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Abstract

Vision-Language Models (VLMs) have
achieved remarkable progress in complex
visual understanding across scientific and
reasoning tasks. While performance bench-
marking has advanced our understanding
of these capabilities, the critical dimension
of uncertainty quantification has received
insufficient attention. Therefore, we present
a comprehensive uncertainty benchmarking
study using conformal prediction, evaluating
16 state-of-the-art VLMs (both open-source
and proprietary) across 6 multimodal datasets
using 3 distinct scoring functions. Our findings
demonstrate that larger models consistently
exhibit better uncertainty quantification;
models that know more also know better
what they don’t know. More certain models
achieve higher accuracy, while mathematical
and reasoning tasks elicit poorer uncertainty
performance across all models compared
to other domains. This work establishes a
foundation for reliable uncertainty evaluation
in multimodal systems.

1 Introduction

Recent advances in large vision-language models
(VLMs) have led to remarkable progress in com-
plex visual understanding and reasoning across di-
verse domains such as mathematics (Wang et al.,
2024), science (Lu et al., 2022), and medicine
(Matos et al., 2024). These models now achieve im-
pressive results on challenging multimodal bench-
marks, demonstrating their potential for real-world
impact.

Yet, despite these capabilities, significant chal-
lenges remain. As VLMs are increasingly deployed
in high-stakes domains like medical diagnostics (Li
et al., 2025), educational assessments, and scien-
tific reasoning, the consequences of model failure
become critical. While accuracy metrics highlight
overall performance, they do not reveal when a

model is uncertain or likely to err. In practical ap-
plications, especially in sensitive fields like health-
care, an overconfident but incorrect prediction can
have severe repercussions. Thus, quantifying and
understanding model uncertainty in a computation-
ally efficient way is essential for building reliable
and trustworthy VLM systems.

Quantifying uncertainty in VLMs is therefore
crucial for building reliable and trustworthy sys-
tems, especially in high-stakes domains. While
classical approaches such as Bayesian neural net-
works (Blundell et al., 2015), deep ensembles (Lak-
shminarayanan et al., 2017), and calibration-based
methods (Guo et al., 2017) have been explored
for uncertainty estimation mostly in traditional ma-
chine learning models, their application to founda-
tion models (e.g., LLMs, VLMs, and multimodal
architectures), where parameters often scale to bil-
lions or trillions, is limited by computational cost
and scalability issues. Conformal prediction, in
contrast, offers a computationally feasible, model-
agnostic framework with formal statistical guar-
antees, making it particularly attractive for uncer-
tainty quantification in complex multimodal set-
tings. Prior work has applied conformal prediction
to LLMs for benchmarking predictive confidence
(Ye et al., 2024), but its utility for VLMs, where un-
certainty arises from both visual and textual modal-
ities, remains largely unexplored. This motivates
our study, which systematically investigates confor-
mal prediction as a principled approach for uncer-
tainty benchmarking in VLMs across diverse set of
tasks.

This study is guided by several core research
questions:

1. Do different conformal scoring functions
yield similar efficiency in terms of prediction
set size, or do their behaviors diverge across
tasks and models?

2. Is there a correlation between model accuracy



and the size of conformal prediction sets, in-
dicating calibration quality?

3. How do uncertainty metrics (set size) vary
with model scale and architecture?

4. Can this uncertainty quantification approach
be applied to black-box proprietary models,
provided they expose token-level probabili-
ties?

Our evaluation spans a suite of carefully chosen
datasets- MMMU, MMMU-Pro, AI2D, MathVi-
sion, ScienceQA, and WorldMedQAV- each prob-
ing distinct aspects of visual and scientific under-
standing. We systematically compare multiple scor-
ing functions within the conformal framework to
provide a comprehensive analysis of uncertainty in
VLMs.

Our findings reveal patterns of uncertainty that
correlate not only with accuracy but also with task
modality and semantic complexity, offering deeper
insights into when and why VLMs hesitate.

