Under review as a conference paper at ICLR 2025

DISCOVERING THE GEMS IN EARLY LAYERS: ACCEL-
ERATING LONG-CONTEXT LLMS WITH 1000X INPUT
TOKEN REDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
handling long context inputs, but this comes at the cost of increased computa-
tional resources and latency. Our research introduces a novel approach for the
long context bottleneck to accelerate LLM inference and reduce GPU memory
consumption. Our research demonstrates that LLMs can identify relevant tokens
in the early layers before generating answers to a query. Leveraging this insight,
we propose an algorithm that uses early layers of an LLLM as filters to select and
compress input tokens, significantly reducing the context length for subsequent
processing. Our method, GemFilter, demonstrates substantial improvements in
both speed and memory efficiency compared to existing techniques, such as stan-
dard attention and SnapKV/H20. Notably, it achieves a 2.4x speedup and 30%
reduction in GPU memory usage compared to SOTA methods. Evaluation on the
Needle in a Haystack task shows that GemFilter significantly outperforms stan-
dard attention, SnapKV and demonstrates comparable performance on the Long-
Bench challenge. GemPFilter is simple, training-free, and broadly applicable across
different LLMs. Crucially, it provides interpretability by allowing humans to in-
spect the selected input sequence. These findings not only offer practical benefits
for LLM deployment, but also enhance our understanding of LLM internal mech-
anisms, paving the way for further optimizations in LLM design and inference.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive abilities (Wei et al., 2022} Bubeck
et al., 2023)) and found widespread application in various Al systems, such as ChatGPT (Schulman
et al., 2022), Gemini (Anil et al., |2023), and Claude (Anthropic} 2024), and so on. They are also
a fundamental component in building language-based Al agents that can orchestrate plans and ex-
ecute complex tasks through interaction with external tools. A key requirement for many of these
applications is the ability to process long-context inputs. This ability can also potentially eliminate
the need of a retriever in retrieval augmented generation (RAG) (Xu et al.|2024a)) or enhance its per-
formance (Jiang et al.| [2024c). Therefore, significant efforts have been made recently to build LLMs
that support long context inputs. For instance, LLaMA 3.1 (Dubey et al.,|2024)), Mistral (Jiang et al.},
2023a)), and Phi 3.5 (Abdin et al.| 2024) now support input sequences of up to 128K tokens, while
Gemini can handle inputs of up to 1M tokens. However, processing such lengthy inputs comes at
a substantial cost in terms of computational resources and time. Therefore, accelerating the LLM
generation speed while simultaneously reducing GPU memory consumption for long-context inputs
is essential to minimize response latency and increase throughput for LLM API calls.

One prominent optimization for fast text generation in decoder-only LLMs (i.e., using a causal
attention mask) is the KV cache. Specifically, there are two phases involved in auto-regressive
generation. Given a long context input, the first is the prompt computation phase, when the LLM
computes the KV cache for all layers, storing the intermediate attention keys and values of the input
tokens. Next, in the iferative generation phase, the LLM generates tokens iteratively using the pre-
computed KV cache, avoiding redundant computations. GPU memory usage and running time scale
linearly with the KV cache size, meaning that the computational is high for long inputs.

Under review as a conference paper at ICLR 2025

é % 108,172 tokens
E?d

<|begin_of_text|><|im_start|> This is

a ve long story book: <book> bl
October 2015 Whe nl(alktoastanup
thals been operating for more than

100 tokens || 1,000 times
compress
<|begin_of_text|>

<||> This book: < What a bang that
balloon is going

/—ﬁ’
¥‘_

as a scripting language for Unix. (It
would be hard to'make it worse.

