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Abstract: Sim-to-real transfer is a powerful paradigm for robotic reinforcement
learning. The ability to train policies in simulation enables safe exploration and
large-scale data collection quickly at low cost. However, prior works in sim-to-real
transfer of robotic policies typically do not involve any human-robot interaction
because accurately simulating human behavior is an open problem. In this work,
our goal is to leverage the power of simulation to train robotic policies that are
proficient at interacting with humans upon deployment. But there is a chicken and
egg problem — how to gather examples of a human interacting with a physical
robot so as to model human behavior in simulation without already having a robot
that is able to interact with a human? Our proposed method, Iterative-Sim-to-
Real (i-S2R), attempts to address this. i-S2R bootstraps from a simple model of
human behavior and alternates between training in simulation and deploying in
the real world. In each iteration, both the human behavior model and the policy
are refined. For all training we apply a new evolutionary search algorithm called
Blackbox Gradient Sensing (BGS). We evaluate our method on a real world robotic
table tennis setting, where the objective for the robot is to play cooperatively with
a human player for as long as possible. Table tennis is a high-speed, dynamic task
that requires the two players to react quickly to each other’s moves, making for a
challenging test bed for research on human-robot interaction. We present results
on an industrial robotic arm that is able to cooperatively play table tennis with
human players, achieving rallies of 22 successive hits on average and 150 at best.
Further, for 80% of players, rally lengths are 70% to 175% longer compared to the
sim-to-real plus fine-tuning (S2R+FT) baseline. For videos of our system in action
please see https://sites.google.com/view/is2r.
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1 Introduction

Sim-to-real transfer has emerged as a dominant paradigm for learning-based robotics. Real world
training is often slow, cost-prohibitive, and poses safety-related challenges, so training in simulation
is an attractive alternative and has been explored for a number of real world tasks, including object
manipulation [1, 2, 3, 4], legged robot locomotion [5, 6], and aerial navigation [7, 8]. However,
one element that is missing in this prior work is that the policies are not trained to be proficient at
interacting with humans upon deployment. The utility of sim-to-real learning can be greatly increased
if we extend it to settings where the trained policies need to interact with humans in a close, tight-loop
fashion upon deployment. One of the major promises of learning-based robotics is to deploy robots
in human-occupied settings, since non-learning robots already work well in deterministic, non-human
occupied settings, such as factory floors. However, simulating human behavior is non-trivial (and
indeed, one of the primary goals of artificial intelligence research), making it a major bottleneck in
sim-to-real research for tasks involving human-robot interaction.

One approach to simulating human behavior is imitation learning. Given a few examples of hu-
man behavior, we can use techniques such as behavior cloning [9, 10], or inverse reinforcement
learning [11, 12] to distill that behavior into a policy, and then use these policies to generate human
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behavior in simulation. However, this approach presents a chicken and egg problem: in order to
obtain useful examples of human behavior (in the context of human-robot interaction), we need
a robot policy that already knows how to interact with humans in the real world, but we cannot
learn such a policy without the ability to simulate human behaviors in the first place. The primary
contribution of this paper is a practical solution to this problem.

Our proposed method involves learning a coarse model of human behavior from initial data collected
in the real world to bootstrap reinforcement learning of robotic policies in simulation. Deploying
this learned policy in the real world now allows us to collect data in which the human subjects
meaningfully interact with the robot. We then use this real world experience to improve our human
behavior model, and continue training the robot policy in simulation under this updated model. We
repeat this iterative process until a desired level of performance is achieved.

We present results on a task involving a robot playing table
tennis with non-professional human players (see Figure 1). The
goal for the robot is to maximize rally length, i.e. the number
of successive hits by the robot and human before the ball goes
out of play and policies are evaluated using rally length. Table
tennis is a high-speed, dynamic task that requires close, tight-
loop interactions between two players (in this case, a human
and a robot). Further, maximizing rally length requires the robot
to cooperate with a human, and vice versa. Thus we believe it
to be a good instantiation of our problem setting. We build an
initial model of the human player’s ball trajectories without a Figure 1: Robot setup An ABB IRB
robot present and iteratively refine the robot and player models 120T 6-DOF robotic arm is mounted to
as they play together, ultimately resulting in a robot policy that a two-dimensional Festo linear actuator,
can hold rallies of 22 successive hits on average and 150 at best. ~creating an 8-DOF system.