2 Related Works

Uncertainty quantification has long been a focus of
machine learning (Abdar et al., 2021), particularly
for applications involving risk-sensitive decision-
making. Classical techniques span Bayesian neural
networks (Blundell et al., 2015), deep ensembles
(Lakshminarayanan et al., 2017), and calibration-
based methods (Guo et al., 2017). While these ap-
proaches have proven effective in low-dimensional
settings, they are often computationally prohibitive
or insufficiently expressive for deep multimodal
models.

Conformal prediction is a well-established un-
certainty quantification method that offers statisti-
cal guarantees and has been successfully applied
across various domains (Zhou et al., 2025). Its
distribution-free, model-agnostic, and computation-
ally efficient nature makes it particularly suitable
for large-scale models.Recent work has applied
conformal prediction to LLMs (Angelopoulos and
Bates, 2021; Ye et al., 2024) and VLMs (Kostumov
et al., 2024), providing coverage guarantees via pre-
diction sets. However, prior studies were limited
to text-only models or evaluated VLMs on sim-
pler benchmarks with outdated model selections.
Our work extends this paradigm by incorporating
complex reasoning tasks and systematically eval-
uating a comprehensive, up-to-date collection of

state-of-the-art VLMs across diverse multimodal
contexts.

The emergence of VLMs has shifted attention to-
ward multimodal understanding. Evaluation bench-
marks have evolved accordingly focusing on vari-
ous aspects of performance including visual reason-
ing (Zellers et al., 2019), hallucination detection
(Liu et al., 2022), and multimodal knowledge (Xu
et al., 2023).

Efforts to measure uncertainty in VLMs remain
nascent. While some generative vision models
include sampling-based estimates, few offer any
formal statistical guarantees. These approaches
often lack standardized methodology for system-
atic benchmarking. This work benchmarks VLLMs
using conformal prediction across diverse tasks,
offering a robust framework for uncertainty quan-
tification in multimodal settings.

3 Conformal Prediction

Conformal prediction provides a statistically rig-
orous, distribution-free framework for uncertainty
quantification. It constructs prediction sets that con-
tain the true output with a specified probability. For
any model f that maps an input X to a probability
distribution over a finite label space Y, conformal
prediction constructs a prediction set C'(X) C Y
such that:

P(Yie € C(X)) > 1 — a, (1)

where « is the desired error rate.

To construct these sets, one defines a score func-
tion s(X, y), which reflects the incompatibility be-
tween input X and label y. The prediction set is
then constructed through the following procedure:

1. Compute conformal scores s; = s( X, V)
for each example in a held-out calibration set
Dea = {(Xfal, chal)’ . (Xflal’ Y;al)}‘

2. Calculate a threshold § as the [(n 4+ 1)(1 —
«)]/n quantile of these calibration scores:

sosn} [(n+1)(1=a)]/n)
2

3. For any test input X, construct the prediction
set by including all labels with scores not ex-
ceeding the threshold:

CX)={yeY:s(X,y) <4 3

¢ = quant({sy, ..

Three principal scoring functions are commonly
used in conformal prediction for classification:



Least Ambiguous Classifier (LAC). The LAC
score (Sadinle et al., 2019) is defined as
3LAC<X7y) = 1_f(X)y7 (4)

where f(X), denotes the model’s predicted prob-
ability for class y. This approach penalizes low-
confidence predictions, assigning higher scores to
less likely labels and thus favoring more confident
predictions in the conformal set construction.

Adaptive Prediction Sets (APS).
(Romano et al., 2020) is given by

Y (X)y,

Y f(X)y 2 f(X)y

The APS score

saps(X,y) =

which sums the probabilities of all classes with at
least as much support as y, effectively incorporat-
ing the model’s ranking of classes. APS adapts the
conformal set size to the ambiguity present in the
predictions, making it particularly useful when the
model’s probability distribution is diffuse.

Marginal Score.

Smargin(X7 y) = f(X)(l) - f(X)(Q)a (6)

where f(X)(1) and f(X)g) are the top-1 and top-
2 predicted probabilities, respectively. This score
captures the model’s decisiveness by directly mea-
suring the confidence gap between the most likely
and second most likely classes, making it a natural
fit for high-ambiguity tasks where subtle distinc-
tions matter.