The best thing to do in San

Text selection to make when someone pops it by:

on the first

Woman with hammer.N trick to call

.
Fr ‘73’"",'5‘° ’S 97(' a sandwich :"d sit That sounds hipper than Lisp toThe -
IniDolores|Parkion aisunnyday. few |ayer best thing to do in San Francisco
) But | think there are areas where l; ¢-;at a s;m‘i(wich and sit ZI
olores Park on a sunny day.
I(%ou look at the history of programmi 4} ; gzﬁ(}é‘;‘jﬁfs’g«zﬁé Sr::/caat”ymg case. Full LLM
Based on the content of the book, i and say," and Question: What is
Question: What is the best thing to T°p k selection based the to do in San Francisco?

do in San Francisco? on the last row of

Answer:
ster / attention matrix ;/

Figure 1: Ilustration of our method GemFilter: generation with context selection based on early
filter layers. We demonstrate a real Needle in a Haystack task (Section d.I). The original input
consists of 108,172 tokens, including the initial instruction, key message, and the query. In the
first step, we use the 13th layer of the LLM (LLaMA 3.1 8B Instruct) as a filter to compress the
input tokens by choosing the top k indices from the last row of the attention matrix. Notably, the
selected input retains the initial instruction, key message, and query. GemFilter achieves a 1000 x
compression, reducing the input token length to 100. In the second step, we feed the selected tokens
for full LLM inference using a standard generation function, which produces the correct output.
GemFilter significantly reduces running time and GPU memory with negligible performance loss.

To reduce GPU memory usage and running time during the iterative generation phase, H20 (Zhang
et al.,[2023)) and SnapKV (Li et al.,|2024b) introduce static methods to compress/evict the KV cache.
These techniques can shrink the KV cache size from 128K to 1024 with negligible performance
loss, resulting in faster speeds and lower GPU memory consumption during the iterative generation
phase. However, these methods do not improve the efficiency of the prompt computation phase,
which becomes the dominant bottleneck as the input context lengthens. Thus, we ask:

Can we accelerate the speed and reduce memory usage during the prompt computation phase?

We observe that when serving a query, LLMs often find the
necessary information in the early layers, even before generat-
ing the answer. Specifically, the relevant tokens can be iden-
tified using the attention matrix from these early layers (Fig-
ure [2), which we refer to as filter layers. Figure [I] provides a
real example from the Needle in a Haystack task, where LLMs
must find a small piece of information within a large context.
For LLaMA 3.1 8B, we observe that the information needed
to answer the query can be distilled from the attention matrix
in any of the 13th-19th layers. Furthermore, LLMs explicitly
summarize the required information in these filter layers. As | |
a consequence, we only need to perform the prompt computa- 4\
tion on a long context input for the filter layers, allowing us to Useful information | [Top k selection
compress the input tokens into a smaller subset (e.g., reducing for retrieval based on last row
from 128K tokens to 100), saving both time and GPU memory.

We then feed the selected tokens for full model inference and Figure 2: The last row of attention
proceed with a standard generation function. Algorithm [I[in matrices in early layers can locate
Section[3]presents our method GemFilter. answer-related tokens.

Attention Matrix: QK"

As shown in Figure 3] GemFilter runs faster and consumes less GPU memory than SnapKV/H20
and standard attention (full KV cache) during the prompt computation phase. During the iterative
generation phase, GemFilter has the same running time and GPU memory consumption as Snap-
KV/H20, both of which outperform standard attention. We discuss the complexity further in Sec-
tion [3.2] theoretically and in Section [.5] empirically. GemFilter significantly outperforms standard
attention and SnapKV on the Needle in a Haystack benchmark (Section[d.T)). Additionally, on Long-
Bench, a multi-task benchmark designed to rigorously evaluate long-context understanding across

Under review as a conference paper at ICLR 2025

LLaMA 3.1 8B Instruct running time comparison LLaMA 3.1 8B Instruct GPU memory comparison
17.5 Em standard prompt time 60{ HEM standard prompt GPU mem
£15.0 I standard gen time o B standard gen GPU mem
S I snapkv prompt time i 501 mEE snapkv prompt GPU mem
§ 12,51 pum snapkv gen time S B snapkv gen GPU mem
& 10.0{ HEE gemfilter prompt time GEJ 40 E gemfilter prompt GPU mem
g mmm gemfilter gen time E 30{ ™ gemfilter gen GPU mem
o> 75 ©
£ 2 504
S 50 2
& G
25 10+
0.0 0-
8192 16384 32768 65536 131072 8192 16384 32768 65536 131072
Input token number Input token number

