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ABSTRACT

We propose a novel formulation for dictionary learning with an overcomplete
dictionary, i.e., when the number of atoms is larger than the dimension of the
dictionary. The proposed formulation consists of a weighted sum of ℓ1 norms
of the rows of the sparse coefficient matrix plus the log of the matrix volume of
the dictionary matrix. The main contribution of this work is to show that this
novel formulation guarantees global identifiability of the overcomplete dictionary,
under a mild condition that the sparse coefficient matrix satisfies a strong scattering
condition in the hypercube. Furthermore, if every column of the coefficient matrix
is sparse and the dictionary guarantees ℓ1 recovery, then the coefficient matrix is
identifiable as well. This is a major breakthrough for not only dictionary learning
but also general matrix factorization models as identifiability is guaranteed even
when the latent dimension is higher than the ambient dimension. We also provide a
probabilistic analysis and show that if the sparse coefficient matrix is generated
from the widely adopted sparse-Gaussian model, then the 𝑚 × 𝑘 overcomplete
dictionary is globally identifiable if the sample size is bigger than a constant
times (𝑘 2/𝑚) log(𝑘 2/𝑚) with overwhelming probability. Finally, we propose an
algorithm based on alternating minimization to solve the new proposed formulation.

1 INTRODUCTION

Dictionary learning (DL) amounts to factor a data matrix as 𝑿 = 𝑨𝑺 where 𝑺 is sparse (Tošić &
Frossard, 2011), which may also be known as sparse coding (Olshausen & Field, 1997) or sparse
component analysis (Georgiev et al., 2005) in various fields. Treating 𝑿 ∈ R𝑚×𝑛 or C𝑚×𝑛 as a
collection of data samples as its columns, this factorization means that each sample is a sparse
combination of the columns of 𝑨, or in other words atoms of the dictionary. Unlike the task of
compressive sensing or sparse vector recovery, in which case the dictionary matrix 𝑨 is given,
dictionary learning tries to find both 𝑨 and 𝑺 , therefore the problem is a lot more challenging.
Depending on the shape of the dictionary matrix 𝑨, we may seek to find a complete dictionary if 𝑨 is
square or an overcomplete dictionary if 𝑨 is wide. In this paper we focus on overcomplete dictionary
learning, therefore 𝑨 ∈ R𝑚×𝑘 and 𝑺 ∈ R𝑘×𝑛 (or C𝑚×𝑘 and C𝑘×𝑛 , respectively) where 𝑚 < 𝑘 .

Dictionary learning has found numerous applications in signal denoising (Elad & Aharon, 2006),
audio coding (Plumbley et al., 2009), and medical imaging (Tošić et al., 2010), to name just a
few. On the theory side, most of the existing works have focused on algorithm design. Famous
algorithms include 𝑘 -SVD (Aharon et al., 2006a) and online dictionary learning (Mairal et al., 2009),
among numerous other algorithms based on generic nonconvex algorithm design with guarantee of
convergence to a stationary point. More recently, there has appeared a line of research that attempts to
show global optimality for dictionary learning under more restrictive assumptions, such as (Spielman
et al., 2012; Agarwal et al., 2016; Arora et al., 2014; 2015; Sun et al., 2016a;b; Rambhatla et al.,
2019; Bai et al., 2019; Zhai et al., 2020a;b; Shen et al., 2020; Tolooshams & Ba, 2022).
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1.1 PRIOR WORK ON IDENTIFIABILITY OF DL

A matrix factorization model without any additional assumptions on the latent factors is known to
be not unique, since we can always “insert” an invertible matrix𝑾 and𝑾 −1 as 𝑿 = �̃��̃� where
�̃� = 𝑨𝑾 −1 and �̃� =𝑾𝑺 , and one cannot distinguish whether 𝑺 or �̃� are the groundtruth sources.
Furthermore, if the dictionary 𝑨 is overcomplete with 𝑚 < 𝑘 , columns of �̃� could include additional
components that are orthogonal to the row space of 𝑨, i.e., �̃� =𝑾 (𝑺 + 𝑩) where 𝑨𝑩 = 0, while we
still have 𝑿 = 𝑨𝑺 = 𝑨𝑾 −1𝑾 (𝑺 + 𝑩) = �̃��̃� . If, however, a learning criterion 𝑞 (𝑨,𝑺 ) is imposed
so that the resulting ambiguities can only be permutations and scaling, then we say the model is
identifiable, as is formalized as follows. Notice that we differentiate the identifiability of just the
dictionary 𝑨 and the whole factorization model, which is indeed not equivalent when the dictionary
is overcomplete.
Definition 1 (Identifiability). Consider the generative model 𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮ and 𝑺 ♮ are the
groundtruth latent factors. Let (𝑨★,𝑺★) be optimal for an identification criterion 𝑞

(𝑨★,𝑺★) = arg min
𝑿 =𝑨𝑺

𝑞 (𝑨,𝑺 ).

If 𝑨♮ and/or 𝑺 ♮ satisfy some condition such that for any (𝑨★,𝑺★), there exist a permutation matrix
𝜫 and a diagonal matrix 𝑫 such that 𝑨♮ = 𝑨★𝑫𝜫 , then we say 𝑨♮ is essentially identifiable, up to
permutation and scaling, under that condition; if we further have that 𝑺 ♮ = 𝜫⊤𝑫−1𝑺★, then we say
that the matrix factorization model is essentially identifiable, up to permutation and scaling, under
that condition.

When dictionary learning was first proposed, a common learning criterion 𝑞 (𝑨,𝑺 ) is simply the total
number of nonzeros in 𝑺 , sometimes also called the ℓ0 (pseudo-)norm ∥𝑺 ∥0. If every column of 𝑺 ♮ is
𝑠 -sparse, then via some combinatorial calculation, it has been shown that the ℓ0-norm minimization
criterion guarantees identifiability if the spark of 𝑨 is at least 2𝑠 and the sample size 𝑛 is𝑂 ((𝑠 +1)

(𝑘
𝑠

)
)

(Aharon et al., 2006b; Hillar & Sommer, 2015; Garfinkle & Hillar, 2019). The main drawback is that
the required sample size 𝑛 is usually too large to be practical. Cohen & Gillis (2019) reduced the
sample complexity down to𝑂 (𝑘 3/(𝑘 − 𝑠 )2), but also restricted the dictionary to be complete, i.e.,
𝑚 ≥ 𝑘 .

Another famous learning criterion for DL, inspired by the success of compressive sensing (Donoho,
2006; Candès & Wakin, 2008), is the following formulation with 𝑞 (𝑨,𝑺 ) being the summation of the
absolute values of 𝑺 plus indicator functions that columns of 𝑨 have bounded ℓ2 norms:

minimize
𝑨,𝑺

∥𝑺 ∥1 subject to 𝑿 = 𝑨𝑺 , ∥𝑨𝒆𝑐 ∥2 ≤ 1, 𝑐 = 1, . . . , 𝑘 . (1)

Identifiability results based on the ℓ1 norm formulation have been predominantly local, meaning the
model is identifiable within a neighborhood of the groundtruth factors (𝑨♮,𝑺 ♮), while the dictionary
is restricted to be complete (and incoherent) (Gribonval & Schnass, 2010; Wu & Yu, 2017; Wang
et al., 2020), with the sole exception of (Geng & Wright, 2014) for overcomplete DL. The advantage
is that the sample size requirement is typically down to𝑂 (𝑘 log𝑘 ) and allows the existence of dense
outliers. Global identifiability is achieved by Hu & Huang (2023a); Sun & Huang (2024) by using
a matrix volume criterion | det𝑨 | while constraining the ℓ1 norms of the rows of 𝑺 with the same
sample complexity, although as the criterion suggests it only applies to complete dictionaries.