The margin score is defined as

4 Datasets

We evaluate uncertainty in VLMs across six di-
verse, challenging datasets, each probing different
aspects of multimodal reasoning and understand-
ing:

MMMU The Massive Multi-discipline Multi-
modal Understanding (MMMU) dataset (Yue et al.,
2024a) is a large-scale benchmark designed to as-
sess VLMs on college-level, expert-written ques-
tions spanning 30 disciplines, including science,
medicine, engineering, and the humanities.

MMMU-Pro MMMU-Pro (Yue et al., 2024b) is
an extension of MMMU, curated to provide more
challenging and professionally oriented questions.
It emphasizes real-world scenarios and domain-
specific expertise, increasing the complexity of
both the visual and textual components.

ScienceQA ScienceQA (Lu et al., 2022) is a
multimodal benchmark focused on elementary
and middle school science questions. It contains
over 21,000 questions covering natural sciences,
physics, and biology, many of which are accompa-
nied by images such as diagrams or illustrations.
The dataset tests the model’s ability to integrate
visual information with scientific knowledge.

AI2D The AI2 Diagrams (AI2D) dataset (Kemb-
havi et al., 2016) consists of over 15,000 elemen-
tary science diagram questions. Each question is
paired with a labeled diagram and multiple-choice
answers, requiring the model to interpret visual ele-
ments, spatial relationships, and scientific concepts
depicted in the diagrams.

MathVision MathVision (Wang et al., 2024,
2025) is a visual math reasoning benchmark that
presents mathematical problems embedded in im-
ages, such as graphs, geometric figures, or hand-
written equations. The dataset evaluates the
model’s ability to extract quantitative information
from visuals and perform mathematical reasoning.

WorldMedQAV WorldMedQAV (Matos et al.,
2024) is a medical visual question answering
dataset featuring clinical images (e.g., X-rays,
pathology slides) and expert-authored multiple-
choice questions. It is designed to assess VLMs’
capabilities in medical image interpretation and di-
agnostic reasoning, reflecting real-world healthcare
scenarios.

Together, these datasets provide a comprehen-
sive testbed for evaluating uncertainty in VLMs
across a spectrum of domains, modalities, and rea-
soning challenges.

S Experimentation

5.1 Prompting

Our prompting strategy employed a three-part
structure across all datasets. First, we used
dataset-specific system messages that established
the VLM’s role (e.g., "scientific diagram ana-
lyzer" for AI2D, "medical image diagnostician"
for WorldMedQAYV). These messages oriented the
model to the domain context while maintaining
consistent instruction patterns.

Second, we included zero-shot task instructions
that briefly described the upcoming question type
without revealing solving strategies. For instance,
MathVision prompts began with "I will show you



an image along with a multiple-choice math ques-
tion." This framing provided context without bias-
ing model responses.

Finally, all prompts concluded with a standard-
ized instruction directing models to "Only respond
with the option letter" to ensure consistent output
format for uncertainty analysis. This standard-
ized approach eliminated prompt variability as a
confounding factor in our experiments. Complete
prompts are provided in Appendix A.

5.2 Inference Setup

We implemented a carefully controlled inference
pipeline across different computing platforms
based on model size and availability. For all small
models (< 7B parameters), we conducted inference
on P100 and T4 GPUs via the Kaggle platform.

For our selected VLMs, we prioritized using
OpenRouter’s API service whenever available, re-
gardless of model size. This approach covered
both large and mid-sized models with API end-
points. For mid-sized models without OpenRouter
API availability, we utilized A1000 GPUs on the
Runpod platform for efficient inference.

All models processed on Kaggle and Runpod
were loaded directly from their official Hugging
Face repositories to ensure we used canonical
model versions. Throughout all inference meth-
ods, we set do_sample=False to employ greedy
decoding, making temperature, top-k, and top-p
parameters irrelevant to our experimental design.

For each model response, we extracted the log-
probabilities assigned to the answer option letters
(e.g., A, B, C, D) by examining the token-level
scores corresponding to the model’s final output.
Since all tasks were multiple-choice and responses
were constrained to a single letter, we retrieved
the log-probability of the token representing the
predicted answer. These probability distributions
formed the foundation for our uncertainty quan-
tification through conformal prediction. We im-
plemented conformal prediction with miscoverage
rate a = (.1 (ensuring 90% coverage probability)
and allocated 50% of each dataset for calibration
and 50% for testing.

