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ABSTRACT

Despite the historical successes of neural networks, the rigour of logical reasoning
is still beyond their reach. Taking syllogistic reasoning as a subset of logical rea-
soning, we show supervised neural networks cannot reach the rigour of syllogistic
reasoning, mainly because they use composition tables, which are coarse to distin-
guish each valid type of syllogistic reasoning and because end-to-end supervised
learning may change the premises. As Transformer’s Key-Query-Value structure
is a combination table, we conclude that neural networks built upon Transformers
cannot reach the rigour of syllogistic reasoning and, thus, cannot reach the rigour
of logical reasoning. We logically prove that oversmoothing, in the setting of
part-whole relations, can be avoided, if neural networks use region embeddings,
and propose the method of reasoning through explicit constructing and inspecting
region configurations, to achieve the rigour of logical reasoning.

1 INTRODUCTION

The power of neural networks is witnessed by its superior performance in simulating a variety of hu-
man behaviours, for example, human-like question-answering (Biever, 2023), playing games (Silver
et al., 2017; Schrittwieser et al., 2020), predicting gene structures (Abramson et al., 2024), helping
mathematical discovery (Davies et al., 2021), solving IMO tasks (Trinh et al., 2024). The success of
neural networks may ascribe to their strong power to represent closed-world tasks (e.g., Chess, Go).
RNNs and Transformers are even proven to be Turing complete (given unbounded time) (Nowak
et al., 2023; Strobl et al., 2024).

However, accompanied by these exciting successes are LLMs’ unpredictable behaviours (Park et al.,
2024), errors in simple abstract reasoning (Eisape et al., 2024; Lampinen et al., 2024), and the
irrationality of making correct answers with incorrect explanations (Creswell et al., 2022; Zelikman
et al., 2022). This brings unpredictable risks to our society (Bengio et al., 2024), for example, in
clinical decision-making (Hager et al., 2024). Although breaking a complex reasoning task into
multiple steps may improve their reasoning performance (Creswell et al., 2022; Wei et al., 2023;
Lightman et al., 2023), it remains unclear whether they reason at all (Biever, 2023; Melanie, 2023)
and how far can neural networks go with the scaling law (Kaplan et al., 2020). Neural networks are
invented to simulate the functions of our minds. The design is inspired by the biological structure of
neurons (Anderson, 1995). Here, we show that supervised neural networks cannot achieve the rigour
of syllogistic reasoning and thus cannot achieve the rigour of logical reasoning. We further show,
that to achieve the rigour, neural networks shall promote vector embeddings to region embeddings
and adopt the method of reasoning through model construction and inspection (Johnson-Laird &
Byrne, 1991; Knauff et al., 2003; Goodwin & Johnson-Laird, 2005; Knauff, 2009), as demonstrated
in (Dong et al., 2024).

The supervised learning syllogistic reasoning falls in the paradigm of statistic learning, with the
stable-world assumption that the training data and the testing data share the same distribution (Goyal
& Bengio, 2022; Gigerenzer, 2022). A well-trained neural network for syllogistic reasoning may
reach 100% confidence for the reasoning All Greeks are human. All humans are mortal. ∴ All
Greeks are mortal., but will be less confident, if we replace Greeks with Dani people, or a Papuan
ethnic group. Experiments also show that LLMs may mimic syllogistic errors in the training data,
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though they can perform very well with syllogistic reasoning (Lampinen et al., 2024). Thus, using
symbolic terms, neural networks cannot achieve the rigour of syllogistic reasoning. Considering
the finite set-theoretic relations behind all syllogistic statements, we may first translate a syllogistic
statement into a set-theoretic relation that can be represented by Euler diagram. In this way, Greeks,
Dani people, and a Papuan ethnic group will be equally represented by a circle.

In Section 2, we introduce syllogistic reasoning and the criteria of rigorous syllogistic reasoning
for neural networks as follows: (1) being able to correctly reason with out-of-distribution data, (2)
being able to correctly reason with all valid syllogistic reasoning, and (3) not changing premises.
In Section 3, we visit Euler Net, a supervised neural network that learns syllogistic reasoning by
utilising a combination table of its set-theoretic semantics and achieves 99.8% accuracy. However,
the performance drops to 56%, when we fed with new randomly generated data. In Section 4, we
introduce a method that automatically identifies and removes out-of-distribution data. We conclude
that given the reasoning types as represented by the combination table, increasing training data will
improve the reasoning performance.