1.2 THIS PAPER

In this paper, we propose the following novel formulation for overcomplete dictionary learning, and
show that global identifiability can be achieved under mild conditions:

minimize
𝑨,𝑺

1
2

log det𝑨𝑨⊤+ max
∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺 ∥1 subject to 𝑿 = 𝑨𝑺 (2)

This means the learning criterion 𝑞 (𝑨,𝑺 ) consists of two parts: a weighted sum of the ℓ1 norms of
the rows of 𝑺 and a term that is proportional to the “volume” of the dictionary matrix 𝑨—for an
overcomplete dictionary, the volume is defined as det𝑨𝑨⊤ (Ben-Israel, 1992). Our contributions are
as follows:
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1. We give a deterministic characterization of global identifiability of overcomplete dictionary
learning via solving (2). Our analysis shows that a sufficient condition is that 1) every
column of 𝑺 ♮ is at most 𝑠 -sparse and 𝑨 is a dictionary that guarantees exact recovery of all
𝑠 -sparse vectors via ℓ1 minimization, and 2) the cellular hull of 𝑺 ♮ is 𝑚-sufficiently scattered
in the 𝑘 -hypercube [−1, 1]𝑘 . The resulting identifiability condition is almost minimal: the
first condition is obviously necessary as otherwise 𝑺 ♮ would not be identifiable even if the
overcomplete 𝑨♮ is correctly recovered; the second condition is a slightly stronger condition
than that of complete dictionary learning. It is appealing to see that no other conditions are
needed to guarantee global identifiability.

2. We further provide a probabilistic characterization of when a randomly generated factor
matrix satisfies the aforementioned identifiability conditions. Since we only require 𝑨♮

to guarantee exact recovery of 𝑠 -sparse vectors via ℓ1 minimization, for which there exist
numerous work on this topic (such as when an i.i.d. Gaussian matrix satisfies the restricted
isometry property with high probability), we will be focusing on studying the sample
complexity of 𝑺 . We adopt the sparse-Gaussian model, i.e., every column contains at most
𝑠 nonzero values that are drawn from i.i.d. standard normal and show that the resulting 𝑺
satisfies the 𝑚-strongly scattered in the 𝑘 -hypercube [−1, 1]𝑘 with overwhelming probability
if 𝑘 < 𝑚 and 𝑛 is𝑂 ((𝑘 2/𝑚) log(𝑘 2/𝑚)). Notice that it is again a sharp generalization of
complete dictionary learning with sample complexity𝑂 (𝑘 log(𝑘 )) (Hu & Huang, 2023a),
and a factor of 𝑘 better than the works that focus on global optimality guarantees of
overcomplete DL (Agarwal et al., 2016; Rambhatla et al., 2019).

3. We propose an alternating minimization algorithm for the novel identification criterion of
overcomplete DL. The formulation is first modified slightly by moving the exact factorization
constraint as a data fidelity term in the objective function, then the overcomplete dictionary
and the sparse coefficient matrices are updated alternatingly via a gradient-type step. As
the problem is NP-hard, no known algorithm is able to guarantee convergence to a global
optimum. The proposed algorithm is applied to synthetically generated data to demonstrate
that global identifiability can indeed be guaranteed via solving (2).

2 IDENTIFIABILITY ANALYSIS

In this section, we provide analysis on when solving (2) guarantees the exact recovery of the
overcomplete dictionary 𝑨♮ and/or the sparse coefficient matrix 𝑺 ♮. In Definition 1 we mentioned that
it is acceptable to recover 𝑨♮ up to column permutation and scaling. While column permutation does
not affect the objective value of (2), column scaling does. Therefore, we first study the optimal scaling
that is induced from solving (2), which provides important insights into the subsequent analysis of
identifiability. We provide both a deterministic condition and a probabilistic generative model that
guarantees identifiability with overwhelming probability.

2.1 OPTIMAL SCALING

Lemma 1. Let (𝑨★,𝑺★) be an optimal solution of (2), then

∥𝒆⊤𝑐𝑺★∥1 =

√︂[
𝑨⊤★

(
𝑨★𝑨⊤★

)−1
𝑨★

]
𝑐𝑐

= 𝑑★𝑐 , 𝑐 = 1, . . . , 𝑘 . (3)

where 𝑑★𝑐 are the optimal weights that reach the maximum of
∑

𝑐 𝑑𝑐 ∥𝒆⊤𝑐𝑺★∥1.

Proof. If (𝑨★,𝑺★) is feasible for (2), then so is (𝑨★𝜳 ,𝜳 −1𝑺★) where𝜳 is a diagonal matrix with
𝑐 th diagonal entry 𝜓𝑐 . Plugging (𝑨★𝜳 ,𝜳 −1𝑺★) into the objective of (2) and optimize with respect
to𝜳 while fixing (𝑨★,𝑺★), then𝜳 = 𝑰 should be an optimal solution. Taking the derivative with
respect to 𝜓𝑐 and setting it equal to zero, we get

𝒂⊤𝑐

(
𝑨★𝜳

2𝑨⊤★

)−1
𝒂𝑐𝜓𝑐 − 𝑑𝑐 ∥𝒆⊤𝑐𝑺★∥1/𝜓2

𝑐 = 0,

where 𝒂⊤𝑐 is the 𝑐 th row of 𝑨★. If 𝜓𝑐 = 1 is optimal, then we must have

𝑑𝑐 ∥𝒆⊤𝑐𝑺★∥1 =

[
𝑨⊤★

(
𝑨★𝑨

⊤
★

)−1
𝑨★

]
𝑐𝑐
. (4)
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To maximize
∑

𝑐 𝑑𝑐 ∥𝒆⊤𝑐𝑺★∥1 subject to ∥𝒅 ∥22 = 𝑚, we know from the Cauchy-Schwarz inequality
that 𝑑★𝑐 should be chosen as some scalar 𝛼 times ∥𝒆⊤𝑐𝑺★∥1 such that

∥𝒅★∥22 =

𝑘∑︁
𝑐=1

𝛼2∥𝒆⊤𝑐𝑺★∥21 = 𝑚.

Plugging 𝑑★𝑐 = 𝛼∥𝒆⊤𝑐𝑺★∥1 into (4) and sum over 𝑐 = 1, . . . , 𝑘 shows

𝑘∑︁
𝑐=1

𝛼∥𝒆⊤𝑐𝑺★∥21 =

𝑘∑︁
𝑐=1

[
𝑨⊤★

(
𝑨★𝑨

⊤
★

)−1
𝑨★

]
𝑐𝑐

= Tr𝑨⊤★
(
𝑨★𝑨

⊤
★

)−1
𝑨★ = Tr

(
𝑨★𝑨

⊤
★

)−1
𝑨★𝑨

⊤
★ = 𝑚.

This means 𝛼 = 1, and therefore (3) holds. □

2.2 IDENTIFIABILITY ANALYSIS

Assumption 1. The columns of 𝑨♮ and rows of 𝑺 ♮ are scaled and counter-scaled to satisfy:

∥𝒆⊤𝑐𝑺 ♮∥1 =

√︄[
𝑨⊤
♮

(
𝑨♮𝑨

⊤
♮

)−1
𝑨♮

]
𝑐𝑐

, 𝑐 = 1, . . . , 𝑘 . (5)

Assumption 2. Rows of 𝑨♮ and 𝑺 ♮ are both linearly independent. Matrix 𝑨♮ does not contain zero
columns.
Assumption 3 (𝑚-strongly scattered in the 𝑘 -hypercube). Let C𝑘 denote the 𝑘 -hypercube C𝑘 = {𝒙 ∈
R𝑘 | ∥𝒙 ∥∞ ≤ 1}. Define B𝑚 as the following set

B𝑚 =
{
Diag(∥𝒒1∥2, . . . , ∥𝒒𝑘 ∥2)†𝑸𝒑 | ∀𝑸 ∈ R𝑘×𝑚 : 𝑸⊤𝑸 = 𝑰 , 𝒑 ∈ R𝑚 : ∥𝒑 ∥2 = 1

}
,

where 𝒒𝑐 denotes the 𝑐 th row of 𝑸 . A set S ∈ R𝑘 is 𝑚-strongly scattered in the 𝑘 -hypercube if:

1. B𝑚 ⊆ S ⊆ C𝑘 ;

2. 𝜕B𝑚∩𝜕S = {Diag(∥𝒒1∥2, . . . , ∥𝒒𝑘 ∥2)†𝑸𝒒/∥𝒒 ∥2 | 𝒒 are rows of 𝑸 with 𝑸⊤𝑸 = 𝑰 }, where
𝜕 denotes the boundary of the set.