5.3 Evaluated Models

We evaluate 16 vision-language models represent-
ing diverse architectures and scaling properties.
Our open-source selection includes Llama-4-Scout,
Gemma-3 (Team et al., 2025) (4B/12B/27B), In-
ternVL3 (Zhu et al., 2025) (1B/2B/8B), Molmo

variants (Deitke et al., 2024) (1B/7B), Qwen2.5-
VL (Bai et al., 2025) (3B/72B), Llava-1.5 (Liu
et al., 2024) (7B/13B), and Pixtral (Agrawal et al.,
2024)(12B). For proprietary models, we test GPT-
4.1-nano and GPT-40-mini, the only commercial
VLMs providing token probabilities required for
conformal analysis.

This meticulate choice of models allows con-
trolled comparisons of uncertainty characteristics
across model sizes, architectures, and development
paradigms (open/closed). We exclude other propri-
etary models (e.g., Gemini, Claude ) due to their
API limitations on probability access, which is es-
sential for our conformal prediction framework.

5.4 Evaluation Metrics

Our primary uncertainty quantification (UQ) metric
is Set Size (SS), which measures the average size
of conformal prediction sets:

1
’Dtest| Z

(Xt,Yt)ED¢est

SS =

X))l D

A smaller SS indicates more precise uncertainty
estimates, with SS=1 representing perfect certainty
when the prediction is correct. We complement this
with traditional Accuracy (Acc) to assess prediction
correctness:

1
Acc = ——— (Y, =Y 8
|Dtest| ( Z ( P t) ( )

X,Y:)EDt¢est

Finally, we verify the statistical guarantee of
our conformal framework through Coverage Rate
(CR):

1
CR = m( Y I eC(X) O

Xt,Y:)EDtest

CR must maintain at least (1 — «) coverage
across all test cases. Together, these metrics (SS,
Acc, CR) evaluated across LAC, MS, and APS
score functions provide a complete assessment of
both prediction quality and uncertainty reliability.

6 Results

6.1 Uncertainty Performance Analysis

Table 2 shows set sizes across our evaluated VLMs
and conformal scoring functions. LAC scoring pro-
duces the smallest set sizes across most models,



MMMU-
Models Model Size' MMMU  Pro

ScienceQA.  AI2D  MathVision WorldMedQAV  Overall
Closed-Source
GPTA4.1 Nano Unknown 4.1 16.6 05.9 617 238 55.2 444
GPT-40 Mini Unknown | 528 200 75 682 244 58.2 502
Open-Source

LLaMA 4 Scout 109B 54.7 34.0 834 71.6 306 63.1 56.2
Gemma 3 4B 4B 4058 19.4 672 60.1 247 39.5 419
Gemma 3 12B 12B 4860 215 7.7 68.7 277 53.0 49.9
Gemma 3 278 278 56.2 26.7 79.5 72 333 58.1 543
InternVL3 1B 1B 412 138 74 65.0 192 29.6 40.0
InternVL3 2B 2B 523 221 87.7 76.8 268 40.6 511
InternVL3 8B 8B 58.1 30.6 90.4 81.8 300 49.9 56.8
Qwen 2.5 VL3B 3B 400 18.7 065.0 65.9 274 40.6 3.0
Qwen2.5VL72B 7B 529 250 79.0 7.7 379 63.8 555
LLaVA 1.5 7B B 350 11.2 3.1 488 180 282 224
LLaVA 15 13B 138 332 144 60.3 553 184 335 358
MolmoE 1B 1B 317 1.4 n3 532 16.5 28.7 355

Molmo 7B D B 458 148 87.3 76.2 22.6 433 483

Table 1: Accuracy performance (%) of VLMs across six
benchmarking datasets. Color intensity indicates higher
performance.

Accuracy vs. Set Size (All Models, All Datasets)
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Figure 1: Correlation between accuracy and set size
across datasets. Higher-performing models produce
more concentrated prediction sets.

indicating its effectiveness for uncertainty quan-
tification in vision-language tasks. The consistent
pattern of smaller set sizes for larger models within
each family (e.g., Qwen-VL 72B vs. 3B) demon-
strates that scaling benefits uncertainty calibration.

