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Abstract
We present an application of neural-symbolic001
learning to argument mining. We use Logic002
Tensor Networks to train neural models to003
jointly fit the data and satisfy specific domain004
rules. Our experiments on a corpus of scien-005
tific abstracts indicate that including symbolic006
rules during the training process improves clas-007
sification performance, compliance with the008
rules, and robustness of the results.009

1 Introduction010

Argument Mining (AM) stemmed from Natural011

Language Processing (NLP) and Knowledge Rep-012

resentation and Reasoning (Cabrio and Villata,013

2018), with the goal of automatically extracting ar-014

guments and their relations from natural language015

texts (Lippi and Torroni, 2016). Like in most areas016

of NLP, deep learning has recently pushed the en-017

velope also in AM. Yet, many challenges still stand018

open, as argumentation involves tasks such as rea-019

soning, debate and persuasion, which cannot be eas-020

ily addressed by deep architectures alone, sophisti-021

cated as they may be. For that reason, Galassi et al.022

(2019) argue that a combination of symbolic and023

sub-symbolic approaches could leverage significant024

advances in AM. They illustrate the point using025

two neural-symbolic (NeSy) frameworks, DEEP-026

PROBLOG (Manhaeve et al., 2021) and Grounding-027

Specific Markov Logic Networks (Lippi and Fras-028

coni, 2009), albeit without empirical evaluations.029

Unfortunately, many of the existing frameworks030

are under continuous development and their appli-031

cations are often limited to a few case studies in032

a single domain. Pacheco and Goldwasser (2021)033

analyze existing NeSy frameworks, observing that034

they are not specifically designed to support a vari-035

ety of NLP tasks, and critically lack of a series036

of important features. We shall add to the list037

of shortcomings a lack of support for collective038

classification (Sen et al., 2008). This is a funda-039

mental feature for AM, since argument analysis is040

typically context-dependent, meaning that classi- 041

fying each argumentative component (or relation) 042

requires considering not only the attributes of that 043

component or relation, but also those of other con- 044

nected components and relations. To address these 045

limitations, Pacheco and Goldwasser introduce a 046

NeSy framework based on factor graphs called 047

DRAIL and show its application in the AM do- 048

main. To the best of our knowledge, no other NeSy 049

approaches to AM have been investigated so far. 050

The present study focuses on neural-symbolic 051

methods for AM. Besides the in-depth contribution, 052

its aim is to pave the way for a broader application 053

of such methods in the NLP domain. We address 054

AM using a different NeSy framework, namely 055

Logic Tensor Networks. We focus on the classifi- 056

cation of argumentative component and prediction 057

of links between component pairs. Importantly, 058

LTNs allow to easily decouple the symbolic and 059

sub-symbolic parts of the model, and enable collec- 060

tive classification during training. Our results indi- 061

cate that the introduction of logic rules improves 062

classification performance, compliance with the 063

rules, and robustness of the results. To the best of 064

our knowledge, this is the first application of LTNs 065

to NLP. 066

2 Logic Tensor Networks (LTNs) 067

Logic Tensor Networks (LTNs) (Serafini and 068

d’Avila Garcez, 2016; Donadello et al., 2017) 069

integrate first-order many-valued logical rea- 070

soning (Bergmann, 2008) with tensor net- 071

works (Socher et al., 2013). The framework is 072

implemented in TensorFlow (Abadi et al., 2016). 073

LTNs belong to the “tensorization” class of undi- 074

rect NeSy approaches (De Raedt et al., 2020) which 075

embed First-Order Logic (FOL) entities, such as 076

constants and facts, into real-valued tensors. The 077

framework enables to combine data-driven ma- 078

chine learning with background knowledge ex- 079

pressed through first-order fuzzy logic represen- 080
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tations. Therefore, one can use FOL to impose soft081

