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Abstract001

Vision-Language Models (VLMs) have002
achieved remarkable progress in complex003
visual understanding across scientific and004
reasoning tasks. While performance bench-005
marking has advanced our understanding006
of these capabilities, the critical dimension007
of uncertainty quantification has received008
insufficient attention. Therefore, we present009
a comprehensive uncertainty benchmarking010
study using conformal prediction, evaluating011
16 state-of-the-art VLMs (both open-source012
and proprietary) across 6 multimodal datasets013
using 3 distinct scoring functions. Our findings014
demonstrate that larger models consistently015
exhibit better uncertainty quantification;016
models that know more also know better017
what they don’t know. More certain models018
achieve higher accuracy, while mathematical019
and reasoning tasks elicit poorer uncertainty020
performance across all models compared021
to other domains. This work establishes a022
foundation for reliable uncertainty evaluation023
in multimodal systems.024

1 Introduction025

Recent advances in large vision-language models026

(VLMs) have led to remarkable progress in com-027

plex visual understanding and reasoning across di-028

verse domains such as mathematics (Wang et al.,029

2024), science (Lu et al., 2022), and medicine030

(Matos et al., 2024). These models now achieve im-031

pressive results on challenging multimodal bench-032

marks, demonstrating their potential for real-world033

impact.034

Yet, despite these capabilities, significant chal-035

lenges remain. As VLMs are increasingly deployed036

in high-stakes domains like medical diagnostics (Li037

et al., 2025), educational assessments, and scien-038

tific reasoning, the consequences of model failure039

become critical. While accuracy metrics highlight040

overall performance, they do not reveal when a041

model is uncertain or likely to err. In practical ap- 042

plications, especially in sensitive fields like health- 043

care, an overconfident but incorrect prediction can 044

have severe repercussions. Thus, quantifying and 045

understanding model uncertainty in a computation- 046

ally efficient way is essential for building reliable 047

and trustworthy VLM systems. 048

Quantifying uncertainty in VLMs is therefore 049

crucial for building reliable and trustworthy sys- 050

tems, especially in high-stakes domains. While 051

classical approaches such as Bayesian neural net- 052

works (Blundell et al., 2015), deep ensembles (Lak- 053

shminarayanan et al., 2017), and calibration-based 054

methods (Guo et al., 2017) have been explored 055

for uncertainty estimation mostly in traditional ma- 056

chine learning models, their application to founda- 057

tion models (e.g., LLMs, VLMs, and multimodal 058

architectures), where parameters often scale to bil- 059

lions or trillions, is limited by computational cost 060

and scalability issues. Conformal prediction, in 061

contrast, offers a computationally feasible, model- 062

agnostic framework with formal statistical guar- 063

antees, making it particularly attractive for uncer- 064

tainty quantification in complex multimodal set- 065

tings. Prior work has applied conformal prediction 066

to LLMs for benchmarking predictive confidence 067

(Ye et al., 2024), but its utility for VLMs, where un- 068

certainty arises from both visual and textual modal- 069

ities, remains largely unexplored. This motivates 070

our study, which systematically investigates confor- 071

mal prediction as a principled approach for uncer- 072

tainty benchmarking in VLMs across diverse set of 073

tasks. 074

This study is guided by several core research 075

questions: 076

1. Do different conformal scoring functions 077

yield similar efficiency in terms of prediction 078

set size, or do their behaviors diverge across 079

tasks and models? 080

2. Is there a correlation between model accuracy 081
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and the size of conformal prediction sets, in-082