In Section 5, we show that Euler Net’s composition table cannot distinguish all valid types of syllo-
gistic reasoning and, thus, cannot help Euler Net to achieve the rigour of syllogistic reasoning. We
improve the composition table and propose to separate the end-to-end mapping between premises
(network inputs) and conclusions (network outputs) into two processes: firstly, constructing a latent
model from inputs, and secondly, inspecting this model to draw conclusions. Though with sufficient
data, the improved version of Euler Net may achieve nearly 100% accuracy for all valid types of syl-
logistic reasoning, it may need an unbounded number of inspecting models and may draw incorrect
conclusions by automatically changing premises.

In Section 6, we introduce a contradictory design feature for object recognition and logical reason-
ing. It is a desirable feature for object recognition networks that they can recognise objects only
by observing parts; however, it is an undesirable feature for reasoning networks that they will insert
new concepts into the premises. Thus, if an end-to-end supervised neural network for reasoning uses
supervised neural networks for recognising inputs, this reasoning neural network will not achieve
the rigour of logical reasoning. Because its object recognition networks may automatically insert
new concepts by recovering the whole from parts. We demonstrate this phenomenon through exper-
iments with Euler Net and show that this problem can be relieved by defining unintended inputs and
creating the training data, but cannot be solved entirely.

Syllogistic reasoning is the microcosm of human rationality. Neural reasoning for syllogistic rela-
tions are embedded in scenarios with complex objects that needs sophisticated neural architectures,
e.g. Visual Transformers (Dosovitskiy et al., 2021). In Section 7, we prove that if all the outputs of
neural networks oversmooth (the same embedding), the output embedding will be a single point. The
contraposition of this statement is that if the output embedding is not a point, neural networks will
not oversmooth. The simplest region embedding would be sphere embeddings that can be obtained
by adding a non-zero radius to a vector embedding. We briefly visit Sphere Neural Network (Dong
et al., 2024) and illustrate the method of reasoning through explicitly constructing and inspecting
sphere configurations as Euler diagrams, and achieves the rigour of syllogistic reasoning.

2 SYLLOGISTIC REASONING

Aristotelian syllogistic reasoning is a logical deduction with the form of two premises and one
conclusion. A syllogistic deduction only contains three terms (Subject, Middle, and Predicate) and
four possible relations, as follows.

• universal affirmative: all X are Y ;

• particular affirmative: some X are Y ;

• universal negative: no X are Y ;

• particular negative: some X are not Y .

For example, two premises can be some lawyers are presidents. no presidents are scientists. The
logical conclusion is some lawyers are not scientists., its negation is all lawyers are scientists., as
shown in Figure 1(e). The four relations can be interpreted through set relations in Euler diagrams,
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Figure 1: (a-d) Four syllogistic relations and their one-to-one mapping to spatial relations; (e) two
premises are some lawyers are presidents. no presidents are scientists, the logical conclusion is some
lawyers are scientists, its negation is all lawyers are scientists; (f) spatial statements of the syllogistic
statements; (g) no sphere configuration satisfies the premises and the conclusion all lawyers are
scientists; there is a sphere configuration that satisfies the premises and the conclusion some lawyers
are not scientists.

as illustrated in Figure 1(a-d). For example, some X are Y can be interpreted as the set relation “set
X does not intersect with set Y”. This implies three possible relations between set X and set Y, as
shown in Figure 1(c). We map a set to a sphere, e.g., mapping set X to Sphere OX , and translate
some X are Y into one spatial relation: OX does not disconnect from OY , ¬D(OX ,OY ). The
disconnected relation D can be defined using the part-whole relation P as follows: OX disconnects
from OY , if and only if there is no OZ that is part of both OX and OY (Smith, 1996).

D(OX ,OY ) ≜ ∄OZP(OZ ,OX) ∧P(OZ ,OY )

In this way, we can define syllogistic relations through the part-whole relation P and establish a
one-to-one relation (⇔) between syllogistic and spatial relations as follows.

