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ABSTRACT

Transformers have become the de facto models of choice in machine learning, typ-
ically leading to impressive performance on many applications. At the same time,
the architectural development in the transformer world is mostly driven by em-
pirical findings, and the theoretical understanding of their architectural building
blocks is rather limited. In contrast, Dense Associative Memory models or Mod-
ern Hopfield Networks have a well-established theoretical foundation, but have
not yet demonstrated truly impressive practical results. We propose a transformer
architecture that replaces the sequence of feedforward transformer blocks with a
single large Associative Memory model. Our novel architecture, called Energy
Transformer (or ET for short), has many of the familiar architectural primitives
that are often used in the current generation of transformers. However, it is not
identical to the existing architectures. The sequence of transformer layers in ET is
purposely designed to minimize a specifically engineered energy function, which
is responsible for representing the relationships between the tokens. As a con-
sequence of this computational principle, the attention in ET is different from
the conventional attention mechanism. In this work, we introduce the theoretical
foundations of ET, explore it’s empirical capabilities using the image completion
task, and obtain strong quantitative results on the graph anomaly detection task.

1 INTRODUCTION

Transformers have become pervasive models in various domains of machine learning, including
language, vision, and audio processing. Every transformer block uses four fundamental operations:
attention, feed-forward multi-layer perceptron (MLP), residual connection, and layer normalization.
Different variations of transformers result from combining these four operations in various ways.
For instance, |Press et al.| (2019) propose to frontload additional attention operations and backload
additional MLP layers in a sandwich-like instead of interleaved way, [Lu et al.| (2019) prepend an
MLP layer before the attention in each transformer block, [So et al| (2019) use neural architecture
search methods to evolve even more sophisticated transformer blocks, and so on. Various methods
exist to approximate the attention operation, multiple modifications of the norm operation, and con-
nectivity of the block; see, for example, (Lin et al., 2021)) for a taxonomy of different models. At
present, however, the search for new transformer architectures is driven mostly by empirical evalu-
ations, and the theoretical principles behind this growing list of architectural variations is missing.

Additionally, the computational role of the four elements remains the subject of discussions. Origi-
nally, Vaswani et al.|(2017) emphasized attention as the most important part of the transformer block,
arguing that the learnable long-range dependencies are more powerful than the local inductive biases
of convolutional networks. On the other hand more recent investigations (Yu et al.,[2021)) argue that
the entire transformer block is important. The “correct” way to combine the four basic operations
inside the block remains unclear, as does an understanding of the core computational function of the
entire block and each of its four elements.

In a seemingly unrelated line of work, Associative Memory models, also known as Hopfield Net-
works (Hopfield| [1982; [1984), have been gaining popularity in the machine learning community
thanks to theoretical advancements pertaining to their memory storage capacity and novel architec-
tural modifications. Specifically, it has been shown that increasing the sharpness of the activation
functions can lead to super-linear (Krotov & Hopfield,[2016) and even exponential (Demircigil et al.,
2017) memory storage capacity for these models, which is important for machine learning appli-
cations. This new class of Hopfield Networks is called Dense Associative Memories or Modern
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Figure 1: Overview of the Energy Transformer (ET). Instead of a sequence of conventional trans-
former blocks, a single recurrent ET block is used. The operation of this block is dictated by the
global energy function. The token representations are updated according to a continuous time differ-
ential equation with the time-discretized update step o« = dt/7. On the image domain, images are
split into non-overlapping patches that are linearly encoded into tokens with added learnable posi-
tional embeddings (POS). Some patches are randomly masked. These tokens are recurrently passed
through ET, and each iteration reduces the energy of the set of tokens. The token representations
at or near the fixed point are then decoded using the decoder network to obtain the reconstructed
image. The network is trained by minimizing the mean squared error loss between the reconstructed
image and the original image. On the graph domain, the same general pipeline is used. Each token
represents a node, and each node has its own positional encoding. The token representations at or
near the fixed point are used for the prediction of the anomaly status of each node.

Hopfield Networks. [Ramsauer et al.| (2020) additionally describe how the attention mechanism in
transformers is closely related to a special model of this family with the softmax activation function.

There are high-level conceptual similarities between transformers and Dense Associative Memories,
since both architectures are designed for some form of denoising of the input. Transformers are
typically pre-trained on a masked-token task, e.g., in the domain of Natural Language Processing
(NLP) certain tokens in the sentence are masked and the model predicts the masked tokens. Dense
Associative Memory models are designed for completing the incomplete patterns. For instance, a
pattern can be the concatenation of an image and its label, and the model can be trained to predict
part of the input (the label), which is masked, given the query (the image). They can also be trained
in a self-supervised way by predicting the occluded parts of the image, or denoising the image.

There are also high-level differences between the two classes of models. Associative Memories
are recurrent networks with a global energy function so that the network dynamics converges to a
fixed point attractor state corresponding to a local minimum of the energy function. Transformers
are typically not described as dynamical systems at all. Rather, they are thought of as feed-forward
networks built of the four computational elements discussed above. Even if one thinks about them
as dynamical systems with tied weights, e.g., 2019), there is no reason to expect that their
dynamics converge to a fixed point attractor (see the discussion in 2020)).

Additionally, a recent study uses a form of Majorization-Minimization algorithms
to interpret the forward path in the transformer block as an optimization process.
This interpretation requires imposing certain constraints on the operations inside the block, and at-
tempting to find an energy function that describes the constrained block. We take a complementary
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approach by using intuition developed in Associative Memory models to szart with an energy func-
tion that is perfectly suited for the problem of interest. The optimization process and the resulting
transformer block in our approach is a consequence of this specifically chosen energy function.

Concretely, we use the recent theoretical advancements and architectural developments in Dense
Associative Memories to design an energy function tailored to route the information between the
tokens. The goal of this energy function is to represent the relationships between the semantic con-
tents of tokens describing a given data point (e.g., the relationships between the contents of the
image patches in the vision domain, or relationships between the nodes’ attributes in the graph do-
main). The core mathematical idea of our approach is that the sequence of these unusual transformer
blocks, which we call the Energy Transformer (ET), minimizes this global energy function. Thus,
the sequence of conventional transformer blocks is replaced with a single ET block, which iterates
the token representations until they converge to a fixed point attractor state. In the image domain,
this fixed point corresponds to the completed image with masked tokens replaced by plausible auto-
completions of the occluded image patches. In the graph domain, the fixed point reveals the anomaly
status of a given node given that node’s neighbors; see[Figure | The energy function in our ET block
is designed with the goal to describe the relationships between the tokens. Examples of relationships
in the image domain are: straight lines tend to continue through multiple patches, given a face with
one eye being masked the network should impaint the missing eye, etc. In the graph domain, these
are the relationships between the attributes and the anomaly status of the connected nodes. The
optimization procedure during the forward path of ET uses continuous time differential equations,
and describes a gradient decent on the specifically chosen energy function.

The core mathematical principle of the ET block — the existence of the global energy function —
dictates strong constraints on the possible operations, the order in which these operations are ex-
ecuted in the forward path, and the symmetries of the weights in the network. As a corollary of
this theoretical principle, the attention mechanism of ET is different from the attention mechanism
commonly used in feed-forward transformers (Vaswani et al., 2017)).

In the following section we introduce the global energy function for the ET block and explain the
block’s architecture. We then explore the inner workings of the ET network for image comple-
tion and qualitatively assess the learned representations (the model is trained on ImageNet-1k in a
general pipeline similar to |[Dosovitskiy et al.| (2021))). Finally, we turn to the graph anomaly detec-
tion task, which is conceptually similar to the image completion setting but has a record of strong
published benchmarks against which our approach can be quantitatively compared. We show that
the ET network stands in line with or outperforms the latest benchmarks. Although we focus on
the computer vision and anomaly detection domains in this paper, we believe that the computational
principles developed can be applied to other exciting domains (e.g., NLP, audio, and video) in which
conventional transformers have shown promising results.

2 ENERGY TRANSFORMER BLOCK

We now introduce the theoretical framework of the ET network. For clarity of presentation, we use
language associated with the image domain. For the graph domain, one should think about “image
patches” as nodes on the graph.

