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Abstract

Generally, the decoder-only large language001
models (LLMs) are adapted to context-aware002
neural machine translation (NMT) in a con-003
catenating way, where LLMs take the con-004
catenation of the source sentence (i.e., intra-005
sentence context) and the inter-sentence con-006
text as the input, and then to generate the tar-007
get tokens sequentially. This adaptation strat-008
egy, i.e., concatenation mode, considers intra-009
sentence and inter-sentence contexts with the010
same priority, despite an apparent difference011
between the two kinds of contexts. In this012
paper, we propose an alternative adaptation013
approach, named Decoding-enhanced Multi-014
phase Prompt Tuning (DeMPT), to make015
LLMs discriminately model and utilize the016
inter- and intra-sentence context and more ef-017
fectively adapt LLMs to context-aware NMT.018
First, DeMPT divides the context-aware NMT019
process into three separate phases. During each020
phase, different continuous prompts are intro-021
duced to make LLMs discriminately model var-022
ious information. Second, DeMPT employs023
a heuristic way to further discriminately en-024
hance the utilization of the source-side inter-025
and intra-sentence information at the final de-026
coding phase. Experiments show that our ap-027
proach significantly outperforms the concate-028
nation method, and further improves the per-029
formance of LLMs in discourse modeling. We030
will release our code and datasets on GitHub.031

1 Introduction032

Context-aware neural machine translation (NMT)033

goes beyond sentence-level NMT by incorporating034

inter-sentence context at the document level (Zhang035

et al., 2018; Miculicich et al., 2018; Voita et al.,036

2018, 2019b,a; Bao et al., 2021; Sun et al., 2022),037

aiming to address discourse-related challenges such038

as zero pronoun translation (Wang et al., 2019), lex-039

ical translation consistency (Lyu et al., 2021, 2022),040

and discourse structure (Hu and Wan, 2023). A re-041

cent paradigm shift has been witnessed in context-042

aware NMT with the emergence of the decoder- 043

only large language models (LLMs) (BigScience, 044

2022; Google, 2022; MetaAI, 2023b,a; OpenAI, 045

2023). These generative language models, trained 046

on extensive public data, have gained significant 047

attention in the natural language processing (NLP) 048

community. In adapting LLMs to context-aware 049

NMT, a common strategy involves concatenating 050

multiple source sentences as a prefix and generating 051

translations token-by-token, relying on the prefix 052

and previously predicted target tokens, as shown 053

in Figure 1 (a). However, a critical observation 054

of this strategy reveals a potential drawback – the 055

equal prioritization of the inter- and intra-sentence 056

contexts during token generation. Importantly, the 057

intra-sentence context inherently contains richer 058

parallel semantic information with the target sen- 059

tence and should be given a higher priority than the 060

inter-sentence context. Consequently, we propose 061

that separately modeling and utilizing the inter- and 062

intra-sentence contexts should explicitly inform 063

LLMs of the document-level context and the cur- 064

rent sentence itself, thus being able to prevent the 065

misallocation of attention weights to source-side to- 066

kens (Bao et al., 2021; Li et al., 2023). Inspired by 067

the success of prompt tuning (Li and Liang, 2021; 068

Liu et al., 2022; Tan et al., 2022), our alternative 069

approach, named Decoding-Enhanced Multi-phase 070

Prompt Tuning (DeMPT), aims to enhance LLMs’ 071

adaptability to context-aware NMT, as shown in 072

Figure 1 (b). 073

Specifically, we divide the whole procedure 074

of context-aware NMT into three phases: inter- 075

sentence context encoding, intra-sentence context 076

encoding, and decoding. Following Li and Liang 077

(2021); Liu et al. (2022), we sequentially and dif- 078

ferentially adapt LLMs for each phase, utilizing 079

phase-specific trainable prompts. This phased tun- 080

ing method enables LLMs to independently capture 081

and model both inter- and intra-sentence contexts, 082

facilitating a better understanding of their differ- 083
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Figure 1: Comparison of different strategies for adapting LLMs to context-aware NMT. The concatenation strategy
(left) treats inter-sentence and intra-sentence (referred to as the "source sentence" context in the figure) with equal
importance. In contrast, our approach (right) divides context-aware NMT into three distinct phases, enabling LLMs
to selectively model and leverage both inter- and intra-sentence contexts.