dicating calibration quality?083

3. How do uncertainty metrics (set size) vary084

with model scale and architecture?085

4. Can this uncertainty quantification approach086

be applied to black-box proprietary models,087

provided they expose token-level probabili-088

ties?089

Our evaluation spans a suite of carefully chosen090

datasets- MMMU, MMMU-Pro, AI2D, MathVi-091

sion, ScienceQA, and WorldMedQAV- each prob-092

ing distinct aspects of visual and scientific under-093

standing. We systematically compare multiple scor-094

ing functions within the conformal framework to095

provide a comprehensive analysis of uncertainty in096

VLMs.097

Our findings reveal patterns of uncertainty that098

correlate not only with accuracy but also with task099

modality and semantic complexity, offering deeper100

insights into when and why VLMs hesitate.101

2 Related Works102

Uncertainty quantification has long been a focus of103

machine learning (Abdar et al., 2021), particularly104

for applications involving risk-sensitive decision-105

making. Classical techniques span Bayesian neural106

networks (Blundell et al., 2015), deep ensembles107

(Lakshminarayanan et al., 2017), and calibration-108

based methods (Guo et al., 2017). While these ap-109

proaches have proven effective in low-dimensional110

settings, they are often computationally prohibitive111

or insufficiently expressive for deep multimodal112

models.113

Conformal prediction is a well-established un-114

certainty quantification method that offers statisti-115

cal guarantees and has been successfully applied116

across various domains (Zhou et al., 2025). Its117

distribution-free, model-agnostic, and computation-118

ally efficient nature makes it particularly suitable119

for large-scale models.Recent work has applied120

conformal prediction to LLMs (Angelopoulos and121

Bates, 2021; Ye et al., 2024) and VLMs (Kostumov122

et al., 2024), providing coverage guarantees via pre-123

diction sets. However, prior studies were limited124

to text-only models or evaluated VLMs on sim-125

pler benchmarks with outdated model selections.126

Our work extends this paradigm by incorporating127

complex reasoning tasks and systematically eval-128

uating a comprehensive, up-to-date collection of129

state-of-the-art VLMs across diverse multimodal 130

contexts. 131

The emergence of VLMs has shifted attention to- 132

ward multimodal understanding. Evaluation bench- 133

marks have evolved accordingly focusing on vari- 134

ous aspects of performance including visual reason- 135

ing (Zellers et al., 2019), hallucination detection 136

(Liu et al., 2022), and multimodal knowledge (Xu 137

et al., 2023). 138

Efforts to measure uncertainty in VLMs remain 139

nascent. While some generative vision models 140

include sampling-based estimates, few offer any 141

formal statistical guarantees. These approaches 142

often lack standardized methodology for system- 143

atic benchmarking. This work benchmarks VLMs 144

using conformal prediction across diverse tasks, 145

offering a robust framework for uncertainty quan- 146

tification in multimodal settings. 147

3 Conformal Prediction 148

Conformal prediction provides a statistically rig- 149

orous, distribution-free framework for uncertainty 150

quantification. It constructs prediction sets that con- 151

tain the true output with a specified probability. For 152

any model f that maps an input X to a probability 153

distribution over a finite label space Y , conformal 154

prediction constructs a prediction set C(X) ⊆ Y 155

such that: 156

P(Ytrue ∈ C(X)) ≥ 1− α, (1) 157

where α is the desired error rate. 158

To construct these sets, one defines a score func- 159

tion s(X, y), which reflects the incompatibility be- 160

tween input X and label y. The prediction set is 161

then constructed through the following procedure: 162

1. Compute conformal scores si = s(Xcal
i , Y cal

i ) 163

for each example in a held-out calibration set 164

Dcal = {(Xcal
1 , Y cal

1 ), . . . , (Xcal
n , Y cal

n )}. 165

2. Calculate a threshold q̂ as the ⌈(n + 1)(1 − 166

α)⌉/n quantile of these calibration scores: 167

q̂ = quant
(
{s1, . . . , sn}, ⌈(n+1)(1−α)⌉/n

)
(2) 168

3. For any test input X , construct the prediction 169

set by including all labels with scores not ex- 170

ceeding the threshold: 171

C(X) = {y ∈ Y : s(X, y) ≤ q̂} (3) 172

Three principal scoring functions are commonly 173

used in conformal prediction for classification: 174
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Least Ambiguous Classifier (LAC). The LAC175