The overall pipeline is similar to the Vision Transformer networks (ViTs) and is shown in
An input image is split into non-overlapping patches. After passing these patches through the en-
coder and adding the positional information, the semantic content of each patch and its position
is encoded in the token ;4. In the following the indices i, j,k = 1...D are used to denote the
token vector’s elements, indices A, B, C' = 1...N are used to enumerate the patches and their cor-
responding tokens. It is helpful to think about each image patch as a physical particle, which has
a complicated internal state described by a D-dimensional vector x . This internal state describes
the identity of the particle (representing the pixels of each patch), and the particle’s positional em-
bedding (the patch’s location within the image). The ET block is described by a continuous time
differential equation, which describes interactions between these particles. Initially, at ¢ = 1 the net-
work is given a set containing two groups of particles corresponding to open and masked patches.
The “open” particles know their identity and location in the image. The “masked” particles only
know where in the image they are located, but are not provided the information about what image
patch they represent. The goal of ET’s non-linear dynamics is to allow the masked particles to find
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Figure 2: Left: Inside the ET block. The input token x passes through a sequence of operations
and gets updated to produce the output token x’. The operations inside the ET block are carefully
engineered so that the entire network has a global energy function, which decreases with time and
is bounded from below. In contrast to conventional transformers, the ET-based analogs of the atten-
tion module and the feed-forward MLP module are applied in parallel as opposed to consecutively.
Center: The cosine similarity between the learned position embedding of each patch and every
other patch. In each cell, the brightest patch indicates the cell of consideration. Right: 100 se-
lected memories stored in the HN memory matrix, visualized by the decoder as 16x16 RGB image
patches. This visualization is unique to our model, as traditional Transformers cannot guarantee
image representations in the learned weights.

an identity consistent with their locations and the identities of open particles. This dynamical evolu-
tion is designed so that it minimizes a global energy function, and is guaranteed to arrive at a fixed
point attractor state. The identities of the masked particles are considered to be revealed when the
dynamical trajectory reaches the fixed point. Thus, the central question is: how can we design the
energy function that accurately captures the task that the Energy Transformer needs to solve?

The masked particles’ search for identity is guided by two pieces of information: identities of the
open particles, and the general knowledge about what patches are in principle possible in the space
of all possible images. These two pieces of information are described by two contributions to the
ET’s energy function: the energy based attention and the Hopfield Network, respectively, for reasons
that will become clear in the next sections. Below we define each element of the ET block in the

order they appear in[Figure 2
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Each token is represented by a vector x € RP. At the same time, most of the operations inside the
ET block are defined using a layer-normalized token representation
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The scalar « and the vector §; are learnable parameters, € is a small regularization constant. Impor-
tantly, this operation can be viewed as an activation function for the neurons and can be defined as a
partial derivative of the Lagrangian function
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See Krotov & Hopfield| (2021)); [Tang & Kopp| (2021)); Krotov| (2021) for a detailed discussion of this
property.
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MULTI-HEAD ENERGY ATTENTION

The first contribution to the ET’s energy function is responsible for exchanging information between
the particles (patches). Similarly to the conventional attention mechanism, each token generates a
pair of queries and keys (ET does not have a separate value matrix; instead the value matrix is a
function of keys and queries). The goal of the energy based attention is to evolve the tokens in such
a way that the keys of the open patches are aligned with the queries of the masked patches in the
internal space of the attention operation. Below we use index a = 1...Y" to denote elements of this
internal space, and index h = 1...H to denote different heads of this operation. With these notations
the energy-based attention operation is described by the following energy function:

EATT = *% Z Z IOg Z exp <B Z KahB QahC) (3)
h C a

B#C
where the queries and keys tensors are defined as
K YxHXN
K(X}LB - ZWahj 9iB; KecR o
J

4)
Qanc =Y Wi gic, Qe RN
J

and the tensors WX € RY*HXD and W@ ¢ RY *H XD gre learnable parameters.

From the computational perspective each patch generates two representations: query (given the
position of the patch and its current content, where in the image should it look for the prompts on
how to evolve in time?), and key (given the current content of the patch and its position, what should
be the contents of the patches that attend to it?). The log-sum energy function (3] is minimal when
for every patch in the image its queries are aligned with the keys of a small number of other patches
connected by the attention map. Different heads (index h) contribute to the energy additively.

HOPFIELD NETWORK MODULE

The next step of the ET block, which we call the Hopfield Network (HN), is responsible for ensuring
that the token representations are consistent with what one expects to see in realistic images. The
energy of this sub-block is defined as:

BN = S (b gm) . e ROD ©
J

B,u

where ¢,,; is a set of learnable weights (memories in the Hopfield Network), and 7(-) is an activation
function. Depending on the choice of the activation function this step can be viewed either as a
classical continuous Hopfield Network (Hopfield, |1984) if the activation function grows slowly (e.g.,
ReLU), or as a modern continuous Hopfield Network (Krotov & Hopfield, 2016; Ramsauer et al.,
2020; [Krotov & Hopfield, 2021)) if the activation function is sharply peaked around the memories
(e.g. power or softmax). The HN sub-block is analogous to the feed-forward MLP step in the
conventional transformer block but requires that the weights of the projection from the token space
to the hidden neuron’s space to be the same (transposed matrix) as the weights of the subsequent
projection from the hidden space to the token space. Thus, the HN module here is an MLP with
shared weights that is applied recurrently. The energy contribution of this block is low when the
tokens representations are aligned with some rows of the matrix £, which represent memories.

DyYNAMICS OF TOKEN UPDATES

The forward path of the ET network is described by the continuous time differential equation, which
minimizes the sum of the two energies described above

d:Ei A oF
T = — ,
dt dgia
Here x;4 is the token representation (input and output from the ET block), and g; 4 is its layer-
normalized version. The first energy is low when each patch’s queries are aligned with the keys

where E = FATT 4 piN (6)
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of its neighbors. The second energy is low when each patch has content consistent with the gen-
eral expectations about what an image patch should look like (memory slots of the matrix x). The
dynamical system (6) finds a trade-off between these two desirable properties of each token’s repre-
sentation. For numerical evaluations equation (6] is discretized in time.

To demonstrate that the dynamical system () minimizes the energy, consider the temporal derivative

OF 0gia dxja A OF
S <
Z 891,4 Oxja dt Z 89,4 M 0gja <0 @)

The last inequality sign holds if the symmetric part of the matrix

BgZ-A 62L
A _
Ml] B 833j,4 a 8$iAa$jA (8)

is positive semi-definite (for each value of index A). The Lagrangian (2) satisfies this condition.

RELATIONSHIP TO MODERN HOPFIELD NETWORKS AND CONVENTIONAL ATTENTION

One of the theoretical contributions of our work is the design of the energy attention mechanism
and the corresponding energy function (3). Although heavily inspired by prior work on Modern
Hopfield Networks, our approach is fundamentally different from it. Our energy function (3) may
look somewhat similar to the energy function of a continuous Hopfield Network with the softmax
activation function. The main difference, however, is that in order to use Modern Hopfield Networks
recurrently (as opposed to applying their update rule only once) the keys must be constant parameters
(called memories in the Hopfield language). In contrast, in our energy attention network the keys
are dynamical variables that evolve in time with the queries.

To emphasize this further, it is instructive to write explicitly the ET attention contribution to the
update dynamics (6). It is given by (for clarity, assume only one head of attention):

= Z ZW K.c softmax(ﬂz ~C QA,A) o{i Qac sof%ax(ﬁZKvA ch)
¥

C#A «

OF ATT

agvA

In both terms the softmax normalization is done over the token index of the keys, which is indicated
by the subscript in the equation. The first term in this formula is the conventional attention mecha-
nism (Vaswani et al., [2017) with the value matrix equal to V = (W®)TK = Y oa WO;QZ-KQC. The
second term is the brand new contribution that is missing in the original attention mechanism. The
presence of this second term is crucial to make sure that the dynamical system (6) minimizes the
energy function if applied recurrently. This second term is the main difference of our approach com-
pared to the Modern Hopfield Networks. The same difference applies to the other recent proposals
(Yang et al., 2022).