ences. Importantly, our approach only divides the084

original input into three parts without significantly085

increasing computational load. As a result, there086

is no substantial decrease in inference speed com-087

pared to the concatenating method, as detailed in088

Section 4.3.089

Furthermore, during the decoding phase, we pro-090

pose a heuristic method to emphasize the differ-091

ence between inter- and intra-sentence contexts,092

and avoid long-distance issue when utilizing inter-093

sentence context. Specifically, at each decoding094

step, we use LLMs to predict the next token three095

times. The decoding states used for each predic-096

tion directly concatenate with the representations097

of two contexts in a discriminative manner. Fi-098

nally, we combine three probability distributions099

to search for the next token as the output from the100

target vocabulary. This method enables LLMs to101

learn not only to properly capture inter-sentence102

context in addressing discourse-related issues but103

also to recognize a difference between inter- and104

intra-sentence contexts, allowing for effective uti-105

lization of both types of contexts.106

In summary, our contributions can be outlined107

as follows:108

• We propose a novel multi-phase prompt tun-109

ing approach to divide context-aware NMT110

into three phases, making LLMs aware of the111

distinction between inter- and intra-sentence112

contexts.113

• We introduce a enhanced decoding method114

that discriminately utilize both context types.115

This allows LLMs not only properly capture116

inter-sentence context in addressing discourse-117

related issues, but also be aware of the impor-118

tance of the intra-sentence context.119

• We validate our approach using llama-2-7b 120

and bloomz-7b1-mt as foundation models, 121

demonstrating its effectiveness across five 122

context-aware translation directions. Exten- 123

sive analyses further highlight the substantial 124

enhancement in LLMs’ ability for context- 125

aware NMT. 126

2 Methodology 127

In this section, we describe our decoding-enhanced 128

multi-phase approach for adapting LLMs to 129

context-aware NMT in details. Specifically, we 130

break down the whole procedure of context-aware 131

NMT into three phases (Section 2.1), i.e., inter- 132

sentence context encoding, intra-sentence encod- 133

ing, and decoding. Additionally, we discrimina- 134

tively enhance the utilization of inter- and intra- 135

sentence contexts during the decoding phase (Sec- 136

tion 2.2). Finally, we describe our phase-aware 137

prompts and training objective in Section 2.3 and 138

Section 2.4, respectively. 139

For a given document pair (S, T ) with K sen- 140

tences, we will construct K training instances. 141

Each training instance is denoted as a tuple (C, S, T ). 142

Here S = x||S|
1 represents k-th current source sen- 143

tence with |S| tokens, i.e., intra-sentence context, 144

and T = y||T |
1 is the k-th target sentence with |T | 145

tokens. C denotes the z previous sentences of S, 146

i.e., the inter-sentence context of S. We denote the 147

hidden size of the LLM as d, and L as the number 148

of transformer layers within it. 149

2.1 Multi-phase Encoding and Decoding 150

We implement our approach based on deep prompt 151

tuning (Li and Liang, 2021; Liu et al., 2022). Next, 152

we use training instance (C, S, T ) as an example to 153

describe the multi-phase approach. Figure 2 illus- 154

trates the procedure of multi-phase prompt tuning. 155
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Figure 2: Illustration of pipeline of multi-phase prompt
tuning LLM for context-aware NMT. Red lines illustrate
the procedure of enhanced decoding phase.

Inter-sentence Context Encoding Phase. In the156

inter-sentence context encoding phase (Phase 1 in157

Figure 2), we first concatenate all sentences in C158

into a sequence, and then utilize the LLM to encode159

C by incorporating the trainable prompt:160

H1:L
C = LLM(C,PC), (1)161

where H1:L
C ∈ RL×|C|×d is the sequence of activa-162

tions for C, PC ∈ RL×2q×d is the current-phase train-163

able prompt, and q is a hyper-parameter for the164

length of the prompt. PC aims to adapt the LLM for165

better modeling the inter-sentence context. Same166

as basic deep prompting, at the l-th transformer167

block, we inject corresponding prompt in PC into168

encoding procedure of C as follows:169

Hl
C = FFN (Multi-Attn (KC ,VC ,QC)) , (2)170

171
QC = Hl−1

C , (3)172
173

KC = [PC [l, : q, :];H
l−1
C ], (4)174

175
VC = [PC [l, q :, :];Hl−1

C ], (5)176

where Hl
C ∈ R|C|×d is the output of the l-th trans-177

former block. FFN and Multi-Attn are the feed-178

forward network sublayer and multi-head self-179

attention sublayer, respectively.1 [·; ·] and [· : ·]180

are the concatenating and slicing operations, re-181

spectively.182

Intra-sentence Context Encoding Phase. In the183

intra-sentence context encoding phase (Phase 2 in184

Figure 2), the LLM encodes the intra-sentence con-185

text S by conditioning on the past activations of the186

inter-sentence context H1:L
C and trainable prompt:187

H1:L
S = LLM(S,H1:L

C ,PS), (6)188

where H1:L
S ∈ RL×|S|×d is the sequence of activa-189

tions for S, and PS ∈ RL×2q×d denotes current-190

phase prompt. Similarly, at the l-th transformer191

1For simplicity, we omit the normalization and residual
operations in this paper.

block, we incorporate HC and PS into the encoding 192

procedure of S as follows: 193

Hl
S = FFN (Multi-Attn (KS ,VS ,QS)) , (7) 194

195
QS = Hl−1

S , (8) 196
197

KS = [PS [l, : q, :];H
l−1
C ;Hl−1

S ], (9) 198
199

VS = [PS [l, q :, :];Hl−1
C ;Hl−1

S ], (10) 200

where Hl
S is output of the l-th transformer block, 201

which fuses Hl−1
C , the l − 1 layer output of the 202

inter-sentence context encoding. 203

Decoding Phase. In the decoding phase (Phase 204

3 in Figure 2), given the past activations HS and 205

trainable prompt, we call the LLM again to gener- 206

ate the hidden state for predicting the probability 207

of the target sentence: 208

H1:L
T = LLM(T,H1:L

S ,PT ), (11) 209

where H1:L
T ∈ RL×|T |×d is the sequence of activa- 210

tions for T , and PT ∈ RL×2q×d is current-phase 211

prompt. Similarly, we inject S and PT into the 212

decoding procedure of T as follows: 213

Hl
T = FFN (Multi-Attn (KT ,VT ,QT )) , (12) 214

215
QT = Hl−1

T , (13) 216
217

KT = [PT [l, : q, :];H
l−1
S ;Hl−1

T ], (14) 218
219

VT = [PT [l, q :, :];Hl−1
S ;Hl−1

T ], (15) 220

where Hl
T ∈ R|T |×d is the decoding state of the l- 221

th transformer block. Finally, we refer the t-th 222

decoding state as hLt (i.e., HL
T = hL

t |
|T |+1
t=1 ) which is 223

used to predict the next token yt: 224

p (yt|S, C, y<t) = Softmax
(
hL
t W

)
, (16) 225

where W ∈ Rd×|V| is parameter of LLM-Head layer 226

and |V| is the vocabulary size. 227

2.2 Enhanced Decoding Phase 228

As shown in Figure 2, both the inter-sentence con- 229

text representation H1:L
C and the intra-sentence con- 230

text representation H1:L
S are used as keys and val- 231

ues when generating hidden states of next phase. 232

Meanwhile, hidden states of decoding phase, i.e., 233

hL
i |

|T |
i=1 are used to predict next tokens. On the one 234

hand, while the decoding hidden states incorpo- 235

rate both inter- and intra-sentence contexts, there 236

is no explicit differentiation between the two when 237

predicting next tokens. On the other hand, the inter- 238

sentence context representation H1:L
C and decoding 239

hidden states H1:L
T are mediated by hidden states 240
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Figure 3: Illustration of the procedure of our proposed
decoding-enhanced approach at the t-th decoding step
of the decoding phase.

