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Abstract

Modern optimizers such as AdamW, equipped with momentum and adaptive learn-
ing rate, are designed to escape local minima and explore the vast parameter space.
This exploration is beneficial for finding good loss basins when training from
scratch. It is not necessarily ideal when resuming from a powerful foundation
model because it can lead to large deviations from the pre-trained initialization
and, consequently, worse robustness and generalization. At the same time, strong
regularization on all parameters can lead to under-fitting. We hypothesize that se-
lectively regularizing the parameter space is the key to fitting and retraining the pre-
trained knowledge. This paper proposes a new weight decay technique, Selective
Projection Decay (SPD), that selectively imposes a strong penalty on certain layers
while allowing others to change freely. Intuitively, SPD expands and contracts
the parameter search space for layers with consistent and inconsistent loss reduc-
tion, respectively. Experimentally, when equipped with SPD, Adam consistently
provides better in-distribution generalization and out-of-distribution robustness
performance on multiple popular vision and language benchmarks. Code available
at https://github.com/GT-RIPL/Selective-Projection-Decay.git.

1 Introduction

Modern optimizers, such as Adam [1], LARS [2], and LAMB [3] usually include momentum and
adaptive learning rates. They help optimizers avoid local minima and accelerate learning [4, 5] to
explore wider parameter spaces. However, we hypothesize that this behavior is not always beneficial
for fine-tuning from a well pre-trained foundation model, especially when fine-tuning a few layers is
already sufficient for fitting the target data [6, 7, 8, 9]. Several prior works have found that unnecessary
exploration will lead to large deviation from the initialization and worse robustness [10, 11], and
constraining the deviation can improve a model’s generalization on in-distribution (ID) data and
robustness to out-of-distribution (OOD) data [12, 13, 14]1. For example, L2-SP [13] imposes a
regularization term on the distance between the current and pre-trained models. More recently,
TPGM [10] and FTP [11] propose to learn different hard constraints for each layer. These new
works have demonstrated impressive results on benchmarks. However, they are either difficult to
tune, specialized to specific settings, or require significant computation and storage overhead. This
motivates us to ask whether a simple few-liner solution exists for this fundamental problem.

1In this paper, ID generalization and OOD robustness refer to test accuracy on the fine-tuning distribution
and robust accuracy on other shifted distributions, respectively.
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We propose re-examining the existing methods and summarizing their findings to find this solution.
Starting from the simplest: L2-SP [13]. Specifically, L2-SP adds an L2 regularization term to the
original objective function. Formally,

L(θ) = L̃(θ) + λ

2
∥θ − θ0∥22 (1)

where θ denotes the model parameters, θ0 the initialization, L̃(θ) the original objective function, and
λ the hyper-parameter for regularization strength. When θ0 = 0, L2-SP reduces to an ordinary weight
decay. This simple method should be effective enough to constrain the model, as our experiments
show it can reduce the deviation between the fine-tuned and pre-trained models (Sec. 4.1). However,
it is held back by an important design choice: the penalty is always applied to all model parameters.
Our empirical results identify that a large λ prevents every layer from deviating too much and leads
to poor fitting, while a small λ cannot provide enough regularization. This significantly limits the
otherwise effective design (Sec. 4.1). So, what is missing in this algorithm?

Recent works in robust fine-tuning and parameter-efficient fine-tuning (PEFT) have shown that
customizing constraints for each layer and selectively choosing layers for fine-tunning can improve
robustness [10, 11, 6]. Inspired by these findings, we hypothesize that selectively imposing the
regularization to different layers is the key. Therefore, we propose a simple selective version of
L2-SP weight decay: selective projection decay (SPD). This new algorithm innovates in two aspects:
a selection condition and a regularization strength ratio. The former determines when to apply
regularization to a layer, and the latter determines the strength of regularization for intuitive hyper-
parameter tuning. Specifically, we derive the selection condition from hyper-optimization [15, 16, 17]
by treating the condition as an optimizable parameter (Sec. 3.3), and the regularization strength
ratio by re-writing L2-SP as a projection operation (Sec. 3.4). Intuitively, when the condition is
met, the algorithm imposes large regularizations on selected layers. This allows the algorithm
to avoid unnecessary deviation and simultaneously fit into the fine-tuning data. We test SPD on
large-scale computer vision, and NLP benchmarks with popular foundation models and test ID and
OOD performance on various distribution and domain shifts. SPD achieves SOTA performance while
being much simpler than other competing methods. Our contributions are:

• We propose a selective projection decay, a selective variant of the popular L2-SP/weight
decay regularization methods, for robust fine-tuning of large foundation models. We show
that selectivity is important to make regularization effective.

• We conduct a detailed study of ID and OOD performance on image classification and
semantic segmentation with natural distribution and domain shifts. SPD improves ID and
OOD performance on these benchmarks.

• We show that SPD consistently improves the performance of PEFT methods (e.g. LoRA [7]
and adapters [9]) on 8 common sense reasoning language tasks with LLaMA-7B (-13B).