Lastly, we want to emphasize that our ET block contains two different kinds of Hopfield Networks
acting in parallel, see The first one is the energy attention module, which is inspired by,
but not identical to, Modern Hopfield Networks. The second one is the “Hopfield Network™ module,
which can be either a classical or modern Hopfield Network. These two should not be confused.

3  QUALITATIVE INSPECTION OF THE ET FRAMEWORK ON IMAGENET

We have trained the ET network on the masked image completion task using ImageNet-1k
dataset (Deng et al.| 2009). Each image was broken into non-overlapping patches of 16x16 RGB
pixels, which were projected with a single affine encoder into the token space. Half of these tokens
were “masked”, e.g., by replacing them with a learnable MASK token. A distinct learnable position
encoding vector was added to each token. Our ET block then processes all tokens recurrently for
T steps. The token representations after T steps are passed to a simple linear decoder (consisting
of a layer norm and an affine transformation). The loss function is the standard MSE loss on the
occluded patches. See more details on the implementation and the hyperparameters in Appendix [A]

Examples of occluded/reconstructed images (unseen during training) are shown in In
general, our model learns to perform the task very well, capturing the texture in dog fur (col 3) and
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Figure 3: Reconstruction examples of our Energy Transformer using images from the ImageNet-1k
validation set. Top row: input images where 50% of the patches are masked with the learned MASK
token. Middle row: output reconstructions after 12 time steps. Bottom row: original images.

understanding meaningful boundaries of objects. However, we observe that our single ET block
struggles to understand some global structure, e.g., failing to capture both eyes of the white dog
(col 4) and completing irregular brick patterns in the name of extending the un-occluded borders
(last col). We additionally inspect the positional encoding vectors associated with every token,
[Figure 2} where the model learns a locality structure in the image plane that is very similar to the
original ViT (Dosovitskiy et al, 2021). The position embedding of each image patch has learned
high similarity values to other patches in the same row and column, with similarity values higher for
neighboring tokens than distant tokens.

Our network is unique compared to standard ViTs in that the iterative dynamics only move tokens
around in the same space from which the final fixed point representation can be decoded back into the
image plane. This functionality makes it possible to visualize essentially any foken representation,
weight, or gradient of the energy directly in the image plane. This feature is highly desirable from
the perspective of interpretability, since it makes it possible to track the updates performed by the
network directly in the image plane as the computation unfolds in time. In[Figure 2this functionality
is used for inspecting the learned weights of the HN module directly in the image plane. According
to our theory, these weights should represent basis vectors in the space of all possible image patches.
These learned representations look qualitatively similar to the representations typically found in

networks trained on image datasets, e.g., Zeiler & Fergus|(2014).

We additionally visualize the gradients of the energy function (which are equal to the token updates,
see[Equation 6)) of both ATTN block and the HN block, see[Figure 4] Early in time, almost all signal
to the masked tokens comes from the ATTN block, which routes information from the open patches
to the masked ones; no meaningful signal comes from the HN block to the masked patch dynamics.
Later in time we observe a different phenomenon: almost all signal to masked tokens comes from
the HN module while ATTN contributes a blurry and uninformative signal. Thus, the attention layer
is crucial early in the network dynamics, feeding signal to masked patches from the visible patches,
whereas the HN is crucial later in the dynamics as the model approaches the final reconstruction,
sharpening the masked patches. All the qualitative findings presented in this section are in accord
with the core computational strategy of the ET block as it was designed theoretically in[section 2]

4 GRAPH ANOMALY DETECTION

Having built the theoretical foundation of the ET network and gained an intuition about its inner
workings through visualizations, we turn to quantitatively evaluating its performance on the graph
anomaly detection problem, a task with plenty of strong and recently published baselines. Anomalies
are outliers that significantly deviate in their properties from the majority of the samples. Detecting
anomalies on graphs has broad applications in cybersecurity (Hong et al, 2014} [Pan et al.| [2019),
fraud detection (Huang et al., 2018} [Pourhabibi et al.l 2020), and social networks (Chaker et al.|
[2017). Generally, there are three types of graph anomalies: node anomaly, edge anomaly, and
subgraph anomaly. In this work, we focus on node anomaly detection in attributed graphs. This
task is perfectly suited for the ET network, since each node’s attributes can be encoded in the latent
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Figure 4: Token representations and gradients are visualized using the decoder at different times
during the dynamics. The Energy Attention (ATTN) block contributes general structure informa-
tion to the masked patches at earlier time steps, whereas the Hopfield Network (HN) significantly
sharpens the quality of the masked patches at /ater time steps.

space and treated as a token (with added learnable positional embeddings). The network iterates
these representations in time, and the outputs can be used for the node anomaly classification task.

Graph Convolutional Networks (GCN) (Kipf & Welling| [2016)) have been widely used for this task
due to their capability of learning high level representations of graph structures and node attributes
(Ding et al., 2019; [Peng et al,, 2020). However, vanilla GCNs suffer from the over-smoothing
problem (Wu et al.,[2019). In each layer of the forward pass, the outlier node aggregates information
from its neighbors. This averaging makes the features of anomalies less distinguishable from the
features of benign nodes. Our approach does not suffer from this problem, since the routing of
the information between the nodes is done through the energy based attention, which uses different
aggregation procedure depending on whether or not the node is anomalous.

In order to turn the anomaly detection task on graphs into the ET framework, consider an undirected
graph with N nodes. Every node has a vector of attributes y 4 € R, where F is the number of
node’s features. Additionally, every node has a binary label [ 4, indicating whether the node is benign
or not. We focus on node anomaly and assume that all edges are trusted. The task is to predict the
label of the node given the graph structure and the node’s features. Since there are far more benign
nodes in the graph than anomalous ones, anomaly detection can be regarded as an imbalanced node
classification task.

First, the feature vectors for every node are converted to a token representation using a linear em-
bedding E and adding a learnable positional embedding A 4

Xl = By, + A ©)
where the superscript £ = 1 indicates the time of the update of the ET dynamics. This token rep-
resentation is iterated through the ET block for 7" iterations. When the retrieval dynamics becomes
stable, we have the final representation for each node x’~" (or more precisely gii~7, since the out-
puts are additionally passed through a layer norm operation after the final ET update). This output
is concatenated with the initial (layer normalized) token to form the final output of the network

git =g [lei” (10)

Following |Tang et a1.| (]2022[), the node representation g‘;{‘al is fed into an MLP with the sigmoid
activation function to compute the anomaly probabilities p 4. The weighted cross entropy

Loss = 3 [0 Lalog(pa) + (1 = L) log(1 — pa) (1)
A

is used to train the whole network. Above, o is the ratio of the regular labels (I 4 = 0) to anomalous
labels (14 = 1).

4.1 EXPERIMENTAL EVALUATION

Four datasets are used for the graph anomaly detection experiments. YelpChi dataset
Akoglul 2015) aims at opinion spam detection in Yelp reviews. Amazon dataset is used to detect
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anomalous users under the Musical Instrument Category on amazon.com (McAuley & Leskovec|
2013)). T-Finance and T-Social datasets (Tang et al.,|2022) are used for anomalous account detection
in the transactions and social networks, respectively. For these four datasets, the graph is treated as a
homogeneous graph (i.e. all the edges are of the same type), and a feature vector is associated with
each node. The task is to predict the label (anomaly status) of the nodes. For each dataset, either
1% or 40% of the nodes are used for training, and the remaining 99% or 60% are split 1 : 2 into
validation and testing, see for details.

We compare with state-of-the-art approaches for graph anomaly detection, which include Graph-
Consis (Liu et al., 2020), CAREGNN (Dou et al., |2020), PC-GNN (Liu et al., [2021) and BWGNN
(Tang et al.| [2022). Additionally, multi-layer perceptrons (MLP) and Graph Transformer (GT)
(Dwivedi & Bresson, 2020) are included in the baselines for completeness. Following previous
work, macro-F1 score (unweighted mean of F1 score) and the Area Under the Curve (AUC) are
used as the evaluation metrics on the test datasets [Davis & Goadrich| (2006). See for
more details on training protocols and the hyperparameters choices. The results are reported in
Our ET network demonstrates very strong results across all the datasets.