The definition of the set B𝑚 involves all 𝑘 ×𝑚 matrices with orthonormal columns𝑸 and normalized
𝑚-vectors 𝒑 . To see that B𝑚 is indeed a subset of C, notice that the rows of𝜳𝑸 are either zero or
unit norms by construction, so all elements of the vector𝜳𝑸𝒑 are in [−1, 1] using Cauchy-Schwarz
inequality. Assumption 3 is equivalent to the sufficiently scattered condition proposed by Hu &
Huang (2023a) when 𝑚 = 𝑘 , and more restrictive when 𝑚 < 𝑘 . As we will see, such restriction will
be useful to establish identifiability for overcomplete DL. The sufficiently scattered condition has
many variations for various identifiable unsupervised learning models, such as nonnegative matrix
factorization (Huang et al., 2013; Fu et al., 2015; Huang et al., 2016; 2018), simplicial representation
learning (Fu et al., 2015; Lin et al., 2015; Huang & Fu, 2019), and bounded component analysis (Tatli
& Erdogan, 2021; Hu & Huang, 2023b; 2024). However, to the best of our knowledge, this is the first
variation that is capable of guaranteeing identifiability when the latent dimension is higher than the
ambient dimension. An illustration of 2-strongly scattered in the 3-hypercube is shown on the right
of Figure 1, compared with 3-strongly scattered on the left, which is equivalent to the sufficiently
scattered condition presented by Hu & Huang (2023a).

Assumption 3 will be imposed on the cellular hull of 𝑺 ♮, which is defined as follows:
Definition 2 (Cellular hull). The cellular hull of a finite set of vectors {𝒔 1, . . . , 𝒔𝑛 }, stacked as the
columns of the matrix 𝑺 , is

cell(𝑺 ) =
{
𝑺𝜽

���� ∥𝜽 ∥∞ ≤ 1
}
.

Consider the groundtruth sparse coefficient matrix 𝑺 ♮, if we rescale its rows to have unit ℓ1 norms,
denoted as �̃� ♮, then cell(�̃� ♮) ⊆ C𝑘 due to Hölder’s inequality |𝒂⊤𝒃 | ≤ ∥𝒂 ∥1∥𝒃 ∥∞. For identifiability
of overcomplete DL, we would require cell(�̃� ♮) to be 𝑚-strongly scattered in the 𝑘 -hypercube, as
formally stated as follows:
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Figure 1: An illustration of B2 in R3 on the right. In comparison, B3 in R3 is the Euclidean ball
illustrated on the left. While B3 touches the boundary of [−1, 1]3 at only 6 points ±𝒆1,±𝒆2, and ±𝒆3,
B2 touches each face of [−1, 1]3 at a circle with radius 1, as shown in magenta on the right. In the
context of dictionary learning, a 3 × 3 complete dictionary is identifiable if cell(𝑺 ♮) ⊇ B3, shown on
the left, while a 2 × 3 overcomplete dictionary is identifiable if cell(𝑺 ♮) ⊇ B2, shown on the right.

Theorem 1. Consider the overcomplete DL model 𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮ ∈ R𝑚×𝑘 is the groundtruth
mixing matrix and 𝑺 ♮ ∈ R𝑘×𝑛 is the groundtruth sparse coefficient matrix. Suppose 𝑨♮ and 𝑺 ♮ satisfies
Assumptions 1 and 2. Furthermore, let �̃� ♮ denote the matrix obtained from rescaling the rows of 𝑺 ♮
to have unit ℓ1 norms, and assume that cell(�̃� ♮) is 𝑚-strongly scattered in the 𝑘 -hypercube. Then
for any solution of (2), denoted as (𝑨★,𝑺★), there exist a permutation matrix 𝜫 and a diagonal
matrix 𝑫 such that 𝑨♮ = 𝑨★𝑫𝜫 . In other words, an overcomplete dictionary 𝑨♮ is identifiable if the
groundtruth 𝑨♮ and 𝑺 ♮ satisfies Assumptions 1, 2, and cell(�̃� ♮) satisfies Assumption 3.

Proof sketch. Assumption 2 asserts that rows of 𝑨♮ are linearly independent, so there exists a 𝑘 ×𝑚
matrix 𝑸 with orthonormal columns that spans the row space of 𝑨♮, then 𝑸⊤𝑸 = 𝑰 and

𝑸𝑸⊤ = 𝑨⊤
♮

(
𝑨♮𝑨

⊤
♮

)−1
𝑨♮.

Using the diagonal matrix 𝑫 ♮, which is defined as

[𝑫 ♮]𝑐𝑐 =

√︄[
𝑨⊤
♮

(
𝑨♮𝑨

⊤
♮

)−1
𝑨♮

]
𝑐𝑐

, 𝑐 = 1, . . . , 𝑘 , (6)

and 𝒒⊤𝑐 as rows of 𝑸 defined in Assumption 3, we have

[𝑫 ♮]𝑐𝑐 = ∥𝒆⊤𝑐𝑺 ♮∥1 =
√︁
[𝑸𝑸⊤]𝑐𝑐 = ∥𝒒𝑐 ∥2. (7)

For two wide 𝑘 × 𝑛 matrices 𝑺 ♮ and 𝑺★, there exist a 𝑘 × 𝑘 matrix𝑾 and 𝑘 × 𝑛 matrix 𝑩 such that
𝑺★ =𝑾𝑺 ♮ + 𝑩 ,

where𝑾 = 𝑺†
♮
𝑺★ and rows of 𝑩 are in the null space of 𝑺 ♮, i.e., 𝑺 ♮𝑩⊤ = 0. Denote𝒘⊤𝑐 and 𝒃⊤𝑐 as the

𝑐 th row of𝑾 and 𝑩 , respectively, then

∥𝒆⊤𝑐𝑺★∥1 = ∥𝒘⊤𝑐𝑺 ♮ + 𝒃⊤𝑐 ∥1 ≥ 𝒘⊤𝑐𝑺 ♮𝜽 + 𝒃⊤𝑐𝜽 = 𝒘⊤𝑐𝑫 ♮�̃� ♮𝜽 + 𝒃⊤𝑐𝜽 , ∀∥𝜽 ∥∞ ≤ 1.

If cell(�̃� ♮) is 𝑚-strongly scattered in the 𝑘 -hypercube, then for all ∥𝒑 ∥2 = 1 we can find a ∥𝜽 ∥∞ such
that 𝑫−1

♮
𝑸𝒑 = �̃� ♮𝜽 . In Appendix A we show that ∥𝒆⊤𝑐𝑺★∥1 = ∥𝒘⊤𝑐𝑺 ♮∥1, as a result,

∥𝒆⊤𝑐𝑺★∥1 = ∥𝒘⊤𝑐𝑺 ♮∥1 = ∥𝒘⊤𝑐𝑫 ♮�̃� ♮∥1 ≥ 𝒘⊤𝑐𝑫 ♮𝑫
−1
♮
𝑸𝒑 = 𝒘⊤𝑐𝑸𝒑 , ∀∥𝒑 ∥2 = 1.

Choose 𝒑 = 𝑸⊤𝒘 𝑐/∥𝑸⊤𝒘 𝑐 ∥2, we have ∥𝒆⊤𝑐𝑺★∥1 ≥ ∥𝑸⊤𝒘 𝑐 ∥2. Square both sides and sum over
𝑐 = 1, . . . , 𝑘 , we get

∥𝑸⊤𝑾⊤∥2F =

𝑘∑︁
𝑐=1

∥𝑸⊤𝒘 𝑐 ∥22 ≤
𝑘∑︁
𝑐=1

∥𝒆⊤𝑐𝑺★∥21 = Tr𝑨⊤★
(
𝑨★𝑨

⊤
★

)−1
𝑨★ = 𝑚. (8)

5



Published as a conference paper at ICLR 2025

Since both (𝑨♮,𝑺 ♮) and (𝑨★,𝑺★) are feasible, 𝑿 = 𝑨♮𝑺 ♮ = 𝑨★𝑺★ = 𝑨★ (𝑾𝑺 ♮ + 𝑩). Multiplying both
sides by 𝑺†

♮
gives

𝑨♮ = 𝑨♮𝑺 ♮𝑺
†
♮
= 𝑨★ (𝑾𝑺 ♮ + 𝑩)𝑺†♮ = 𝑨★𝑾 .

Then we have

log det𝑨★𝑨
⊤
★ ≥ log det𝑨♮𝑾

† (𝑾 †)⊤𝑨⊤
♮
= log det𝑨♮𝑨

⊤
♮
+ log det𝑸⊤𝑾 † (𝑾 †)⊤𝑸 (9)

where the first inequality is shown in Appendix A. Regarding the second term, we have

log det𝑸⊤𝑾 † (𝑾 †)⊤𝑸 ≥ − log det𝑸⊤𝑾⊤𝑾𝑸 (10a)

≥ −𝑚 log
1
𝑚
∥𝑸⊤𝑾⊤∥2F, (10b)

where (10a) and (10b) are shown Appendix A. Combining (8), (9), and (10) shows that

log det𝑨★𝑨
⊤
★ ≥ log det𝑨♮𝑨

⊤
♮
. (11)

On the other hand, since (𝑨★,𝑺★) is optimal for (2), we have

1
2

log det𝑨★𝑨
⊤
★ + max

∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺★∥1 ≤
1
2

log det𝑨♮𝑨
⊤
♮
+ max
∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺 ♮∥1.

Lemma 1 and Assumption 1 shows that

max
∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺★∥1 = max
∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺 ♮∥1 = 𝑚,

therefore
log det𝑨★𝑨

⊤
★ ≤ log det𝑨♮𝑨

⊤
♮

(12)

Combining (11) and (12) shows that 𝑨♮ when scaled according to Assumption 1, or any of its column
permutation and/or sign flips, is optimal for (2). In Appendix A, we complete the proof that the second
requirement of 𝑚-strongly scattered in the 𝑘 -hypercube guarantees that every solution must satisfy
𝑨♮ = 𝑨★𝑫𝜫 , where 𝑫 is a diagonal matrix with only ±1 on the diagonal, hence the overcomplete
dictionary is identifiable. □

Our analysis so far has not explicitly mentioned the sparsity of 𝑺 ♮, which may seem somewhat
counter-intuitive. The explanation is two-fold: in the next subsection, we will show that if 𝑺 ♮ follows
a sparse generative model, then cell(�̃� ♮) will be 𝑚-strongly scattered in the 𝑘 -hypercube with very
high probability, thus sparsity is implicitly implied in Assumption 3. In particular, our analysis shows
that it is necessary that every column of 𝑺 ♮ contains no more than 𝑚 nonzeros. On the other hand,
Theorem 1 only shows that the dictionary 𝑨♮ is identifiable, but for an overcomplete dictionary it does
not necessarily mean that the sparse coefficient 𝑺 ♮ is identifiable. Fortunately, with the knowledge
of the dictionary, the identifiability of the sparse coefficients has been studied extensively (Donoho,
2006; Candès & Wakin, 2008). Here we provide a general result.

Assumption 4. Every column of 𝑺 ♮ contains at most 𝑠 nonzeros. In addition, 𝑨♮ is a dictionary such
that for every 𝒔 0 with no more than 𝑠 nonzeros, 𝒔 0 is the unique solution to the following optimization
problem

minimize
𝒔

∥𝒔 ∥1 subject to 𝑨♮𝑫
−1
♮
𝒔 = 𝑨♮𝑫

−1
♮
𝒔 0,

where 𝑫 ♮ is a diagonal matrix with 𝑐 th diagonal defined in (6).

Corollary 1. Consider the overcomplete DL model 𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮ ∈ R𝑚×𝑘 is the groundtruth
mixing matrix and 𝑺 ♮ ∈ R𝑘×𝑛 is the groundtruth sparse coefficient matrix. Suppose 𝑨♮ and 𝑺 ♮ satisfies
Assumptions 1–4. Then for any solution of (2), denoted as (𝑨★,𝑺★), there exist a permutation matrix
𝜫 and a diagonal matrix 𝑫 such that 𝑨♮ = 𝑨★𝑫𝜫 and 𝑺 ♮ = 𝜫⊤𝑫−1𝑺★.
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Proof. Theorem 1 shows that 𝑨♮ is identifiable if Assumption 1–3 are satisfied. Assumption 4
guarantees that 𝑺 ♮ is uniquely determined if 𝑨♮ is given. To see this, we fix 𝑨 = 𝑨♮ in (2). From
Lemma 1, we know that the optimal 𝒅 should be the diagonal of𝑫 ♮ as defined in Assumption 4. Then
optimizing (2) with respect to 𝑺 is equivalent to the following problem with a change-of-variable
�̃� = 𝑫 ♮𝑺

minimize
�̃�

∥�̃� ∥1 subject to 𝑿 = 𝑨♮𝑺 ♮ = 𝑨♮𝑫
−1
♮
�̃� .

If every column of 𝑺 ♮ is at most 𝑠 -sparse, then the optimal �̃�★ = 𝑫 ♮𝑺 ♮, therefore 𝑺★ = 𝑺 ♮. The result
still holds if columns of 𝑨♮ are permuted and/or multiplied with ±1. □

2.3 SAMPLE COMPLEXITY ANALYSIS

Theorem 1 states that an overcomplete dictionary 𝑨♮ is identifiable if Assumptions 1–3 are satisfied.
Assumptions 1 and 2 are quite easy to satisfy, as it is very reasonable to assume that rows of wide
matrices 𝑨♮ and 𝑺 ♮ are linearly independent, and given any 𝑨♮ and 𝑺 ♮ one can always find the scaling
to satisfy (5). The most crucial condition is Assumption 3, or the fact that cell(�̃� ♮) is 𝑚-strongly
scattered in the 𝑘 -hypercube. In this section we assume that a sparse coefficient matrix 𝑺 is generated
from the sparse-Gaussian model, which has appeared in (Wu & Yu, 2017; Wang et al., 2020), and
show that in this case Assumption 3 is satisfied with high probability. This is a different generative
model than prior works that also use a volume criterion for complete DL (Hu & Huang, 2023a; Sun &
Huang, 2024), in which a Bernoulli-Gaussian model is considered. This is because such a generative
model cannot guarantee that every column of 𝑺 is at least 𝑠 -sparse, thus Corollary 1 cannot be invoked
to identify both 𝑨♮ and 𝑺 ♮.

Assumption 5 (Sparse-Gaussian model). The matrix 𝑺 ∈ R𝑘×𝑛 is generated from a sparse-Gaussian
model with parameter 𝑠 < 𝑘 , denoted as 𝑺 ∼ SG(𝑠 ), if every column of 𝑺 is independently and
identically distributed from the following process: a subset I of size 𝑠 is uniformly drawn from all
size-𝑠 subsets of {1, . . . , 𝑘 }, let 𝒔 ∈ R𝑘 be such that 𝑠𝑖 = 0 if 𝑖 ∈ I and 𝑠𝑖 ∼ N(0, 1) if 𝑖 ∉ I, where
N(0, 1) stands for a standard normal distribution.

To check whether B𝑚 ⊆ cell(�̃� ), where �̃� is obtained from scaling its rows to have unit ℓ1 norms, it
is easier to equivalently check its polar version cell(�̃� )◦ ⊆ B◦𝑚 , where the polar of set S is defined as
S◦ = {𝒙 | 𝒙⊤𝒚 ≤ 1,∀𝒚 ∈ S}. For cell(�̃� ), its polar has a relatively simple form

cell(�̃� )◦ =
{
𝒘 | ∥𝒘⊤̃𝑺 ∥1 ≤ 1

}
.

The polar for B𝑚 has a more complicated form

B◦𝑚 =
{
𝒘 | ∥𝑸⊤Diag(∥𝒒1∥2, . . . , ∥𝒒𝑘 ∥2)†𝒘 ∥2 ≤ 1, ∀𝑸⊤𝑸 = 𝑰

}
.

Therefore, checking whether cell(�̃� )◦ ⊆ B◦𝑚 is equivalent to checking whether the optimal value of
the following problem equals 1:

maximize
𝑸 ,𝒘

∥𝑸⊤𝑫†𝒘 ∥22 subject to ∥𝒘⊤̃𝑺 ∥1 ≤ 1,𝑸⊤𝑸 = 𝑰 , (13)

where 𝑫 = Diag(∥𝒒1∥2, . . . , ∥𝒒𝑘 ∥2).
Theorem 2. Suppose 𝑺 ∈ R𝑘×𝑛 is generated from the sparse-Gaussian model SG(𝑠 ), where 𝑠 < 𝑚,
and �̃� is obtained by scaling its rows to have unit ℓ1 norm. Then

Pr

 sup
∥𝒘⊤�̃� ∥1≤1
𝑸⊤𝑸=𝑰

∥𝑸⊤𝑫†𝒘 ∥ > 1

 ≤ 4 exp
(
𝑘

2
log

𝑘 2

𝑚
− 𝑛 𝑠 2𝑚

𝑘 3

)
. (14)

The probability goes to zero exponentially fast as

𝑛 =𝑂

(
𝑘 2

𝑚
log

𝑘 2

𝑚

)
.
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The proof is relegated to Appendix B. Comparing this result to prior work on complete DL (Hu &
Huang, 2023a), in which case the sample complexity is 𝑂 (𝑘 log𝑘 ), we see that the bounds agree
when 𝑚 = 𝑘 , which is a good sign that the bound is tight. On the other hand, there is one step in
the proof that shows that for overcomplete DL, it is necessary that every column of 𝑺 is at most
𝑠 -sparse, where 𝑠 < 𝑚; this is not required for complete DL. This shows the necessity of adopting
the sparse-Gaussian model rather than the Bernoulli-Gaussian model, even if identifiability of 𝑺 ♮ is
not required. In fact, even the most relaxed condition on sparse recovery would require 𝑠 < 𝑚/2, so
assuming 𝑺 ∼ SG(𝑠 ) with 𝑠 < 𝑚 is a very reasonable assumption in practice.