2 Related Works

Robust Fine-Tuning with Distance Regularization. Constraining the distance or deviation between
the fine-tuned and pre-trained models has been studied in several prior works. L2-SP [13] explicitly
adds an L2 norm penalty on the deviation and shows improved ID generalization for fine-tuning.
MARS-SP [12] studies different forms of norms as the penalty. It shows that the Matrix Row Sum
(MARS) norm can be a superior alternative to the L2 norm. These two methods impose “soft”
penalties and can be less effective [18]. Instead, LCC [18] proposes constraining the deviation
through direct projection on the parameters, which also enforces a hard constraint on the Lipschitz
continuity of the fine-tuned model. However, LCC is hard to tune because the projection radius is
not an intuitive hyper-parameter. Furthermore, using a single projection constraint for all layers is
not an ideal strategy [10]. More recently, TPGM [10] proposes to automatically learn the constraints
in LCC during fine-tuning, customizing a different projection radius for each layer through a bi-
level optimization scheme. FTP [11] further improves the computation efficiency of TPGM by
adopting hyper-optimization [15, 16, 17] in its computation. Nevertheless, FTP is still difficult to
control because hyper-optimization requires a secondary optimizer with additional optimization
hyper-parameters, and the learned regularization can be too strong with no intuitive way to adjust. In
contrast, SPD is a much simpler and more intuitive method, which can be implemented with just a
few lines of code. The superior controllability makes SPD potentially applicable to more applications.
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Parameter Efficient Fine-Tuning (PEFT). PEFT methods such as adapters [9, 8] and LoRA [7]
have been proposed to reduce training memory usage and computation complexity. Recent works
have found that PEFT methods also provide good robustness because they modify fewer parameters
and retain more knowledge of the pre-trained models [11]. Surgical fine-tuning [6] concludes that
fine-tuning a selective few layers can improve ID generalization. These new works motivate us
to re-evaluate L2-SP and weight decay, often uniformly applied to all layers. We identify that the
inferior performance of the simple methods is because of this uniformity, which exhibits a strong
trade-off between fitting and regularization. Other robust fine-tuning methods, such as LP-FT [19]
and FLYP [20], focus on feature distortion. We will review them in the Appendix 8.1.

Other Robust Fine-Tuning Methods. WiSE-FT [14] discovers that linearly interpolating between
the fine-tuned and pre-trained models after fine-tuning can improve out-of-distribution robustness.
This demonstrates that a closer distance to the pre-trained model can improve robustness. However, it
only applies to models with zero-shot capabilities. Another orthogonal line of research for robust fine-
tuning focuses on feature distortion. LP-FT [19] shows that fine-tuning with a randomly initialized
head layer distorts learned features. It proposes a simple two-stage method to train the head layer
first and then fine-tune the entire model. FLYP [20] shows that fine-tuning a foundation model
using the same objective as pre-training can better preserve the learned features. Our contribution
is an optimization method to penalize the derivation between the fine-tuned and pre-trained models
explicitly during fine-tuning, which is orthogonal to them.

3 Methods

In this section, we first provide an overview of the Selective Projection Decay (SPD) method and
then describe the intuition behind SPD with a numerical example. Finally, we provide a concrete
mathematical motivation for our method’s algorithmic design.

3.1 Selective Projection Decay (SPD)

Formulation. SPD is a regularization technique that penalizes significant deviation from the pre-
trained model. We motivate the formulation from an existing method: L2-SP [13] (Eq. 1). L2-SP
adds a distance penalty on the deviation between the fine-tuned and pre-trained models. The penalty
is applied to all model parameters at all times. A large λ prevents every layer from deviating too
much and empirically leads to poor fitting, while a small λ cannot provide enough regularization.
This significantly limits the otherwise effective design. We propose a selective version of this simple
technique: selective projection decay (SPD). We will examine L2-SP and SPD in Alg. 1 and Alg. 2.

Notations. We follow the notations in prior works [1, 21]. Let mt, vt denote the moving average of
the gradient and squared gradient, β1, β2 their hyper-parameters, and α the learning rate.

Alg. 1 shows the Adam optimizer with the L2-SP regularization in Eq. 1. The effects of the
regularization are highlighted in blue, also shown in Eq. 2. Intuitively, the regularization leads to
an interpolation-like equation2. If the product λα = 1, then θt ← θ0 and if λα = 0, then θt ← θ̃t,
where θ0 and θ̃t denote the initialization and the updated model without regularization.

θt ← θ̃t − λα(θ̃t − θ0) (2)

Alg. 2 shows the proposed SPD. There are two changes compared to Alg. 1.

• a condition,

ct = −g⊺t (θt−1 − θ0). (3)

• a new interpolation-like equation with a multiplier, rt, replacing the learning rate α,

θt ← θ̃t − λrt(θ̃t − θ0). (4)

2Mathematically, this is not the precise formulation of L2-SP as written in Eq. 1. See the Appendix 8.3 for
further discussion.
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Compared to L2-SP, SPD only imposes a penalty when the condition is met (ct < 0), and the strength
of the penalty is controlled by a hyper-parameter λ and an analytical quantity deviation ratio rt,
which we will introduce later.

Algorithm 1: Adam with L2-Regularization
Initialize m0 ← 0, v0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θL̃(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

Bias Correction
m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

Update
θ̃t ← θt−1 − αm̂t√

v̂t+ϵ

θt ← θ̃t − λα(θ̃t − θ0)

Algorithm 2: Adam with Selective L2-Reg.
Initialize m0 ← 0, v0 ← 0, t← 0,c0 ← 0
While θt not converged

t← t+ 1
gt ← ∇θL̃(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

Bias Correction
m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

Update
θ̃t ← θt−1 − αm̂t√

v̂t+ϵ

ct = −g⊺t (θt−1 − θ0)
If ct < 0 :

θt ← θ̃t − λrt(θ̃t − θ0)

3.2 Intuition Behind SPD

SPD prioritizes layers with consistent improvement. SPD adds regularization on layers that meet
the condition ct < 0 to slow their growth. The condition is determined by the sign of the inner
product between two vectors. One vector is the negative gradient direction (−gt), i.e., the descent
direction, and the other is the current progress direction (θt−1 − θ0). The inner product between
them measures the alignment between the vanilla3 update direction and the progress so far. When
the inner product is positive, the current progress direction generally points to a low loss region, and
following it will lead to consistent loss reduction. Conversely, if the inner product is negative, the
current progress direction will likely lead to a higher loss region, indicating inconsistent improvement.
In this case, SPD will impose a penalty to slow down updates for those layers. Recall that modern
optimizers use momentum to escape local minima and explore wider regions. Without this penalty,
the model will likely head towards the higher loss region to overcome it. SPD chooses to slow down
these layers and prioritizes layers with more consistent loss reduction. We will motivate this strategy
in a principled manner and validate it in our experiments.