While we demonstrate our approach on table tennis, we believe that our overall pipeline can be
applied to a broad range of tasks, and take into account the various nuances of those tasks. The two
characteristics a human behavior model needs to be compatible with our approach are (a) it can be
updated using human data that is gathered whilst a human or humans are interacting with a robot,
and (b) the model can be used to sample human behavior in simulation.

In summary, the primary contributions of this paper are: (a) a framework for training robotic
policies in simulation that would need to interact with human subjects upon deployment, (b) a real
world instantiation of this framework on a high-speed, dynamic task requiring tight, closed-loop
interactions between humans and robots, (c) a detailed assessment of how our method, which we
call Iterative-Sim-to-Real (i-S2R), compares with a baseline sim-to-real approach in the domain
of cooperative robotic table tennis, and (d) the first robotic table tennis policy trained to control
robot joints using reinforcement learning (RL) that can handle a wide variety of balls and can rally
consistently with non-professional humans. i-S2R can apply any RL method, however the only
policy-optimization algorithm that so far led to the on-robot-deployable policies is the so-called
Blackbox Gradient Sensing (BGS) that we introduce here. To see videos of our system in action,
please see the supplementary materials and https://sites.google.com/view/is2r.

2 Related Work

Sim-to-Real Learning for Robotics RL is a powerful paradigm for learning increasingly capable
and robust robot controllers [13, 14, 15]. However, learning controllers from scratch on a physical
robot is often prohibitively time consuming due to the large number of samples required to learn
competent policies and potentially unsafe due to the random exploration inherent in RL methods [16,
17]. Training policies in simulation and transferring them to a physical robot, known as sim-to-real
transfer (S2R), is therefore appealing.

Whilst it is both fast and safe to train agents from scratch in simulation, S2R presents its own
challenge — persistent differences between simulated and real world environments that are extremely
difficult to overcome [17, 18]. No single technique has been found to bridge the gap by itself. Instead
a combination of multiple techniques are typically required for successful transfer. These include
system identification [13, 19, 20, 21, 22] which may involve iterating with a physical robot in the
loop [2, 23], building hybrid simulators with learned models [5, 13, 22], dynamics randomization [1,
2,5,6, 13, 14, 15], simulated latency [15, 22], and more complex network architectures [13]. We use
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(1) system ID with a physical robot in the loop, (2) dynamics randomization, (3) simulated latency,
and (4) more complex networks. Similarly to Lee et al. [13], we use a 1D CNN to represent control
policies. Yet a sim-to-real gap persists. Continuing to train in the real world [24, 25, 26, 27] (known
as fine-tuning) is an effective way to bridge the remaining gap since the policy can adapt to changes
in the environment. We also utilize fine-tuning in this work, but unlike most past work, our learned
policy is expected to interact cooperatively with a real human during this fine-tuning phase.

The closest sim-to-real approaches in prior work are Chebotar et al. [2] and Farchy et al. [23]
since they update simulation parameters based on multiple iterations of real world data collection
interleaved with simulated training. However, both of these prior works focus on using real world
interaction data to learn improved physical parameters for the simulator, whereas our method focuses
on learning better human behavior models. Unlike these prior works, our learned policies are
proficient at interacting with humans upon deployment in the real world.