Figure 1 demonstrates the strong inverse relation-
ship between accuracy and set size, confirming that
more accurate models generally produce more con-
centrated prediction sets with better calibration. As
shown in Figure 7, this negative correlation repre-
sents a fundamental principle: models that perform
better also express more appropriate confidence
levels.

6.2 Accuracy Performance Analysis

Table 1 reveals clear performance patterns: (1)
larger models within the same family consistently
achieve higher accuracy; and (2) significant perfor-
mance gaps exist between datasets, with MMMU-
Pro being most challenging (20.85% average accu-

racy) and ScienceQA most approachable (73.78%).
Among open-source models, InternVL 8B delivers
the strongest performance, particularly excelling
on AI2D and ScienceQA tasks.

Figure 2 shows that model size correlates posi-
tively with accuracy and inversely with set size.
Models cluster by parameter count, with larger
models (>10B) consistently occupying the upper-
left region of higher accuracy and smaller set sizes,
demonstrating that scaling improves both perfor-
mance and uncertainty calibration.

6.3 Coverage Rate Analysis

Table 3 and Figure 4 verify that our conformal pre-
diction framework achieves at least (1 —a) = 90%
coverage in most cases, validating its reliability.
The few instances where coverage falls slightly be-
low target show minimal deviation. Coverage is
most challenging to maintain for complex reason-
ing tasks like MathVision and MMMU-Pro, though
the framework still performs robustly across all do-
mains.

6.4 Model-Specific Uncertainty Performance

Figure 5 reveals distinct "uncertainty signatures"
for each model family. From the figure, it is evi-
dent across all model families (Gemma, Qwen-VL,
InternVL) that bigger variants demonstrate better
confidence in terms of uncertainty quantification
while maintaining the specified coverage rate.

Figure 6 provides a comprehensive comparison
of uncertainty performance metrics across all eval-
uated model families. InternVL demonstrates su-
perior uncertainty quantification capabilities, sur-
passing all competitors in this critical dimension.
Llama-4-Scout follows as the second-best per-
former, suggesting potential architectural advan-
tages in these two model families that may con-
tribute to their enhanced calibration and confidence
estimation.

6.5 Domain-Specific Uncertainty Performance

VLMs show better uncertainty calibration on
datasets where visual elements complement rather
than dominate reasoning. ScienceQA, with im-
ages reinforcing textual concepts, yields high accu-
racy (75.2% average) with well-calibrated uncer-
tainty (2.1 average set size). Conversely, MathVi-
sion—requiring precise extraction of visual quanti-
tative information—proves challenging for uncer-
tainty calibration (4.5 average set size despite lower
accuracy).



MMMU MMMU-Pro ScienceQA AZD MathVision WorldMedQAV Overall
Models Model Size LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg

Closed-Source

GPT-4.1 Nano Unknown 32 38 35 35 &8519.00 85 87 20 26 32 2.6 24 30 38 31 45753 45 48 35 42 40 39 40 46 46 44

GPT-40 Mini Unknown 30 35 36 34 30 82 87 83 I8 22834 24 22 27843 31 43°53 42 46 31 38 41 37 37 43 &7 43
Open-Source

