PROBLOG (Manhaeve et al., 2021) and Grounding-
Specific Markov Logic Networks (Lippi and Fras-
coni, 2009), albeit without empirical evaluations.
Unfortunately, many of the existing frameworks
are under continuous development and their appli-
cations are often limited to a few case studies in
a single domain. Pacheco and Goldwasser (2021)
analyze existing NeSy frameworks, observing that
they are not specifically designed to support a vari-
ety of NLP tasks, and critically lack of a series
of important features. We shall add to the list
of shortcomings a lack of support for collective
classification (Sen et al., 2008). This is a funda-
mental feature for AM, since argument analysis is

typically context-dependent, meaning that classi-
fying each argumentative component (or relation)
requires considering not only the attributes of that
component or relation, but also those of other con-
nected components and relations. To address these
limitations, Pacheco and Goldwasser introduce a
NeSy framework based on factor graphs called
DRAIL and show its application in the AM do-
main. To the best of our knowledge, no other NeSy
approaches to AM have been investigated so far.

The present study focuses on neural-symbolic
methods for AM. Besides the in-depth contribution,
its aim is to pave the way for a broader application
of such methods in the NLP domain. We address
AM using a different NeSy framework, namely
Logic Tensor Networks. We focus on the classifi-
cation of argumentative component and prediction
of links between component pairs. Importantly,
LTNs allow to easily decouple the symbolic and
sub-symbolic parts of the model, and enable collec-
tive classification during training. Our results indi-
cate that the introduction of logic rules improves
classification performance, compliance with the
rules, and robustness of the results. To the best of
our knowledge, this is the first application of LTNs
to NLP.

2 Logic Tensor Networks (LTNs)

Logic Tensor Networks (LTNs) (Serafini and
d’Avila Garcez, 2016; Donadello et al., 2017)
integrate first-order many-valued logical rea-
soning (Bergmann, 2008) with tensor net-
works (Socher et al., 2013). The framework is
implemented in TensorFlow (Abadi et al., 2016).
LTNs belong to the “tensorization” class of undi-
rect NeSy approaches (De Raedt et al., 2020) which
embed First-Order Logic (FOL) entities, such as
constants and facts, into real-valued tensors. The
framework enables to combine data-driven ma-
chine learning with background knowledge ex-
pressed through first-order fuzzy logic represen-



tations. Therefore, one can use FOL to impose soft
constraints at training time and investigate proper-
ties at test time. Once trained, neural architectures
can be used independently of the framework. One
can also use LTNs as a verification tool, to assess
the ability of any given network to respect any
given property, expressed as an FOL query.

LTN variables are an abstract representation of
data. They must be linked to a set of real-valued
vectors, which are all the possible groundings of
that variable. A single data point of this set can be
represented using LTN constants. LTN functions
represent operations over variables and produce
real-valued vectors. The evaluation is done by a set
of TensorFlow operations, e.g., a neural network,
defined together with the function. LTN predicates
are a special class of functions whose output is a
single real value between 0 and 1, which represents
the degree of truth of the predicate. They can be
used to represent classes of objects as well as prop-
erties that may hold between multiple objects. The
learning setting is defined in terms of LTN axioms,
i.e., formulas that specify logic conditions in terms
of predicates, functions, and variables and can be
used to assign labels to data and to specify soft con-
straints. Axioms can include logical connectives
(A, V, ~, =)! and quantifiers (V, 3).

Reasoning is performed in the form of approxi-
mate satisfiability, which means that the optimiza-
tion process aims to maximize the level of satisfia-
bility of a grounded theory, by minimizing the loss
function (Serafini and d’ Avila Garcez, 2016).

3 Argument Mining with LTNs

We frame component classification and link predic-
tion as two classification tasks. To address them,
we define two neural networks: NNCOMP and
NNLINK. The first network takes a component
and produces a probability distribution over the
possible component classes. The second one re-
ceives two components and outputs a single value
between 0 and 1, which represents the probability
of there being an argumentative link between them.