3.3 Deriving ct from Hyper-Optimization

Previously, we explained the intuition behind SPD. Specifically, we interpreted the condition ct as a
measure of alignment and a test of update consistency. Nevertheless, there is a more profound reason
why the quantity ct is a natural choice for selective regularization. In this section, we motivate SPD
from a more mathematical perspective.

Hyper-Optimization Setup. Hyper-optimization is a technique to optimize hyper-parameters inside
an optimizer [15, 16, 17]. They treat the hyper-parameters as trainable parameters and optimize them
using another gradient-based optimizer. Let’s start from the vanilla Adam with L2-SP algorithm
(Alg. 1) and treat the regularization strength hyper-parameter λ as a trainable parameter. To update λ,
we need to obtain its gradient by taking a derivative w.r.t. λ after applying it.

∇λ :=
∂L(θt)
∂λ

=
∂L(θt)
∂θt

⊺
∂θt
∂λ

= α ∗ −g⊺t+1(θ̃t − θ0). (5)

Selection Condition ct. Intuitively, if the quantity ∇λ is negative, applying the update in gradient
descent will increase the value of λ, thus increasing the regularization strength of L2-SP. Conversely,
a positive quantity will decrease the regularization strength. Therefore, the sign(−g⊺t+1(θ̃t − θ0))
determines the change of regularization strength in the hyper-optimization of λ. Formally, we define
the condition ct as,

ct := −g⊺t+1(θt − θ0) (6)

3the direction w/o momentum.
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For memory efficiency, we use (θt − θ0) instead of (θ̃t − θ0) because both vectors point in the same
direction and won’t affect the sign of ct. This allows us to discard θ̃t. Otherwise, we need to keep an
additional copy in memory. In summary, when ct < 0, we apply a regularization for that layer as
shown in Alg. 2. This calculation is done for each layer, and the regularization is selectively applied.

Alternative Interpretation: We just interpreted the selection condition ct in SPD as a measure of
consistency between the current heading direction and the gradient direction. This perspective is
more valid when the algorithm has accumulated some updates, i.e., ∥θt− θ0∥2 ≫ 0, and less justified
when a heading has not been established at the beginning of training. To analyze this, we discuss
the behavior SPD from the perspective of stochastic optimization when ∥θt − θ0∥2 is small at the
beginning of training in the Appendix 8.1.

3.4 Deriving rt from Projection

The selection condition ct determines when to apply regularization to which layers. However, one
remaining question is the strength of regularization, which is not intuitive to tune. To overcome this,
we introduced an analytical quantity, the deviation ratio rt, in Eq. 2 and Alg. 1. In this section, we
will motivate it from the perspective of projection.

L2-SP is projection. Projection onto a norm ball is common in constrained optimization. While
L2-SP is not a constrained optimization problem, its operation bears similarity to projection. Suppose
we project a model θ̃t to an L2-norm ball with radius γ centered around its initialization θ0. The
equation of projection is the following,

θp = θ0 +
γ

max{γ, ∥θ̃t − θ0∥2}
∗ (θ̃t − θ0). (7)

Equivalently, we can rewrite the equation as,

θp = θ̃t −
(
1− γ

max{γ, ∥θ̃t − θ0∥2}

)
∗ (θ̃t − θ0). (8)

Now, we can equate this equation to the highlighted L2-SP equation in Eq. 2 and Alg. 1, we can see
that if λα =

(
1− γ

max{γ,∥θt−θ0∥2}

)
, the regularization is equivalent to projection with radius γ.

Deviation Ratio rt. This equivalence inspires us to define a deviation ratio rt:

rt =
max{0, γt − γt−1}

γt
(9)

where γt := ∥θ̃t − θ0∥2 and γt := ∥θt−1 − θ0∥2 denote the current deviation (before regularization)
and the previous deviation from the initialization θ0, respectively. We use rt in SPD (Alg. 2) to
replace the learning rate α in L2-SP (Alg. 1) to make hyper-parameter (λ) tuning more intuitive.
Specifically, suppose the hyper-parameter λ = 1, then the regularization in SPD is:

θt ← θ̃t −
max{0, γt − γt−1}

γt
(θ̃t − θ0) = θ0 +

γt−1

max{γt−1, γt}
∗ (θ̃t − θ0). (10)

Intuitively, with λ = 1, the regularization in SPD is equivalent to projection with a radius equal to the
previous deviation if the current deviation is larger. In summary:

• No regularization (λ = 0): the projection radius is ∥θ̃t − θ0∥2, meaning no projection.

• Weak regularization (1 ≥ λ > 0): the projection radius lies between ∥θ̃t − θ0∥2 and
∥θt−1 − θ0∥2. Within this range, all layers will expand or remain unchanged.

• Strong regularization (λ > 1): the projection radius lies between 0 and ∥θt−1 − θ0∥2. In
this range, it’s possible that regularized layers can contract.

We recommend starting with λ = 1 and adjusting the strength according to the specific needs.
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Figure 1: Selective Projection Decay (SPD) imposes regularization on layers selectively during
fine-tuning. It regularizes ∥Wt −W0∥2 for full fine-tuning and ∥∆Wt∥2 for PEFT fine-tuning.

3.5 Compatibility with PEFT methods.

As shown in Alg. 2, SPD retains a copy of the pre-trained model in memory. This adds additional
memory requirements to the overhead of vanilla optimizers. While this is practical for moderate-sized
models, as fine-tuning focuses more and more on large models, additional memory requirements
become undesirable. Fortunately, in extremely large models, the prevalent fine-tuning strategy is
parameter-efficient fine-tuning (PEFT), such as LoRA [7], series adapters [9], and parallel adapters [8].
SPD is naturally compatible with these methods without the additional memory. Intuitively, SPD
selectively projects the current model towards the pre-trained initialization. PEFT methods generally
initialize new parameters to add to the original model weights. To recover the behavior of SPD, we
can instead project the new parameters towards the origin, equivalent to a selective version of regular
weight decay, i.e., replacing θ0 with 0 in Alg. 2. Consequently, this does not require a memory copy
of the pre-trained model. It consistently improves PEFT fine-tuning for large language models on
common sense reasoning benchmarks in Sec. 4.4.