of phases 2, i.e., H1:L
S . This may result in a long-241

distance issue such that the inter-sentence context242

are not properly aligned by target-side tokens.243

Therefore, to address above two issues, we pro-244

pose an enhanced decoding phase with an aim to245

more effectively utilize both the inter- and intra-246

sentence contexts. Inspired by Kuang et al. (2018),247

we move both the two types of inter- and intra-248

sentence contexts closer to target words to achieve249

a tight interaction between them. Specifically, we250

concatenate the decoding states with the two types251

of representations to predict the next target words.252

As shown in Figure 3, the enhanced next word pre-253

diction pe is a combination of three distributions254

with different inputs:255

pe (yt|S, C, y<t) =λ1 × p̂ (yt|S, C, y<t)

+ λ2 × p̄ (yt|S, C, y<t)

+ (1− λ1 − λ2)× p (yt|S, C, y<t) ,
(17)

256

where λ1 and λ2 control the contribution of p̂ (yt|·)257

and p̄ (yt|·), respectively, which can be further com-258

puted as:259

p̂ (yt|S, C, y<t) = Softmax
(
ĥL
t W

)
, (18)260

261
p̄ (yt|S, C, y<t) = Softmax

(
h̄L
t W

)
, (19)262

263
ĥL
t = FFN

(
[H̃L

C ; H̃
L
S ;h

L
t ]
)
, (20)264

265
h̄L
t = FFN

(
[H̃L

S ;h
L
t ]
)
, (21)266

where W is same as in Eq. 16, H̃L
S ∈ Rd and H̃L

C ∈ Rd267

are the averaged HL
S and HL

C at token level, respec-268

tively. To further identify the effect of inter- and269

intra-sentence context in this strategy, we provide 270

an ablation study about p̂ and p̄ in Appendix E. 271

2.3 Phase-aware Prompts 272

We emphasize the LLM needs to play various 273

roles across three phases, and maintaining similar 274

prompts across different phases may not be rea- 275

sonable. Thus, we empower LLM to distinguish 276

different phases by introducing a type embedding 277

and a transfer layer2 for these prompts: 278

Pr = (tanh (OrW1))W2 + TypeEmb (r) , (22) 279

where Or ∈ RL×2q×d is randomly initialized prompt, 280

W1,W2 ∈ Rd×d are trainable parameters, and 281

TypeEmb(·) is type embeddings layer of prompts. 282

r ∈ {C, S, T} represents either phase 1, phase 2, or 283

phase 3. 284

2.4 Training Objective 285

We employ the cross-entropy loss as the training 286

objective of our model. Given a training instance 287

(C, S, T ), its training loss is defined as: 288

L (C, S, T ) = − 1

|T |

|T |∑
t=1

log pe (yt|S, C, y<t) . (23) 289

Notably, the parameters in LLM, including W in 290

Eq. 16, 18, 19, are frozen during training. 291

3 Experimentation 292

We build our approach upon two open- 293

source LLMs, namely, llama-2-7b3 and 294

bloomz-7b1-mt4. We verify the effectiveness of 295

our proposed approach on five translation tasks, 296

including {Chinese (ZH), French (FR), German 297

(DE), Spanish (ES), Russian (RU)}→English 298

(EN). 299

3.1 Experimental Settings 300

Datasets and Preprocessing. The corpus 301

of all translation tasks is extracted from 302

News-Commentary-v18. See Appendix A 303

for splitting and statistics of the training set, valid 304

2Different from the multi-layer perceptron (MLPs) used
for reparameterization, our transfer layer is shared-parameter
for all prompts. Thus, there are fewer trainable parameters
during the training of our model. We compare the number of
trainable parameters among different tuning methods in Table
3 and analyze the effect of the transfer layer in Appendix E.

3https://huggingface.co/meta-llama/
Llama-2-7b-hf

4https://huggingface.co/bigscience/
bloomz-7b1-mt
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Model
ZH→EN FR→EN DE→EN ES→EN RU→EN Average

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET
⊘Trans. 29.86 0.8406 38.53 0.8545 41.44 0.8682 48.74 0.8783 32.25 0.8169 38.16 0.8517
⊙G-Trans. 30.99 0.8411 38.96 0.8524 42.46 0.8658 49.68 0.8794 33.59 0.8201 39.14 0.8518

+ mBART 32.99 0.8597 42.02 0.8764 44.81 0.8836 52.07 0.8911 36.83 0.8461 41.74 0.8714

llama-2-7b as foundation model
⊘MT-LoRA 27.43 0.8511 38.18 0.8647 40.96 0.8712 47.52 0.8733 33.00 0.8311 37.42 0.8583
⊘MT-PT 31.32 0.8565 41.92 0.8675 43.56 0.8752 51.32 0.8819 35.46 0.8333 40.72 0.8629
⊙CMT-PT 31.13 0.8387 42.01 0.8699 43.11 0.8762 51.66 0.8823 35.91 0.8396 40.76 0.8613
⊙MPT *33.21 0.8645 †43.11 0.8744 *43.88 0.8824 †52.01 0.8913 †36.49 0.8456 41.74 0.8716
⊙DeMPT *33.89 0.8658 †43.71 0.8816 *44.69 0.8899 †53.10 0.8979 †36.55 0.8438 42.39 0.8758

bloomz-7b1-mt as foundation model
⊘MT-LoRA 25.79 0.8466 35.67 0.8601 35.17 0.8522 46.32 0.8644 28.01 0.8012 34.21 0.8449
⊘MT-PT 30.99 0.8520 40.49 0.8661 37.76 0.8579 50.68 0.8823 30.27 0.8106 38.04 0.8539
⊙CMT-PT 30.82 0.8504 40.31 0.8639 38.01 0.8601 50.26 0.8832 29.80 0.8108 37.84 0.8537
⊙MPT *31.81 0.8601 *41.11 0.8766 †38.99 0.8669 *51.33 0.8910 *30.99 0.8201 38.85 0.8629
⊙DeMPT *32.46 0.8649 *41.92 0.8790 †40.06 0.8703 *52.25 0.8990 *31.79 0.8253 39.70 0.8677

Table 1: Results of different systems on sacreBLEU and COMET metrics. DeMPT/MPT is our proposed Multi-
phase Prompt Tuning approach with/without Decoding-enhanced strategy (in Sec. 2.2). Scores with bold indicate
the best performance. * (or †) indicates the gains are statistically significant over MT-PT (or CMT-PT) with
p<0.01 (Koehn, 2004). ⊘ and ⊙ indicate the model is context-agnostic and context-aware, respectively.