3 ALGORITHM VIA ALTERNATING MINIMIZATION

We will now design an algorithm for the novel formulation (2) for overcomplete DL, whose global
correctness in recovering the ground-truth dictionary has been theoretically established above. The
main idea is similar to the (inexact) alternating optimization framework that most DL algorithms
adopt. First of all, since most practical applications admit approximate factorization, we move the
constraint 𝑿 = 𝑨𝑺 in (2) as a penalty term as follows

minimize
𝑨,𝑺

𝜆

2
∥𝑨𝑺 − 𝑿 ∥2F +

1
2

log det𝑨𝑨⊤+ max
∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺 ∥1, (15)

where the hyper-parameter 𝜆 balances data fidelity and the identifiability criterion. The rest of this
section will focus on designing an iterative algorithm for solving (15). We denote (𝑨𝑡 ,𝑺𝑡 ) as the
updates obtained at the 𝑡 th iteration. In an alternating fashion, 𝑨𝑡+1 is obtained by fixing 𝑺 = 𝑺𝑡 , and
𝑺𝑡+1 is obtained by fixing 𝑨 = 𝑨𝑡+1.

3.1 UPDATE OF A

Fixing 𝑺 = 𝑺𝑡 , the update of 𝑨 amounts to solving a log-determinant regularized least squares, which
is nonconvex optimization problem. We propose two types of updates:

• Gradient descent. As the gradient of (1/2) log det𝑨𝑨⊤ at 𝑨𝑡 is (𝑨†𝑡 )⊤, a simple choice of
update is to move along the negative gradient direction with step size 𝛾

𝑨𝑡+1 ← 𝑨𝑡 −𝛾
(
𝜆(𝑨𝑺𝑡 − 𝑿 )𝑺⊤𝑡 + (𝑨†𝑡 )⊤

)
• Majorization minimization. Notice that the log determinant of a positive definite matrix is

concave, therefore

log det𝑨𝑨⊤ ≤ log det𝑨𝑡𝑨⊤𝑡 + Tr[(𝑨𝑡𝑨⊤𝑡 )−1 (𝑨𝑨⊤− 𝑨𝑡𝑨⊤𝑡 )].
This defines a quadratic majorization function for (1/2) log det𝑨𝑨⊤. Minimizing this term
plus the fitting term with respect to 𝑨 amounts to solving the following linear equation:

𝜆(𝑨𝑺𝑡 − 𝑿 )𝑺⊤𝑡 + (𝑨𝑡𝑨⊤𝑡 )−1𝑨 = 0.

This is Sylvester’s equation, which can be solved by taking the eigen-decomposition of 𝑺𝑡𝑺⊤𝑡
and 𝑨𝑡𝑨⊤𝑡 .

For simplicity, we resort to the gradient descent update in the rest of this paper.

3.2 UPDATE OF S

If 𝒅 is fixed, then the subproblem of 𝑺 is a ℓ1 regularized least squares problem, which has been
extensively studied. It is known to have no closed-form solutions, which is not preferable as one
step of an iterative algorithm. Thus, we propose to update 𝑺 with a proximal gradient step. Since it
amounts to getting a linear approximation at 𝑺𝑡 , we also set 𝒅 as the optimal choice with 𝑺𝑡 , which is
easy to obtain from Cauchy-Schwarz:

𝑑𝑐 =

√︄
𝑚∑𝑘

𝑗=1 ∥𝒆⊤𝑗𝑺𝑡 ∥
2
1

∥𝒆⊤𝑐𝑺𝑡 ∥1. (16)
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As a result, the proximal gradient update of 𝑺 with step size 𝛾 take the form

𝑺𝑡+1 ← T𝛾𝒅
(
𝑺𝑡 −𝛾𝜆𝑨⊤𝑡+1 (𝑨𝑡+1𝑺𝑡 − 𝑿 )

)
,

where T𝛾𝒅 (·) is the soft-thresholding operator on a matrix with 𝑘 rows, and the threshold for
components on the 𝑐 th row is 𝑑𝑐/𝛾 .

3.3 SUMMARY AND EXPERIMENTAL DEMONSTRATION

The proposed algorithm based on alternating minimization is summarized in

Algorithm 1 Solving (14) via alternating minimization

1: initialize 𝑨0 and 𝑺0
2: for 𝑡 = 0, 1, 2, . . . until convergence do
3: 𝑨𝑡+1 ← 𝑨𝑡 −𝛾

(
𝜆(𝑨𝑺𝑡 − 𝑿 )𝑺⊤𝑡 + (𝑨

†
𝑡 )⊤

)
4: for 𝑐 = 1, . . . , 𝑘 do
5: 𝑑𝑐 =

√︃
𝑚∑𝑘

𝑗=1 ∥𝒆⊤𝑗𝑺𝑡 ∥
2
1
∥𝒆⊤𝑐𝑺𝑡 ∥1

6: end for
7: 𝑺𝑡+1 ← T𝛾𝒅

(
𝑺𝑡 −𝛾𝜆𝑨⊤𝑡+1 (𝑨𝑡+1𝑺𝑡 − 𝑿 )

)
8: end for

As (14) is nonconvex and NP-hard, no known algorithm is able to guarantee convergence to a global
optimum. In the following, we provide a brief demonstration of the performance of the proposed
algorithm. Admittedly, the proposed formulation with identifiability guarantees opens up a new
direction for research on algorithm design for dictionary learning, which is a challenging task in itself
as it involves several terms that are nontrivial to handle.

We synthetically generate random problems with 𝑠 = 5, 𝑚 = 10, 𝑘 = 20, and 𝑛 = 200. A groundtruth
sparse coefficient matrix 𝑺 ♮ ∈ R𝑘×𝑛 is generated from the sparse-Gaussian model SG(𝑠 ), while the
groundtruth dictionary 𝑨♮ ∈ R𝑚×𝑘 is simply generated from a standard normal distribution. The
data matrix is then generated as 𝑿 = 𝑨♮𝑺 ♮. Algorithm 1 runs on 𝑿 with 𝜆 = 1000 (since we want
the data fidelity term to be almost zero) and 𝛾 = 10−5. At the end, both columns of 𝑨♮ and 𝑨★ are
scaled to unit ℓ2 norm, and the Hungarian algorithm (Kuhn, 1955) is used to find the best column
matching. The resulting estimation error ∥𝑨♮ − 𝑨★∥2F remains approximately 10−8 over multiple runs.
Considering the 𝑨♮ is 10 × 20 with unit column norms this is a satisfactory initial result.

4 CONCLUSION

In this paper, we provide perhaps the first identifiability analysis of a matrix factorization model
when the latent dimension is higher than the ambient dimension, namely the overcomplete dictionary
learning problem. Classical works on this problem rely on combinatorial mathematics, which in
turn requires the sample size to be factorial to the latent dimension. Our work is based on a novel
formulation that uses a hybrid of weighted ℓ1 norm of the sparse coefficients and the volume of
the overcomplete dictionary as the identification criterion, and we show that identifiability of the
overcomplete dictionary of size 𝑚 × 𝑘 can be guaranteed if a geometric condition is satisfied, namely
the cellular hull of the sparse coefficient matrix is 𝑚-strongly scattered in the 𝑘 -hypercube. If the
sparse coefficient matrix is generated from the sparse-Gaussian model, then such identifiability
condition can be satisfied with very high probability if the sample size is 𝑂 ((𝑘 2/𝑚) log(𝑘 2/𝑚)),
which is a huge improvement compared to prior work with factorial complexity. We also propose
an algorithm for the novel overcomplete dictionary learning formulation. The proposed novel
formulation for overcomplete DL with a global identifiability guarantee leaves much room for faster
and more efficient algorithm design.
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A PROOF OF THEOREM 1

In the proof sketch of Theorem 1, we showed that

1
2

log det𝑨♮𝑨
⊤
♮
+ max
∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺 ♮∥1 =
1
2

log det𝑨★𝑨
⊤
★ + max

∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒆⊤𝑐𝑺★∥1,

so (𝑨♮,𝑺 ♮) is at least one candidate solution for (2). In this section, we first complete the proof
by showing that if the second requirement of Assumption 3 is satisfied, then any optimal solution
(𝑨★,𝑺★) must satisfy that 𝑨★ = 𝑨♮𝜫𝑫 , where 𝜫 is a permutation matrix and 𝑫 is a diagonal matrix
with ±1 on the diagonal.