For example, LoRA decomposes a linear layer h = Wtx into two components, where h ∈ Rm×1,
Wt ∈ Rm×n and x ∈ Rn×1 are the output, weights, and input of this layer.

h = Wtx = (W0 +∆Wt)x ≈W0x+WupWdownx (11)

where W0 ∈ Rm×n, Wup ∈ Rm×r and Wdown ∈ Rr×n are the pre-trained model, up-projection and
down-projection matrices. If r ≪ min{m,n}, (WupWdown) is a low-rank approximation of ∆Wt.
To regularize the overall deviation ∥Wt −W0∥2, it suffices to regularize ∥WupWdown∥2 to be close
to zero. In this case, SPD acts as selective weight decay on Wup and Wdown individually.

In summary, we propose selective projection decay (SPD) to impose strong regularization on layers
during fine-tuning selectively. As shown in Fig. 1, SPD regularizes the deviation of the fine-tuned
model from the pre-trained model ∥Wt −W0∥2 for full fine-tuning and the deviation from the origin
∥∆Wt∥2 for PEFT fine-tuning.

4 Experiments

We test Selective Projection Decay on a diverse set of benchmarks, architectures, and tasks to
demonstrate its effectiveness. We will test both ID generalization and OOD robustness across various
domain and distribution shifts.

Image Classification. We first analyze the behavior of SPD on conventional image classification
datasets DomainNet [22] and ImageNet [23]. We use a CLIP ViT-Base model for both experiments as
the pre-trained initialization [24]. Specifically, DomainNet consists of images from several domains
with 345 classes. We fine-tune on one domain and test on all domains. ImageNet is a large-scale
dataset with 1000 classes. We fine-tune on ImageNet and test on ImageNet and four variants, namely
ImageNet-V2 [25], ImageNet-A [26], ImageNet-R [27], and ImageNet-S [28].

Semantic Segmentation. We further test SPD on the PASCAL-Context semantic segmentation
dataset [29]. Following prior works [30, 11], we use a Swin ViT-Tiny [31], pre-trained on ImageNet-
22K, and Segformer [32] segmentation architecture. To construct the OOD datasets, we follow
the popular natural robustness literature [33] and apply four representative image corruptions (fog,
defocus blur, Gaussian noise, and brightness) with 5 severity each. We fine-tune on the clean
segmentation data and test on clean and corrupted data.

6



Common Sense Reasoning. Moreover, we show that SPD can benefit PEFT fine-tuning on large
language models (LLMs). We use the Commonsense-170K dataset [34], which consists of training
data from eight common sense reasoning benchmarks. Following the prior work [34], we fine-tune
LLaMa-7B (-13B) [35] using LoRA [7], series adapters [9], and parallel adapters [8].

Visual Question Answering. Finally, we demonstrate SPD’s superiority on multi-modal task. We
use Google’s recently released PaliGemma [36] pretrained on a broad mixture of large-scale vision-
language tasks. We fine-tune on VQAv2 [37] and test on nine OOD datasets using LoRA [7].
For the near OODs, we evaluate on VQAv2’s six variants, namely IV-VQA [38], CV-VQA [38],
VQA-Rephrasings [39], VQA-CP v2 [40], VQA-CE [41] and AdVQA [42], which cover uni-modal,
multi-modal and adversarial distribution shifts from VQAv2. We also include TextVQA [43],
VizWiz [44] and OK-VQAv2 [45], which are constructed from different sources than VQAv2, as the
far OOD datasets.

4.1 DomainNet Experiments

Table 1: Comparisons between AdamW and Adam-SPD on DomainNet. A pre-trained CLIP ViT-
Base model is fine-tuned on each of the five domains in DomainNet and tested on all domains. Each
row represents the evaluation of a model fine-tuned on a domain. ID performance is highlighted in
blue. The last column shows the deviation of the final model from its initialization. Adam-SPD shows
much better OOD performance with significantly less Deviation (∥θt − θ0∥2) than vanilla AdamW.

Test Domains StatisticsOptimizer Fine-tune Domain Real Clipart Painting Sketch Quickdraw Infograph ID ↑ OOD Avg. ↑ Deviation↓
AdamW 84.83 57.55 53.13 44.11 8.44 33.15 84.83 39.28 1.53
L2-SP 82.33 53.35 51.82 42.04 8.21 30.84 82.33 37.25 0.70

Adam-SPD
Real

87.10 63.45 60.34 54.12 11.73 39.99 87.10 45.93 0.51
AdamW 54.50 79.88 40.97 46.87 13.14 26.31 79.88 36.36 0.83
L2-SP 55.73 79.67 41.61 47.12 11.51 26.51 79.67 36.50 0.70

Adam-SPD
Clipart

61.44 81.43 48.31 52.06 13.73 31.62 81.43 41.43 0.40
AdamW 55.62 46.64 74.90 40.56 8.55 26.18 74.90 35.51 0.81
L2-SP 54.73 45.15 73.45 38.75 4.3 24.87 73.45 33.56 0.67

Adam-SPD
Painting

60.66 52.43 77.77 47.81 6.38 30.84 77.77 36.92 0.38
AdamW 45.02 52.97 39.70 72.26 15.16 18.79 72.26 34.33 0.95
L2-SP 47.45 52.7 40.74 71.05 14.96 23.36 71.05 35.84 0.67

Adam-SPD
Sketch

52.81 57.39 46.90 74.00 15.77 24.35 74.00 39.44 0.40
AdamW 3.08 10.12 1.66 9.61 68.68 1.04 68.68 5.10 1.72
L2-SP 4.03 11.06 2.11 9.13 62.21 1.61 62.21 5.59 0.77