score (Sadinle et al., 2019) is defined as176

sLAC(X, y) = 1− f(X)y, (4)177

where f(X)y denotes the model’s predicted prob-178

ability for class y. This approach penalizes low-179

confidence predictions, assigning higher scores to180

less likely labels and thus favoring more confident181

predictions in the conformal set construction.182

Adaptive Prediction Sets (APS). The APS score183

(Romano et al., 2020) is given by184

sAPS(X, y) =
∑

y′:f(X)y′≥f(X)y

f(X)y′ , (5)185

which sums the probabilities of all classes with at186

least as much support as y, effectively incorporat-187

ing the model’s ranking of classes. APS adapts the188

conformal set size to the ambiguity present in the189

predictions, making it particularly useful when the190

model’s probability distribution is diffuse.191

Marginal Score. The margin score is defined as192

smargin(X, y) = f(X)(1) − f(X)(2), (6)193

where f(X)(1) and f(X)(2) are the top-1 and top-194

2 predicted probabilities, respectively. This score195

captures the model’s decisiveness by directly mea-196

suring the confidence gap between the most likely197

and second most likely classes, making it a natural198

fit for high-ambiguity tasks where subtle distinc-199

tions matter.200

4 Datasets201

We evaluate uncertainty in VLMs across six di-202

verse, challenging datasets, each probing different203

aspects of multimodal reasoning and understand-204

ing:205

MMMU The Massive Multi-discipline Multi-206

modal Understanding (MMMU) dataset (Yue et al.,207

2024a) is a large-scale benchmark designed to as-208

sess VLMs on college-level, expert-written ques-209

tions spanning 30 disciplines, including science,210

medicine, engineering, and the humanities.211

MMMU-Pro MMMU-Pro (Yue et al., 2024b) is212

an extension of MMMU, curated to provide more213

challenging and professionally oriented questions.214

It emphasizes real-world scenarios and domain-215

specific expertise, increasing the complexity of216

both the visual and textual components.217

ScienceQA ScienceQA (Lu et al., 2022) is a 218

multimodal benchmark focused on elementary 219

and middle school science questions. It contains 220

over 21,000 questions covering natural sciences, 221

physics, and biology, many of which are accompa- 222

nied by images such as diagrams or illustrations. 223

The dataset tests the model’s ability to integrate 224

visual information with scientific knowledge. 225

AI2D The AI2 Diagrams (AI2D) dataset (Kemb- 226

havi et al., 2016) consists of over 15,000 elemen- 227

tary science diagram questions. Each question is 228

paired with a labeled diagram and multiple-choice 229

answers, requiring the model to interpret visual ele- 230

ments, spatial relationships, and scientific concepts 231

depicted in the diagrams. 232

MathVision MathVision (Wang et al., 2024, 233

2025) is a visual math reasoning benchmark that 234

presents mathematical problems embedded in im- 235

ages, such as graphs, geometric figures, or hand- 236

written equations. The dataset evaluates the 237

model’s ability to extract quantitative information 238

from visuals and perform mathematical reasoning. 239

WorldMedQAV WorldMedQAV (Matos et al., 240

2024) is a medical visual question answering 241

dataset featuring clinical images (e.g., X-rays, 242

pathology slides) and expert-authored multiple- 243

choice questions. It is designed to assess VLMs’ 244

capabilities in medical image interpretation and di- 245

agnostic reasoning, reflecting real-world healthcare 246

scenarios. 247

Together, these datasets provide a comprehen- 248

sive testbed for evaluating uncertainty in VLMs 249

across a spectrum of domains, modalities, and rea- 250

soning challenges. 251

5 Experimentation 252

5.1 Prompting 253

Our prompting strategy employed a three-part 254

structure across all datasets. First, we used 255

dataset-specific system messages that established 256

the VLM’s role (e.g., "scientific diagram ana- 257

lyzer" for AI2D, "medical image diagnostician" 258

for WorldMedQAV). These messages oriented the 259

model to the domain context while maintaining 260

consistent instruction patterns. 261

Second, we included zero-shot task instructions 262

that briefly described the upcoming question type 263

without revealing solving strategies. For instance, 264

MathVision prompts began with "I will show you 265
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an image along with a multiple-choice math ques-266