Reinforcement Learning for Table Tennis Robotic table tennis is a challenging, dynamic
task [28] that has been a test bed for robotics research since the 1980s [29, 30, 31, 32, 33]. The
current exemplar is the Omron robot [34]. Until recently, most methods tackled the problem by
identifying a virtual hitting point for the racket [35, 36, 37, 38, 39, 40, 41, 42]. These methods
depend on being able to predict the ball state at time ¢ either from a ball dynamics model which may
be parameterized [35, 36, 43, 44] or by learning to predict it [33, 38, 39]. This results in a target
paddle state or states and various methods are used to generate robot joint trajectories given these
targets [33, 35, 36, 43, 44, 45, 46, 47, 48, 49, 50]. More recently, Tebbe et al. [51] learned to predict
the paddle target using RL.

An alternative line of research seeks to do away with hitting points and ball prediction models, instead
focusing on high frequency control of a robot’s joints using either RL [28, 39, 52] or learning from
demonstrations [46, 53, 54]. Of these, Biichler et al. [28] is the most similar, training RL policies
to control robot joints from scratch at high frequencies given ball and robot states as policy inputs.
However Biichler et al. [28] restricts the task to playing with a ball thrower on a single setting,
whereas we focus on the harder problem of cooperative play with different humans.

Most prior work simplifies the problem by focusing on play with a ball thrower. Only a few [46, 49,
51, 55] focus on cooperative rallying with a human. Of these, Tebbe et al. [51], is the most similar,
evaluating policies on various styles of human-robot cooperative play. However, Tebbe et al. [51]
simplify the environment to a single-step bandit and the policy learns to predict the paddle state given
the ball state at a pre-determined hit time ¢. In contrast, we learn closed-loop policies that operate at a
high frequency (75Hz), removing the need for a learned policy to accurately predict where the ball
will be in the future, increasing the robustness of the system, and enabling more dynamic play.

Human Robot Interaction Although not a typical HRI benchmark, cooperative robotic table
tennis exhibits many of the features studied in the field: a human and robot working together, complex
interactions between the two, inferring actions based on non-explicit cues, and so on. A major
challenge in HRI is effectively modeling the complexities of human behavior in simulation [56] in
order to learn without requiring an actual human. We employ several common techniques from HRI
to learn in simulation such as simplifying the human model [57], specialized models for specific
players [58], and refining our model based on real world interactions. Finally we note that like us,
Paleja et al. [59] found policy performance varied depending on the skill of the human player.

3 Preliminaries

Problem Setting We consider the problem of cooperative human-robot table tennis as a single-
agent sequential decision making problem in which the human is a part of the environment. We
formalize the problem as a Markov Decision Process (MDP) [60] consisting of a of a 4-tuple (S,
A, R, p), whose elements are the state space S, action space A, reward function R : S x 4 — R,
and transition dynamics p : S x A — S. An episode (g, ag, ro, -+, Sn, an, T ) is a finite sequence
of s € S,a € A, r € R elements, beginning with a start state sy and ending when the environment
terminates. We define a parameterized policy g : S — A with parameters 6. The objective is to

maximize E Zivz 17(s¢,mg(s¢)) |, the expected cumulative reward obtained in an episode under .
We make two simplifications to our problem. First, we focus on rallies starting with a hit instead of a

table tennis serve to make the data more uniform. Second, an episode consists of a single ball throw
and return. Policies are therefore rewarded based on their ability to return balls to the opposite side of
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Figure 2: Iterative-Sim-to-Real. left We start with a coarse bootstrap model of human behavior (shown in
yellow), and use it to train an initial robot policy in simulation. We then fine-tune this policy in the real world
against a human player, and the human interaction data collected during this period is used to update the human
behavior model used in simulation. We then take the fine-tuned policy back to simulation to further train it
against the improved human behavior model, and this process is repeated until robot and human behaviors
converge. right Specific i-S2R details used in this work. z-axis represents the training iterations in sim, y-axis
represents the fine-tuning iterations in real with human-in-the-loop. Model names are in italics.

the table. This reward structure encourages longer rallies, as an agent that can return any ball can also
rally indefinitely provided the simulated single shots overlap with the real rally shots.