Adam-SPD
Quickdraw

18.72 24.36 12.77 20.61 66.81 7.06 66.81 16.70 0.58
AdamW 51.49 42.46 37.20 35.46 6.02 52.71 52.71 34.53 0.85
L2-SP 51.46 41.99 38.39 35.75 6.8 53.33 53.33 34.88 0.70

Adam-SPD
Infograph

58.29 48.25 46.00 43.38 7.88 56.36 56.36 40.76 0.36

In this section, we utilize the DomainNet benchmark to test our claims. Specifically, we will show
that Adam-SPD consistently outperforms AdamW in OOD robustness across multiple domains, and
this is due to a much smaller deviation from the pre-trained model. Furthermore, by sweeping across
a range of hyper-parameters, we show that uniform regularization, such as L2-SP fails to provide
adequate constraints, while Adam-SPD shows robust performance.

Small deviation correlates with better OOD performance. Earlier, we hypothesized that a
significant deviation can lead to worse OOD performance. Theoretically, prior works [12, 11] have
shown that large deviations from the initialization result in a large Liptschtz constant and, hence,
worse robustness. In Tab. 1, we present a comprehensive study by fine-tuning a pre-trained CLIP
model on different domains from DomainNet separately and reporting test results on all domains.
Across all domains, Adam-SPD consistently achieves higher OOD performance and shows noticeably
less deviation. This empirical result corroborates with prior works’ findings and our hypothesis.

Selective regularization exhibits stronger deviation-robustness correlation. In Tab. 2, we
compare the behavior of L2-SP and SPD using DomainNet. Specifically, we fine-tune a CLIP model
on the Clipart domain (ID domain) and report performance on Clipart and other domains (OOD
domains). In Tab. 2a, we observe that while L2-SP successfully restrains the model’s deviation from its
initialization, it does not effectively improve OOD performance. With a very large regularization, the
ID performance deteriorates as well. On the contrary, SPD effectively restrains the model’s deviation
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Table 2: Comparisons between L2-SP and Adam-SPD. ID dataset: {clipart}, OOD datasets: {real,
sketch, quickdraw, painting}. Selective regularization can effectively restrain model’s deviation
(∥Wt −W0∥2) and improve OOD robustness without significantly impacting ID robustness.

Hyper-Parameter λ 1e-1 1e-2 6e-3 3e-3 1e-3 6e-4 3e-4 1e-4 1e-5 1e-6 1e-7 0.0

Deviation 0.03 0.14 0.18 0.24 0.34 0.39 0.46 0.53 0.58 0.58 0.58 0.59

OOD 14.90 37.20 39.43 40.52 41.13 41.76 40.52 41.26 41.35 41.73 40.62 41.34

ID 27.25 69.74 73.76 76.62 78.90 79.30 79.30 79.84 79.80 79.95 79.80 79.91

(a) L2-SP hyper-parameter (λ) sweep. Stronger regularizations (larger values) decrease deviation; however, they
do not improve OOD performance and even deteriorate ID performance.

Hyper-Parameter λ 2.1 1.9 1.7 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 0.0

Deviation 0.31 0.32 0.33 0.34 0.36 0.36 0.42 0.44 0.48 0.51 0.54 0.59

OOD 45.67 45.77 45.23 45.27 44.81 43.99 44.18 42.73 41.84 42.43 41.20 41.34

ID 81.21 80.76 81.25 80.67 81.11 79.89 79.57 80.00 79.92 80.26 80.00 79.91

(b) Adam-SPD hyper-parameter (λ) sweep. Stronger regularizations (larger values) decrease deviation, simulta-
neously improving OOD performance. The ID performance is not impacted significantly.

and significantly improves OOD performance while matching the best ID performance. Under
SPD, the correlation coefficient between OOD performance and deviation is −0.96, which indicates
a strong negative correlation between the two quantities, i.e., smaller deviation and higher OOD
accuracy. This experiment shows that selective regularization is superior to uniform regularization.

Training Details. We use the vision transformer public repository for DEIT [46] to fine-tune all
methods. We use λ = 1 for all Adam-SPD results in Tab. 1. More details are in Appendix 8.4.

4.2 ImageNet Experiments

Table 3: ImageNet Fine-Tuning Result using CLIP ViT-Base. SPD outperforms more complicated
algorithms and beats L2-SP by 8.8% by selectively imposing regularization.

ID OOD Statistics
Im Im-V2 Im-Adversarial Im-Rendition Im-Sketch OOD Avg. Avg.

Zero-Shot 67.68 61.41 30.60 56.77 45.53 48.58 52.40
Vanilla FT 83.66 73.82 21.40 43.06 45.52 46.98 54.29

Linear Prob. 78.25 67.68 26.54 52.57 48.26 48.76 54.66
LP-FT 82.99 72.96 21.08 44.65 47.56 46.56 53.85
L2-SP 83.44 73.2 20.55 43.89 46.60 46.06 53.54
FTP 84.19 74.64 26.50 47.23 50.23 49.65 56.56
SAM 83.67 73.66 20.48 42.98 45.70 45.71 53.30

Adam-SPD 84.21 74.83 25.42 49.09 51.18 50.13 56.95
WISE-FT 80.94 72.47 33.18 63.33 54.20 55.58 60.82

WISE-SPD 81.70 73.29 34.37 63.69 54.55 56.48 61.52

SPD outperforms more complicated works on image classification. Following the training recipe
from the prior work [11], we fine-tune a CLIP ViT-Base model on ImageNet using Adam-SPD.
We use the same hyper-parameters as the prior work and only adjust the regularization hyper-
parameter in SPD. In Tab. 3, we observe that Adam-SPD provides the best ID performance (strong
ID generalization) and best average OOD performance (strong OOD robustness) on four ImageNet
variants. SPD achieves a level of competitive performance with just a few lines of code. SPD’s
simplicity and strong performance show that selective regularization is a fundamental improvement
for robust fine-tuning.