constraints at training time and investigate proper-082

ties at test time. Once trained, neural architectures083

can be used independently of the framework. One084

can also use LTNs as a verification tool, to assess085

the ability of any given network to respect any086

given property, expressed as an FOL query.087

LTN variables are an abstract representation of088

data. They must be linked to a set of real-valued089

vectors, which are all the possible groundings of090

that variable. A single data point of this set can be091

represented using LTN constants. LTN functions092

represent operations over variables and produce093

real-valued vectors. The evaluation is done by a set094

of TensorFlow operations, e.g., a neural network,095

defined together with the function. LTN predicates096

are a special class of functions whose output is a097

single real value between 0 and 1, which represents098

the degree of truth of the predicate. They can be099

used to represent classes of objects as well as prop-100

erties that may hold between multiple objects. The101

learning setting is defined in terms of LTN axioms,102

i.e., formulas that specify logic conditions in terms103

of predicates, functions, and variables and can be104

used to assign labels to data and to specify soft con-105

straints. Axioms can include logical connectives106

(∧, ∨, ∼,⇒)1 and quantifiers (∀, ∃).107

Reasoning is performed in the form of approxi-108

mate satisfiability, which means that the optimiza-109

tion process aims to maximize the level of satisfia-110

bility of a grounded theory, by minimizing the loss111

function (Serafini and d’Avila Garcez, 2016).112

3 Argument Mining with LTNs113

We frame component classification and link predic-114

tion as two classification tasks. To address them,115

we define two neural networks: NNCOMP and116

NNLINK. The first network takes a component117

and produces a probability distribution over the118

possible component classes. The second one re-119

ceives two components and outputs a single value120

between 0 and 1, which represents the probability121

of there being an argumentative link between them.122

Data-driven optimization is defined through123

three elements for each class of both tasks: a vari-124

able, a predicate, and an axiom. The variable is125

associated with all the data of the training set that126

belong to that class. The predicate is linked to the127

corresponding output of our networks. The axiom128

combines the previous elements and defines the129

1The symbol ∼ stands for logical negation.

optimization objective. 130

The rule-driven optimization is defined via vari- 131

ables linked to all the training data and through 132

specific axioms that express the rules. For example, 133

to enforce the antisymmetric property of links we 134

define two variables (x and y), associate them with 135

all the components of the training set, and specify 136

the following axiom: 137

∀x, y : LINK(x, y)⇒∼ LINK(y, x) (1) 138

4 Experimental Setting 139

Before we describe our experimental setup, a word 140

is in order about the implementation of LTNs we 141

used, which does not expose APIs to easily con- 142

figure some aspects of the training procedure. In 143

the current implementation, when a predicate is de- 144

fined in LTN over a set of variables, all the possible 145

groundings of such variables are used as part of 146

the same batch. This is necessary in order for the 147

LTN to evaluate the predicate’s truth degree. To 148

clarify: given two components A and B, suppose 149

one wants to determine if A and B are linked. This 150

means evaluating LINK(A,B). In the current im- 151

plementation, A and B need to belong to the same 152

batch. Now, if we take a third component C and 153

we want to determine LINK(A,C), A and C need to 154

belong to the same batch. Also, Equation 2 creates 155

a dependency between CLAIM and LINK, thus the 156

optimization step must also consider the value of 157

CLAIM(A), CLAIM(B) and CLAIM(C) alongside 158

the value of the two LINK predicates. Since this 159

applies to any pair of components, eventually all 160

the data need to belong to the same batch. Accord- 161

ingly, one cannot use mini-batches during training, 162

which limits the scalability of the approach. Al- 163

though this is not a theoretical limitation, it had a 164

practical impact on our experimental setting, since 165

it forced us to experiment with small-sized corpus, 166

sentence embeddings, and neural architectures. 167

4.1 Data 168

The AbstRCT Corpus (Mayer et al., 2020, 2021) 169

consists of 659 abstracts of scientific papers regard- 170

ing randomized control trials for the treatment of 171

specific diseases. The corpus includes three topical 172

datasets: neoplasm, glaucoma, and mixed. The 173

first one is divided into training, test, and valida- 174

tion splits, while the others are designed to be tests 175

sets. The corpus contains about 4,000 argumen- 176

tative components divided into two classes: EVI- 177

DENCE and CLAIM. Out of nearly 25,000 possi- 178
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ble pairs of components that belong to the same179