In (8) we proved that ∥𝒆⊤𝑐𝑺★∥1 ≥ ∥𝑸⊤𝒘 𝑐 ∥2 by choosing ∥𝜽 ∥∞ ≤ 1 such that

�̃�𝜽 = 𝑫−1
♮
𝑸𝑸⊤𝒘 𝑐/∥𝑸⊤𝒘 𝑐 ∥2.

Suppose 𝑸⊤𝒘 𝑐/∥𝑸⊤𝒘 𝑐 ∥2 ≠ ±𝒒𝑐/∥𝒒𝑐 ∥2 for all 𝑐 = 1, . . . , 𝑘 , then according to the second require-
ment of Assumption 3, it is in the interior of cell(�̃� ♮), which means there exists 𝛼 > 1 and ∥�̃� ∥∞ ≤ 1
such that

�̃� �̃� = 𝛼𝑫−1
♮
𝑸𝑸⊤𝒘 𝑐/∥𝑸⊤𝒘 𝑐 ∥2.

Therefore
∥𝒆⊤𝑐𝑺★∥1 = ∥𝒘⊤𝑐𝑺 ∥1 ≥ 𝒘 𝑐𝑫 ♮�̃� �̃� = 𝛼∥𝑸⊤𝒘 𝑐 ∥2 > ∥𝑸⊤𝒘 𝑐 ∥2.

This means equality of ∥𝒆⊤𝑐𝑺★∥1 ≥ ∥𝑸⊤𝒘 𝑐 ∥2 is only attained when 𝑸⊤𝒘 𝑐 = ±𝒒𝑐 for some 𝑐 =

1, . . . , 𝑘 .

Finally, it is proven in (10b) that

log det𝑸⊤𝑾⊤𝑾𝑸 ≤ 𝑚 log
1
𝑚
∥𝑸⊤𝑾 ∥2F,

and if det𝑨♮𝑨
⊤
♮
= det𝑨★𝑨⊤★ the above inequality must hold as an equality. In the proof of (10b) we

showed that equality holds only if all the eigenvalues of 𝑸⊤𝑾⊤𝑾𝑸 are equal, meaning columns of
𝑾𝑸 are orthonormal. Since 𝑸 itself is orthonormal, it is possible only if𝑾𝑸 = 𝑫𝜫⊤𝑸 , where 𝑫 is
a diagonal matrix with ±1 on the diagonals and 𝜫 is a permutation matrix. This shows that

𝑨★ = 𝑨♮𝜫𝑫 .

Q.E.D.

The remaining of this section shows some key equalities and inequalities in the proof sketch that are
skipped for clarity.

Proof that ∥𝒆𝑇𝑐 𝑺★∥1 = ∥𝒘⊤𝑐𝑺 ♮∥1. As we argued in the proof sketch of Theorem 1, the constraint
𝑿 = 𝑨𝑺 is equivalent to 𝑨𝑾 = 𝑨♮ and 𝑺 =𝑾𝑺 ♮ + 𝑩 where 𝑺 ♮𝑩⊤ = 0. Substituting them into (2)
eliminates the constraint 𝑿 = 𝑨𝑺 :

minimize
𝑨,𝑾 ,𝑩

1
2

log det𝑨𝑨⊤+ max
∥𝒅 ∥22=𝑚

𝑘∑︁
𝑐=1

𝑑𝑐 ∥𝒘⊤𝑐𝑺 ♮ + 𝒃⊤𝑐 ∥1 subject to 𝑨𝑾 = 𝑨♮,𝑺 ♮𝑩
⊤ = 0.

Taking the Clarke generalized derivative of the Lagrange function with respect to 𝒃𝑐 and setting it
equal to zero gives

𝑑𝑐𝜽 𝑐 + 𝑺⊤♮𝝁𝑐 = 0,

where 𝜽 𝑐 = sign(𝑺⊤
♮
𝒘 𝑐 + 𝒃𝑐 ) and 𝝁𝑐 is the Lagrange multiplier for the 𝑐 th column of 𝑺 ♮𝑩⊤. This

shows that 𝜽 𝑐 is a linear combination of rows of 𝑺 ♮, which means it is orthogonal to 𝒃𝑐 . As a result,

∥𝒆⊤𝑐𝑺★∥1 = ∥𝒘⊤𝑐𝑺 ♮ + 𝒃⊤𝑐 ∥1 = 𝒘⊤𝑐𝑺 ♮𝜽 𝑐 + 𝒃⊤𝑐𝜽 𝑐 = 𝒘⊤𝑐𝑺 ♮𝜽 𝑐 = ∥𝒘⊤𝑐𝑺 ♮∥1.

□
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Proof of inequality (9). The matrix𝑾𝑾 † defines a projection matrix, which is symmetric, with the
following properties:

𝑾𝑾 † ⪯ 𝑰 , 𝑾𝑾 † =𝑾𝑾 †𝑾𝑾 † =𝑾𝑾 † (𝑾𝑾 †)⊤ =𝑾𝑾 † (𝑾 †)⊤𝑾⊤.
As a result,

det𝑨★𝑨
⊤
★ ≥ det𝑨★𝑾𝑾

†𝑨⊤★ = det𝑨★𝑾𝑾
† (𝑾 †)⊤𝑾⊤𝑨⊤★ = det𝑨♮𝑾

† (𝑾 †)⊤𝑨⊤
♮
,

where the last step is because 𝑨♮ = 𝑨★𝑾 . □

Proof of inequality (10a). Since 𝑨♮ = 𝑨★𝑾 , rows of 𝑨♮ are in the row space of 𝑾 , and so are
columns of 𝑸 . Therefore

𝑾𝑾 †𝑸 = 𝑸 .

This means𝑾𝑸 has linearly independent columns, therefore 𝑸⊤𝑾⊤𝑾𝑸 is invertible and

(𝑸⊤𝑾⊤𝑾𝑸 )−1 = (𝑾𝑸 )† (𝑸⊤𝑾⊤)†.
On the other hand, since 𝑸⊤𝑾𝑾 †𝑸 = 𝑰 , this means

𝑸⊤𝑾 † = (𝑾𝑸 )† +𝑪 ,
where rows of 𝑪 are orthogonal to columns of𝑾𝑸 , i.e., 𝑪𝑾𝑸 = 0. Columns of𝑾𝑸 and rows of
(𝑾𝑸 )† span the same subspace, so we also have 𝑪⊤(𝑾𝑸 )† = 0. As a result,

det𝑸⊤𝑾 † (𝑾 †)⊤𝑸 = det
(
(𝑾𝑸 )† +𝑪

) (
(𝑾𝑸 )† +𝑪

)⊤
= det

(
(𝑾𝑸 )† (𝑸⊤𝑾⊤)† +𝑪𝑪⊤

)
≥ det(𝑾𝑸 )† (𝑸⊤𝑾⊤)† = det(𝑸⊤𝑾⊤𝑾𝑸 )−1.