Training Details. For Adam-SPD, we fine-tune the model with a learning rate of 3e− 5 and λ = 1.4.
The regularization hyper-parameter is found through cross-validation, and the model with the best ID
validation accuracy is taken. More details are in Appendix 8.4.
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4.3 PASACAL Dense Semantic Segmentation

Table 4: Pascal Semantic Segmentation Results with SWIN-Tiny transformers (ImageNet21K pre-
trained). Performance is measured by mIoU↑. SPD improves OOD robustness compared to vanilla
fine-tuning without regularization and L2-SP by 36.5% and 5.8%, respectively.

ID OOD Statistics
Clean Fog Defocus Gaussian Brightness OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 66.03 56.72 38.04 23.21 58.03 44.00 0.00 0.00
Adapter [9] 71.85 69.36 50.94 37.43 68.26 56.50 8.82 28.40
BitFit [47] 70.31 67.00 46.39 30.61 66.22 52.56 6.49 19.44
L2-SP [13] 73.47 69.87 49.20 39.10 68.61 56.70 11.27 28.85

MARS-SP [12] 66.24 56.97 37.29 21.82 58.27 43.59 0.32 -0.94
LLRD [48] 72.09 68.13 46.18 37.28 66.30 54.47 9.18 23.79
TPGM [10] 72.56 69.51 50.88 38.62 68.82 56.96 9.89 29.44

FTP [11] 73.79 71.10 52.63 40.25 69.81 58.45 11.76 32.83

Adam-SPD 74.27 71.74 53.41 44.17 70.92 60.06 12.47 36.50

SPD outperforms more complicated works on semantic segmentation. The same trend is observed
on semantic segmentation in Tab. 4. Again, SPD achieves the best ID generalization and OOD
robustness across four different corruptions. This shows that proper regularization is not only
important for achieving strong ID generalization (performance on the test set) but also for strong OOD
robustness (performance on distribution shifted test sets) to domains shift (Tab. 3) and distribution
shift such as natural corruptions (Tab. 4). The model fine-tuned with SPD is consistently more robust
across different levels of corruption and severity.

Training Details. For Adam-SPD, we fine-tune the model with a learning rate of 1e− 4 and λ = 2.2.
The regularization hyper-parameter is found through cross-validation, and the model with the best ID
validation accuracy is taken. More details are in Appendix 8.4.

4.4 LLaMA PEFT Fine-Tuning Experiments

Table 5: Accuracy comparison of LLaMA-7B (-13B) with different adapters and optimizers on eight
commonsense reasoning datasets. SPD consistently improves fine-tuning performance on multiple
PEFT methods across all datasets. Note that AdamW employs uniform weight decay by default.

PEFT LLM Optimizer BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Series LLaMA7B
AdamW 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Adam-SPD (1.0) 68.3 80.4 77.4 81.6 79.7 79.4 63.5 78.4 76.1

Parallel LLaMA7B
AdamW 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3

Adam-SPD (1.0) 68.8 80.9 78.3 82.0 80.8 80.0 63.1 78.0 76.5

LoRA LLaMA7B
AdamW 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

Adam-SPD (0.7) 69.1 82.8 78.9 84.8 80.7 80.9 65.8 79.2 77.8

LoRA LLaMA13B
AdamW 72.1 83.5 80.5 80.5 83.7 82.8 68.3 82.4 80.5

Adam-SPD (1.2) 72.9 85.6 80.7 92.0 83.7 85.6 71.6 85.6 82.2

SPD is compatible and consistently improves PEFT methods. Previous experiments have shown
that SPD imposes effective regularization for full fine-tuning. Furthermore, SPD can also improve the
performance of PEFT methods. We fine-tune LLaMa-7B (-13B) models on the Commonsense-170k
dataset [34]. As shown in Tab. 5, SPD consistently improves regular fine-tuning with AdamW,
which uses a uniform weight decay for all tested PEFT methods. This demonstrates that selective
regularization benefits full fine-tuning and PEFT fine-tuning. Combined with its simplicity, SPD can
potentially improve generalization and robustness for more tasks in deep learning.

Training Details. We follow the training code released by a prior work [34]. We report the
best performance from the original paper and compare them with Adam-SPD. More details are in
Appendix 8.4.
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4.5 Visual Question Answering (VQA) Experiments

Table 6: Visual Question Answering Result using PaliGemma-3B. SPD outperforms baselines across
ID, near OOD and far OOD datasets using LoRA. Note that L2-SP reduces to Vinilla FT with AdamW
under LoRA.

ID Near OOD Far OOD

Vision Question Answer Multimodal Adversarial
VQAv2 IV-VQA CV-VQA VQA-Rephrasings VQA-CP v2 VQA-CE AdVQA TextVQA VizWiz OK-VQA

Zero-Shot 54.42 63.95 44.72 50.10 54.29 30.68 30.46 14.86 16.84 28.60
Vanilla FT(LoRA) 86.29 94.43 69.36 78.90 86.21 71.73 49.82 42.08 22.92 48.30

Linear Prob. 78.24 87.83 63.87 69.61 78.48 61.66 42.90 29.61 18.80 42.27
LP-FT(LoRA) 85.97 93.30 65.93 76.49 86.16 72.73 45.68 31.41 19.01 43.27

WiSE-FT(LoRA) 71.36 85.06 64.55 66.42 70.89 48.74 43.95 36.98 22.41 42.35
Adam-SPD(LoRA) 87.39 95.25 68.85 79.48 87.27 73.52 50.90 43.56 23.05 50.11

SPD shows competitiveness across ID, near OOD, and far OOD datasets on multimodal tasks.
Apart from uni-modal tasks, SPD outperforms other baselines on multi-modal tasks. We fine-tune
PaliGemma-3B model on VQAv2 [37] dataset with LoRA. In Tab. 6, SPD improves vanilla fine-
tuning and other robust fine-tuning methods, achieving best ID and average OOD performance w.r.t.
distribution shifts across single modalities such as vision, question, answer and combinations of
multiple modalities. We also show the performance evaluation for both near and far OOD datasets.
SPD is consistently more robust under different types and degrees of distribution shifts.