tion." This framing provided context without bias-267

ing model responses.268

Finally, all prompts concluded with a standard-269

ized instruction directing models to "Only respond270

with the option letter" to ensure consistent output271

format for uncertainty analysis. This standard-272

ized approach eliminated prompt variability as a273

confounding factor in our experiments. Complete274

prompts are provided in Appendix A.275

5.2 Inference Setup276

We implemented a carefully controlled inference277

pipeline across different computing platforms278

based on model size and availability. For all small279

models (≤ 7B parameters), we conducted inference280

on P100 and T4 GPUs via the Kaggle platform.281

For our selected VLMs, we prioritized using282

OpenRouter’s API service whenever available, re-283

gardless of model size. This approach covered284

both large and mid-sized models with API end-285

points. For mid-sized models without OpenRouter286

API availability, we utilized A1000 GPUs on the287

Runpod platform for efficient inference.288

All models processed on Kaggle and Runpod289

were loaded directly from their official Hugging290

Face repositories to ensure we used canonical291

model versions. Throughout all inference meth-292

ods, we set do_sample=False to employ greedy293

decoding, making temperature, top-k, and top-p294

parameters irrelevant to our experimental design.295

For each model response, we extracted the log-296

probabilities assigned to the answer option letters297

(e.g., A, B, C, D) by examining the token-level298

scores corresponding to the model’s final output.299

Since all tasks were multiple-choice and responses300

were constrained to a single letter, we retrieved301

the log-probability of the token representing the302

predicted answer. These probability distributions303

formed the foundation for our uncertainty quan-304

tification through conformal prediction. We im-305

plemented conformal prediction with miscoverage306

rate α = 0.1 (ensuring 90% coverage probability)307

and allocated 50% of each dataset for calibration308

and 50% for testing.309

5.3 Evaluated Models310

We evaluate 16 vision-language models represent-311

ing diverse architectures and scaling properties.312

Our open-source selection includes Llama-4-Scout,313

Gemma-3 (Team et al., 2025) (4B/12B/27B), In-314

ternVL3 (Zhu et al., 2025) (1B/2B/8B), Molmo315

variants (Deitke et al., 2024) (1B/7B), Qwen2.5- 316

VL (Bai et al., 2025) (3B/72B), Llava-1.5 (Liu 317

et al., 2024) (7B/13B), and Pixtral (Agrawal et al., 318

2024)(12B). For proprietary models, we test GPT- 319

4.1-nano and GPT-4o-mini, the only commercial 320

VLMs providing token probabilities required for 321

conformal analysis. 322

This meticulate choice of models allows con- 323

trolled comparisons of uncertainty characteristics 324

across model sizes, architectures, and development 325

paradigms (open/closed). We exclude other propri- 326

etary models (e.g., Gemini, Claude ) due to their 327

API limitations on probability access, which is es- 328

sential for our conformal prediction framework. 329

5.4 Evaluation Metrics 330

Our primary uncertainty quantification (UQ) metric 331

is Set Size (SS), which measures the average size 332

of conformal prediction sets: 333

SS =
1

|Dtest|
∑

(Xt,Yt)∈Dtest

|C(Xt)| (7) 334

A smaller SS indicates more precise uncertainty 335

estimates, with SS=1 representing perfect certainty 336

when the prediction is correct. We complement this 337

with traditional Accuracy (Acc) to assess prediction 338

correctness: 339

Acc =
1

|Dtest|
∑

(Xt,Yt)∈Dtest

I(Yp = Yt) (8) 340

Finally, we verify the statistical guarantee of 341

our conformal framework through Coverage Rate 342

(CR): 343

CR =
1

|Dtest|
∑

(Xt,Yt)∈Dtest

I(Yt ∈ C(Xt)) (9) 344

CR must maintain at least (1 − α) coverage 345

across all test cases. Together, these metrics (SS, 346

Acc, CR) evaluated across LAC, MS, and APS 347

score functions provide a complete assessment of 348

both prediction quality and uncertainty reliability. 349

6 Results 350

6.1 Uncertainty Performance Analysis 351