document, about 10% are connected through a di-180

rect link. Claims only point to other claims. See181

Appendix A for further details.182

Sentence embeddings are created from 25-size183

pre-trained GloVe embeddings (Pennington et al.,184

2014), by averaging over the words of the sentence.185

This simple method yields a low-dimensional rep-186

resentation with no need to train new embeddings187

or to rely on dimensionality reduction techniques.188

4.2 Method189

To evaluate whether the use of symbolic rules190

within a neural model benefits argument mining191

tasks, which is the aim of this work, we compare192

the results obtained by two different models, that193

differ only in the way they are trained. NEURAL is194

the model trained in the usual way, i.e., by only ex-195

ploiting its sub-symbolic component. NESY is the196

model obtained by training the same architecture197

using also LTN axioms. We did not include compar-198

isons with other state-of-the-art neural-symbolic ar-199

chitectures, because we could find none that could200

be taken off-the-shelf and used in our experiments.201

For the NEURAL approach, we use three predi-202

cates, corresponding to the classes of the dataset:203

LINK, EV IDENCE, and CLAIM . For the204

NESY approach, we include axioms reflecting prop-205

erties of the corpus, stipulating that (i) no symmet-206

ric link can exist (Eq. 1), and (ii) claims can be207

linked only to other claims (Eq. 2). The latter ax-208

iom connects the two tasks, thus inducing a joint-209

learning setting. Appendix B lists in detail all the210

LTN entities involved in our training setting.211

212

∀x, y : LINK(x, y)213

∧ CLAIM(x)⇒ CLAIM(y) (2)214

To avoid overfitting, we early-stop the process215

using the F1 score of link prediction on the valida-216

tion set, with a patience of 1,000 epochs. We focus217

on link prediction because it is considered the most218

challenging task, and arguably the one that would219

benefit the most from the introduction of rules.220

We evaluate the two models along the following221

dimensions:222

• Performance: we measure the F1 metrics re-223

garding link prediction and component classi-224

fication, to assess whether the rules improve225

the performance of the models;226

• Robustness: we compute the degree of agree- 227

ment between the networks, to assess if the 228

use of rules increases robustness against the 229

intrinsic randomness of the training process; 230

• Compliance: we test whether the prediction 231

of the models respects the desired properties. 232

4.3 Architecture 233

The aforementioned issues with the current LTNs 234

implementation and our limited computational re- 235

sources prevented us from integrating LTNs with 236

NLP state-of-the-art models. However, we can still 237

operate a meaningful comparison between NEU- 238

RAL and NESY, all else being equal. Accordingly, 239

we define a simple network composed of three 240

stacked fully-connected layers followed by a soft- 241

max classification layer. To obtain more robust 242

results with respect to the non-deterministic ele- 243

ments of the training procedure (Goodfellow et al., 244

2016), we follow Galassi et al. (2021) and train 245

an ensemble of 20 networks both for NNCOMP 246

and NNLINK, and evaluate the aggregated output. 247

We implemented and compared two aggregation 248

methods. Majority voting (MAJ) is a common one. 249

However, it provides a categorical output, prevent- 250

ing a probabilistic interpretation of the prediction. 251

Our alternative method is the average of the output 252

of the networks (AVG). That, however, is known to 253

be vulnerable to outliers. 254

4.4 Results 255

Table 1 summarizes the results of our experiments.2 256

For the classification tasks, we report the macro- 257

F1 score for component classification and the F1 258

score for the link class. Agreement is measured by 259

Krippendorff’s α, while the degree of truth of the 260

properties is given as the ratio between the number 261

of instances where the clause holds and the number 262

of instances where only its left-hand side holds. 263

As far as the AM tasks, the difference between 264

the MAJ and AVG approaches is negligible in the 265

NESY setting, while it is more evident in the NEU- 266

RAL setting for link prediction, where the majority 267

voting achieves better performance. 268

As expected, rules seems to especially benefit 269

link prediction, where the networks trained with 270

rules perform consistently better than those trained 271

without. Conversely, the latter perform marginally 272

2Since our focus is on evaluating the effect of rules, in our
tables we did not include the performance results of state-of-
the-art approaches, as these figures would be misleading.
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Classification Agreement Properties
Dataset Split Approach Comp. Link Comp. Link Eq. 1 Eq. 2

Neoplasm Val.
NEURAL 83 - 84 42 - 41 77 66 88 - 84 92 - 83
NESY 84 - 85 44 - 43 81 71 99 - 98 99 - 99

Neoplasm Test
NEURAL 79 - 80 34 - 31 77 64 87 - 81 96 - 85
NESY 79 - 78 35 - 35 79 70 99 - 96 99 - 94

Glaucoma Test
NEURAL 82 - 82 45 - 43 75 66 93 - 90 89 - 74
NESY 81 - 82 47 - 45 75 71 ≈100 - 98 99 - 90

Mixed Test
NEURAL 81 - 81 38 - 34 75 64 89 - 85 95 - 86
NESY 81 - 80 39 - 40 76 69 ≈100 - 97 97 - 96

Table 1: Percentage scores obtained on the AbstRCT corpus. For classification and compliance, we report both the
result obtained by the MAJ approach (before the dash) and by the AVG approach (after the dash).