Model ZH→ FR→ DE→ ES→ RU→ Avg.
⊘Trans. 47.63 54.41 58.29 62.52 48.79 54.33
⊙G-Trans. 48.99 55.31 59.23 63.99 50.09 55.52

+ mBART 50.98 57.88 61.97 66.21 54.33 58.27

llama-2-7b as foundation model
⊘MT-LoRA 44.83 54.52 57.72 62.18 49.06 53.66
⊘MT-PT 49.49 57.87 60.89 65.02 52.59 57.17
⊙CMT-PT 49.53 58.27 61.23 65.89 53.34 57.65
⊙MPT 51.56 59.56 62.15 67.14 54.18 58.92
⊙DeMPT 52.68 60.33 63.11 67.95 54.94 59.80

bloomz-7b1-mt as foundation model
⊘MT-LoRA 43.23 51.82 51.12 61.77 43.29 50.25
⊘MT-PT 49.48 56.81 55.40 64.71 46.14 54.51
⊙CMT-PT 49.61 57.05 55.81 65.12 46.09 54.74
⊙MPT 50.22 57.93 56.69 66.25 47.29 55.68
⊙DeMPT 50.62 58.30 57.34 67.12 48.00 56.28

Table 2: Results of different systems on BlonDe metric.

set, and test set. We use the tokenizer of foundation305

models to process the input data and no any other306

preprocessing is performed.307

Baselines. In addition to conventional context-308

agnostic (Trans.) and context-aware NMT models309

(such as G-Trans. (Bao et al., 2021) with or with-310

out pre-training), our primary comparison focuses311

on the following three LLM-based alternatives: 1)312

MT-LoRA: It is a tuned LLM adapted to NMT313

task via the tuning method of Low-Rank Adap-314

tation (Hu et al., 2022), which makes large-scale315

pre-training models adapt to a new task by inject- 316

ing a trainable rank decomposition matrice into 317

each layer of the Transformer architecture; 2) MT- 318

PT: It is a tuned LLM adapted to NMT task via 319

the deep prompt tuning with MLPs reparameteriza- 320

tion,5 which only tunes continuous prompts with a 321

frozen language model; 3) CMT-PT: It indiscrim- 322

inately utilizes inter- and intra-sentence context 323

via the concatenation strategy, as depicted in Fig- 324

ure 1 (a). Similar to MT-PT, it is also a tuned LLM 325

via the deep prompt tuning with MLPs reparame- 326

terization. Among them, MT-LoRA and MT-PT 327

are context-agnostic systems while CMT-PT is a 328

context-aware system. For a fair comparison, we 329

ensure that all context-aware models, including 330

CMT-PT, MPT, and DeMPT, incorporate identical 331

inter-sentence context. We provide more discus- 332

sion about effect of various inter-sentence contexts 333

in Appendix F and G. 334

Model Setting and Training. For the Trans- 335

former model, we implement it upon Fairseq (Ott 336

et al., 2019). For MT-LoRA models, we set the 337

rank of trainable matrices as 16 which performs 338

best in our preliminary experiment. For all MT-PT 339

models, CMT-PT models, and our models, we set 340

the prompt length q as 64. For the incorporation 341

of inter-sentence context in CMT-PT models and 342

5We attempt to remove reparameterization but experience
a significant decline in performance.
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our models, we consider a dynamic z, in which the343

total tokens are no more than 256. In enhanced344

decoding, we consider the three next word predic-345

tions to be equally important by setting both λ1 and346

λ2 to 1/3. More details of training are provided in347

Appendix B.348

Evaluation. We use sacreBLEU (accuracy-349

related metric)6 (Post, 2018), COMET (semantics-350

related metric) with the wmt22-comet-da model7351

(Rei et al., 2020), and BlonDe (discourse-related352

metric) (Jiang et al., 2022) as the evaluation met-353

rics.354

3.2 Experimental Results355

The main experimental results are presented in Ta-356

bles 1 and 2. Additionally, a comparison of the357

number of trainable parameters is presented in358

Table 3 across different tuning methods. When359

examining llama-2-7b and focusing on context-360

agnostic models, we find that the Transformer361

models (Trans.) generally outperform LLMs with362

LoRA tuning (MT-LoRA) in most translation di-363

rections based on BLEU score. However, the MT-364

LoRA models surpass Trans. in COMET, indicat-365

ing that translations from LLMs may better align366

with human preferences. Additionally, the MT-PT367

models exhibit superior performance compared to368

the MT-LoRA models across BLEU, COMET, and369

BlonDe metrics. This improvement could be at-370

tributed to the more trainable parameters in the371

MT-PT models (13.87% vs. 0.12%).372

Importantly, when comparing MT-PT and CMT-373

PT, we observe that CMT-PT which indiscrimi-374

nately leverages the inter- and intra-sentence con-375

text with the concatenation way, even hurts perfor-376

mance for certain translation tasks. For example,377

the CMT-PT models, despite excelling in discourse-378

related BlonDe scores (averaging 57.65 vs. 57.17),379

underperforms in BLEU and COMET compared380

to the MT-PT models. In contrast, our context-381

aware MPT and DeMPT models outperform all382

LLM baselines across all translation tasks in terms383

of three metric. For example, our MPT models384

achieve an average gain of 0.98/0.0103/1.27 in385

BLEU/COMET/BlonDe compared to the CMT-386

PT models. Furthermore, our decoding-enhance387

strategy further enhances the capacity of LLMs,388

with DeMPT outperforming MPT with an average389

6Signature: nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.3.1

7https://github.com/Unbabel/COMET

MT-LoRA MT-PT/CMT-PT MPT/DeMPT
Trainable Para. 0.12% 13.87% 3.11%

Table 3: Proportion of trainable parameters against total
parameters for different tuning methods.