LLaMA 4 Scout 109B 29 35 32 32 72 79 75 75 13 16 27 19 18 24 34 Z5045E5i4aedd 28 39 38 35 34 41 42 39
Gemma 3 4B 4B 37 39 37 37 85 84 88 85 23 29 32 28 28 3.6 37 33 47 54 45 49 46 50 46 47 44 49 48 46
Gemma 3 12B 12B 33 35 39 36 79 79 82 80 I8 22 33 24 22 2.6 40 295N 52 WSS 40 4246 43 40 4348 44
Gemma 3 27B 27B 27 31 32 30| 832 84 81 82 14 18 27 20 19 25 3.1 25 A44E52 43 40 33 40044 41 37 42 43 41
InternVL3 1B 1B 33 41 34 36 89 88 94 90 15 19 31 22 21 27 38 29 48 51 47 49 48 51 47 49 42 46 48 46
InternVL3 2B 2B 29 36 35 33 81 84 84 83 1.1 11 30 L7 L5 1.7 35 23 42 50 42 45 33852 3.7 43 36 42 44 41
InternVL3 8B 8B 25 30 35 30 68 78 74 74 10 10 28 16 13 15 36 21 4051 43 44 35 44 39 39 32 38 42 37
Qwen2.5VL3B 3B 31 36 33 33 86 91 85 88 19 25 25 23 20 24 34 26 43 46 43 44 41 46 41 43 40 45 44 43
Qwen 2.5 VL72B | 72B 30 36 38 35 79 82 80 80 16 19 32 22 1.8 2.0 42 27 38 44 39 40 38 37 48 41 36 40 46 41
LLaVA157B B 36 39 3.7 3.7 9390 9] 9l Rhead 2.8 29030 41 34 (35 50 530051 5 47 5 47 48 AT 50 48 49
LLaVA 1.5 I3B 13B 38 42 38 39 90 87 89 89 24 30 3.0 28 29 3.6 36 34 49 54 49 51 45 50 44 46 406 50 48 438
MolmoE 1B 1B 41 43 43 42 90 90 88 89 19 23 34 25 30 38 38 35 48 54 49 50 46 52 43 47 406 50 49 48
Molmo 7B D 7B 33 36 35 35 85 87 85&6 1.1 11 29 17 16 19 36 24 43751 42 450 42748 43045 38 42 45 42
Pixtral 12B 12B 30 32 35 32 78 82 82 81 13 15 3.1 20 18 22 37 26 43 47 45 45 40 45 40 42 37 40 45 41

Table 2: Set Size results across models, datasets, and conformal scoring functions (LAC, MS, and APS). Lower
values indicate more precise uncertainty quantification.

MMMU MMMU-Pro ScienceQA AIZD MathVision WorldMedQAV Overall
Models Model Size LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg LAC MS APS Avg
Closed-Source
GPT-4.1 Nano Unknown  90.2 87.6 93.3 90.4 904 91.9 882 902 91.1 914 97.8 934 89.8 89.4 97.0 92.1 88.3 90.7 883 89.1 922 91.6 96.5 93.4 903 904 935 914
GPT-40 Mini Unknown  91.2 91.0 954 925 915 91.2 920 91.6 90.5 89.1 99.1 92.9 90.3 90.8 98.6 932 89.4 90.7 88.5 89.5 90.9 91.0 96.8 92.9 90.60 90.6 95.1 92.1