Table 1: Performance of all the methods on Yelp, Amazon, T-Finance, and T-Social datasets with
different training ratios. Following [Tang et al.|(2022), mean and standard deviation over 5 runs with
different train/dev/test split are reported for our method and the baselines (standard deviations are
only included if they are available in the prior work). Best results are in bold. Our model is state of
the art or near state of the art on every category.

Datasets | Split |GraphConsis CAREGNN PC-GNN BWGNN MLP GT ET (Ours)
Yelp 1% 56.812.8 621413 598414 611104 539402 61.7404 63.0406
40% 58.712_0 63.310_9 63.0:&2_3 71-0:t0.9 57510.8 68.710.4 71.5:&0_1

Amazon 1% 68.543.4 68.74+1.6 79.8456 909407 74.6112 88.6105 893407

= 40% 75.143.2 86.3+1.7  89.5407 9224104 791412 917408  92.8103
N 71.7 73.3 62.0 84.8 61.0 815  85.1i10
g 40% 73.4 77.5 63.1 86.8 70.5 83.6 88.2110
= T-Social 1% 52.4 55.8 51.1 75.9 50.0 64.3 791407
40% 56.5 56.2 52.1 83.9 50.3 68.2 83.510.4

Yelp 1% 66.4+3.4 75.0438 754100 72.0405 59.8104 725106  73.2+0s8
40% 69.8+3.0 76.1429  79.8401 84.0409 66.5+10 81.9+05 84.9403

Amazon 1% 741435 88.643.5 90.449.9 89.44103 83.6417 89.0419 919410
40% 87.4433 90.541.¢ 95.840.1 98.0404 898410 954406 97.3104

8 T-Finance 1% 90.2 90.5 90.7 91.1 82.9 90.0 92.8411
= 40% 91.4 92.1 91.2 94.3 87.1 88.2 95.0130
T-Social 1% 65.2 71.2 59.8 88.0 56.3 81.4 919406
40% 71.2 71.8 68.4 95.2 56.9 82.5 93.940.2

5 DISCUSSION AND CONCLUSIONS

A lot of recent research has been dedicated to understanding the striking analogy between Hopfield
Networks and the attention mechanism in transformers. At a high level, the main message of our
work is that the entire transformer block (including feed-forward MLP, layer normalization, and
residual connections) can be viewed as a single large Hopfield Network, not just attention alone. At
a deeper level, we use recent advances in the field of Hopfield Networks to design a novel energy
function that is tailored for dynamical information routing between the tokens and representation of
a large number of relationships between those tokens. When used in the encoder-decoder setting,
an appealing feature of our network is that any state, weight, or state update can be mapped di-
rectly into the data domain. This provides the possibility to inspect the inner workings of the whole
network, contributing to its interpretability. The attention mechanism in our network contains an
important extra term compared to conventional attention. We have tested the ET network on the
image completion task (qualitatively) and node anomaly detection on graphs (quantitatively). The
qualitative investigation reveals the perfect alignment between the theoretical design principles of
our network and its empirical computation. The quantitative evaluation demonstrates strong results,
which stand in line or exceed the methods recently developed specifically for this task. Although we
have only tested ET on two tasks, we intentionally picked two entirely different data domains (im-
ages and graphs). We believe that the proposed network will be useful for other tasks and domains
and deserves a comprehensive investigation in line with other popular variants of transformers.
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6 REPRODUCIBILITY STATEMENT

Section does not count towards page limit

In the experiments presented in this paper we have taken several steps to ensure reproducibility of our
results. Namely, all the training protocols and implementation details including the hyperparameter
selection are described in[Appendix A} [Appendix B and [Appendix F} The model and training code
is released anonymously/’| The code for image reconstruction is written in JAX [Bradbury et al.
(2018) with a single entry script to launch the training process, with defaults set to the configuration
that produced the models used in this paper. The training script sets a seed that can recreate the
exact same training setup as we had, ensuring the exact same weight initialization and random data
augmentation provided default arguments. No additional training data was used beyond the training
set (ImageNet-1k 2012), which is publicly available. The code for Graph Anomaly Detection is
written in PyTorch. Given the nature of the anomaly detection problem (random splits into training,
validation, testing sets) all our results on graphs are reported with mean and standard deviations,
describing typical variability in the performance.
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A DETAILS OF TRAINING ON IMAGENET

We trained the ET network on a masked-image completion task on the ImageNet-1k (IN1K) dataset.
We treat all images in IN1K as images of shape 224 x 224 that are normalized according to standard
INIK practices (mean 0, variance 1 on the channel dimension) and use data augmentations provided
by the popular timm library (Wightman|, 2019) (See [Table 2). Following the conventional ViT
pipeline (Dosovitskiy et al., [2021)), we split these images into non-overlapping patches of 16x16
RGB pixels which are then projected with a single affine encoder into the token dimension D for a
total of 196 encoded tokens per image. We proceed to randomly and uniformly assign 100 of these
tokens as “occluded” which are the only tokens considered by the loss function. “Occluded” tokens
are designated as follows: of the 100 tokens, 90 tokens are replaced with a learnable MASK token of
dimension D and 10 we leave untouched (which we find important for the HN to learn meaningful
patch representations). To all tokens we then add a distinct learnable position bias.

These tokens are then passed to our Energy Transformer block which we recur for 7' steps (the
“depth” of the model in conventional Transformers). At each step, the feedback signal (the sum of
the energy gradients from our attention block and HN block) is subtracted from our original token
representation with a scalar step size & = % which we treat as a non-learnable hyperparameter
in our experiments. The token representations after 7' steps are passed to a simple linear decoder
(consisting of a layer norm and an affine transformation) to project our representations back into
the image plane. We then use the standard MSE Loss between the original pixels and reconstructed
pixels for only the 100 occluded patches. We allow self attention as in the following formula for the
energy of multiheaded attention.

EATT — Z —% Zlog (Z exp (/BZKahB Qahc>> (12)
I C B a

We give details of our architectural choices in In the main paper we present our Energy
Transformer with a configuration similar to the standard base Transformer configuration (e.g., token

13


https://arxiv.org/abs/2106.05234
https://proceedings.neurips.cc/paper/2019/file/12780ea688a71dabc284b064add459a4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/12780ea688a71dabc284b064add459a4-Paper.pdf

Under review as a conference paper at ICLR 2023

dimension 768, 12 heads each with Y = 64, softmax’s § = ﬁ, ...), with several considerations
learned from the qualitative image evaluations:

* The % (step size) of 1 implicitly used in the traditional transformer noticeably degrades our
ability to smoothly descend the energy function. We find that a step size of 0.1 provides a
smoother descent down the energy function and benefits the image reconstruction quality.

* We observe that our MSE loss must include some subset of un-occluded patches in order
for the HN to learn meaningful filters.

* Values of /3 in the energy attention that are too high prevent our model from training. This
is possibly due to vanishing gradients in our attention operation from a softmax operation
that is too spiky.

* Without gradient clipping, our model fails to train at the learning rates we tried higher than
le-4. We observe that gradient clipping not only helps our model train faster at the trainable
learning rates, it also allows us to train at higher learning rates.

Our architecture and experiments for the image reconstruction task were written in JAX (Bradbury
et al., 2018) using Flax (Heek et al., |2020). This engineering choice means that our architecture
definitions are quite lightweight, as we can define the desired energy function of the ET and use
JAX’s autograd to automatically calculate the desired update. All training code and software will be
released upon the paper’s acceptance.

Table 2: Hyperparameter, architecture, and data augmentation choices for ET-base during ImageNet-
1k masked training experiments. Data augmentations are listed as parameters passed to the equiva-
lent t imm dataloader functionality.