gain of 0.65/0.0042/0.88. Compared to G-Trans. 390

(+mBART(Liu et al., 2020)), DeMPT also demon- 391

strates either superior or comparable performance 392

across all language pairs. 393

Finally, we observe a similar performance trend 394

among MT models built upon bloomz-7b1-mt. It 395

also indicates that models built upon llama-2-7b 396

outperform those utilizing bloomz-7b1-mt, sug- 397

gesting that llama-2-7b serves as a more robust 398

foundation model for translation tasks. 399

4 Discussion 400

In this section, we use bloomz-7b1-mt as the foun- 401

dation model to discuss and analyze our approach.8 402

See Appendix C∼H for further discussions. 403

4.1 Effect of Length of Inter-sentence Context 404

For efficient training, we define the inter-sentence 405

context in Section 2 as previous sentences with a 406

total tokens not exceeding 256. We are curious 407

about the potential impact of inter-sentence length 408

on the performance of our approach. Consequently, 409

we extend the inter-sentence context length from 410

256 to 1024 and assess the performance of our 411

approach in the ZH→EN task. 412

Figure 4 shows the performance trend of the 413

CMT-PT model and our DeMPT model. As the 414

length of the inter-sentence context increases, both 415

models exhibit a slight enhancement in both BLEU 416

and BlonDe scores. Interestingly, our model with a 417

256-token inter-sentence context outperforms the 418

CMT-PT model with a 1024-token inter-sentence 419

context in both BLEU and BlonDe scores. This 420

further suggests the effectiveness of our approach 421

in harnessing the capabilities of LLMs for context- 422

aware NMT compared to the concatenation strat- 423

egy. 424

4.2 Effect of Prompt Length 425

As our approach is implemented based on deep 426

prompt tuning, next we compare the impact of the 427

trainable prompt length for MT-PT, CMT-PT, and 428

our DeMPT. 429

8Considering page limitation and the consumption of
GPUs resources and training time, we use the ZH→EN task
as a representative to report the BLEU and BlonDe scores.
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Figure 4: Performance of CMT-PT and our DeMPT on
ZH→EN test set when using different inter-sentence
context lengths.
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Figure 5: Performance of MT-PT, CMT-PT, and our
DeMPT on ZH→EN test set when using different
lengths of the trainable prompts.

Figure 5 shows the performance curves when in-430

creasing the prompt length from 32 to 128. We ob-431

serve that increased prompt length tends to enhance432

performance for both BLEU and BlonDe, yet the433

gains exhibit diminishing returns. This finding is434

consistent with that in Li and Liang (2021); Lester435

et al. (2021); Tan et al. (2022). We also observe that436

DeMPT with a prompt length of 64 outperforms437

both MT-PT and CMT-PT with a prompt length438

of 128 on both metrics, suggesting the superiority439

of our approach over the concatenation strategy440

in enhancing LLMs’ capacity for context-aware441

NMT.442

4.3 Comparison of Inference Speed443

Table 4 compares the inference speed of different444

models on ZH→EN translation task. Our MPT and445

DeMPT models, dividing the context-aware NMT446

process into three separate phases, demonstrates447

comparable inference speed to the single-phase MT-448

PT and CMT-PT models, with only a marginal drop449

of 0.02 seconds per sentence in decoding. This450

illustrates the efficiency of our approach without451

introducing significant computational overhead.452

4.4 Performance on Contrastive Test Set453

We evaluate the models’ ability to resolve discourse454

inconsistencies using the contrastive test set pro-455

Model Speed BLEU
MT-PT 0.75 sec/sent. 30.99
CMT-PT 0.77 sec/sent. 30.82
MPT 0.78 sec/sent. 31.81
DeMPT 0.79 sec/sent. 32.46

Table 4: Comparison of inference speed on ZH→EN
translation task. Speed is measured on the test set using
4 GPUs. sec/sent. means seconds spent for decoding
each sentence. Note that the reparameterization is not
needed during inference (Li and Liang, 2021).

Model deixis lex.c ell.infl ell.VP Avg.
MT-PT 50.0 45.7 53.0 28.6 44.3
CMT-PT 80.2 46.1 74.3 75.3 68.9

DeMPT 80.1 55.7 75.9 79.3 72.7

Table 5: Accuracy [%] of translation prediction for four
discourse phenomena on the English → Russian con-
trastive test set.

posed by (Voita et al., 2019a), which focuses on 456

four discourse phenomena such as deixis, lexicon 457

consistency (lex.c), ellipsis inflection (ell.infl), and 458

verb phrase ellipsis (ell.VP) in English→Russian 459

translation. Within the test set, each instance com- 460

prises a positive translation and several negative 461

ones that vary by only one specific word. The pur- 462

pose of the contrastive test set is to assess whether 463

a model is more inclined to generate a correct trans- 464

lation as opposed to incorrect variations. 465

Table 5 lists the accuracy of translation predic- 466

tion on the contrastive test set for MT-PT, CMT- 467

PT and DeMPT. Compared to the context-agnostic 468

MT-PT model, both context-aware CMT-PT and 469

DeMPT models show substantial improvements 470

across the four discourse phenomena. Additionally, 471

DeMPT demonstrates the best performance, sur- 472

passing CMT-PT by an average accuracy margin 473

of 3.8. 474

4.5 Human Evaluation 475

We use the Direct Assessment (DA) method (Gra- 476

ham et al., 2017) to manually assess the quality 477

of translations generated by DeMPT and CMT-PT. 478

In this assessment, human evaluators compare the 479

meaning of the MT output with a human-produced 480

reference translation, working within the same lan- 481

guage. 482

Specifically, we randomly select 5 documents 483

7



Model Score_1 Score_2 Average
CMT-PT 79.00 80.17 79.59
DeMPT 86.17 (+7.17) 87.30 (+7.13) 86.73 (+7.14)