Data-driven optimization is defined through
three elements for each class of both tasks: a vari-
able, a predicate, and an axiom. The variable is
associated with all the data of the training set that
belong to that class. The predicate is linked to the
corresponding output of our networks. The axiom
combines the previous elements and defines the

!The symbol ~ stands for logical negation.

optimization objective.

The rule-driven optimization is defined via vari-
ables linked to all the training data and through
specific axioms that express the rules. For example,
to enforce the antisymmetric property of links we
define two variables (x and y), associate them with
all the components of the training set, and specify
the following axiom:

Va,y: LINK(x,y) =~ LINK(y,z) (1)
4 Experimental Setting

Before we describe our experimental setup, a word
is in order about the implementation of LTNs we
used, which does not expose APIs to easily con-
figure some aspects of the training procedure. In
the current implementation, when a predicate is de-
fined in LTN over a set of variables, all the possible
groundings of such variables are used as part of
the same batch. This is necessary in order for the
LTN to evaluate the predicate’s truth degree. To
clarify: given two components A and B, suppose
one wants to determine if A and B are linked. This
means evaluating LINK(A,B). In the current im-
plementation, A and B need to belong to the same
batch. Now, if we take a third component C and
we want to determine LINK(A,C), A and C need to
belong to the same batch. Also, Equation 2 creates
a dependency between CLAIM and LINK, thus the
optimization step must also consider the value of
CLAIM(A), CLAIM(B) and CLAIM(C) alongside
the value of the two LINK predicates. Since this
applies to any pair of components, eventually all
the data need to belong to the same batch. Accord-
ingly, one cannot use mini-batches during training,
which limits the scalability of the approach. Al-
though this is not a theoretical limitation, it had a
practical impact on our experimental setting, since
it forced us to experiment with small-sized corpus,
sentence embeddings, and neural architectures.

4.1 Data

The AbstRCT Corpus (Mayer et al., 2020, 2021)
consists of 659 abstracts of scientific papers regard-
ing randomized control trials for the treatment of
specific diseases. The corpus includes three topical
datasets: neoplasm, glaucoma, and mixed. The
first one is divided into training, test, and valida-
tion splits, while the others are designed to be tests
sets. The corpus contains about 4,000 argumen-
tative components divided into two classes: EVI-
DENCE and CLAIM. Out of nearly 25,000 possi-



ble pairs of components that belong to the same
document, about 10% are connected through a di-
rect link. Claims only point to other claims. See
Appendix A for further details.

Sentence embeddings are created from 25-size
pre-trained GloVe embeddings (Pennington et al.,
2014), by averaging over the words of the sentence.
This simple method yields a low-dimensional rep-
resentation with no need to train new embeddings
or to rely on dimensionality reduction techniques.

4.2 Method

To evaluate whether the use of symbolic rules
within a neural model benefits argument mining
tasks, which is the aim of this work, we compare
the results obtained by two different models, that
differ only in the way they are trained. NEURAL is
the model trained in the usual way, i.e., by only ex-
ploiting its sub-symbolic component. NESY is the
model obtained by training the same architecture
using also LTN axioms. We did not include compar-
isons with other state-of-the-art neural-symbolic ar-
chitectures, because we could find none that could
be taken off-the-shelf and used in our experiments.

For the NEURAL approach, we use three predi-
cates, corresponding to the classes of the dataset:
LINK, EVIDENCE, and CLAIM. For the
NESY approach, we include axioms reflecting prop-
erties of the corpus, stipulating that (i) no symmet-
ric link can exist (Eq. 1), and (ii) claims can be
linked only to other claims (Eq. 2). The latter ax-
iom connects the two tasks, thus inducing a joint-
learning setting. Appendix B lists in detail all the
LTN entities involved in our training setting.