Training Architecture Data Augmentation
batch_size 768 token_dim | 768 random_erase None
epochs 100 num_heads 12 horizontal flip 0.5
Ir Se-4 head_dim 64 vertical flip 0
warmup_epochs 2 15} 1/8 color _jitter 0.4
start & end Ir 5e-7 train_betas No scale | (0.08, 1)
bl, b2 (ADAM) | 0.9,0.99 step size « 0.1 ratio | (3/4, 4/3)
weight_decay 0.05 depth 12 auto_augment None
grad _clipping 1. hidden_dim HN | 3072
bias in HN | None
bias in ATT | None
bias in LNORM | Yes

A.1 EXPLORING THE HOPFIELD MEMORIES

A distinctive aspect of our network is that any variable that has a vector index ¢ of tokens can
be mapped into the data domain by applying the decoder network to this variable. This makes it
possible to inspect all the weights in the model. For instance, the concept of “memories” is crucial
to understanding how Hopfield networks function. The memories within the HN module represent
the building blocks of all possible image patches in our data domain, where an encoded image patch
is a superposition of a subset of memories. The complete set of memory vectors from the HN module
is shown in The same analysis can be applied to the weights of the ET-attention module.
In[Figure 6] we show all the weights from this module mapped into the image plane.

A.2 BIAS CORRELATIONS

The relationships between our position embeddings exhibit similar behavior to the position correla-
tions of the original ViT in that they are highly susceptible to choices of the hyperparameters (Figure
10 of |Dosovitskiy et al.|(2021)). In particular, we consider the effect of weight decay and the 3 pa-
rameter that serves as the inverse temperature of the attention operation (see[Equation 3). The lower
the temperature (i.e., the higher the value of (3), the spikier the softmax distribution. By using a
lower (3, we encourage the attention energy to distribute its positional embeddings across a wider
range of patches in the model.
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Figure 5: Visualizing a randomly selected 3025 patch memories of the 3072 learned by weight
matrix in the Hopfield Network module (HN) of our model. These memories are vectors of the
same dimensions D as the patch tokens, stored as rows in the weight matrix £. Each image patch is
visualized using the model’s trained decoder.

A.3 OBSERVING ENERGY DYNAMICS

We include as part of our supplemental submission a video showing the dynamics of one of our
trained models through time together with the corresponding energy at every step. From the video,
it is clear that the image progressively improves in quality as the energy decreases up to the point
when the token representations are passed to the decoder. At the same time, we found it challenging
to find the time constants and number of training steps so that the energy of each image reaches
the energy minimum (fixed point) when the loss is computed. For instance, for the image shown
in the video, its quality actually starts to degrade when the dynamics is allowed to run for longer
than what was used at training (while the energy is still decreasing). Additionally, when training
models at greater depth the gradients can vanish since many recurrent applications of the ET block
are necessary. We hope to comprehensively investigate these questions/limitations in future work.
We include a screenshot of the video in [Figure 8 and encourage readers to watch the full video for
the dynamics.
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Figure 6: Visualizing the token dimension of the “key” and “query” matrices of the attention as
image patches. Each head is represented as a cell on the 4 x 3 grid above. We use the trained
decoder of our model to visualize each weight.
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Figure 7: The cosine similarity between position biases of patches when the ET-base model is
trained under different hyperparameter choices for 5 (inverse temperature of the attention energy)
and weight decay. Our ET sees a trend where smoother correlations are observed with smaller 5 and
weight decay.
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1e6 Energy dynamics for focused image

Focused image

Energy

1000 1250 1500 1750 2000

Figure 8: Screenshot of the accompanying video showcasing the energy dynamics of our model. Top
left: the energy of our model over time (with units 7) for the dog image highlighted at the top right.
Each cell of the dog represents the (masked input, reconstructed image at time ¢, original image).
We step through time using a time step of d¢ = 0.1 and record the total energy of our system on
the image tokens as the black dot descending the blue energy curve. The dashed vertical black line
shows the point in the energy curve where the representations were passed to the loss function when
training the model, whereas the horizontal red dashed line shows the “fixed point” at the end of the
simulated dynamics (in reality, the energy still descends slightly after that). Bottfom: We display 11
other images as (masked image, reconstructed image at time ¢, original image) aligned with the time
step. Each image’s energy trajectory will be slightly different (not shown).
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B DETAILS OF ET TRAINING ON ANOMALY DETECTION TASK

Graph anomaly detection refers to the process of detecting outliers that deviate significantly from
the majority of the samples. Neural network based methods are very popular due to their capa-
bility of learning sophisticated data representations. DOMINANT (Ding et al., |2019) utilizes an
auto-encoder framework, using a GCN as an encoder and two decoders for structural reconstruc-
tion and attribute reconstruction. ALARM (Peng et al.| [2020) aggregates the encoder information
from multiple view of the node attributes. Another study Zhao et al.| (2020), propose a novel loss
function to train graph neural networks for anomaly-detectable node representations. In|Ding et al.
(2021) generative adversarial learning is used to detect anomaly nodes where a novel layer is de-
signed to learn the anomaly-aware node representation. Recently, [Tang et al.| (2022) pointed out
that anomalies can lead to the “rightshift” of the spectral energy distribution — the spectral energy
concentrates more on the high frequencies. They designed a filter that can better handle this phe-
nomenon. We propose a new anomaly detection model from the perspective of Associative Memory
(pattern matching), which does not have the over-smoothing problem often faced by GCNs, and has
better model interpretability (outliers should be far from the common pattern).

B.1 DETAILED MODEL STRUCTURE FOR THE GRAPH ANOMALY DETECTION

First, we compute the features that are passed to our energy-based transformer. Each node’s features
ya € RY are mapped into the token space x4 € R, using a linear projection E. Learnable
positional embeddings A 4 are added to this token at ¢t = 1,

xi'=Ey,+Aa (13)
At each time step the input to the ET-block is layer normalized:
g'y = LayerNorm(x') (14)

Let WY € RY*HXD and WK ¢ RY*HXD be the query and key weight matrices, respectively.
Here Y is the projection dimension in the attention operation, H is the number of heads. We define

Konp = ZWCZM 9iB

o (15)
Qanc = Z Wi 9ic
J

If we let h indicate the index of the head, we have
Arlg= > S [WEi Kane woa + Wi Qunc wac| + 3 & r(Y €ugia)  (16)
CeNa h,a H J

where
wea = sof%nax (ﬂZK,yhc Q,yh,A> 17
v

Here (3 controls the temperature of the softmax, N4 stands for the neighbors of node A —a set of
all the nodes connected to node A, r is the ReLU function. Restriction of the attention operation to
the neighborhood of a given node is similar to that used in the Graph Attention Networks (GAT),
see (Velickovic et al.,[2017)). Finally, we have residual connection

xfjl = xy + AxYy (18)
Intuitively, the first term considers the influence (attention score) of the neighbor nodes with respect
to the target node, the second term considers the influence of the target node with respect to each
of its neighbor, and the third term is the contribution of the Hopfield Network module. It can be

shown that the forward pass of our energy-based transformer layer minimizes the following energy
function:

E:—;zzlog( S exp (ﬁZKQhB Q>) S (S ae) 9
C h « J

BeN¢c C,u
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This energy function will decrease as the forward pass progresses until it reaches a local minimum.

After T iterations when the retrieval is stable, we have the final representation for each node gf}‘al as

gt =g [lei” (20)
where || is the concatenation sign. Following Tang et al.|(2022)), we treat anomaly detection as semi-
supervised learning task in this work. The node representation gg“al is fed to another MLP with the
sigmoid function to compute the abnormal probability p 4, weighted log-likelihood is then used to
train the network. The loss function is as follow:

Loss = Z [0’ lalog(pa) + (1 —1a)log(l —pa) 2n
A

where o is the ratio of normal labels (/4 = 0) to anomaly labels ({4 = 1).