• “all X are Y ”⇔ “sphere OX is part of sphere OY ”, P(OX ,OY );
• “some X are Y ”⇔ “sphere OX does not disconnect from sphere OY ”, ¬D(OX ,OY );
• “no X are Y ”⇔ “sphere OX disconnects from sphere OY ”, D(OX ,OY );
• “some X are not Y ”⇔ “sphere OX is not part of sphere OY ”, ¬P(OX ,OY ).

A syllogistic reasoning can be satisfiable, unsatisfiable, valid, or invalid, as listed in Table 1. For
example, being valid means the conclusion is true in every case its premises are true (Jeffrey, 1981);
being satisfiable means there is a case that both premises and the conclusion are true. For a valid
reasoning, the negation of its conclusion is unsatisfiable; for an invalid reasoning, the negation of
its conclusion is satisfiable. Geometrically, a syllogistic reasoning is satisfiable, if and only if we
can construct an Euler diagram, e.g., three circles satisfying the spatial relations of the premises
and conclusion; otherwise, this reasoning will be unsatisfiable. In Figure 1(g), we successfully
constructed an Euler diagram of the premises and the conclusion some lawyers are not scientists,
so this reasoning is satisfiable. But, we cannot construct an Euler diagram of the premises and
the conclusion all lawyers are scientists, so this conclusion is unsatisfiable. Therefore, its negation
(some lawyers are not scientists) is valid.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Four types of syllogistic reasoning.
type quantifier premise conclusion explanation
valid universal true true The conclusion is true in every case premises are true (Jeffrey, 1981).

invalid existential true false There is a case that the premises are true and the conclusion is false.
satisfiable existential true true There is a case that the premises and the conclusion are true.

unsatisfiable universal true false The conclusion is false in every case premises are true.

If we allow two terms in premises to change positions and fix the order of terms in the conclusion
statement, there will be 256 different forms of Aristotelian syllogistic reasoning, among which 24
types are valid (Khemlani & Johnson-Laird, 2012). A reasoning network reaches the rigour of
syllogistic reasoning, if it can correctly determine all valid syllogistic reasoning for all datasets in
bounded computing time. This criterion requires the system to achieve 100% accuracy on out-of-
distribution data or to classify them as unintended input. To be rigorous also requires the system
not to change the premises. It is hard or unrealistic to develop supervised neural networks that meet
these criteria. However, we may believe that supervised neural networks can infinitely close to the
rigour and meet the criteria, as long as we have more and more data (the scaling law). We show that
increasing the amount of data will improve reasoning performance but will not infinitely close to the
rigour of logical reasoning – there is a gap, and to close this gap, we need to abandon training data
and switch to the method of reasoning through model construction and inspection.

Figure 2: (a) The architecture of Euler Net; (b) The composition table of Euler Net. If the two
premises are “blue is inside green. green disconnects from red”, the combination result will only be
“blue disconnects from red”, represented as [0, 0, 0, 1].

3 EULER NET – A SUPERVISED NEURAL REASONER FOR SYLLOGISTIC
RELATIONS

Syllogistic reasoning is not a challenging task for symbolic approaches (Vukmirovic et al., 2019;
Bentkamp et al., 2021), but very challenging for neural modelling and developing neural syllogistic
models was once regarded a Utopian (Khemlani & Johnson-Laird, 2012). A recent comparative
analysis found even the largest LLM may make mistakes in syllogistic reasoning (Eisape et al.,
2024), which implicitly shows that LLMs have not achieved the rigour of syllogistic reasoning.
Inspired by the structure of the human visual cortex, Wang et al. (2018; 2020) developed Euler Net,
a supervised deep-learning network for syllogistic reasoning, as illustrated in Figure 2(a). The inputs
of EN are two images, each consisting of two coloured circles with a set-theoretic relation. Colours
of circles distinguish three terms in syllogistic reasoning. The common colour in the two inputs is the
midterm. With two Siamese networks, Euler Net encodes each input image into a latent vector. The
output is a vector representing the set-theoretic relation(s) between the subject and the predicate.
The mapping from two premises to possible conclusions is enumerated in the combination table,
where possible conclusions are symbolised as a vector, as illustrated in Figure 2(b). The structure
of a piece of training data is ((image, image), vector). The benchmark dataset consists of 96000
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Figure 3: The random input generator creates two input images, and computes the expected output.
This output is compared with the output of Euler Net. A new training record will be created, if the
similarity is below a threshold.

pieces of data. They are randomly shuffled and partitioned into 80000 pieces for training, 8000 for
validation, and 8000 for testing. Euler Net achieved 99.8% accuracy on the testing dataset.