BGS & Evolutionary Search (ES) i-S2R is compatible with any RL algorithm. In initial experi-
ments we tried a range of methods — PPO [61], QT-OPT [62], SAC [63], and Blackbox Gradient
Sensing (BGS) that we introduce here. Only BGS transferred well to a physical robot, hence we
continued with this approach and we leave to future work more exhaustive research on other RL
algorithms. BGS is an ES-method [64, 65, 66, 67, 68, 69] which have been shown to be an effective
strategy for solving MDPs [66, 68]. ES methods aim to optimize the smoothened version F,(6) of
the original RL-objective F'(#), where 6 stands for the policy parameters, given (for the parameter
o > 0) as:

Fo(0) = Esano,10)[F (0 + 09)]. (D

Different ES algorithms apply different Monte-Carlo strategies to approximate the gradient of F, (6).
In BGS, following [64] we choose Monte Carlo samples §; to form orthogonal-ensembles (to reduce
the variance of the estimation) and apply a novel technique for choosing a final collection of samples
d; for gradient estimation (the so-called elite-choice process). The former technique improved
convergence in training and the latter was crucial for the overall effectiveness of training — training
in simulation failed without it. See Appendix B for details.

4 Method

i-S2R consists of two core components: (1) an iterative procedure for progressively updating and
learning from a human behavior model — the human ball distribution in this setting — and (2) a
method for modeling human behavior in simulation given a dataset of human play gathered in the
real world (see Figure 2 for an overview). We first describe our iterative training procedure, and then
discuss how we model human ball distributions.

Iterative Training Procedure An overview of the method can be seen in Figure 2. First we gather
an initial dataset, Dy, from player P hitting table tennis balls across the table without a robot doing
anything. From D, we build our first human behavior model M, that defines a ball distribution (see
below). A robot policy is trained in simulation to return balls sampled from M. Once the policy has
converged, we transfer the parameters, 6yg, to a real robotic system. The model is fine-tuned whilst
player P plays cooperatively (i.e. trying to maximize rally length) with the robot for a fixed number
of parameter updates to produce fpr. All of the human hits during this fine-tuning phase are added
to Dy to form Dy, which is used to define M;. The policy weights, 6y, are then transferred back
to simulation and training is continued with the new distribution M. After training in simulation,
the policy weights 6; g are transferred back to the real world. The fine-tuning process is repeated to
produce the next set of policy parameters 6, g, dataset Do, and human model Ms. This process can
be repeated as many times as needed.



A useful check for assessing convergence was found by looking at the delta in our human behavior
model from one iteration to the next. We found the delta between M; and Ms was substantially
smaller than between M, and M; indicating that three iterations were enough for this task. For
details on the ball distribution parameters for different players see subsection C.3.

Modeling Human Ball Distributions One of our primary goals is to simulate human player
behaviors from a set of real world ball trajectories that have been subjected to air drag, gravity, and
spin. Due to perception challenges in the real world, we do not explicitly model spin. The input
to this procedure is a dataset of ball trajectories, where each trajectory consists of a sequence of
ball positions. The output is a uniform ball distribution defined by 16 numbers: the minimum and
maximum initial ball position (6), velocity (6), and = and y ball landing locations on robot side (4).

The ball distribution is derived from the dataset in two stages. The first step is to estimate a ball’s
initial position and velocity for each trajectory. We do this by selecting the free flight part of the
trajectory (before the first bounce) and minimize the Euclidean distance between the simulated and
real trajectory using the Nelder-Mead method [70]. Please see subsection C.4 for details on the model
used to simulate a ball trajectory.

Next we remove outliers using DBSCAN [71] and take the minimum and maximum per dimension
to define the ball distribution. We sample an initial position and velocity from this distribution and
generate a ball trajectory in simulation subject to the drag force. Other parameters needed for the
simulation, such as the coefficient of restitution, friction between the table and ball and the robot
paddle and the ball, and so on have been empirically estimated following [72, 73].