B.2 EXPERIMENTAL DETAILS

We train all models for 100 epochs using the Adam optimizer with a learning rate of 0.001, and use
the model with the best Macro-F1 on the validation set for reporting the final results on the test set.
Following [Tang et al.| (2022), we use training ratios 1% and 40% respectively (randomly select 1%
and 40% nodes of the dataset to train the model, and use the remaining nodes for the validation and
testing). These remaining nodes are split 1:2 for validation:testing. The statistics of the datasets are
listed in For the four datasets used in the experiments, Amazon and Yelp datasets can be
obtained from the DGL library, T-Finance and T-Social can be obtained from |Tang et al.|(2022).

Dataset V| |E| Anomaly(%) | Features
Amazon 11944 4398392 6.87% 25
Yelp 45954 3846979 14.53% 32
T-Finance 39357 21222543 4.58% 10
T-Social | 5781065 | 73105508 3.01% 10

Table 3: Summary of all the datasets.

We report the average performance of 5 runs on the test datasets. The hyperparameters of our
model are tuned based on the validation set, selecting the best parameters within 100 epochs. To
speedup the training process, for the large graph datasets T-Finance and T-Social, we sample a
different subgraph to train for each epoch (subgraphs have 5% of the nodes with respect to the whole
training data). The hyperparameters include the number of hidden dimensions in ET-attention Y,
the number of neurons K in the hidden layer within the Hopfield Network Module, the number of
time iterations 7', and the number of heads /7. The weights are learned via backpropagation, which
includes embedding projection E, positional embedding ) 4, softmax inverse temperature parameter
B, ET-attention weight tensors W% and WX The optimal hyperparameters used in are
reported in The last row in that table summarizes the range of the hyperparameter search
that was performed in our experiments. In general, we have observed that for small datasets (Yelp,
Amazon, T-Finance) a 1 or 2 applications of our network is sufficient for achieving strong results,
for larger datasets (T-Social) more iterations (3) are necessary. For even bigger dataset (ImageNet)
our network needs about 12 iterations.

Dataset Y K T H

Amazon (40%) 128 640 1 2
Amazon (1%) 64 128 1 1

Yelp (40%) 128 256 1 1

Yelp (1%) 128 256 1 1
T-Finance (40%) 128 256 1 3
T-Finance (1%) 128 256 1 1
T-Social (40%) 128 256 3 3
T-Social (1%) 128 256 3 3

Range of hyperparameters | {64, 128,256} | {2Y,3Y,4Y,5Y} | {1,2,3} | {1,2,3}

Table 4: Hyperparameters choice of our method on all the datasets.
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C NOTATIONS

Table 3] lists all the notations used in this paper.

Table 5: Notations used in the paper.

Notation Description

F dimension of node’s feature space
D dimension of token space
N number of tokens
Y number of hidden dimensions in the attention
M number of hidden dimensions in the Hopfield Network
T number of recurrent time steps
H number of heads
kp, height of each image patch
ky width of each image patch
P number of pixels per image patch (3 x kp X ky,)
YA input feature vector of node A
XA vector representation of token A
TiA each element of vector representation of token A
gA vector representation of token A after layernorm
giA each element of vector representation of token A after layernorm
K key tensor
Q query tensor

Konp each element of the key tensor K
Qanc each element of the query tensor Q
la label of node A on graph

D ABLATION STUDY FOR ATTENTION AND HOPFIELD NETWORK MODULES

As we described in the main text the the ET network consists of two modules processing the tokens
in parallel: the attention module (ATT) and the Hopfield Network module (HN). The ATT module is
responsible for routing the information between the tokens, while the HN module is responsible for
reinforcing the token representation to be consistent with the general expectation about the particular
data domain. It is interesting to explore the contribution that these two subnetworks produce on the
task performed by the network. In this section we ablate the ET architecture by dropping each of
the two subnetworks and measuring the impact of the ablation on the performance.

D.1 ON GRAPHS

The results on graphs are reported in[Table 6] From this table it is clear that most of the computation
is performed by the ATT block on this task, which pools the information about other tokens to the
token of interest. When ATT block is kept, but HN block is removed the network looses 1% or
less relative to the full ET (occasional improvements of the ablated model compared to the full ET
are within the statistical error bars). In contrast, removing ATT module and keeping only the HN,
the ET network effectively turns into an MLP with shared weights that is recurrently applied. In
this regime the network can only use the features of a given node for that node’s anomalous status
prediction. This results in a more significant drop in performance, which is about 5% on average.

D.2 ONIMAGES

The ablation results for image reconstruction are shown in Each experiment was trained
using the same hyperparameter settings as shown in[Table 2] After training the model on INIK, we
calculate the average MSE on the reconstructed masked tokens for the validation set (using the same
50% masking ratio used for training) across 10 different random seeds for the masking.

We make several conclusions from these ablation studies.

20



Under review as a conference paper at ICLR 2023

Table 6: Ablation study with respect to ATT block and HN Block. Best results are in bold.

Datasets | Split |[ATT/ |HNX ATTXHNV full model (Ours)
Yel 1% 62.5403 ¥ 574405 V(-5.6) 63.0406
p 40% | 70.6405 ¥ T1.2407 V 71.5101
1% | 89.51009 A 874410V 89.340 7
= Amazon | oot | 91 7 0w (1) 887405 V(-4.1) 92.8.0s8
é . 1% | 84.7410 V 80.3406 V(-4.8) 85.1110
g THinance | a0 | 87,400, v 823105 7(-5.9) 88.2110
> T-Social 1% | 79.8406 A 727410 V(-64) 791407
40% | 829410 V¥ 78.64+19 V(-4.9) 83.5404
el T% | 72.9:03 V 674107 V(-5.8) 732108
p 40% | 83.5404 V(-1.4) 831406 V(-1.8) 84.9.03
1% | 90.7408 ¥ 89.8412V 919410
Amazon | 4600 | 968 v 95.7+05 V(-1.6) 97.3:04
Q . 1% | 91.7410 7 90.2408 V(-2.6) 92.8:711
3 T-Finance 40% 943496 ¥V 90.2491 V 95.0130
. 1% | 92.2408 A 86.440.7 V(-5.5) 91.94¢6
T=Social 1 oo | 931,05 ¥ 883113 V(-5.6) 93.9.02

* We gain several insights regarding the use of “self-attention” in our ET (when a token
patch query is allowed to consider itself as a key in the attention weights). When both self-
attention and HN are present (ET-Full+Self), there is no noticeable benefit over ET-Full for
a token to attend to itself. In fact, preventing the ATTN energy module from attending to
itself slightly improves the performance. However, when the HN is removed (ET-NoHN¥*),
we notice that allowing self-attention (ET-NoHN+Self) outperforms the version that pre-
vents self-attention (ET-NoHN).

* On its own, allowing self-attention (ET-NoHN+Self) in the ATTN module performs nearly
as well as the full ET at a fraction of the total parameters. However, MSE is a forgiving
metric for blurry reconstructions. While ATTN can capture the global structure of the

image quite well, it does so at the expense of image sharpness (Figure 4).

* As expected, removal of the ATTN energy module performs the worst, because the HN
operates tokenwise and has no way to aggregate token information across the global image
without ATTN.

shows our best performing model (ET-Full) on the qualitative image reconstructions cor-
responding to the largest errors across IN1K validation images, averaged across all masking seeds.
Likewise, [Figure 10[shows the lowest errors across IN1K validation images and masking seeds. In
general, image reconstructions that require ET to produce sharp, high frequency, and high contrast
lines negatively impact MSE performance.

Table 7: Module ablation tests for image reconstruction task, reporting average IN1K validation
MSE on masked tokens after 100 epochs. Reported number of parameters excludes the constant
number of parameters in the affine encoder and decoder.

Model Has ATTN? Se‘?fl_lzzl? Has HN? (ifg%rsl‘:sk) MSE

ET-Full (Olll’S) X 3. ™ 0.306i0_10
ET-Full+Self 3.7TM 0.31240 10
ET-NoHN+Self X 1.3M 0-343i0.10
ET-NoHN X X 1.3M 0.40340 11
ET-NoATT X 2.5M 0.825.5 20
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Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE:  Avg MSE:
0.854 0.764 0.762 0.76 0.744 0.735 0.735 0.734 0.732 0.731

Figure 9: Reconstruction examples of images with the worst MSE from the IN1k validation set. Top
row: input images where 50% of the patches are masked with the learned MASK token. Middle
row: all tokens reconstructed after 12 time steps. Botfom row: original images.

Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE: Avg MSE:
0.0099 0.0246 0.0269 0. 0.0324 0.0341 0.0389 0.0396 0.0421 0.0423

Figure 10: Reconstruction examples of images with the best (lowest) MSE from the IN1k validation
set. Top row: input images where 50% of the patches are masked with the learned MASK token.
Middle row: all tokens reconstructed after 12 time steps. Botfom row: original images.

E ET FOR HETEROGENEOUS GRAPH

In this section, we show the performance of our ET model in the heterogeneous graph case. For the
heterogeneous graph case (where more than one type of edges exist in the graph), we first run our
ET model for different subgraphs (corresponding to different types of edges), and then aggregate the
final representations using two methods. We have tried max pooling and concatenation for the aggre-
gation step. Max pooling means to pick the largest value across all the subgraph representations, and
concatenation means to concatenate the representations obtained from different subgraphs.
shows the comparison between these two variants of our model and BWGNN (heterogeous case).
ET performs better than heterogeneous BWGNN on Amazon, but loses to heterogeneous BWGNN
on Yelp. Interestingly, BWGNN in the heterogeneous setting performs worse than BWGNN in the
homogeneous setting on Amazon.

F GRAPH CLASSIFICATION WITH ET

As mentioned prior, GNNs have emerged as a popular approach to handle graph-related tasks due to
their effective and automatic extraction of graph structural information. There have been attempts
of leveraging Transformer into the graph domain, but only certain key modules, such as feature
aggregation, are replaced in GNN variants by the softmax attention (2021). However,
the Transformer model has yet to achieved competitive performance on popular leader boards of
graph-level prediction compared to mainstream GNN variants (2021)). In this section we
explain how ET can be used for graph classification.
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Table 8: ET for anomaly detection in heterogeneous graph setting. Best results are in bold.

Datasets | Split | MaxPool Concatenation BWGNN (Heterogenous)
E. Yelp 1% | 61.540.4 61.740.2 67.02
E 40% 70-7:|:0.6 71.110.1 76.96
< 1% 88.3116 874414 83.83
< . .
S AmaZOn | o0 921,05 918400 91.72
el 1% | 722205 72.810.2 76.95
o p 40% | 84.310.4 85.1401 90.54
= 1% | 90.841.4 90.6+1.0 86.59
Amazon | a0 | 975,07 97240 97.42

F.1 DETAILS OF GRAPH CLASSIFICATION ET MODEL

Given a graph G = (V, A), where V. = {v;,vq,...,un} and A € {0,1}V*¥ is the adjacency
matrix of the graph, each feature vector xg € R corresponding to node vg is first projected to the
token space Xp € RP via a linear embedding. Then, the CLS token Xcrs is concatenated to the
set of tokens resulting in X € RW+DXD and the positional embedding A € RV+D*D js added
afterwards.

To obtain the positional embedding A, the adjacency matrix A is first padded in the upper left corner
with ones resulting in Ae {0, 1}(N +1x(N+1) " This particular step provides the CLS token full
connectivity with all of the nodes in the graph. The top k smallest eigen-vectors A € R(IN+TDxk gre
then obtained from the eigen-value decomposition of the unnormalized Laplacian matrix L

L=Dz2AD 2 (22)

and projected to the token space via a linear embedding to form the positional embedding A€
R(N +1)xD .

Meanwhile, the attention in ET is modified to take in A € REX(N+1)X(N+1) the parameterized
adjacency tensor, which acts as the weighted ‘attention mask’ that enables the model to consider

the graph structural information. To obtain A, a 2D-convolutional layer with H filters equals to
the number of heads in the attention block, ‘SAME’ padding, and a stride of 1 is performed on the
outer product of X to itself. The result is then multiplied with A element-wise (denoted by ©) via
broadcasting.

A=Conv2D(X® X)0 A (23)

Altogether, the resulting energy equation is

EATT — f% Z Zlog Z exp (5 Z Kaonp Qanc © AahC’) (24)
h C a

B#£C

Additionally, in this implementation, the overall model is consisted of S vertically stacked ET
blocks, where each block shares the same number of 7' depth and has a different LayerNorm.
Similarly, the token representation X2 at each dynamic step ¢ corresponding to a block ¢ is first
layer-normalized. Keep in mind, X = X*=1: ¢=1 s the initial token representation.

g'’ = LayerNorm(X* ¢) (25)

Following the dynamic equations E], we inject a small amount of noise e ¢ € (0,1), generated
from a normal distribution with standard deviation of 0.02 and zero mean, into the gradient of
energy function to produce X**1: ¢, the new token representation of block £. The premise of this
noise injection is to ‘robustify’ the model and help push it towards a local minimum of the energy
function.
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XHLE= XU~ a(VgER 4 1) (26)
Once stability is reached in the retrieval dynamics of block ¢, the final representation X*=7" ¢ is then
passed on to the next block ¢ 4+ 1 and the whole process is repeated again. When the final token

representation Y = Xt=T: (=5 jg computed by the last block S, the resultant CLS token Yy € R
extracted from Y is utilized as the predictor of the current graph G.

F.2 EXPERIMENTAL EVALUATION

Eight datasets of the TUDataset Morris et al.[(2020) collection are used for experimentation. NCI1, NCI109,
MUTAG, MUTAGENICITY, and FRANKENSTEIN are a common class of graph datasets consists of small
molecules with class labels representing toxicity or biological activity determined in drug discovery projects
Morris et al.|(2020). Meanwhile, DD, ENZYMES, and PROTEINS represent macromolecules. The task for
both DD and PROTEINS is to classify whether a protein is an enzyme. Lastly, for ENZYMES, the task is to
assign enzymes to one of the 6 EC-top-level classes, which reflect the catalyzed chemical reaction | Morris et al.
(2020).

We compare ET with the current state-of-the-art approaches for the mentioned datasets, which include WKPI-
kmeans Zhao & Wang| (2019), WKPI-kcenters Zhao & Wang|(2019), DSGCN [Balcilar et al.| (2020), HGP-SL
Zhang et al.| (2021), U2GNN Nguyen et al.|(2022), and Evolution Graph Classifier (EvoG) [Domingue et al.
(2019). Additionally, approaches that are close to the baselines are included to further contrast the performance
of our model. Following the 10-fold cross validation process delineated in Morris et al.|(2020)), accuracy score
is used as the evaluation metric and reported in Table [0}

Table 9: Performance of all the methods on the graph classification datasets, where additional fea-
tures are used if exist. Following Morris et al.|(2020), mean and standard deviation obtained from 10
runs of 10-fold cross validation are reported and the baselines (standard deviations are only included
if they are available in the prior work). If the entry is unavailable in prior literature it is denoted by
‘-’; best results are in bold. The performance difference between non-baseline approaches (includ-
ing ours) and the baseline (specified by the gray cell in each column) is indicated by V(decrease)
and A (increase) along with the value.