better on component classification, in a few cases.273

The results are, however, comparable.274

The use of rules clearly benefits robustness,275

boosting the agreement by at least 5 points for link276

prediction and a few points for component clas-277

sification. This is also confirmed by the smaller278

difference between AVG and MAJ.279

The greatest improvement regards the compli-280

ance with the rules. The NESY approach satisfies281

the properties almost perfectly in the MAJ setting,282

and achieves results above 90% in the AVG one.283

The baseline is consistently less compliant, and284

performs significantly worse in the AVG setting.285

All these results hold for the three test sets.286

5 Discussion287

We presented the first application of LTN to NLP,288

and one of the few applications of NeSy approaches289

to AM. In our opinion, there are several advantages290

in such an approach.291

From an analysis/interpretation perspective, log-292

ical rules play an active role not only during train-293

ing but also at inference time, offering a means to294

investigate the behavior of the models.295

From a user perspective, the definition of train-296

ing rules and queries requires only a basic knowl-297

edge of FOL, which may contribute to reducing298

the divide between system architects and domain299

experts, who do not need to be also experts in ma-300

chine learning, NeSy systems, or deep networks.301

From an architectural perspective, the decou-302

pling between symbolic and neural components303

allows changing either of them without any direct304

impact on the other, except for the definition of key305

concepts such as the predicates/labels of the prob-306

lem. Such a modularity may be highly beneficial in 307

the context of AM, where one could use the same 308

neural architecture with different corpora by ex- 309

pressing different symbolic rules. Indeed, the struc- 310

tural diversity of datasets and labeling schemes is 311

a known issue in AM research, often leading to 312

tailored solutions (Lippi and Torroni, 2016). 313

Performance-wise, the introduction of two sym- 314

bolic rules increased link prediction performance 315

without hindering component classification perfor- 316

mance, whereas it boosted robustness and largely 317

improved compliance. While the networks used 318

in our experiments are much simpler than state- 319

of-the-art models, and clearly they do not achieve 320

comparable performance, we speculate that rules 321

may benefit advanced models as well. However, it 322

is difficult to determine how much improvement 323

can carry over from weak baselines to stronger 324

models (Denkowski and Neubig, 2017). 325

On the down side, we shall remark that one ma- 326

jor challenge for this kind of approaches is scala- 327

bility to larger domains, and the fact that they are 328

not specifically designed for NLP tasks, so their 329

development is yet in its infancy. 330

As future work, we are considering the weight- 331

ing of soft rules, so as to distinguish between rules 332

expressing preferences (or theories) and those ex- 333

pressing constraints. Another direction regards the 334

recognition of properties that are not explicit in 335

the training data but can be defined through logical 336

rules. This could allow the network to infer infor- 337

mation regarding components or relations without 338

labeled training data: for example, finding which 339

claim is the major claim of a document, or which 340

components agree with each other. 341
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Dataset Neoplasm Glaucoma Mixed
Split Train Valid. Test Test Test

Documents 350 50 100 100 100

Components 2,267 326 686 594 600
Evidence 1,537 218 438 404 338
Claim 730 108 248 190 212

Couples 14,286 2,030 4,380 3,332 3,332
Links 1,418 219 424 367 329

Table 2: AbstRCT dataset composition.