Training Details. For Adam-SPD, we fine-tune the model with a learning rate of 1e− 3 and λ = 0.5.
The regularization hyper-parameter is found through cross-validation, and the model with the best ID
validation accuracy is taken. More details are in Appendix 8.4.

5 Limitations

SPD is a selective regularization technique explicitly designed for fine-tuning. While it can be
theoretically used for pre-training, it will likely lead to poor performance because it will hinder the
training of some layers. For fine-tuning, it works well because the pre-trained foundation model is
assumed to be a good initialization, and only small changes in a selected few layers can lead to a good
local minimum. Furthermore, the level of performance gain depends on how well the foundation
models are exposed to the fine-tuning and OOD data distributions during pre-training. For example,
in the DomainNet experiment (Tab. 1), fine-tuning a CLIP ViT model on any other domain does not
have reasonably good OOD robustness on the Quickdraw domain. One can deduce that Quickdraw is
not well represented in the pre-training data of CLIP ViT.

6 Conclusion

Fine-tuning differs from training from scratch because it starts from a good initialization. Therefore,
effective regularization is critical to retaining the knowledge of the pre-trained foundation model
while fitting a model to the target distribution. We identified that 1) regularization is necessary to
keep the fine-tuned model close to its initialization and maintain robustness; 2) uniform regularization
can hurt model fitting if regularization is too strong. In this paper, we proposed selective projection
decay (SPD), a selective version of the popular weight decay/L2-SP regularization method. With an
additional few lines of code, SPD can be integrated into existing optimizers and performs selective
regularization. It demonstrates superior regularization performance on different tasks and modalities
in our experiments.
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8 Appendix

8.1 Extended Related Works

Other Robust Fine-Tuning Methods. WiSE-FT [14] discovers that linearly interpolating between
the fine-tuned and pre-trained models after fine-tuning can improve out-of-distribution robustness.
This demonstrates that a closer distance to the pre-trained model can improve robustness. However, it
only applies to models with zero-shot capabilities. Another orthogonal line of research for robust fine-
tuning focuses on feature distortion. LP-FT [19] shows that fine-tuning with a randomly initialized
head layer distorts learned features. It proposes a simple two-stage method to train the head layer
first and then fine-tune the entire model. FLYP [20] shows that fine-tuning a foundation model
using the same objective as pre-training can better preserve the learned features. Our contribution
is an optimization method to penalize the derivation between the fine-tuned and pre-trained models
explicitly during fine-tuning, which is orthogonal to them.

8.2 Interpreting ct as an Early Layer Selection Criterion

In previous sections, we interpreted the selection condition ct in SPD as a measure of consistency
between the current heading direction and the gradient direction. This perspective is more valid when
the algorithm has accumulated some updates, i.e., ∥θt − θ0∥2 ≫ 0, and less justified when a heading
has not been established at the beginning of training. This section discusses SPD from the perspective
of stochastic optimization when ∥θt − θ0∥2 is small at the beginning of training.

Inner product of gradients captures gradient variance. Modern deep learning models are trained
by stochastic optimization techniques, e.g., mini-batch SGD, leading to stochasticity due to sampling.
We first show that the inner product of gradients captures the variance of a sampling process. We
invoke a common assumption in the convergence analysis of stochastic gradient descent [1, 49, 21].
Assuming that the stochastic gradient gt is a stationary process G over a short period, with a small
step size, successive gradients, e.g., gt, gt+1, can be seen as samples drawn from the same distribution
G. Given two successive draws g1 and g2, we can approximate the first and second moment of G.

E
[
∥g∥2

]
≈ 1

2
(∥g1∥2 + ∥g2∥2), ∥E [g] ∥2 ≈ ∥1

2
(g1 + g2)∥2. (12)

Define the variation of gradients as V ar(g) := E
[
∥g − ḡ∥2

]
[50, 51], where ḡ := E[g],we can show

that

g⊺1g2 = 2

(
1

4
∥g1∥2 +

1

4
∥g2∥2 +

1

2
g⊺1g2

)
− 1

2

(
∥g1∥2 + ∥g2∥2

)
(13)

≈ ∥ḡ∥2 −
(
E
[
∥g∥2

]
− ∥E [g] ∥2

)
= ∥ḡ∥2 − V ar(g)

Remarks. Eq. 13 shows that the inner product of two consecutive stochastic gradients, under certain
assumptions, can be seen as the estimator for the difference between the gradient norm and the
variance of gradients. When the inner product is negative, this indicates that the variance outweighs
the magnitude of the gradient.

SPD prioritizes layers with higher expected gain. At the beginning of training, the heading
direction (θ1 − θ0) is dominated by early gradients. For example, at t = 2 the direction of (θ1 − θ0)
is the same as −g1 in Adam. The sign of −g⊺2 (θ1 − θ0) is the same as the sign of g⊺2g1. This shows
that the condition ct captures the difference between gradient norm and gradient variance. With this
interpretation, we show that ct reflects expected performance gain in stochastic optimization. To
see it, we can invoke the descent lemma for SGD. For an L-smooth function f(W ) [50], the descent
lemma for SGD states that,

Lemma 1. E[f(θk+1)]− f(θk)︸ ︷︷ ︸
Expected Performance Gain

≤ −ηk(1−
ηkL

2
)︸ ︷︷ ︸

≤0

∥ḡk∥2 +
η2kL

2︸︷︷︸
≥0

V ar(gk),

where ηk ≤ 2
L is the learning rate.