Dataset

Method

PROTEINS NCI1 NCI109 DD ENZYMES MUTAG MUTAGENICITY FRANKENSTEIN
(Xg;ls) 78.540.4 ¥(6.4) 875405 85.910.4 V(1.5) 82.0405 ¥(13.7) - 85.8195 v(14.2)

(k‘c";ﬁlgs) 75.240.4 V(9.7) 8454105 V(3.0) 874103 80.310.4 (15.4) - 88.3126 V(11.7) -

Spec-GN - 84.8116 V(2.7) 83.6105 V(3.8) - 725455 ¥(5.9)

Norm-GN - 849417 V(2.6) 83.5113 7V(3.9) - 73.3180 V(5.1) -

GWL-WL 75840 7(9.1) - 713411 v(7.1) 78.910.3
HGP-SL 84.9.:6 785508 V(9.1) 80.7412 V(6.7) 81.0415 V(14.7) 68.842.1 V(9.6) 82.210.6

DSGCN  77.3104 ¥(7.6) - 784106

U2GNN  80.0432 V(4.9) - 95.7119 88.547.1 V(1L.5) -

NDP 734451 v(11.5) 742417 v(13.3) - 72.845.4 ¥(22.9) 445474 V(34.9) 879457 V(12.1) 77.941.4 V(4.3) -

ASAP  T4.2405 ¥(10.7) T1.540.4 ¥(16.0) 70.1406 ¥(17.3) 76.9407 V(18.8) - 66.3.10.5 ¥(12.6)
EvoG 55.7 v(22.7) 100.0

ET (Ours) 78.9.0.9 ¥(6.0) 83.610.2 ¥(4.0) 824402 ¥(5.0) 84.6505 V(11.1) 93.810.4 A15.4 99.7 ¥(0.3) 88.3.02 46.2  99.9.003 421.0

In general, we have observed that the modified ET demonstrates consistent performance across all datasets that
is near the current state-of-the-art approaches. Based on the statistics of the experimental datasets in table[T0]
ET performs extremely well when trained on large graph datasets (e.g., MUTAGENICITY and FRANKEN-
STEIN). However, with respect to NCI1, NCI109, and DD datasets, there remains an open question on which
graph characteristics (e.g., assortativity and density) impair the performance of the model.

F.3 EXPERIMENTAL DETAILS

In the graph domain, it is common to concatenate all of the feature vectors of all graphs in a batch together.
However, in order for ET to work, we form the batch dimension by separating the feature vectors of all graphs
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in a given batch and utilize the largest node count to pad all graphs such that they all share the same number
of nodes. Additionally, we set a limit on the number of nodes (set as 400) to prevent out-of-memory error.
Specifically, if a graph has a node count exceeding the limit, the number of utilized nodes is equal to the limit.
Hence, a portion of the graph structural information is ignored as a result. However, it is worth mentioning
such a graph is rare in the experimental datasets.

Table 10: Graph classification dataset statistics and properties (additional node attributes are indi-
cated by ‘+’ if exist).

Dataset Graphs Avg. Nodes Avg. Edges Node Attr Classes
MUTAG 188 17.93 19.79 7 2
ENZYMES 600 32.63 62.14 18+3 6
PROTEINS 1113 39.06 72.82 0+4 2
DD 1178 284.32 715.66 89 2
NCI1 4110 29.87 32.30 37 2
NCI109 4127 29.68 32.13 38 2
MUTAGENICITY 4337 30.32 30.77 14 2
FRANKENSTEIN 4337 16.90 17.88 780 2

We train all models for 200 epochs using AdamW |Loshchilov & Hutter| (2017). The best model is selected
based on its performance obtained from the 10-fold cross validation process delineated in|Morris et al.| (2020).
Since the task is classification, all models are trained with the cross-entropy loss function with no temperature.
Additionally, the cosine-annealing with warm-up learning rate scheduler is utilized, where the initial and peak
learning rates are set as 5e — 8 and 0.001, respectively. The number of warm-up steps is set to 30 epochs while
the batch size is 64 for all datasets with the exception of the DD dataset, which requires a batch size of 256 for
faster training time. The whole experiment is implemented using JAXBradbury et al.|(2018), Flax (Heek et al.,
2020), Jraph Godwin* et al.|(2020), and PyTorch Geometric Fey & Lenssen|(2019) packages.

Lastly, we report the average performance of 10 runs on the 10-fold cross validation process with random seed-
ing. The hyperparameters of our model are tuned based on the performance of the cross validation, selecting
within 100 epochs. The optimal hyper-parameters are reported in table[TT]and the statistics of the used datasets
are reported in table[I0]

Table 11: Hyperparameter and architecture choices for ET during graph classification training ex-
periments.

Training Architecture

batch_size 64 token_dim 128
batch_sizepp 256 num_heads 12
epochs 200 head_dim 64
Ir le-3 8 \/%
warmup-epochs 30 train_betas No
start & end Ir Se-7 step size a 0.01
bl, b2 (ADAM) | 0.9, 0.99 k eigenvalues 15

weight_decay 0.05 depth 2

grad_clipping None block _size 2

kernel_size [3, 3]
dilation_size [1, 1]
hidden_dim HN 512
bias in HN None
bias in ATT None
bias in LNORM Yes
no. of params | 530,084
no. of params per block | 262,929

G FORMAL ALGORITHM

We describe the algorithm for the training and inference of ET in assuming backpropagation
through time using SGD. Symbols not defined in the algorithm itself are reported in We define the
Infer function to operate independently over each item in a batch.
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H PARAMETER COMPARISON

The energy function enforces symmetries in our model, which means ET has fewer parameters than its ViT
counterparts. In particular, ET has no “Value Matrix” W in the attention mechanism, and the HN module
has only one of the two matrices in the standard MLP of the traditional Transformer block. We report these
differences in We take the ET configuration used in this paper, which has an architecture fully
comparable to the original ViT-base (Dosovitskiy et al.| 2021) with patch_size=16, and report the number
of parameters against ViT-base and an “ALBERT” version of ViT (Lan et al., |2020) where a single ViT block
is shared across layers. We saw no benefit when including biases in ET, so we also exclude the biases from
the total parameter count in the configuration of ViT and ALBERT-ViT. We report both the total number of
parameters and the number of parameters per Transformer block.

Table 12: Comparison between the number of parameters in a standard ViT, an ALBERT version of
ViT where standard Transformer blocks are shared across layers, and our ET. Comparison is done
assuming no biases in any operation.

Model NParams g:;al;f:ks)
ViT-Base 86.28M  v0.00% 7.08M  v0.00%
ALBERT _ViT-Base | 8.41M 90.25% 7.08M  v0.00%
ET 4.8™ 94.36% | 3.54M 50.02%
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Algorithm 1: Training and inference pseudocode of ET for image reconstruction task

HyperParameters
a: Energy descent stepsize
e: Learning rate
p: Token mask probability
b: batch size

Parameters
¢ € RM*P: Kernel of Hopfield Network

MASK € RP: Mask token
Opos € RN*P: position bias, added to each token

Infer
Inputs
L Corrupted image tokens Xe
Add position biases: X < X 4 Gpos;
for timesteps t = 1,...,7 do
Normalize each token:

RNXD

g — Layel"NOI"m(X; “Ynorm 5norm);
Calculate Energy of tokens:

X« X —aV;E;
N return X

Train
Inputs

Initialize
Randomly initialize from N (0, 0.02):

Set other biases to zero: denc, ddec, Onorm — 0
B Set LayerNorm scale to one: ynorm <— 1
for epochn =1, ..., Nepoch do
Sepoch — Slrain
for batch B C Sepoch
do

Bpateh < Patchify(B);
Embed image patches into tokens:

X < Encode(Bpach; Wenc, denc)s

X, Inask < Mask(X; MASK, p)
Reconstruct tokens with ET:

X < Infer(X)
Decode tokens:

Calculate MSE loss on corrupted tokens:

params <— params — €V params L
Sepoch = Sepoch \ B

return params

Ynom € R, dnorm € RP: Scale, bias of LayerNorm

Wene € REXP 6 € RP: Kernel, bias of affine Encoder
Wiaee € RPXFP 54 € RP: Kernel, bias of affine Decoder

E + EnergyTransformer(§; WX W& ¢);

L Dataset Sain With elements X € [Rehannelsxheight>width

WKa WQ7 67 MASK7 Wenc, chlec7 6})05 ~ ./\/‘(O7 002)

Convert image into non-overlapping patches:

Replace image tokens randomly by MASK:

Bpalch — DeCOde(X[Imaskk Wd€C7 6dec);

L+ Mean(‘Bpatch [Imask] - Bpatch [Imask] |2)

WHE ¢ RY*XHXD W@ ¢ RYXHXD: Key Query kernels of the Energy Attention

g e

EeR

B c Rb X channels X height X width

Bpalch c RbXNXP
X c RbXNXD

X c RbXNXD,ImaSk c {0,1}bXN

> bXNXP
Bpalch S R

LeR
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