Va,y: LINK(x,y)
ACLAIM(z) = CLAIM(y) (2)

To avoid overfitting, we early-stop the process
using the F1 score of link prediction on the valida-
tion set, with a patience of 1,000 epochs. We focus
on link prediction because it is considered the most
challenging task, and arguably the one that would
benefit the most from the introduction of rules.

We evaluate the two models along the following
dimensions:

* Performance: we measure the F1 metrics re-
garding link prediction and component classi-
fication, to assess whether the rules improve
the performance of the models;

* Robustness: we compute the degree of agree-
ment between the networks, to assess if the
use of rules increases robustness against the
intrinsic randomness of the training process;

* Compliance: we test whether the prediction
of the models respects the desired properties.

4.3 Architecture

The aforementioned issues with the current LTNs
implementation and our limited computational re-
sources prevented us from integrating LTNs with
NLP state-of-the-art models. However, we can still
operate a meaningful comparison between NEU-
RAL and NESY, all else being equal. Accordingly,
we define a simple network composed of three
stacked fully-connected layers followed by a soft-
max classification layer. To obtain more robust
results with respect to the non-deterministic ele-
ments of the training procedure (Goodfellow et al.,
2016), we follow Galassi et al. (2021) and train
an ensemble of 20 networks both for NNCOMP
and NNLINK, and evaluate the aggregated output.
We implemented and compared two aggregation
methods. Majority voting (MAJ) is a common one.
However, it provides a categorical output, prevent-
ing a probabilistic interpretation of the prediction.
Our alternative method is the average of the output
of the networks (AVG). That, however, is known to
be vulnerable to outliers.

4.4 Results

Table 1 summarizes the results of our experiments.?
For the classification tasks, we report the macro-
F1 score for component classification and the F1
score for the link class. Agreement is measured by
Krippendorff’s o, while the degree of truth of the
properties is given as the ratio between the number
of instances where the clause holds and the number
of instances where only its left-hand side holds.

As far as the AM tasks, the difference between
the MAJ and AVG approaches is negligible in the
NESY setting, while it is more evident in the NEU-
RAL setting for link prediction, where the majority
voting achieves better performance.

As expected, rules seems to especially benefit
link prediction, where the networks trained with
rules perform consistently better than those trained
without. Conversely, the latter perform marginally

2Since our focus is on evaluating the effect of rules, in our
tables we did not include the performance results of state-of-
the-art approaches, as these figures would be misleading.



Classification Agreement Properties
Dataset Split  Approach Comp. Link Comp. Link Eq. 1 Eq.2
Neoolasm Ve NEURAL 83-84 42-41 77 66 88-84  92-83
coplas & NESY 84-85 44-43 81 7 99-98  99-99
Neos] o NEURAL  79-80 34-31 77 64 87 - 81 96 - 85
copiasm —1eSt - NEsy 79-78 35-35 79 70 99-96  99-94
Glancoma  Teo NEURAL 82-82 45-43 75 66 93-90  89-74
aucoma 18U NESy 81-82 47-45 75 71 ~100-98 99 -90
Mixed Test NEURAL 81-81 38-34 75 64 89 -85 95 - 86
1xe St NESY 81-80 39-40 76 69 ~100-97  97-96

Table 1: Percentage scores obtained on the AbstRCT corpus. For classification and compliance, we report both the
result obtained by the MAJ approach (before the dash) and by the AVG approach (after the dash).

better on component classification, in a few cases.
The results are, however, comparable.

The use of rules clearly benefits robustness,
boosting the agreement by at least 5 points for link
prediction and a few points for component clas-
sification. This is also confirmed by the smaller
difference between AVG and MAJ.

The greatest improvement regards the compli-
ance with the rules. The NESY approach satisfies
the properties almost perfectly in the MAJ setting,
and achieves results above 90% in the AVG one.
The baseline is consistently less compliant, and
performs significantly worse in the AVG setting.

All these results hold for the three test sets.