Remarks. The term on the left hand side E[f(θk+1)]− f(θk) is the expected performance improve-
ment for each step. Ideally, this should be a negative quantity. On the right-hand side, we observe
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that improvement depends on two quantities ∥ḡk∥2 and V ar(gk). To lower the upper bound, we want
a large ∥ḡk∥2 and a small V ar(gk). According to the decoupling Eq. 13, the inner product between
successive gradients approximates this proportionality. Consequently, a negative ct likely indicates
a higher upper bound on the expected gain, meaning a smaller improvement. Therefore, SPD will
prioritize layers with potentially larger expected gains.

8.3 Approximation in L2-SP

Algorithm 3: (Ours) Adam with L2-
Regularization
Initialize m0 ← 0, v0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θL̃(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

Bias Correction
m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

Update
θ̃t ← θt−1 − αm̂t√

v̂t+ϵ

θt ← θ̃t − λα(θ̃t − θ0)

Algorithm 4: (Original) Adam with L2-
Regularization
Initialize m0 ← 0, v0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θL̃(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

Bias Correction
m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

Update
θ̃t ← θt−1 − αm̂t√

v̂t+ϵ

θt ← θ̃t − λα(θt−1 − θ0)

The Adam with L2-SP Regularization algorithm in the main paper is not the precise mathematical
implementation of the original formulation written in Eq. 1. To see the difference, we compare ours
and the accurate implementation here in Alg. 3 and Alg. 4. In our implementation, we replaced
θt−1 − θ0 (Alg. 4) with θ̃t − θ0 (Alg. 3). This is done intentionally to improve memory efficiency
when transitioning to the selective version (see Adam-SPD in Sec. 3.3). We can make the following
substitution to see how this modification changes computation. Starting from our implementation,

θt = θ̃t − λα(θ̃t − θ0) (14)

= θ̃t − λα(θt−1 −
αm̂t√
v̂t + ϵ

− θ0)

= θ̃t − λα(θt−1 − θ0) + λα2 m̂t√
v̂t + ϵ

.

We can further combine the λα2 m̂t√
v̂t+ϵ

into the update of θ̃t. The new θ̃t is

θ̃t = θt−1 −
αm̂t√
v̂t + ϵ

+ λα2 m̂t√
v̂t + ϵ

(15)

= θt−1 − (1− λα)
αm̂t√
v̂t + ϵ

Therefore, our implementation of L2-SP adds a minor additional dampening of the learning rate α by
a factor of (1− λα).

What if we followed the original implementation of L2-SP as in Alg. 4? This would change the
condition ct in the main paper (Eq. 3) to

ct = −g⊺t (θt−2 − θ0). (16)

At the current time step t, we only have access to the parameters θt−1 from the previous step t−1. To
calculate the ct in Eq. 16, we would have to store the weights from two steps back in memory. This
increases memory consumption of the algorithm. As we have shown in Eq. 15, our implementation
only differs from the original implementation slightly but reduces memory consumption. Therefore,
we decided to make this approximation.
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8.4 Training Details

DomainNet. We use the vision transformer public repository for DEIT [46] to fine-tune all methods.
Standard augmentations are used for all: weight-decay (0.1), drop-path (0.2) [52], label-smoothing
(0.1) [53], Mixup (0.8) [54] and Cutmix (1.0) [55]. The learning rate is 2e − 5 and trained for 60
epochs for Tab. 1 and 30 epochs for Tab. 2. We use λ = 1 for all Adam-SPD results in Tab. 1. We
use 1 A40 GPU for each experiment.

ImageNet. The same procedure as the DomainNet experiment is used for training the ImageNet
models. Standard augmentations are used for all: weight-decay (0.1), drop-path (0.2) [52], label-
smoothing (0.1) [53], Mixup (0.8) [54] and Cutmix (1.0) [55]. We fine-tune all methods for 30
epochs and use the best hyper-parameters reported by the prior work [11]. For Adam-SPD, we
fine-tune the model with a learning rate of 3e− 5 and λ = 1.4. The regularization hyper-parameter
is found through cross-validation, and the model with the best ID validation accuracy is taken. We
use 2 A40 GPUs for each experiment.

Pascal Segmentation. We follow the training code released by a prior work [30]. We fine-tune all
methods for 60 epochs and use the best hyper-parameters reported by the prior work. For Adam-SPD,
we fine-tune the model with a learning rate of 1e−4 and λ = 2.2. The regularization hyper-parameter
is found through cross-validation, and the model with the best ID validation accuracy is taken. We
use 4 2080Ti GPUs for each experiment.

Commonsense-170K. We follow the training code released by a prior work [34]. We report the
best performance from the original paper and compare them with Adam-SPD. For Adam-SPD, we
fine-tune the model with an identical hyper-parameter setup as the released code and only adjust the
regularization strength λ. The regularization hyper-parameter is found through cross-validation, and
the model with the best ID validation loss is taken. We use 1 A40 GPU for each experiment.

Visual Question Answering. We follow the LAVIS [56] public repository to fine-tune all methods.
We use the PaliGemma [36] model pretrained with 224∗224 input images and 128 token input/output
text sequences and fine-tune with the precision of bfloat16. Standard hyper-parameters are used for all:
learning rate (1e− 3), weight-decay (1e− 4), optimizer (AdamW), scheduler (Linear Warmup With
Cosine Annealing), warm-up learning rate (1e− 4), minimum learning rate (1e− 4), accumulation
steps (2), beam size (5). The model is trained for 10 epochs with a batch size of 16 for Tab. 6. For
LoRA [7], we limit our study to only adapting the attention weights and freeze the MLP modules
for parameter-efficiency, specifically apply LoRA to Wq,Wk,Wv,Wo with r = 8 in Tab. 6. We use
λ = 0.5 for SPD. The regularization hyper-parameter is found through cross-validation, and the
model with the best ID validation accuracy is taken. We use 8 A40 GPU for each experiment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The work does not present an obvious negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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