Table 2 shows set sizes across our evaluated VLMs 352

and conformal scoring functions. LAC scoring pro- 353

duces the smallest set sizes across most models, 354
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Table 1: Accuracy performance (%) of VLMs across six
benchmarking datasets. Color intensity indicates higher
performance.
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Figure 1: Correlation between accuracy and set size
across datasets. Higher-performing models produce
more concentrated prediction sets.

indicating its effectiveness for uncertainty quan-355

tification in vision-language tasks. The consistent356

pattern of smaller set sizes for larger models within357

each family (e.g., Qwen-VL 72B vs. 3B) demon-358

strates that scaling benefits uncertainty calibration.359

Figure 1 demonstrates the strong inverse relation-360

ship between accuracy and set size, confirming that361

more accurate models generally produce more con-362

centrated prediction sets with better calibration. As363

shown in Figure 7, this negative correlation repre-364

sents a fundamental principle: models that perform365

better also express more appropriate confidence366

levels.367

6.2 Accuracy Performance Analysis368

Table 1 reveals clear performance patterns: (1)369

larger models within the same family consistently370

achieve higher accuracy; and (2) significant perfor-371

mance gaps exist between datasets, with MMMU-372

Pro being most challenging (20.85% average accu-373

racy) and ScienceQA most approachable (73.78%). 374

Among open-source models, InternVL 8B delivers 375

the strongest performance, particularly excelling 376

on AI2D and ScienceQA tasks. 377

Figure 2 shows that model size correlates posi- 378

tively with accuracy and inversely with set size. 379

Models cluster by parameter count, with larger 380

models (>10B) consistently occupying the upper- 381

left region of higher accuracy and smaller set sizes, 382

demonstrating that scaling improves both perfor- 383

mance and uncertainty calibration. 384

6.3 Coverage Rate Analysis 385

Table 3 and Figure 4 verify that our conformal pre- 386

diction framework achieves at least (1−α) = 90% 387

coverage in most cases, validating its reliability. 388

The few instances where coverage falls slightly be- 389

low target show minimal deviation. Coverage is 390

most challenging to maintain for complex reason- 391

ing tasks like MathVision and MMMU-Pro, though 392

the framework still performs robustly across all do- 393

mains. 394

6.4 Model-Specific Uncertainty Performance 395

Figure 5 reveals distinct "uncertainty signatures" 396

for each model family. From the figure, it is evi- 397

dent across all model families (Gemma, Qwen-VL, 398

InternVL) that bigger variants demonstrate better 399

confidence in terms of uncertainty quantification 400

while maintaining the specified coverage rate. 401

Figure 6 provides a comprehensive comparison 402

of uncertainty performance metrics across all eval- 403

uated model families. InternVL demonstrates su- 404

perior uncertainty quantification capabilities, sur- 405

passing all competitors in this critical dimension. 406

Llama-4-Scout follows as the second-best per- 407

former, suggesting potential architectural advan- 408

tages in these two model families that may con- 409

tribute to their enhanced calibration and confidence 410

estimation. 411

6.5 Domain-Specific Uncertainty Performance 412

VLMs show better uncertainty calibration on 413

datasets where visual elements complement rather 414

than dominate reasoning. ScienceQA, with im- 415

ages reinforcing textual concepts, yields high accu- 416

racy (75.2% average) with well-calibrated uncer- 417

tainty (2.1 average set size). Conversely, MathVi- 418

sion—requiring precise extraction of visual quanti- 419

tative information—proves challenging for uncer- 420

tainty calibration (4.5 average set size despite lower 421

accuracy). 422
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Table 2: Set Size results across models, datasets, and conformal scoring functions (LAC, MS, and APS). Lower
values indicate more precise uncertainty quantification.