Open-Source

LLaMA4 Scout | 109B 909 90.1 91.5 90.8 89.7 914 91.7 90.9 91.3 90.7 962 92.7 90.6 90.5 97.6 92.9 £9.6 91.0 90.8 904 905 92.1 945 924 904 910 93.7 917
Gemma 3 4B 4B 91.4 88.1 919 90.5 89.2 884 91.7 89.8 93.5 93.0 96.8 944 903 91.0 94.6 92.0 B89.9 92.1 89.6 90.5 91.0 91.4 914 91.2 90.9 90.7 92.7 914
Gemma 3 12B 12B 882 89.9 942 908 89.6 883 904 895 922 91.1 984 939 91.1 90.1 98.0 93.1 914 906 93.1 91.7 90.0 90.5 924 91.0 904 90.1 944 91.7
Gemma 3 27B 27B 89.2 874 90.7 80.1 89.6 90.8 89.8 90.1 91.9 91.1 94.7 92.6 9l.1 90.6 93.3 91.6 92.8 92.7 923 92.6 92.8 90.5 94.0 924 91.2 90.5 925 914
InternVL3 1B 1B 91.3 91.0 92.8 91.7 91.7 89.6 938 91.7 88.8 89.7 99.2 92.6 90.5 89.5 98.6 929 B89.9 89.0 87.6 88.8 91.7 90.7 92.1 91.5 90.7 89.9 94.0 91.5
InternVL3 2B 2B 924 92.7 949 934 90.6 90.9 838 90.1 909 91.2 999 94.0 90.2 89.5 99.3 93.0 88.5 89.2 858 87.5 949 942 945 945 912 913 939 92.1
InternVL3 8B 8B 92.2 90.4 96.5 93.0 89.3 88.6 92.6 90.2 92.2 92.0 98.8 943 904 904 99.6 935 89.5 91.1 912 90.6 919 90.5 944 922 90.9 90.5 955 923
Qwen2.5VL3B |3B 91.5 88.6 94.1 914 922 943 90.7 924 91.5 89.1 97.0 925 898 89.1 978 922 90.7 83.7 87.9 89.1 922 90.0 92.7 91.6 91.3 90.0 934 915
Qwen2.5VL72B 72B 91.9 922 958 933 93.5 91.0 93.1 92.6 93.1 92.7 989 94.9 894 387 98.7 923 88.6 884 389 887 945 929 963 946 918 91.0 953 92.7
LLaVA1.57B 7B 90.2 88.7 89.4 89.4 914 89.8 92.1 91.1 89.9 92.0 90.5 90.8 90.1 91.3 91.8 91.1 91.6 90.6 91.5 913 91.2 91.4 92.1 91.5 90.7 90.6 91.2 90.9
LLaVA 1.5 13B 13B 93.1 928 91.8 926 91.2 87.0 838 89.0 91.0 9L.7 959 929 89.8 899 95.1 91.6 91.6 90.0 89.1 902 91.7 89.9 915 9.1 914 902 92.0 91.2
MolmoE 1B 1B 89.9 88.9 91.4 90.1 93.1 90.8 903 914 92.0 92.8 982 943 903 903 95.7 92.1 §8.2 90.1 89.8 89.4 933 90.7 903 914 9L1 90.6 92.0 91.4
Molmo 7B D 7B 91.7 899 940 919 868 89.1 863 874 90.6 90.6 99.1 934 898 902 98.7 929 855 884 83.7 859 905 900 912 90.6 89.2 89.7 922 904

Table 3: Coverage Rate across models and datasets. Green cells highlight where coverage exceeds the target
threshold of 90%.



Model Comparison: Accuracy vs. Set Size
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Figure 2: Relationship between model size, accuracy, and set size. Larger models exhibit both higher accuracy and
smaller set sizes.

Set Size (LAC, MS, APS) Across Models (Averaged Over Datasets)
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Figure 3: Comparison of set sizes across VLMs and scoring functions. LAC scoring consistently produces the most
compact prediction sets.

Coverage Rate Distribution (LAC, MS, APS) Across Models and Datasets
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Figure 4: Coverage rates across datasets and models. All scoring methods maintain at least 90% coverage in most
cases.



Model Family Performance Comparisons
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Figure 5: Uncertainty profiles for three model families: InternVL (1B, 2B, 8B), Qwen-VL (3B, 72B), and Gemma
(4B, 12B, 27B). Smaller radar areas indicate better-calibrated uncertainty estimates. Darker shades represent larger
models within each family. Each model family exhibits distinct scaling patterns across domains.

Model Performance Metrics Comparison
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Figure 6: Comparative uncertainty profiles across all
VLMs. Proprietary models like GPT-40-mini achieve
remarkably well-calibrated uncertainty estimates.

In specialized domains like medical visual rea-
soning (WorldMedQAYV), uncertainty calibration
remains stable within parameter brackets despite
varying accuracy levels. This suggests domain-
specific visual expertise and uncertainty aware-
ness develop somewhat independently—models
may recognize domain-specific features without
being well-calibrated about their confidence, or
vice versa.

7 Conclusion

This work presents a comprehensive conformal un-
certainty benchmarking study for Vision-Language

Relationships Between Different Metrics
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Figure 7: Correlation matrix between model size, accu-
racy, set size, and coverage rate.

Models, revealing important correlations between
model scale, accuracy, and uncertainty quantifica-
tion capabilities. Our findings demonstrate that
larger models not only achieve higher accuracy
but also produce better-calibrated uncertainty esti-
mates; they know better what they don’t know.