5 Discussion

We presented the first application of LTN to NLP,
and one of the few applications of NeSy approaches
to AM. In our opinion, there are several advantages
in such an approach.

From an analysis/interpretation perspective, log-
ical rules play an active role not only during train-
ing but also at inference time, offering a means to
investigate the behavior of the models.

From a user perspective, the definition of train-
ing rules and queries requires only a basic knowl-
edge of FOL, which may contribute to reducing
the divide between system architects and domain
experts, who do not need to be also experts in ma-
chine learning, NeSy systems, or deep networks.

From an architectural perspective, the decou-
pling between symbolic and neural components
allows changing either of them without any direct
impact on the other, except for the definition of key
concepts such as the predicates/labels of the prob-

lem. Such a modularity may be highly beneficial in
the context of AM, where one could use the same
neural architecture with different corpora by ex-
pressing different symbolic rules. Indeed, the struc-
tural diversity of datasets and labeling schemes is
a known issue in AM research, often leading to
tailored solutions (Lippi and Torroni, 2016).

Performance-wise, the introduction of two sym-
bolic rules increased link prediction performance
without hindering component classification perfor-
mance, whereas it boosted robustness and largely
improved compliance. While the networks used
in our experiments are much simpler than state-
of-the-art models, and clearly they do not achieve
comparable performance, we speculate that rules
may benefit advanced models as well. However, it
is difficult to determine how much improvement
can carry over from weak baselines to stronger
models (Denkowski and Neubig, 2017).

On the down side, we shall remark that one ma-
jor challenge for this kind of approaches is scala-
bility to larger domains, and the fact that they are
not specifically designed for NLP tasks, so their
development is yet in its infancy.

As future work, we are considering the weight-
ing of soft rules, so as to distinguish between rules
expressing preferences (or theories) and those ex-
pressing constraints. Another direction regards the
recognition of properties that are not explicit in
the training data but can be defined through logical
rules. This could allow the network to infer infor-
mation regarding components or relations without
labeled training data: for example, finding which
claim is the major claim of a document, or which
components agree with each other.
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Dataset Neoplasm Glaucoma  Mixed
Split Train  Valid. Test Test Test
Documents 350 50 100 100 100
Components 2,267 326 686 594 600

Evidence 1,537 218 438 404 338

Claim 730 108 248 190 212
Couples 14,286 2,030 4,380 3,332 3,332
Links 1,418 219 424 367 329

Table 2: AbstRCT dataset composition.

A Corpus and architectural choices

The scalability issues have influenced most of our
choices in terms of experimental setting.

* Needing low-dimensionality features, we used
GloVe embeddings rather than more advanced
methods because it offers low-dimensional
(25-size) pre-trained word embedding.

Due to the limited computational power we
could afford, we had to rule out state-of-the-
art architectures with millions of parameters.
We have thus used simple neural architectures
with a much lower number of parameters.

The choice of the AbstRCT corpus was mo-
tivated by the following reasons: 1) it comes
from real-world documents, as opposed to
data elicited or subject to guidelines; 2) it
offers multiple test sets, allowing a general
evaluation; 3) all the documents have an ar-
gumentative structure; 4) the argumentative
model presents a specific domain-related rule;
5) it fits our computational requirements be-
cause the training set contains a limited num-
ber of documents; 6) it has been presented and
published in two high-quality venues.

The AbstRCT corpus is available at https:
//gitlab.com/tomaye/abstrct. Its com-
position is reported in Table 2. Some of the docu-
ments of the neoplasm and glaucoma test set are
also included into the mixed set.

We applied GloVe embeddings, downloaded
from https://nlp.stanford.edu/
projects/glove/, directly on the words of
the documents, without pre-processing. We used
random embeddings for OOV words.