Table 3: Coverage Rate across models and datasets. Green cells highlight where coverage exceeds the target
threshold of 90%.

6



3.0 3.5 4.0 4.5 5.0
Average Set Size (LAC)

30

35

40

45

50

55

60

Av
er

ag
e A

cc
ur

ac
y 

(%
)

Gemma 3 4B

Gemma 3 12B

Gemma 3 27B

InternVL3 1B

InternVL3 2B

InternVL3 8B

LLaVA 1.5 7B

LLaVA 1.5 13BMolmoE 1B

Molmo 7B DPixtral 12B

LLaMA 4 Scout

Qwen 2.5 VL 3B

Qwen 2.5 VL 72B

Lowest accuracy: LLaVA 1.5 7B

Highest accuracy: InternVL3 8B

Bubble size = Model Size (B)

Model Comparison: Accuracy vs. Set Size

Model Family
Gemma
InternVL
LLaVA
Molmo
Other
Qwen

Model Size
1B
5B
10B
25B
50B
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Figure 3: Comparison of set sizes across VLMs and scoring functions. LAC scoring consistently produces the most
compact prediction sets.
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Figure 4: Coverage rates across datasets and models. All scoring methods maintain at least 90% coverage in most
cases.
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Figure 5: Uncertainty profiles for three model families: InternVL (1B, 2B, 8B), Qwen-VL (3B, 72B), and Gemma
(4B, 12B, 27B). Smaller radar areas indicate better-calibrated uncertainty estimates. Darker shades represent larger
models within each family. Each model family exhibits distinct scaling patterns across domains.
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Figure 6: Comparative uncertainty profiles across all
VLMs. Proprietary models like GPT-4o-mini achieve
remarkably well-calibrated uncertainty estimates.

In specialized domains like medical visual rea-423

soning (WorldMedQAV), uncertainty calibration424

remains stable within parameter brackets despite425

varying accuracy levels. This suggests domain-426

specific visual expertise and uncertainty aware-427

ness develop somewhat independently—models428

may recognize domain-specific features without429

being well-calibrated about their confidence, or430

vice versa.431

7 Conclusion432

This work presents a comprehensive conformal un-433

certainty benchmarking study for Vision-Language434

Figure 7: Correlation matrix between model size, accu-
racy, set size, and coverage rate.

Models, revealing important correlations between 435

model scale, accuracy, and uncertainty quantifica- 436

tion capabilities. Our findings demonstrate that 437

larger models not only achieve higher accuracy 438

but also produce better-calibrated uncertainty esti- 439

mates; they know better what they don’t know. 440

Limitations 441

While this study provides valuable insights into 442

uncertainty quantification for VLMs, several limi- 443

tations should be acknowledged. First, our bench- 444

marking was restricted to multiple-choice datasets 445

due to the computational constraints of conformal 446
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prediction methods, which require well-defined447

prediction sets. Future work should explore ex-448

tending these techniques to generative tasks where449

the output space is unbounded, potentially through450

methods that quantify uncertainty in free-form text451

generation. Second, our proprietary model analysis452

was limited to GPT-based models, as other leading453

systems like Claude and Gemini do not currently454

expose token-level log probabilities necessary for455

our conformal scoring functions. As these capabili-456

ties become available in more proprietary models,457

the benchmarking framework could be readily ex-458

tended to provide a more comprehensive landscape459

of uncertainty quantification across the industry.460
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A Prompt Design Specifications 615