5 System, Simulation, and MDP Details

Our real world robotic system (see Figure 1) is a combination of an ABB IRB 120T 6-DOF robotic
arm mounted to a two-dimensional Festo linear actuator, creating an 8-DOF system, with a table
tennis paddle mounted on the end-effector. The 3D ball position is estimated via a stereo pair of
Ximea MQO13CG-ON cameras from which we process 2D detections, triangulate to 3D, and filter
through a 3D tracker. See Appendix D for more details. We concatenate the ball position with the
8-DOF robot joint angles to form an 11-dimensional observation space. Along with the current
observation, we pass the past seven observations (a state space of 8 x 11) as the input to the policy.
The policy controls the robot by outputting eight individual joint velocities at 7SHz. Following Gao
et al. [52] we use a 3-layer 1-D dilated gated convolutional neural network as our policy architecture.
Details of the policy architecture can be found in Appendix E.

Our simulation is built on the PyBullet [74] physics engine replicating our real environment. We use
PyBullet to model robot and contact dynamics whilst balls are modeled as described in section 4. We
add random uniform noise of 2 x the diameter of a table tennis ball to the ball observation per timestep
to aid transfer to a physical system. We also found it necessary to simulate sensor latency, otherwise
sim-to-real transfer completely failed. Robot actions as well as ball and robot observation latencies
are modeled as parameterized Gaussians based on measurements from the real system. Policies are
rewarded for hitting balls and for returning balls in a cooperative manner. See Appendix G for details.

6 Experimental Results

Experimental Setup To evaluate our method, we completed the procedure described in section 4
for five different non-professional table tennis players, thus training five independent i-S2R policies.
We compare i-S2R with two baselines. First, the standard sim-to-real (S2R) baseline in which a policy
is transferred zero-shot from simulation [1, 3, 5, 6, 7, 8]. Second, a stronger baseline of S2R plus
fine-tuning (S2R+FT) in which a policy is transferred in simulation and training is continued in the
real world. For fair comparison, S2R+FT is given the same real world training budget as i-S2R. We
follow the approach in [24] using the same training algorithm throughout and implement an automatic
reset for autonomous training. Finally, each player trained a S2R-Oracle+FT policy which was trained
in simulation on the penultimate human behavior model obtained through i-S2R and fine-tuned in the
real world for 35% of the i-S2R training budget. This is equivalent to the last round of fine-tuning for
i-S2R. (See Figure 2 right). S2R-Oracle+FT is intended to isolate the effect of the human behavior
modeling on final performance, enabling us to better understand what aspects of the i-S2R process
matter. Each policy was evaluated by the model’s trainer. Select policies were cross-evaluated by two
other players. All policies were tested in random order and the identity of the model was kept hidden
from the evaluator ( “blind eval”). Further details can be found in Appendix H.



All Players All Players

All Players

50 Model
=3 iS2R

1 S2R+FT [24)

40 20 w

1.5
3 60

1.0
20 05 o

0.0
10 20 ‘

-0.5 ‘
0

o smeu .
iS2R S2R+FT S2ROracle S2ROrade  S2R iS2R S2R+FT  S2R- Ova(\e S2ROracle SR G 2 s 75 100 135 150 175 200
[24] +FT 24 + Rally Length

Rally Length
S
Normalized Rally Length
Count
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Figure 4: Results by player skill. When broken down by player skill, we notice that i-S2R has a substantially
longer rally length than S2R+FT and is comparable to S2R-Oracle for beginner and intermediate players. The
advanced player is an exception. Note, S2R-Oracle+FT gets just 35% of i-S2R and S2R+FT fine-tuning budget.

Due to the time needed to train and evaluate i-S2R, S2R+FT, and S2R-Oracle+FT (roughly 20 hours
per person) we note that 4 of the 5 players are authors on this paper. The non-author player’s results
appear consistent with our overall findings (see Appendix K for details).