Figure 3: Comparison of time and GPU memory usage across different methods on LLaMA 3.1
8B Instruct. ‘gemfilter’ represents our method, using the 13th layer as the filter. It achieves a 2.4 x
speedup and reduces GPU memory usage by 30% compared to SnapKV. The iterative generation is
evaluated on 50 tokens generation. Additional results can be found in Section@

various datasets, GemFilter achieves performance comparable to SnapKV/H20 (Section 4.2). Fur-
thermore, our ablation study in Section 3] shows that our method is quite robust to the filter layer
selection strategy and Section[f.4]shows that each component in our algorithm is essential.

Our contributions and advantages are:

* We found that LLMs can identify relevant tokens using attention matrices in the early layers,
suggesting crucial information is recognized before the answer generation. Furthermore, LLMs
explicitly summarize this information within specific filter layers. This observation provides in-
sights into LLM mechanisms and opens avenues for LLM understanding and algorithm design.

* Leveraging this insight, we develop GemFilter, formulated in Algorithm [T} an inference strategy
which utilizes early LLM layers as a filter to select and compress input tokens into a small subset
to be processed by the full model (Figure [T). GemFilter achieves a 2.4x speedup and reduces
GPU memory consumption by 30% compared to the state-of-the-art methods like SnapKV.

» GemFilter significantly outperforms both standard attention (all KV cache) and SnapKV on the
Needle in a Haystack benchmark (Section [.T)), while maintaining performance comparable to
SnapKV/H20 on the LongBench benchmark (Table|T).

 We provide a thorough ablation studies for the GemFilter in Section[f-3]and Section ff-4]

* Our approach offers several advantages: it is simple, training-free, and broadly applicable to var-
ious LLMs. Furthermore, it enhances interpretability by allowing humans to directly inspect the
selected token sequence.

2 RELATED WORKS

Generation Speed-up with Long Context Input. One effective technique to accelerate auto-
regressive generation is KV cache compression/eviction. During generation, LLMs store the previ-
ous key and value matrices to reduce computational complexity. However, when the input context is
long (e.g., 128K tokens), the memory consumption and running time associated with the KV cache
dominate iterative generation. Many studies have focused on KV cache eviction. For instance,
(2023) evict long-range contexts on attention heads to prioritize local contexts, using the KV
cache only for heads that broadly attend to all tokens. Streaming LLM introduces
an attention sink that retains only the first few tokens and the latest £ tokens in the KV cache to
enable fast streaming generation. LOOK-M 2024) applies KV eviction in the multi-
modality so that the model only needs to look once for the image. LongWriter uses
KV eviction to enable LLMs to generate coherent outputs exceeding 20,000 words. MInference
1.0 (Jiang et al] 20244)) introduces A-shape, vertical-slash, and block-sparse attention head and de-
termines the optimal KV cache pattern for each attention head offline and dynamically builds sparse
indices based on the assigned query during inference. QuickLLLaMA classifies
the KV cache to many subsets, e.g., query tokens, context tokens, global tokens, and local tokens,
and only preserves some types of tokens in the KV cache. ThinK proposes a

Under review as a conference paper at ICLR 2025

query-dependent KV cache pruning method by pruning the least significant channel dimensions of
the KV cache. H20 (Zhang et al., |2023) retains only tokens contributing to cumulative attention.
SnapKV (Li et al., 2024b)) evicts non-essential KV positions for each attention head based on ob-
servation windows. While the aforementioned studies focus on eviction and compression of the KV
cache during the prompt computation phase to optimize the iterative generation phase, they do not
reduce the running time or GPU memory usage during the prompt computation phase. In contrast,
our method, GemFilter, achieves both reduced running time and GPU memory usage in the prompt
computation phase, as well as during the iterative generation phase. We provide a more detailed
comparison in Appendix [B]

More related to our work, |[Li et al.| (2023)) compress input sequences by pruning redundancy in the
context, making inputs more compact. However, they need to keep 50% of input tokens to keep
the LLMs’ performance, whereas GemFilter achieves comparable performance by only reserving
1% of input tokens. For further details, we refer the reader to Section[#.1} The LLMLingua series
methods (Jiang et al.l [2023b} |[Pan et al|[2024f Jiang et al.} [2024b) present a coarse-to-fine approach
for prompt compression. It leverages a budget controller to ensure semantic integrity even at high
compression ratios, employs a token-level iterative compression algorithm to model interdependen-
cies within the compressed content, and utilizes an instruction-tuning strategy to achieve distribution
alignment across language models.