This section documents the complete prompt engi- 616

neering framework used in our experiments. The 617

two-layer prompting strategy consists of: 618

• System messages that establish the model’s 619

role and response constraints 620

• Zero-shot instructions that provide task- 621

specific guidance with MCQ questions and 622

options, while maintaining output consistency 623

The combination ensures standardized evalua- 624

tion conditions across all datasets while preserving 625

each task’s unique requirements. Tables 4 and 5 626

detail the exact formulations. All datasets used 627

standardized zero-shot instructions following the 628

pattern mentioned in Table 5. 629

Other datasets used identical phrasing, adjusted 630

only for: 631

• Domain specificity (e.g., “scientific dia- 632

gram” for AI2D, “medical image” for 633

WorldMedQAV) 634

• Option letter range (A-F for most, up to A-J 635

for MMMU-Pro) 636

B Dataset Statistics and Preprocessing 637

This section documents key dataset characteristics 638

and preprocessing steps taken to ensure evaluation 639

consistency across all benchmarks. 640

B.1 Option Distribution Normalization 641

We standardized answer options across all datasets 642

to maintain consistency in evaluation: 643

• Added "I don’t know" and "None of them" 644

options where needed to ensure uniform op- 645

tion counts within each dataset 646

• Maintained original option ordering (A, B, 647

C,...) without randomization 648

B.2 Multimodal Sample Handling 649

To ensure fair evaluation across all models: 650

• Excluded questions with multiple input im- 651

ages (4.9% of total samples from MMMU 652

dataset) since not all evaluated VLMs support 653

this feature 654

• Verified all remaining samples contain exactly 655

one image-question pair 656
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Dataset System Message

AI2D

You are a scientific diagram analyzer.
- Analyze the diagram carefully
- Answer ONLY with the correct option letter (A, B, C, D, E, or F)
- Never explain your reasoning
- If uncertain, guess from the provided options

ScienceQA

You are a science question answerer.
- Use the image and question to select ONE correct option
- Respond STRICTLY with just A, B, C, D, or E
- No explanations or additional text
- Must choose from given options

MathVision

You are a math problem solver.
- Analyze the image and question precisely
- Output MUST be exactly one letter: A, B, C, D, E, or F
- Never show working
- Select even if uncertain

WorldMedQAV

You are a medical image diagnostician.
- Examine the image and question thoroughly
- Respond ONLY with the letter (A-F) of the most likely answer
- No disclaimers or explanations
- Choose from options even if unsure

MMMU

You are a multi-disciplinary expert.
- Combine image understanding with question requirements
- Output EXACTLY one letter: A, B, C, D, or E
- No additional text under any circumstances
- Must select from provided options

MMMU-Pro

You are a multi-disciplinary expert.
- Combine image understanding with question requirements
- Output EXACTLY one letter: A, B, C, D, E, F, G, H, I, J
- No additional text under any circumstances
- Must select from provided options

Table 4: System Prompts for each dataset in the VLM evaluation

B.2.1 Option Balance Analysis657

The option distributions reveal distinct patterns658

across datasets:659

• Balanced Datasets: AI2D, MathVision,660

WorldMedQAV, and MMMU-Pro show ap-661

proximately uniform answer distributions662

(Figures 8a, 8c, 8d, 8f)663

• Skewed Datasets: ScienceQA and MMMU664

show a higher frequency in earlier op-665

tions(Figures: 8b, 8e).666
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(a) AI2D dataset option distribution
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(b) Mathvision dataset option distribution
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(c) WorldMedQAV dataset option distribution

A B C D E
Answer Option

0
100
200
300
400
500
600
700
800

Fr
eq

ue
nc

y

713 726

375

195

8

Distribution of Answer Options in ScienceQA Dataset

(d) ScienceQA dataset option distribution
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(e) MMMU dataset option distribution
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(f) MMMU-Pro dataset option distribution

Figure 8: Answer option (ground truth) distributions across all six benchmark datasets. Each subplot shows the
frequency of correct answers.
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Dataset Example Prompt
ScienceQA I will show you an image along with a multiple-choice science

question.
Please select the correct answer from the given options.
Only respond with the option letter (A, B, C, D, E).
{QUESTION}
{OPTIONS}

Table 5: Representative zero-shot prompt example

Table 6: Final test set statistics after preprocessing

Dataset Samples Options

AI2D 3,090 A-F
ScienceQA 2,020 A-E
MathVision 1,530 A-F
WorldMedQAV 1,140 A-F
MMMU 794 A-E
MMMU-Pro 1,210 A-J
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