A Corpus and architectural choices439

The scalability issues have influenced most of our440

choices in terms of experimental setting.441

• Needing low-dimensionality features, we used442

GloVe embeddings rather than more advanced443

methods because it offers low-dimensional444

(25-size) pre-trained word embedding.445

• Due to the limited computational power we446

could afford, we had to rule out state-of-the-447

art architectures with millions of parameters.448

We have thus used simple neural architectures449

with a much lower number of parameters.450

• The choice of the AbstRCT corpus was mo-451

tivated by the following reasons: 1) it comes452

from real-world documents, as opposed to453

data elicited or subject to guidelines; 2) it454

offers multiple test sets, allowing a general455

evaluation; 3) all the documents have an ar-456

gumentative structure; 4) the argumentative457

model presents a specific domain-related rule;458

5) it fits our computational requirements be-459

cause the training set contains a limited num-460

ber of documents; 6) it has been presented and461

published in two high-quality venues.462

The AbstRCT corpus is available at https:463

//gitlab.com/tomaye/abstrct. Its com-464

position is reported in Table 2. Some of the docu-465

ments of the neoplasm and glaucoma test set are466

also included into the mixed set.467

We applied GloVe embeddings, downloaded468

from https://nlp.stanford.edu/469

projects/glove/, directly on the words of470

the documents, without pre-processing. We used471

random embeddings for OOV words.472

We use a neural network made of three stacked473

fully-connected layers of size 10, 20, and 10, fol-474

lowed by a softmax classification layer with two475

outputs: CLAIM or EVIDENCE for NNCOMP and476

LINK or NOLINK for NNLINK. We use ReLU as477

activation function, and employ dropout with prob- 478

ability p = 0.4 after each layer. The two models 479

have 712 (NNCOMP) and 962 (NNLINK) trainable 480

parameters. 481

B LTN training entities 482

Figure 1 lists the LTN entities involved in our train- 483

ing setting. 484

C Infrastructure and Runtime Details 485

All our experiments run on an ASRock Z370 Pro4 486

motherboard, GeForce GTX 1080 Ti GPU, Intel 487

Core i7-8700K @ 3.70GHz CPU. 488

Using the baseline approach, the average train- 489

ing time for each network is less than one minute. 490

Using our NeSy approach, the average training 491

time for each network is 14 minutes, with a stan- 492

dard deviation of about 3 minutes. Inference on the 493

whole ensemble of 20 networks in all the consid- 494

ered test datasets and approaches requires less than 495

30 seconds. 496

D Deeper Architecture 497

To better investigate whether the application of 498

LTNs may impact also more complex architectures, 499

we have repeated the experiments using deeper 500

networks with 11 layers instead of 3, and more than 501

3,000 parameters instead of less than 1,000. Due to 502

the aforementioned scalability limitations, we used 503

only roughly 60% of the training documents. 504

It is important to remark that the less training 505

data may heavily impact performance, possibly 506

favoring the NESY setting, and therefore it is not 507