4 AUTOMATIC IDENTIFYING AND REMOVING OUT-OF-DISTRIBUTION DATA

We fed new randomly generated test data to a well-trained Euler Net, its performance dropped from
99.8% to 56.0%. We explore whether Euler Net can approach the rigour of syllogistic reasoning. For
Euler Net, it is possible to design a wrapper system that automatically identifies errors and creates
new training data to improve the performance of Euler Net. The wrapper system works as follows:
it firstly randomly generates geometric parameters of circles, i.e., centre points and radii. From this
information, the wrapper system will create input images and the expected output vector. Then, the
wrapper system feeds the input images into Euler Net and gets the output vector of Euler Net. If this
vector differs to a degree from the expected vector, the pair of the input images and the expected
vector is a new piece of training data (Algorithm 1). After the amount of new pieces of training data
reaches a value, e.g., 10000, or a time limit is reached, the current Euler Net will be trained and
tested and promoted into a new version with better performance, as illustrated in Figure 3. After
20 times of repeating the process, the Euler Net (version 20) improves the accuracy to 97.8% for
randomly generated testing data. The result of this experiment supports the scaling law. We can
envisage that Euler Net may infinitely close to 100% accuracy, given unbounded times of collecting
new pieces of training data and unbounded times of repeating the process.

Algorithm 1: Random search for new training data
Input: Euler Net: EN ; The maximum size of unintended data set: MaxDataSize; The timer

for random searching: Timer; The maximum time for searching: MaxSearchTime;
The threshold to be unintended: Threshold

Output: A new data set for training: NewTrainingData
1 NewTrainingData← ∅; DataSize← 0;Timer← start timer()
2 while DataSize <MaxDataSize ∧ Timer < MaxSearchTime do
3 OneInput← randomly generate one input ()
4 Output←get output of network (EN , OneInput)
5 COutput← compute correct output (OneInput)
6 if loss(Output,COutput) > Threshold then
7 NewTrainingData← NewTrainingData ∪ {(OneInput,COutput)}
8 DataSize← DataSize + 1

9 return NewTrainingData
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Table 2: Performances of Euler Net for each valid type of syllogistic reasoning.
Valid Type Accuracy Valid Type Accuracy Valid Type Accuracy
BARBARA 100% BARBARI 50% BAROCO 66.7%
BAMALIP 50% BOCARDO 75% CALEMES 100%
CAMESTROS 50% CELARENT 100% CESARO 50%
CALEMO 50% CESARE 100% CELARONT 50%
DARAPTI 100% DARII 75% DISAMIS 75%
FESAPO 100% DATISI 75% DIMATIS 75%
FELAPTON 100% FERIO 83.3% FERISON 83.3%
CAMESTRES 100% FRESISON 83.3% FESTINO 83.3%

5 COMPOSITION TABLE CANNOT DISTINGUISH EACH VALID TYPE

5.1 NEW TESTING DATA-SET

To examine whether Euler Net covers all 24 types of valid syllogistic reasoning, we created a new
testing dataset. We group 24 valid syllogism types into 14 groups, as ‘no x are y’ has the same
meaning with ‘no y are x’‘; and some x are y’ has the same meaning with ‘some y are x’. For
each group, we created 500 test cases by extracting hypernym relations from WordNet-3.0 Miller
(1995), each test case consisting of one valid conclusion and its negation, totalling 14000 syllo-
gism reasoning tasks. In the hypernym structure, elementary particle.n.01 is a descendent of natu-
ral object.n.01 and artifact.n.01 is not a descendent of natural object.n.01. So, we create the valid
syllogistic reasoning as: all elementary particle.n.01 are natural object.n.01, no artifact.n.01 are
natural object.n.01, ∴ no elementary particle.n.01 are artifact.n.01. Its negation will be : all ele-
mentary particle.n.01 are natural object.n.01, some artifact.n.01 are natural object.n.01. ∴ some
elementary particle.n.01 are artifact.n.01

5.2 PERFORMANCE OF EULER NET ON THE NEW DATA-SET

We use the pre-processing tool of Euler Net to transform premises into coloured circles, and con-
clusions into vectors, respectively, and fed to a well-trained Euler Net. It works very well if a
task falls into a valid syllogistic structure: For 8 syllogistic structures, Euler Net reaches 100%
accuracy, namely, BARBARA, CELARENT, CESARE, DARAPTI, CALEMES, CAMESTRES,
FELAPTON, and FESAPO. Accuracies of the rest 16 types range from 50% to 83.3%. The overall
accuracy is 76%, as shown in Table 2.