(1) Does i-S2R improve over S2ZR+FT in a human-robot interactive setting? Figure 3 presents
rally length distributions aggregated across all players whilst Figure 4 splits the data by skill. Players
are grouped into beginner (40% players), intermediate (40% of players) and advanced (20% players).
The non-author player was classified as beginner. Please see Appendix I for skill level definitions.
When aggregated over all players, we see that i-S2R is able to hold longer rallies (i.e. rallies that are
longer than length 5) at a much higher rate than S2R+FT, as shown in Figure 3. When the players
are split by skill level, i-S2R significantly outperforms S2R+FT for both beginner and intermediate
players (80% of the players). The improvement differs between the two groups, with i-S2R yielding
a~ 70% and = 175% improvement for beginner and intermediate players respectively.

The policy trained by the advanced player has a different trend. Here, S2R+FT dramatically outper-
forms i-S2R. We hypothesize that a good S2R model plays a large part in the strong performance
of S2R+FT since better transfer from simulation improves the efficiency of subsequent fine-tuning
(see Figure 5). One possible explanation for the poor performance of i-S2R is that the policy played
fast. During evaluations, we observe the initial robot return is fast with top spin, likely due to a
combination of changes in the behavior model from iteration 1 to 2 and 3 and inherent randomness in
the training process. In response, the advanced player returns the ball even faster, also with top spin.
This appears challenging for the robot to return. During evaluation, most of the errors are made by
the robot, where the rally ends with the ball going over the human player’s end of the table. This
suggests that fine-tuning was not able to adjust in time to the top spin and fast speed of play, causing
the robot to hit over the table. One way to mitigate this would be to model spin in simulation, so
the policy could learn to respond to spin throughout training, not just during fine-tuning. However,
due to the time consuming nature of repeating experiments on the physical system it is difficult to
fully explain this result, especially since both the training methodology and involvement of humans
introduces a high degree of variance.
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Figure 6: The key distribution parameters change substantially from initial ball distribution (sim1) to that after
Ist round of sim training (sim2). This is to be expected given we start from a simple human model (hits across
the table). The change in parameters between 1st and 2nd round of sim training is much less (sim2 vs. sim3).

(2) How many sim-to-real iterations does the human behavior model take to converge? For
beginners we find that it only took two iterations for i-S2R to converge (see Figure 5). In the leftmost
chart showing beginner policy data, i-S2R achieves comparable levels of performance at the end
of the 2nd (fine-tune-65%) and final (fine-tune-100%) iterations. However, for intermediate skilled
players this is not the case. The human behavior model from iteration to iteration (Figure 6) offers
a clue. For beginner players, the distribution barely changes after the 2nd round as evidenced by
the difference between the left and right charts. Whereas for intermediate players the distribution
continues to change substantially from round 2 to 3 (specifically in y and z velocities), which is
perhaps why we see the strongest performance of i-S2R after the 2nd iteration for beginners but after
the 3rd iteration for intermediate players.

The advanced player’s distribution hardly changes between the 2nd and 3rd round and the performance
of i-S2R is comparable across both. However this does not explain why we observed the best i-
S2R performance at the end of the 1st round for this player. Investigating the effect of playing style
on changes in ball distribution every iteration and hence on the sim-to-real gap or training for more
iterations for advanced players can shed light on this in future work.

(3) What is the impact of the human behavior model? For beginner and intermediate players,
S2R-Oracle+FT is in line with i-S2R performance. However S2R-Oracle+FT also achieved this
level of performance with just 35% of the real world training time compared to i-S2R and S2R+FT.
Therefore much of the benefit of i-S2R likely comes from improving the human behavior model
from iteration to iteration. It also suggests that if we had access to the final human behavior model at
the beginning of training, the iterative sim-to-real training would not be needed. We could simply
fine-tune in the real world and achieve comparable performance with substantially less human training
time. S2R-Oracle+FT’s strong performance also validates our motivation for this work, in which we
hypothesized that the difficulty of defining a good human behavior model a priori for human-robot
cooperative rallies was limiting performance.