Table 6: Human DA scores for CMT-PT and DeMPT
on ZH→EN translation task.

with a total of 200 groups of sentences from the484

ZH→EN test set. To avoid potential bias in evalu-485

ation, we recruit 6 professional translators and en-486

sure each translation from DeMPT or CMT-PT is487

scored twice by two translators. Table 6 shows the488

DA scores for CMT-PT and DeMPT. Our DeMPT489

outperforms CMT-PT by 7.14 DA score, provid-490

ing strong evidence for the effectiveness of our491

approach. Further details and results regarding the492

DA can be found in Appendix D.493

5 Related Work494

Due to limited space, we omit the discussion on495

conventional context-aware MT, focusing instead496

on LLM-based context-aware MT and prompt tun-497

ing for LLMs.498

LLM-based Context-aware Machine Transla-499

tion. While traditional context-aware neural ma-500

chine translation (NMT) has seen considerable501

progress in recent years (Jean et al., 2017; Wang502

et al., 2017; Voita et al., 2018; Maruf et al., 2019;503

Kang et al., 2020; Bao et al., 2021; Sun et al., 2022;504

Bao et al., 2023), the effective integration of large505

language models (LLMs) to model inter-sentence506

context and enhance context-aware translation re-507

mains an area of limited exploration. Existing stud-508

ies mainly focus on the assessment of LLMs’ abil-509

ity in discourse modeling. For example, Wang510

et al. (2023) approach context-aware NMT as a511

task involving long sequence generation, employ-512

ing a concatenation strategy, and conduct compre-513

hensive evaluations of LLMs such as ChatGPT514

and GPT-4. Their focus includes the impact of515

context-aware prompts, comparisons with transla-516

tion models, and an in-depth analysis of discourse517

modeling ability. Similarly, Karpinska and Iyyer518

(2023) engage professional translators to evaluate519

LLMs’ capacity in context-aware NMT. In con-520

trast, Wu et al. (2024) compare the effectiveness of521

various parameter-efficient fine-tuning methods on522

moderately-sized LLMs for context-aware NMT.523

Besides, Wu and Hu (2023) explore the prompt en-524

gineering with GPT language models specifically525

for document-level (context-aware) MT while Li 526

et al. (2024) experiment with combining sentence- 527

level and document-level translation instructions of 528

varying lengths to fine-tune LLMs. 529

Prompt Tuning for Large Language Model. 530

Liu et al. (2021) and Li and Liang (2021) propose 531

to make LLMs adapt to various tasks by adding 532

trainable prompts (also called continuous prompts) 533

to the original input sequences. In this paradigm, 534

only the continuous prompts are updated during 535

training. Liu et al. (2022) further introduces deep 536

prompt tuning, extending the idea by inserting train- 537

able prompts into all layers of LLMs, rather than 538

just the embedding layer. While these approaches 539

lay the groundwork for a general framework, our 540

focus lies in augmenting the performance of LLMs 541

specifically for inter-sentence context modeling in 542

context-aware NMT. Notably related, Tan et al. 543

(2022) propose a multi-phase tuning approach to 544

enhance the sentence-level translation performance 545

of a multilingual GPT. Their findings validate the 546

effectiveness of prompt tuning for sentence-level 547

MT. In contrast, we extend this line by introduc- 548

ing multi-phase tuning from sentence-level NMT 549

to context-aware NMT, with enhancements in the 550

decoding phase.9 551

6 Conclusion 552

In this paper, we have examined the hypothesis that 553

it is crucial to differentially model and leverage 554

inter-sentence context and intra-sentence context 555

when adapting LLMs to context-aware NMT. This 556

stems from our observation that intra-sentence con- 557

text exhibits a stronger correlation with the target 558

sentence compared to inter-sentence context, owing 559

to its richer parallel semantic information. To this 560

end, we have proposed a novel decoding-enhanced 561

multi-phase prompt tuning (DeMPT) approach to 562

make LLMs aware of the differences between inter- 563

and intra-sentence contexts, and further improve 564

LLMs’ capacity in discourse modeling. We have 565

evaluated our approach using two foundation mod- 566

els and present experimental results across five 567

translation directions. Experimental results and dis- 568

cussions have demonstrated a significant enhance- 569

ment in the performance of LLMs in context-aware 570

NMT, manifesting as improved translation accu- 571

racy and a reduction in discourse-related issues. 572

9Appendix H presents more discussion for the differences.
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Limitations573

Owing to resource limitations, our work is re-574

stricted to moderate-scale LLMs, specifically those575

with 7 billion parameters, and a confined window576

size of inter-sentence context. It is imperative to577

acknowledge that the results of our research may578

differ when employing larger models and extended579

window sizes for inter-sentence contexts. Consid-580

ering that English text forms the main body of the581

training data for LLMs, this paper only focuses on582

the English-centric translation tasks. The results of583

non-English-centric translation tasks may vary. We584

acknowledge these limitations and consider them585

as avenues for future exploration.586
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A Datasets 766

Statistics and Splitting of Datasets. We pro- 767

vide the detailed statistic in Table 7. For all trans- 768

lation tasks, we randomly select 80% document 769

pairs from the corpus as the training set. Both 770

the test set and validation set include 150 docu- 771

ment pairs each, randomly sampled from the re- 772

maining 20% of document pairs in the corpus. Re- 773

garding sentence preprocessing across all datasets, 774

we segment the sentences with the tokenizer from 775

the respective foundation model. No additional 776

preprocessing steps are performed. Datasets are 777
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news-commentary/v18. 779
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Dataset
ZH→EN FR→EN DE→EN ES→EN RU→EN

#Doc #Sent #Doc #Sent #Doc #Sent #Doc #Sent #Doc #Sent
Training 8,622 342,495 7,915 310,489 8,417 333,201 9,677 378,281 7,255 272,100
Validation 150 6,061 150 5,890 150 5,866 150 5,782 150 5,691
Test 150 5,747 150 5,795 150 5,967 150 5,819 150 5,619

Table 7: Statistics of training, validation, and test sets for five translation tasks. #Doc and #Sent denote the numbers
of Document and Sentence, respectively.