5.3 COMBINATION TABLES ARE TOO COARSE

The reason for the performance drop is Euler Net’s combination table fails to distinguish each valid
type of syllogistic reasoning. The same premises can have different valid syllogistic conclusions.
For example, the combination of “V circle is inside W circle” with “W circle is inside U circle” is
the diagram that “V circle is inside U circle”. This is one valid type of syllogistic reasoning (the
Barbara type) “all V are W. all W are U. ∴ all V are U.” (each valid syllogistic reasoning has a
name; we list all 24 valid syllogistic reasoning in the supplementary material). However, from the
same premises, we can also conclude “some V are U.”, which is another valid type of syllogistic
reasoning, namely, the Barbari type. Though “Some V are U.” is weaker, it is valid, which includes
three relations between V and U as follows: “V circle is inside from U circle”, “U circle is inside from
V circle”, and “V circle is partially overlapped with U circle”). Usually, we call “all V are U” the
logical conclusion and “some V are U” its logical consistency. The combination table only partially
represents the case of logical consistency (all partially represented reasoning types are marked with
gray backgrounds in Figure 4). Additionally, the combination table may need three rows or columns
to represent one valid type of syllogistic reasoning. For example, “Some V are W. All W are U. ∴
Some V are U.” The premise “Some V are W” may have three different diagrammatic relations, as
shown in Figure 4.

Euler Net’s combination table uses four set-theoretic relations between circles to exhaust all possible
combinations. It fails to establish a one-to-one mapping between syllogistic statements and Euler
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Figure 4: The combination table establishes associations between inputs (premises) and output (con-
clusion). It is a partial mapping to valid syllogistic reasoning. Types with grey backgrounds are
partially represented. This table is also a Key-Query-Value structure.

Figure 5: Each row/column corresponds to one and only one syllogistic statement. This table cannot
separate logical conclusion from logical consistency.

diagrams. We propose a novel combination table, as shown in Figure 5, where we use the grey
background colour to represent the negation. As “Some X are not Y” can be interpreted as “it is not
true that X is part of Y”, it can be mapped to one grey-background Euler diagram “X circle is inside
Y circle”. In this way, two syllogistic premises will only correspond to one cell in the combination.

However, this improved combination table still cannot separate a logical conclusion from its logical
consistency. For example, “All X are Z” (Barbara) and “Some X are Z” (Barbari) share the same cell.
If we solve this problem using multiple labelled outputs, each output will share a probability. In the
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Figure 6: (a) Euler Net (EN) may automatically complete half circle into full circle (with the output
[0.0002, 0.9317, 0.0003, 0]). As we decrease the length of the arc to 120◦, 60◦, and 0◦, EN decreases
this value accordingly. (b) Euler Net (EN) may automatically ignore the half circle and only take one
green circle as input (with the output [0.0001, 0.0029, 0.0009, 0.0002]). As we increase the length
of the arc to 240◦, 300◦, and 360◦, EN increases this value accordingly.

case of Barbara and Barbari, each will have 50% confidence of being valid, which is the same as the
confidence of tossing a coin. So, combination tables with multiple-labelled outputs will not achieve
the rigour of logical reasoning.

6 END-TO-END NEURAL REASONING PROCESS MAY CHANGE PREMISES

We use the method of maximization activation (Samek et al., 2019) to examine whether Euler Net
will change premises. Concretely, we fix the output of the Euler Net and search two input images,
each with only one green circle, with the target that inputs shall maximize the confidence score of
the fixed output. Our experiments showed that there were input images with only one green circle
that could lead Euler Net to give syllogistic conclusions between a blue circle and a red circle. For
example, when each input image only has one green circle, Euler Net might output the red circle is
inside the blue circle ([0, 1, 0, 0]). This is an amazing ability to predict/complete a single object, but
not a desirable capability for logical reasoning, as this ability will let Euler Net change the premise
of logical reasoning.