This result indicates that i-S2R does not benefit from additional training iterations in simulation
over and above the improvements to the human behavior model. The evaluations at earlier stages in
training (shown in Figure 5) suggest the remaining sim-to-real gap could be responsible. Figure 5
shows that, in all cases, after both the second (sim-2) and third (sim-3) rounds of simulated training,
rally length drops noticeably. Reducing the sim-to-real gap might improve i-S2R’s performance due
to better starting points for the last two rounds of fine-tuning.



(4) Does i-S2R offer any generalization benefits in this setting? N pr——
We evaluate the generalization capabilities of models trained with =noneiners
i-S2R, and how they compare against models trained using S2R+FT ~_~
by conducting cross-evaluations. A “cross-evaluation” of a policy
is an evaluation conducted by a human who did not play with the
policy during training. Each of the 5 policies was cross-evaluated
by randomly selecting 2 other humans from the human-subject pool
and averaging the results. As shown in Figure 7, i-S2R substantially
outperforms S2R+FT when the models are cross-evaluated by other SIRTRA  SZROTETFT
players (with similar blind evaluations as earlier) including for the Model
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advanced player where S2R+FT was best in self evaluation (see
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Appendix K for details by player). This observation holds whether
we look at absolute or normalized rally length (see Appendix J for
normalization methodology). Performance with other players is
lower for all models, however i-S2R maintains around 70% of per-
formance on average compared to 30% for S2R+FT. We hypothesize
that the broader training distribution obtained by iterating between
simulation and reality leads to policies that can deal with a wider
range of ball throws, leading to better generalization to new players. SR SR sROrdertT
Our confidence in this hypothesis is strengthened by the fact that

S2R-Oracle+FT also outperforms S2R+FT in this setting. Figure 7: Cross-evaluations mean
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s gregated across all players. i-
7 Limitations S2R generalizes better to new
players compared to S2R+FT.

o
®

o
>

Normalized Rally Length
g

o
o

o
)

Having a human in the loop poses numerous challenges to robotic reinforcement learning. It slows
down the overall learning process to accommodate human participants, and limits the scale at which
one can experiment. As one example, while we tested our method on five subjects, time limitations
prevented us from training with multiple random seeds for each subject. There is significant variation
in how people interact with robots (or sometimes even the same person over time), which introduces
extra variance into our experiments. In our experiments, the trends we saw for one particular subject
were substantially different from all other subjects, and we could not fully explain why.

It is possible for an expert human player to achieve long rallies by keeping the ball in a very narrow
distribution without really improving the inherent capability of the agent to play beyond those balls.
In our studies, since we used non-professional players, this was not an issue.

Another limitation arising from training a policy with a human in the loop is the possibility that
some performance improvements are attributable to human learning and not policy learning. We did
our best to mitigate this by asking players to evaluate all models “blind” (i.e. the player is unaware
of what model they are evaluating) and at the end of training, after which the majority of human
learning was likely to have occurred. Consequently, we think that differences between models reflect
differences in policy capability and not human capability.

Finally, we represent humans in simulation in a simple way — by capturing all initial position and
velocity ranges during their play — and then we sample each ball in simulation uniformly and
independently. This ignores the probability distribution of balls within those ranges and also results
in a loss of correlation between subsequent balls in a rally. The behavior model also omits spin and
human attributes such as stamina, skill level, intention, and curiosity. These could be addressed by
developing a more sophisticated behavior model that takes these factors into account.

8 Conclusion

We present i-S2R to learn RL policies that are able to interact with humans by iteratively training in
simulation and fine-tuning in the real world with humans in the loop. The approach starts with a coarse
model of human behavior and refines it over a series of fine-tuning iterations. The effectiveness
of this method is demonstrated in the context of a table tennis rallying task. Extensive “blind”
experiments shed light on various aspects of the method and compare it against a baseline where we
train and fine-tune in real only once (S2R). We show that i-S2R outperforms S2R in aggregate, and
the difference in performance is particularly significant for beginner and intermediate players (4/5).
Moreover, i-S2R generalizes much better than S2R to other players.
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