Taking the log on both sides shows (10a). □

Proof of inequality (10b). Denote the eigenvalues of𝑸⊤𝑾⊤𝑾𝑸 as 𝜆1, . . . , 𝜆𝑚 , which are all nonneg-
ative, then (

det𝑸⊤𝑾⊤𝑾𝑸
)1/𝑚

=
©«

𝑚∏
𝑗=1

𝜆𝑗
ª®¬

1/𝑚

≤ 1
𝑚

𝑚∑︁
𝑗=1

𝜆𝑗 = Tr𝑸⊤𝑾⊤𝑾𝑸 = ∥𝑸⊤𝑾⊤∥2F,

where the inequality in the middle is the geometric-arithmetic mean inequality. Taking the log on
both sides and rearranging gives (10b). Notice that equality holds only if 𝜆1 = · · · = 𝜆𝑚 , i.e., columns
of𝑾𝑸 are orthonormal. □

B PROOF OF THEOREM 2

We assume that 𝑺 ∼ SG(𝑠 ), and the first thing we do is rescale its rows to have unit ℓ1 norms and
use it for the problem 13. To simplify the analysis, we can instead directly maximize ∥𝑸⊤𝑫−1𝒘 ∥2
subject to ∥𝒘⊤𝑺 ∥1 ≤ 1, and compare it with the largest ℓ1 norm of the rows of 𝑺 . The complement of
the intended probability can be bounded as

Pr

 sup
∥𝒘⊤�̃� ∥1≤1
𝑸⊤𝑸=𝑰

∥𝑸⊤𝑫−1𝒘 ∥ ≤ 1

 ≥ Pr

 sup
∥𝒘⊤𝑺 ∥1≤1
𝑸⊤𝑸=𝑰

∥𝑸⊤𝑫−1𝒘 ∥ ≤ 𝛼 ∩max
𝑗
∥𝑺 𝑗 ,:∥1 ≥ 𝛼

 ,
with an arbitrary choice of 𝛼. Conversely,

Pr

 sup
∥𝒘⊤�̃� ∥1≤1
𝑸⊤𝑸=𝑰

∥𝑸⊤𝑫−1𝒘 ∥ > 1

 ≤ Pr

 sup
∥𝒘⊤𝑺 ∥1≤1
𝑸⊤𝑸=𝑰

∥𝒘 ∥ > 𝛼 ∪max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝛼


≤ Pr

 sup
∥𝒘⊤𝑺 ∥1≤1
𝑸⊤𝑸=𝑰

∥𝑸⊤𝑫−1𝒘 ∥ > 𝛼

 + Pr
[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝛼

]
(17)
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where the second inequality is obtained from the union bound. The rest of this section is dedicated to
bounding the above two terms. Both of these results rely on the following version of the Bernstein
inequality (Bennett, 1962):
Theorem 3 (Bernstein’s inequality). Let 𝑍1, . . . , 𝑍𝑛 be independent random variables with E[𝑍 2

𝑖
] ≤

𝑣2 and there exists some constant 𝑐 such that for all integer 𝑑 > 2

E[|𝑍𝑖 |𝑑 ] ≤
1
2
𝑑!𝑣2𝑐𝑑−2. (18)

Then

Pr

[����� 𝑛∑︁
𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝜖

]
≤ 2 exp

(
− 𝜖2

2(𝑛𝑣2 + 𝑐 𝜖)

)
Lemma 2 (Bounding the second term in (17)). Suppose 𝑺 ∈ R𝑘×𝑛 is generated from the sparse-
Gaussian model SG(𝑠 ). Then

Pr
[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 − 𝜖)

]
≤ 2𝑘 exp

(
−𝑛 (𝑠/𝑘 )𝜖

2

2 +
√

2𝜖

)
Proof. Let 𝒔 = (𝑠1, . . . , 𝑠𝑛) be one row of 𝑺 generated from SG(𝑠 ), then each 𝑠𝑖 has probability 𝑠/𝑘
to be standard normal and probability 1 − 𝑠/𝑘 to be zero. We will use Bernstein’s inequality with
𝑍𝑖 = |𝑠𝑖 |. Let 𝑔 denote a standard normal random variable, then |𝑔 | follows a Chi-distribution of
degree 1, so its moments are

E[|𝑔 |𝑑 ] = 2𝑑/2
Γ

(
𝑑+1

2

)
Γ

(
1
2

) . (19)

As a result, we have E[𝑍𝑖 ] = (𝑠/𝑘 )
√︁

2/𝜋 and E[𝑍 2
𝑖
] = 𝑠/𝑘 . Using the recurrence relation for the

Gamma function Γ(𝑡 +1) = 𝑡 Γ(𝑡 ) and
√

2/Γ(1/2) =
√︁

2/𝜋 < 1 we can bound the rest of the moments
with 𝑑 > 2 as

E[|𝑍𝑖 |𝑑 ] ≤ (𝑠/𝑘 )
𝑑!

2𝑑/2
. (20)

Therefore the moments satisfy (18) with 𝑐 = 1/
√

2, results in

Pr
[
∥𝒔 ∥1 < 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 − 𝜖)

]
≤ Pr

[����� 𝑛∑︁
𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝑛 (𝑠/𝑘 )𝜖

]
≤ 2 exp

(
− 𝑛2 (𝑠/𝑘 )2𝜖2

2(𝑛 (𝑠/𝑘 ) + 𝑛 (𝑠/𝑘 )𝜖/
√

2)

)
= 2 exp

(
−𝑛 (𝑠/𝑘 )𝜖

2

2 +
√

2𝜖

)
.

Finally, using the union bound

Pr
[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 − 𝜖)

]
≤ 𝑘 Pr

[
∥𝑺 𝑗 ,:∥1 < 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 − 𝜖)

]
≤ 2𝑘 exp

(
−𝑛 (𝑠/𝑘 )𝜖

2

2 +
√

2𝜖

)
.

□

We now proceed to bound the first term in (17). First, we note the following equivalence:

Pr

 sup
∥𝒘⊤𝑺 ∥1≤1
𝑸⊤𝑸=𝑰

∥𝑸⊤𝑫−1𝒘 ∥ > 𝛼

 = Pr

 inf
∥𝑸⊤𝑫−1𝒘 ∥=1
𝑸⊤𝑸=𝑰

∥𝑺⊤𝒘 ∥1 < 1/𝛼
 (21)

We are also going to use the following notion of 𝛿 -cover from convex geometry (Pisier, 1999):

15
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Definition 3 (𝛿 -cover). A finite 𝛿 -cover of a set S in R𝑘 is a finite set N(S, 𝛿 ) of points on S such
that any point on S is within 𝜖 away from an element in N(S, 𝛿 ), i.e.

min
𝒘 𝑖 ∈N(S,𝛿 )

∥𝒘 −𝒘 𝑖 ∥ < 𝛿 , ∀𝒃 ∈ S.

A well-known result is that the 𝛿 -cover of the unit sphere B𝑘 = {𝒘 | ∥𝒘 ∥2 = 1} has bounded
cardinality (Vershynin, 2018):

|N (B𝑘 , 𝛿 ) | ≤
(

2
𝛿
+ 1

)𝑘
.

Notice that B𝑘 is a special case of B𝑚 defined in Assumption 3 with 𝑘 = 𝑚, implying that B𝑘 ⊆ B𝑚
and thus B◦𝑚 ⊆ B◦𝑘 . We will use this result to prove a (rather loose) bound for the 𝛿 -cover of B◦𝑚 .

Lemma 3. The 𝛿 -cover of B◦𝑚 satisfies

|N (B𝑚 , 𝛿 ) |2 ≤
(

2
𝛿
+ 1

)𝑘
Proof. It is easy to see that B𝑘 is self-polar, i.e., B◦

𝑘
= B𝑘 , so B◦𝑚 ⊆ B𝑘 . Since the superset B𝑘

satisfies |N (B𝑘 , 𝛿 ) | ≤ (1 + 2/𝛿 )𝑘 , so is the subset B◦𝑚 . □

Lemma 4. Let N(B𝑚 , 𝛿 ) = {𝒘 𝑖 } be a 𝛿 -cover for B◦𝑚 in R𝑘 . Assume that we have both the
lowerbound

∥𝑺⊤𝒘 𝑖 ∥1 ≥ 𝛽,∀𝒘 𝑖 ∈ N (B𝑚 , 𝛿 )
and the upperbound

∥𝑺⊤∥1 = sup
∥𝒘 ∥1≤1

∥𝑺⊤𝒘 ∥1 ≤ 𝛾 .

Then
inf

𝒘 ∈B◦𝑚
∥𝑺⊤𝒘 ∥1 ≥ 𝛽 −𝛾𝛿

√
𝑘

Proof. By definition of the 𝛿 -cover, for all𝒘 ∈ B◦𝑚 we can find𝒘 𝑖 ∈ N (B◦𝑚 , 𝛿 ) with ∥𝒘 −𝒘 𝑖 ∥ < 𝛿 .
Therefore

∥𝑺⊤𝒘 ∥1 ≥ ∥𝑺⊤𝒘 𝑖 ∥1 − ∥𝑺⊤(𝒘 −𝒘 𝑖 )∥1 ≥ 𝛽 − ∥𝑺⊤∥1∥𝒘 −𝒘 𝑖 ∥1
≥ 𝛽 − ∥𝑺⊤∥1∥𝒘 −𝒘 𝑖 ∥2

√
𝑘 ≥ 𝛽 −𝛾𝛿

√
𝑘.