The rigour of syllogistic reasoning requires Euler Net to determine that single-circled images are
invalid input. We created a new output vector [0, 0, 0, 0] representing invalid inputs and trained
Euler Net to be capable of classifying single-circled inputs into [0, 0, 0, 0], reaching 100% accuracy.
The improved Euler Net can classify single-circle inputs as invalid and perform syllogistic reasoning
for normal inputs. However, this does not follow that it immediately reaches 100% accuracy for any
inputs. We report our experiments to show that training data automatically creates unindented inputs
as follows.

We create new datasets: one image with a green circle and a half-red circle and the other with a
half-blue circle and a green circle. Our experiments show that sometimes Euler Net completes the
two half circles into two whole circles, and concludes [0, 1, 0, 0] the blue circle contains the red
circle, as shown in Figure 6(a). In this case, if we decrease the arc length of the two half circles, the
confidence value flagging the blue circle contains the red circle will decrease correspondingly, as
shown in images and outputs from Figure 6(a) to (b). Sometimes, it completes one green circle and
a half circle into one green circle (half circles are neglected) and concludes the inputs are invalid
[0, 0, 0, 0], as shown in Figure 6(c). In this case, if we increase the arc length of the two half circles,
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the confidence value flagging the blue circle contains the red circle will increase correspondingly,
as shown in images and outputs from Figure 6(c) to (d). To make Euler Net deterministic, we may
define that one green circle and a half circle are invalid inputs and create enough training data to
improve Euler Net. This, however, will automatically create another kind of unintended pattern: one
green circle and a (180◦ + 360◦)/2 = 270◦ partial circle. This loop will never end.

This unfortunate fact will happen to all neural classification systems: Let I1 and I2 be two typical
input types for two different classes K1 and K2, the new type of input by combining full I1-type
input and partial I2-type input (that is an input by removing part of a standard I2-type input) will be
an unintended input for the well-trained neural network – its decision will switch between K1 and
K2 in an indeterministic manner. This unfortunate fact comes along with the desirable feature of
supervised object recognition that being able to recover the whole from its parts automatically.

7 BRIDGING THE GAP

Because combination tables are coarse and because end-to-end mapping from premises to conclu-
sions, Euler Net cannot distinguish logical conclusions from their weaker version statements and
may change premises, thus can not achieve the rigour of symbolic-level reasoning. These two limi-
tations in representation and in methodology cause neural networks using the same or similar repre-
sentation and methodology not to reach the rigour of syllogistic reasoning, for example, Transform-
ers. With the self-attention mechanism, Transformers automatically learn Key-Query-Value struc-
tures that capture association relations between/among concepts within or across sentences, texts, or
patches. A Key-Query-Value structure is a special combination table: given a Key (a row of a table)
and a Query (a column of a table), the table returns a Value (a cell of the table). Thus, the best per-
formance of Visual Transformers can reach is by learning the new combination table, as illustrated
in Figure 5, with which Transformers will not achieve rigorous syllogistic reasoning. Multilayered
visual transformers may be used to reason with syllogistic relations in complex objects, e.g., spatial
relations among cars in street scenes. However, Transformers suffer from oversmoothing when their
depth increases (outputs converge to the same feature embedding) (Park & Kim, 2022; Wang et al.,
2022; Guo et al., 2023). It may be possible to avoid oversmoothing by artful reparameterization of
the weights, as suggested by an ongoing research (Dovonon et al., 2024), here, we show that in the
setting of part-whole relations, for any neural network that outputs region embeddings, if all outputs
converge to the same feature embedding (oversmoothing), these embeddings must be a single point.

Theorem 1. for any neural network that outputs region embeddings, if over-smoothing (all output
feature embeddings are the same), these output embeddings will be a point.

The proof is sketched in the supplementary material. This theorem is consistent with Wang et al.
(2022)’s findings, which applied discrete Fourier analysis to ViTs and found that ViTs are low-pass
filters – they lose all feature expressive power (only waves with the frequency of 0 can pass, which
is a static point) after ViT networks reach 12-th depth. The contraposition of Theorem 1 is that if the
output embeddings are not points, they will not over-smooth.