Score

0-20

21-40

41-60

61-80

81-100

The translation is completely incorrect and unclear, with only a few words or phrases
being correct. It is totally unreadable and difficult to understand.

The translation has very little semantic similarity to the source sentence, with key
information missing or incorrect. It has numerous unnatural and unfluent expressions
and grammatical errors.

The translation can express part of the key semantics but has many non-key semantic
errors. It lacks fluency and idiomaticity.

The translation can express the key semantics but has some non-key information errors
and significant grammatical errors. It lacks idiomaticity.

The translation can express the semantics of the source sentence with only a few non-
key information errors and minor grammatical errors. It is fluent and idiomatic.

Criterion

Figure 6: Scoring criterion for Direct Assessment. We group the score into five ranges, i.e., 0-20, 21-40, 41-60,
61-80, 81-100.

B Training Details780

For all Transformer NMT models, we use the781

transformer-base setting as in Vaswani et al. (2017),782

where the learning rate is set to 1e-4. The Trans-783

former NMT models are trained on 4× NVIDIA784

V100 32GB GPUs with a batch size of 4096. For785

the models with prompt tuning in Section 3, includ-786

ing MT-PT, CMT-PT, and our MPT and DeMPT787

models, the length of the trainable prompt is set as788

64. During both training and inference, the model789

generates only the current target sentence, oper-790

ating in a many-to-one translation mode. For all791

fine-tuning models in this paper, we set the training792

epoch to 4, and the warm-up rate to 0.1. We use793

the log learning rate decay strategy with a maxi-794

mum learning rate of 5e-5. We collate a mini-batch795

by counting the total tokens inside the batch and796

set the batch size as 4096. All fine-tuning mod-797

els are trained on 4 × NVIDIA A800 GPUs with798

Deespeed Zero 2 offload setting (Rajbhandari et al.,799

2020).10800

10https://github.com/microsoft/DeepSpeed

C Effect of Various Contexts for 801

Decoding-enhanced Strategy 802

Model BLEU COMET BlonDe
MT-PT 30.99 0.8520 49.48
CMT-PT 30.82 0.8504 49.61

DeMPT 32.46 0.8649 50.62
w/o p̂ 32.33 0.8629 52.68
w/o p̄ 32.11 0.8641 52.54

Table 8: Comparison of performances of the DeMPT
when removing different probabilities p in decoding-
enhanced strategy.

We conduct an ablation study on the ZH- 803

EN translation direction using the bloomz-7b-mt 804

model as the foundation model to clarify the ef- 805

fect of the three probabilities p in Equation 17, 806

i.e., the effect of various contexts for the heuristic 807

decoding-enhanced strategy. From the Table 8, we 808

observe that removing p̂, i.e., w/o p̂, leads to a sig- 809

nificant degradation in the discourse-related metric, 810

namely the BlonDe. This is because the integra- 811

11
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同时塔利 班已经公开宣称
美国 是它与俄 罗斯共同
的敌人，它将团结一切可
团结的力量将 美国人赶出
祖国。

Source

The Taliban, for its part, has
openly declared the US to
be its commons enemy with
Russia, and it will unite
whatever forces it can to
drive the Americans out of
the country.

DeMPT

At the same time, the Taliban
has openly declared the US
to be its enemy, along with
Russia, and will unite all
forces that can be united to
drive the Americans out of
the country.

DMT-PT

Reference

And the Taliban, which has
acknowledged that it shares
Russia's enmity with the US,
will take whatever help it can
get to expel the Americans.

Source DeMPT CMT-PT Reference

今天，俄罗斯利用同样的
逻辑来为与阿富汗塔利班
的合作寻找理由，它希望
塔利班势力继续打击由美
国支持的动荡的喀布尔政
府。

Today, Ruassia is using the
same logic to justify
cooperation with the Afghan
Taliban, which it hopes will
to attack the US-backed
government in Kabul.

Today, Ruassia is using the
same logic to justify its
cooperation with the
Taliban, which it hopes will
go on beat the-unstable
Kabul government, which
the America supports.

Today, Ruassia is using the
same logic to justify its
cooperation with the Afghan
Taliban, which it want to
keep fighting the unstable
US-backed government in
Kabul.

CMT-PT

First Sentence 

Second  Sentence 

Figure 7: A case study for the CMT-PT model and our DeMPT model on ZH→EN translation task.

tion enhances the utilization of the inter-sentence812

context during the decoding phase. We are addi-813

tionally, removing results in the most substantial814

degeneration in BLEU metric. This observation815

demonstrates that our heuristic decoding-enhanced816

strategy can distinctively improve the utilization of817

various contexts during the decoding phase.818

D Details of Human Evaluation819

Criterion and Recruitment. Given a source sen-820

tence, its translation from MT (i.e., CMT-PT and821

our DeMPT), and its human-produced reference822

translation, the evaluators are asked to give a score823

ranging from 0 to 100. Figure 6 presents the de-824

tailed criterion of scoring. We recruit evaluators825

from professional translators with at least five years826

of experience in translation.827

Statistics of Translation Errors. We manually828

count the number of bad cases from our DeMPT829

model. The bad cases fall into two categories: (1)830

the DA score is 60 or lower; (2) the DA score is831

lower than that of the translation from CMT-PT.832

The main types of the bad cases are Mistransla-833

tion (Mis.), Unnoticed Omission (UO), Inappro-834

priate Expression (IE), and Grammatical Error835

(GE). We present detailed statistics in Table 9. The836

statistics indicate the bad cases mainly come from837

Group
Type of Bad Case

Mis. UO IE GE Total (Perc.)
1 6 3 1 2 12 (6.0%)
2 9 7 6 5 27 (13.5%)

Table 9: Statistics of bad cases from our DeMPT model
on ZH→EN translation task. Perc. denotes the percent-
age of bad cases against the total of DA cases.