We use a neural network made of three stacked
fully-connected layers of size 10, 20, and 10, fol-
lowed by a softmax classification layer with two
outputs: CLAIM or EVIDENCE for NNCOMP and
LINK or NOLINK for NNLINK. We use ReLU as

activation function, and employ dropout with prob-
ability p = 0.4 after each layer. The two models
have 712 (NNCOMP) and 962 (NNLINK) trainable
parameters.

B LTN training entities

Figure 1 lists the LTN entities involved in our train-
ing setting.

C Infrastructure and Runtime Details

All our experiments run on an ASRock Z370 Pro4
motherboard, GeForce GTX 1080 Ti GPU, Intel
Core i17-8700K @ 3.70GHz CPU.

Using the baseline approach, the average train-
ing time for each network is less than one minute.
Using our NeSy approach, the average training
time for each network is 14 minutes, with a stan-
dard deviation of about 3 minutes. Inference on the
whole ensemble of 20 networks in all the consid-
ered test datasets and approaches requires less than
30 seconds.

D Deeper Architecture

To better investigate whether the application of
LTNs may impact also more complex architectures,
we have repeated the experiments using deeper
networks with 11 layers instead of 3, and more than
3,000 parameters instead of less than 1,000. Due to
the aforementioned scalability limitations, we used
only roughly 60% of the training documents.

It is important to remark that the less training
data may heavily impact performance, possibly
favoring the NESY setting, and therefore it is not
possible to draw definitive conclusions based on
these results. It is also important to underline that
these architectures are nowhere near the complexity
of Transformers-based architectures, such as the
100M parameters of BERT models.

The results are reported in Table 3. Overall, the
use of the NESY setting has a positive impact on
the networks, both for the classification task and the
respect of the properties, coherently with our pre-
vious experiments. The main differences concerns
robustness, which is negatively impacted both for
component classification and link prediction. The
other difference is limited to the Glaucoma test set,
where the NEURAL setting achieves better scores
for Eq. 1.
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VARIABLES: # in LTN variable names are preceded by "?"
?7train_claim # components belonging to the claim class
7train_premise # components belonging to the premise class
?7train_data # all the training components
7train_data2 # all the training components
?7train_links # pairs of components that are linked
?7train_nolinks # pairs of components that are not linked

FUNCTIONS :
concat # given two components, merges them to obtain a pair

PREDICATES :
CLAIM
PREMISE
LINK

DATA-BASED AXIOMS: # used in all the setting
forall ?train_claim: CLAIM(? train_claim)
forall ?train_premise: PREMISE(?train_premise)
forall ?train_links: LINK(?train_links)
forall ?train_nolinks: ~LINK(?train_nolinks)

RULE-BASED AXIOMS: # used only in the NeSy setting
forall ?train_data, ?train_data2
LINK(concat(?train_data , ?train_data2)) —>
~LINK(concat(?train_data2 , ?train_data))
forall ?train_data, ?train_data2 :
LINK(concat(?train_data , ?train_data2)) & CLAIM(?train_data) —>
CLAIM(?train_data?2)

Figure 1: LTN objects involved in our training setting.

Classification Agreement Properties

Dataset Split  Approach Comp. Link Comp. Link Eq. 1 Eq. 2
Neonlasm  Val NEURAL 80-74 41-35 58 46 88 - 68 96 - 87
P " NESY 81-80 46-37 53 39 100-58 100 - 92
Neobl Test NEURAL 78-74 33-26 55 41 87 -67 93 -87
COPRSML S NESY  79-77 33-28 0 52 35 94-64  ~100-90
Glaucoma  Test NEURAL 80-76 39-34 55 45 86 - 58 98 -91
NESY 80-75 42-37 52 39 81-44 =~100-95

NEURAL 80-77 35-30 57 44 88-59 96 - 87

Mixed — Test Npsy  82-80 39-20 54 37 97-56  100-96

Table 3: Percentage scores obtained on the AbstRCT corpus using a deeper architecture and a smaller training set.
For classification and compliance, we report both the result obtained by the MAJ approach (before the dash) and
by the AVG approach (after the dash).