This suggests a method to completely avoid oversmoothing and, meanwhile, a necessary feature
for logical reasoning, namely, neural networks using non-vector region embedding, e.g., Gaussian
distribution (Athiwaratkun & Wilson, 2017), boxes (Ren et al., 2020), Beta distribution (Ren &
Leskovec, 2020), cones (Zhang et al., 2021), sphere embeddings (Dong et al., 2024).

Configurations of regions may explicitly represent explicit human-like semantic representations,
such as Euler diagrams in the vector space. By introducing the method of reasoning through explicit
model construction and inspection (Johnson-Laird & Byrne, 1991; Knauff et al., 2003; Goodwin &
Johnson-Laird, 2005; Knauff, 2009), we can separate the neural process of object recognition from
the neural reasoning process. Models can be constructed without training data, as follows: The con-
struction process initialises a simple configuration, e.g., all objects coincide, then, the configuration
will be repeatedly optimised – the next model will be revised following the principle of minimal
changes from the current one (Harman, 1986; Gärdenfors, 1988; Gädenfors, 1990), till either the
target configuration is obtained or a stop criterion is reached, as demonstrated in the Sphere Neural
Network (SphNN) (Dong et al., 2024), whose criterion can be stated as follows: for any satisfiable
Aristotelian syllogistic statements, it can correctly construct a sphere configuration as Euler diagram
at the global loss of zero (without using training data) in one epoch, as shown in Figure 7. So, at
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Figure 7: (a) given three syllogistic statements “some lawyers are presidents. no presidents are
scientists. some lawyers are not scientists.”, (b) SphNN will translate them into spatial relations
between spheres as the target, then (c) initialise three coincided spheres, then (d) fix the president
sphere, and move the scientist sphere away till they are disjoint, and (e) fix the president and the
scientist spheres, optimise the lawyer sphere till it is not part of the president sphere, while keeping
the lawyer sphere is not disjoint from the president sphere. When the global loss is zero, a model is
constructed. For the unsatisfiable conclusion, “all lawyers are scientists,” it is impossible to move
the lawyer sphere into the scientist sphere while disconnecting from the president sphere. When the
global loss stops decreasing, SphNN concludes the three statements are unsatisfiable.

the end of the first epoch, if SphNN fails to construct an Euler diagram, it will conclude the input
syllogistic statements are unsatisfiable.

8 CONCLUSIONS AND DISCUSSIONS

By taking syllogistic reasoning, a subset of logical reasoning, we show the representation limitation
of using composition tables and the method limitation of reasoning through direct mapping between
premises and conclusion – the training data may not consider all situations and may only superfi-
cially capture literal meanings of training data (Bengio et al., 2024). We show that when a cell of
the composition table exactly matches one valid syllogistic reasoning, the scaling law may work
well. By using sphere embedding and the method of reasoning by model construction and inspec-
tion, the Sphere Neural Network achieves the rigour of syllogistic reasoning. This encourages us to
re-design a new Euler Net as follows: it takes the same input as the Sphere Neural Network. Two
premises are translated into Euler diagram images in the composition shown in Figure 5. Its model
construction process will map the two images into the image in the table cell. Then, we train an in-
spection network for each valid conclusion, totalling 24 inspection networks. This new architecture
may satisfy all three criteria of achieving the rigour of syllogistic reasoning: Euler diagram images,
being translated by a fixed method from syllogistic statements, will follow the same distribution.
So, no out-of-distribution images; Premise statements will construct one model. Each valid type
will be identified by its well-trained neural network; there is no chance to change premises. Given
enough training data, this new Euler Net will approach to near 100% accuracy for all syllogistic
reasoning. However, given “all Greeks are human. all humans are mortal.”, the inspection network
that confirms “all Greeks are mortal.” will deny “some Greeks are mortal.” If we introduce more
qualifiers into syllogistic reasoning (Khemlani, 2021), such as “most”, “half”, and “quarter”, we
must train new inspection neural networks for each. If we allow quantifiers having numbers, such
as “at least three”, “exactly five”, “at most ten” or allow particular instances, such as “Socrates is
mortal”, “Aristotle is mortal”, we may need an unbounded number of inspection networks. Instead
of asking, to which degree it achieves syllogistic reasoning, we may doubt whether such a system
truly learns syllogistic reasoning.
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