Mistranslation and Unnoticed Omission. Mean- 838

while, our DeMPT model outperforms the CMT-PT 839

model in 86.5% DA cases. 840

Case Study. We present a case in Figure 7 to illus- 841

trate how our DeMPT model outperforms the CMT- 842

PT model. In this case, we compare the translations 843

of two consecutive sentences from our model and 844

the CMT-PT model. First, we notice that the CMT- 845

PT model translates the source word美国 in the 846

two sentences into US and America, respectively. 847

However, our model consistently translates them 848

into US. Second, our model uses for its part, a 849

phase with more coherent preference, as the trans- 850

lation of同时 , instead of At the same time adopted 851

in the translation from the CMT-PT model. Both of 852

them demonstrate the superiority of our proposed 853

approach in discourse modeling. 854
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Model BLEU COMET BlonDe
MT-PT 30.99 0.8520 49.48
CMT-PT 30.82 0.8504 49.61

DeMPT 32.46 0.8649 50.62
w/o Transfer. 31.62 0.8601 50.23
w/o Embed. 32.01 0.8613 50.55
w/o CTX. 31.98 0.8593 49.89

Table 10: Comparison of performances of the DeMPT
variants on ZH→EN test set. w/o Trans. or w/o Embed.
denotes the variant without the non-linear transfer sub-
layer or type embedding sublayer in Eq. 22. w/o CTX.
means the inter-sentence context is not available, i.e.,
context-agnostic DeMPT system.

E Effect of Transfer Layer and Type855

Embedding856

As in Eq. 22 within Section 2.3, we introduce two857

sublayers: a non-linear transfer sublayer and a type858

embedding sublayer for the trainable prompt in859

each phase. This design enhances the awareness of860

LLMs regarding the distinctions in inputs across861

the three tuning phases, allowing them to adapt to862

specific roles at each phase. We investigate the863

effect of these two sublayers.864

As shown in Table 11, our observations reveal865

that the transfer sublayer holds greater importance866

than the type embedding sublayer. Removing ei-867

ther the non-linear transfer sublayer (w/o Transfer.)868

or the type embedding sublayer (w/o Embed.) re-869

sults in a performance drop of 0.84/0.0048/0.39870

or 0.45/0.0036/0.007 in BLEU/COMET/BlonDe871

metrics.872

F Effect of Inter-sentence Context873

We implement the context-agnostic (sentence-level)874

DeMPT system to analyze the effect of the inter-875

sentence context and differences with MSP. More876

specifically, we replace the input of LLMs in the877

inter-sentence context encoding phase with the878

intra-sentence context. In other words, we encode879

the intra-sentence context twice to keep the multi-880

phase tuning strategy in DeMPT while making the881

inter-sentence context unavailable.882

As shown in the last row of Table 11 (i.e., w/o883

CTX), we find that the inter-sentence context is884

crucial for the alleviation of discourse-related is-885

sues. The BlonDe score drops by 0.73 when the886

inter-sentence context is unavailable. Meanwhile,887

Model d-BLEU d-COMET d-BlonDe
MT-PT (m2o) 34.19 0.8216 49.48
CMT-PT (m2o) 34.06 0.8211 54.68
DeMPT (m2o) 35.76 0.8316 55.97

CMT-PT (m2m) 34.13 0.8256 55.34

Table 11: Comparison of performances of the mod-
els with different translation modes, i.e., with/without
target-side inter-sentence context, on ZH→EN test set.

our DeMPT also significantly improves the per- 888

formance of LLMs in context-agnostic MT, e.g., 889

+ 0.99 BLEU score and + 0.0073 COMET score 890

compared to the MT-PT model. 891

G Effect of Target-side Inter-sentence 892

Context 893

To enable a fair comparison, we incorporate only 894

the source-side inter-sentence context for the model 895

with the concatenating strategy, i.e., the CMT-PT 896

model in the many-to-one (m2o) translation mode, 897

as shown in Tables 1 and 2. To further investigate 898

the effect of target-side inter-sentence context for 899

the concatenating strategy, we compare the CMT- 900

PT model in the many-to-many (m2m) translation 901

mode to the models in the many-to-one translation 902

mode, for the ZH→EN translation task when using 903

the bloomz-7b1-mt as the foundation model. 904

Different from the results in Tables 1 and 2, 905

we report the document-level BLEU, BlonDe, and 906

COMET scores for all models here due to the un- 907

availability of sentence-level alignment for many- 908

to-many model. From the experimental results, 909

we observe that the CMP-PT (m2m) model out- 910

performs the CMP-PT (m2o) model (mostly sig- 911

nificant in terms of the d-BlonDe metric), which 912

demonstrates the effectiveness of the target context 913

in addressing discourse issues. However, the CMP- 914

PT (m2m) model still underperforms the DeMPT 915

model across three metrics. 916

H Discussion for Differences with MSP 917

DeMPT mainly differs from MSP (Tan et al., 2022) 918

in the following aspects: 919

• DeMPT adopts a phase-aware prompt to en- 920

able distinctive modeling for different inputs, 921

namely inter-sentence contexts, intra-sentence 922

contexts, and the target sentence, a feature not 923

present in MSP. 924
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• DeMPT incorporates a decoding-enhanced925

strategy to further improve the effectiveness926

of utilizing different context information, a927

capability not available in MSP.928

• DeMPT is designed to alleviate discourse929

problems in context-aware LLM-based ma-930

chine translation tasks, rather than addressing931

sentence-level machine translation tasks as in932

the case of MSP.933

• DeMPT is designed to adapt LLMs rather than934

small pre-trained model used in MSP.935
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