□

Lemma 5 (Bounding the first term in (17)). Suppose 𝑺 ∈ R𝑘×𝑛 is generated from the sparse-Gaussian
model SG(𝑝). Then

Pr
[

inf
𝒘 ∈B◦𝑚

∥𝑺⊤𝒘 ∥1 < 𝑛 (𝑠/𝑘 ) (
√︁

2/𝜋 − 𝜖) − 𝛿
√
𝑘𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 + 𝜖)

]
≤

((
2
𝛿

)𝑘
+ 2

)
2 exp

(
−𝑛 (𝑠/𝑘 )

2𝜖2

2 +
√

2𝜖

)
,

where 𝛿 ∈ (0, 1) represents any choice of 𝛿 -cover for B◦𝑚 .

Proof. Following Lemma 4, we have

Pr
[

inf
𝒘 ∈B◦𝑚

∥𝑺⊤𝒘 ∥1 < 𝛽 −𝛾𝛿
√
𝑘

]
≤

∑︁
𝒘 𝑖 ∈N(B◦𝑚 ,𝛿 )

Pr
[
∥𝑺⊤𝒘 𝑖 ∥1 < 𝛽

]
+ Pr

[
∥𝑺⊤∥1 > 𝛾

]
, (22)

where |N (B◦𝑚 , 𝛿 ) | < (1 + 2/𝛿 )𝑘 according to Lemma 3.

The bound to the first term in (22) is almost identical to Lemma 2. Dropping the subscript of𝒘 𝑖 , we
write

∥𝑺⊤𝒘 ∥1 =

𝑛∑︁
𝑖=1

������ 𝑘∑︁
𝑗=1

𝑠𝑖 𝑗𝑤𝑗

������ :=
𝑛∑︁
𝑖=1

|𝑍𝑖 |.
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Without the absolute value, 𝑍𝑖 is normally distributed with zero mean and variance 𝜎2 =
∑

𝑗 ∈I𝑖 𝑤
2
𝑗
,

where I𝑖 is the index set of nonzero elements in 𝒔 𝑖 with |I𝑖 | = 𝑠 < 𝑚. Then 𝜎2 ≤ 1. To see this,
suppose without loss of generality that I𝑖 = {1, . . . , 𝑠 } and let 𝑸 = [𝑰 0]⊤, then𝒘 ∈ B◦𝑚 implies that∑

𝑗 ∈I𝑖 𝑤
2
𝑗
= ∥𝑸𝒘 ∥2 ≤ 1. In other words, if𝒘 ∈ B◦𝑚 , the squared sum of no more than 𝑚 elements

of𝒘 must be ≤ 1. Therefore for 𝑑 ≥ 2
E[|𝑍𝑖 |𝑑 ] ≤ E[|𝑍𝑖 |2] ≤ 1,

while for 𝑑 = 1 we have

E[|𝑍𝑖 |] =
𝑠

𝑘

√︂
2
𝜋
.

Again, the moments satisfy (18) with 𝑐 = 1/
√

2, results in

Pr
[
∥𝑺⊤𝒘 ∥1 < 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 − 𝜖)

]
≤ Pr

[����� 𝑛∑︁
𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝑛 (𝑠/𝑘 )𝜖

]
≤ 2 exp

(
− 𝑛2 (𝑠/𝑘 )2𝜖2

2(𝑛 + 𝑛 (𝑠/𝑘 )𝜖/
√

2)

)
= 2 exp

(
−𝑛 (𝑠/𝑘 )

2𝜖2

2 +
√

2𝜖

)
. (23)

To bound ∥𝑺⊤∥1, we recall that this is the ℓ1 induced norm for matrix 𝑺⊤, which is shown to be the
maximum of the ℓ1 norms of the columns of 𝑺⊤. This means we can use similar arguments used in
Lemma 2 (but applied to the other direction) to have

Pr
[
∥𝑺⊤∥1 > 𝑛𝑝 (

√︁
2/𝜋 + 𝜖)

]
= Pr

[
max
𝑗
∥𝑺 𝑗 ,:∥1 > 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 + 𝜖)

]
≤ Pr

[
∥𝑺 𝑗 ,:∥1 > 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 + 𝜖)

]
≤ Pr

[����� 𝑛∑︁
𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝑛 (𝑠/𝑘 )𝜖

]
≤ 2 exp

(
−𝑛 (𝑠/𝑘 )𝜖

2

2 +
√

2𝜖

)
≤ 2 exp

(
−𝑛 (𝑠/𝑘 )

2𝜖2

2 +
√

2𝜖

)
, (24)

where we pick an arbitrary 𝑗 ∈ [𝑘 ] in the second line since this event implies that the maximum ℓ1
norm of the rows is lowerbounded, and in the third line each 𝑍𝑖 satisfies (20). The proof is complete
by combining (22), (23), and (24) with 𝛽 = 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 − 𝜖) and 𝛾 = 𝑛 (𝑠/𝑘 ) (

√︁
2/𝜋 + 𝜖). □

Proof of Theorem 2. We first instantiate Lemma 5 with

𝛿 =
𝑛2 (𝑠/𝑘 )2 (

√︁
2/𝜋 − 𝜖)2 − 1

𝑛2 (𝑠/𝑘 )2 (
√︁

2/𝜋 − 𝜖) (
√︁

2/𝜋 + 𝜖)
√
𝑘
,

which satisfies 𝛿 > 0 if

𝜖 <

√︂
2
𝜋
− 1
𝑛 (𝑠/𝑘 ) .

Then we have

Pr
[

inf
𝒘 ∈B◦𝑚

∥𝑺⊤𝒘 ∥1 < 1/𝑛 (𝑠/𝑘 )2 (
√︁

2/𝜋 − 𝜖)
]
≤

((
2
𝛿

)𝑘
+ 2

)
2 exp

(
−𝑛 (𝑠/𝑘 )𝜖

2

2 +
√

2𝜖

)
,

Combining (17), (21), and Lemma 2 with 𝛼 = 𝑛 (𝑠/𝑘 ) (
√︁

2/𝜋 − 𝜖), we obtain

Pr

[
sup

∥𝒘⊤�̃� ∥1≤1
∥𝒘 ∥ > 1

]
≤ Pr

[
inf
∥𝒘 ∥=1

∥𝑺⊤𝒘 ∥1 < 1/𝛼
]
+ Pr

[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝛼

]
≤ 2

(
𝑘 +

(
2
𝛿

)𝑘
+ 2

)
exp

(
−𝑛 (𝑠/𝑘 )

2𝜖2

2 +
√

2𝜖

)
. (25)
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Further, with

𝜖 <
((𝑚/𝑘 )1/4 − 1)

√︁
2/𝜋

(𝑚/𝑘 )1/4 + 1
,

where the right hand side is obviously positive, we have

𝛿 =
𝑛2 (𝑠/𝑘 )2 (

√︁
2/𝜋 − 𝜖)2 − 1

𝑛2 (𝑠/𝑘 )2 (
√︁

2/𝜋 − 𝜖) (
√︁

2/𝜋 + 𝜖)
√
𝑘

>
𝑛2 (𝑠/𝑘 )2 (

√︁
2/𝜋 − 𝜖)2

𝑛2 (𝑠/𝑘 )2 (
√︁

2/𝜋 + 𝜖)2
√
𝑘

>

√
𝑚

𝑘
.

We can further relax (25) to

Pr

[
sup
𝒘 ∈B◦𝑚

∥𝒘 ∥ > 1

]
≤ 2

(
𝑘 +

(
2𝑘/
√
𝑚

)𝑘
+ 2

)
exp

(
−𝑛 (𝑠/𝑘 )

2𝜖2

2 +
√

2𝜖

)
≤ 4

(
2𝑘/
√
𝑚

)𝑘
exp

(
−𝑛 (𝑠/𝑘 )

2𝜖2

2 +
√

2𝜖

)
≤ 4 exp

(
(𝑘/2) log(𝑘 2/𝑚) − 𝑛 (𝑠/𝑘 )2 (𝑚/𝑘 )

)
,

where in the last inequality we simply picked a small enough 𝜖 so that

𝜖2

2 +
√

2𝜖
<

𝑚

𝑘
.

This completes the proof. □
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