possible to draw definitive conclusions based on 508

these results. It is also important to underline that 509

these architectures are nowhere near the complexity 510

of Transformers-based architectures, such as the 511

100M parameters of BERT models. 512

The results are reported in Table 3. Overall, the 513

use of the NESY setting has a positive impact on 514

the networks, both for the classification task and the 515

respect of the properties, coherently with our pre- 516

vious experiments. The main differences concerns 517

robustness, which is negatively impacted both for 518

component classification and link prediction. The 519

other difference is limited to the Glaucoma test set, 520

where the NEURAL setting achieves better scores 521

for Eq. 1. 522
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VARIABLES : # i n LTN v a r i a b l e names a r e p r e c e d e d by " ? "
? t r a i n _ c l a i m # components b e l o n g i n g t o t h e c l a i m c l a s s
? t r a i n _ p r e m i s e # components b e l o n g i n g t o t h e p r e m i s e c l a s s
? t r a i n _ d a t a # a l l t h e t r a i n i n g components
? t r a i n _ d a t a 2 # a l l t h e t r a i n i n g components
? t r a i n _ l i n k s # p a i r s o f components t h a t a r e l i n k e d
? t r a i n _ n o l i n k s # p a i r s o f components t h a t a r e n o t l i n k e d

FUNCTIONS :
c o n c a t # g i v e n two components , merges them t o o b t a i n a p a i r

PREDICATES :
CLAIM
PREMISE
LINK

DATA−BASED AXIOMS: # used i n a l l t h e s e t t i n g
f o r a l l ? t r a i n _ c l a i m : CLAIM( ? t r a i n _ c l a i m )
f o r a l l ? t r a i n _ p r e m i s e : PREMISE ( ? t r a i n _ p r e m i s e )
f o r a l l ? t r a i n _ l i n k s : LINK ( ? t r a i n _ l i n k s )
f o r a l l ? t r a i n _ n o l i n k s : ~LINK ( ? t r a i n _ n o l i n k s )

RULE−BASED AXIOMS: # used on ly i n t h e NeSy s e t t i n g
f o r a l l ? t r a i n _ d a t a , ? t r a i n _ d a t a 2 :

LINK ( c o n c a t ( ? t r a i n _ d a t a , ? t r a i n _ d a t a 2 ) ) −>
~LINK ( c o n c a t ( ? t r a i n _ d a t a 2 , ? t r a i n _ d a t a ) )

f o r a l l ? t r a i n _ d a t a , ? t r a i n _ d a t a 2 :
LINK ( c o n c a t ( ? t r a i n _ d a t a , ? t r a i n _ d a t a 2 ) ) & CLAIM( ? t r a i n _ d a t a ) −>
CLAIM( ? t r a i n _ d a t a 2 )

Figure 1: LTN objects involved in our training setting.

Classification Agreement Properties
Dataset Split Approach Comp. Link Comp. Link Eq. 1 Eq. 2

Neoplasm Val.
NEURAL 80 - 74 41 - 35 58 46 88 - 68 96 - 87
NESY 81 - 80 46 - 37 53 39 100 - 58 100 - 92

Neoplasm Test
NEURAL 78 - 74 33 - 26 55 41 87 - 67 93 - 87
NESY 79 - 77 33 - 28 52 35 94 - 64 ≈100 - 90

Glaucoma Test
NEURAL 80 - 76 39 - 34 55 45 86 - 58 98 - 91
NESY 80 - 75 42 - 37 52 39 81 - 44 ≈100 - 95

Mixed Test
NEURAL 80 - 77 35 - 30 57 44 88 - 59 96 - 87
NESY 82 - 80 39 - 29 54 37 97 - 56 100 - 96

Table 3: Percentage scores obtained on the AbstRCT corpus using a deeper architecture and a smaller training set.
For classification and compliance, we report both the result obtained by the MAJ approach (before the dash) and
by the AVG approach (after the dash).
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