Limitations

While this study provides valuable insights into
uncertainty quantification for VLMs, several limi-
tations should be acknowledged. First, our bench-
marking was restricted to multiple-choice datasets
due to the computational constraints of conformal



prediction methods, which require well-defined
prediction sets. Future work should explore ex-
tending these techniques to generative tasks where
the output space is unbounded, potentially through
methods that quantify uncertainty in free-form text
generation. Second, our proprietary model analysis
was limited to GPT-based models, as other leading
systems like Claude and Gemini do not currently
expose token-level log probabilities necessary for
our conformal scoring functions. As these capabili-
ties become available in more proprietary models,
the benchmarking framework could be readily ex-
tended to provide a more comprehensive landscape
of uncertainty quantification across the industry.
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A Prompt Design Specifications

This section documents the complete prompt engi-
neering framework used in our experiments. The
two-layer prompting strategy consists of:

* System messages that establish the model’s
role and response constraints

* Zero-shot instructions that provide task-
specific guidance with MCQ questions and
options, while maintaining output consistency

The combination ensures standardized evalua-
tion conditions across all datasets while preserving
each task’s unique requirements. Tables 4 and 5
detail the exact formulations. All datasets used
standardized zero-shot instructions following the
pattern mentioned in Table 5.

Other datasets used identical phrasing, adjusted
only for:

* Domain specificity (e.g., “scientific dia-
gram” for AI2D, “medical image” for
WorldMedQAV)

* Option letter range (A-F for most, up to A-J
for MMMU-Pro)

B Dataset Statistics and Preprocessing

This section documents key dataset characteristics
and preprocessing steps taken to ensure evaluation
consistency across all benchmarks.

B.1 Option Distribution Normalization

We standardized answer options across all datasets
to maintain consistency in evaluation:

e Added "I don’t know" and "None of them”
options where needed to ensure uniform op-
tion counts within each dataset

* Maintained original option ordering (A, B,
C,...) without randomization
B.2 Multimodal Sample Handling
To ensure fair evaluation across all models:

* Excluded questions with multiple input im-
ages (4.9% of total samples from MMMU
dataset) since not all evaluated VLMs support
this feature

* Verified all remaining samples contain exactly
one image-question pair
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Dataset System Message

You are a scientific diagram analyzer.

- Analyze the diagram carefully

- Answer ONLY with the correct option letter (A, B, C, D, E, or F)
- Never explain your reasoning

- If uncertain, guess from the provided options

AI2D

You are a science question answerer.

- Use the image and question to select ONE correct option
- Respond STRICTLY with just A, B, C, D, or E

- No explanations or additional text

- Must choose from given options

ScienceQA

You are a math problem solver.
- Analyze the image and question precisely
- Output MUST be exactly one letter: A, B, C, D, E, or F
- Never show working
MathVision - Select even if uncertain

You are a medical image diagnostician.

- Examine the image and question thoroughly

- Respond ONLY with the letter (A-F) of the most likely answer
- No disclaimers or explanations

- Choose from options even if unsure

WorldMedQAV

You are a multi-disciplinary expert.

- Combine image understanding with question requirements
- Output EXACTLY one letter: A, B, C, D, or E

- No additional text under any circumstances

- Must select from provided options

MMMU

You are a multi-disciplinary expert.

- Combine image understanding with question requirements
- OQutput EXACTLY one letter: A, B, C, D, E, F, G, H, I, J
- No additional text under any circumstances

- Must select from provided options

MMMU-Pro

Table 4: System Prompts for each dataset in the VLM evaluation

B.2.1 Option Balance Analysis

The option distributions reveal distinct patterns
across datasets:

e Balanced Datasets: AI2D, MathVision,
WorldMedQAYV, and MMMU-Pro show ap-
proximately uniform answer distributions
(Figures 8a, 8c, 8d, 8f)

¢ Skewed Datasets: ScienceQA and MMMU
show a higher frequency in earlier op-
tions(Figures: 8b, 8e).
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Dataset

Example Prompt

ScienceQA

I will show you an image along with a multiple-choice science
question.

Please select the correct answer from the given options.

Only respond with the option letter (A, B, C, D, E).

{QUESTION}

{OPTIONS}

Table 5: Representative zero-shot prompt example

Table 6: Final test set statistics after preprocessing

Dataset Samples Options
AI2D 3,090 A-F
ScienceQA 2,020 A-E
MathVision 1,530 A-F
WorldMedQAV 1,140 A-F
MMMU 794 A-E
MMMU-Pro 1,210 A-]
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