3 METHOD

Notations and Preliminary. While the Transformer and self-attention architecture (Vaswani et al.}
2017) have already become overwhelmingly popular, we first introduce preliminary definitions to
provide a better methodological connection to our proposed GemFilter method in Section[3.1]

For any positive integer n, we use [n] to denote the set {1,2,--- ,n}. We use o to denote function
composition and ® to denote the Hardamard product. Let n be the input token/prompt length, d the
hidden feature dimension, and V the vocabulary set. We now introduce the key concept of attention
and transformers. We first define the query, key, and value matrices. It is important to note that
during text generation, the key and value matrices are also referred to as the KV cache, as they are
stored in GPU memory to reduce running time during the iterative prediction of the next token.

Definition 3.1 (Single layer self-attention). Let Q € R™"*? be the query matrix, K € R"*? the key
cache, and V. € R™"*? the value cache. Let M, € {0,1}™*™ be the causal attention mask, where
(M.)i,j is Lifi > j and 0 otherwise. The self-attention function Attn is defined as:

Attn(Q, K, V) = M. ® Softmax(QK " /Vd) -V

Definition 3.2 (Multi-layer transformer). Let T' € V™ represent the input tokens, and let m denote
the number of transformer layers. Let g; represent components in the i-th transformer layer other
than self-attention, such as layer normalization, residual connections, and the MLP block, where
gi : R4 5 R foranyi € {0,1,...,m}. Let Attn; denote the self-attention module in the i-th
transformer layer. We define an m-layer transformer F1.,,, - V™ — R"*¢ as

Fion(T) := gm 0 Attn,, 0 g1 0---0g1 0 Attny 0 gg 0 E(T) € R4,

where £ is the input embedding function mapping the input tokens to hidden features using the
vocabulary dictionary, i.e., £(T) € R"*4,

Note that the above definitions use a single attention head for simplicity, but in practice, multi-head
attention is used (Vaswani et al., 2017).

3.1 OUR ALGORITHM: GEMFILTER

We present our method, GemFilter, in Algorithm|[T} We also present PyTorch code in Appendix [D.T]
for the reader’s interests. The high-level idea is to run the LLM twice. In the first pass, we run
only the early layers of the LLM to select the key input tokens. This corresponds to the prompt
computation phase (Line of Algorithm [I)). This process selects the top k tokens that receive
the most attention from the last query token. In the second pass, we feed the selected tokens to the
full LLM and run the generation function, corresponding to the iterative generation phase (Line [g).
Below, we explain Algorithm T]step by step.

Under review as a conference paper at ICLR 2025

Algorithm 1 GemFilter: Generation with Token Selection Based on Early Layers

1: procedure SELECTIONGEN(Fy.,,,, T € [V]|",r € [m], k € [n])

2: > Fi.m @ An m-layer transformer network; 7": input sequence of tokens
3 > r: filter layer index for token selection; k: number of selected tokens
4 Get Q") K(") by doing a r-layer forward pass: F.,.(T)

5: > QM K ¢ R™*4: the r-th layer query, key
6 J topk,index(Qg)K(”T, k) > Q\;,”: the last row of Q"; QE,"\' K0T € R™ are attn scores
7 Sort the indices in J > J Cn]and |J| =k
8: return GEN(F1.,,,, T) > GEN is generation function, 7'y € [V]* is a sub-sequence of 7" on J
9: end procedure

The input of the algorithm is an m-layer transformer F; (Definition [3.2), an input token sequence
T € V", and two hyperparameters » < m, k < n, where 7 represents the index of the filter layer
for context token selection and k£ denotes the number of tokens to select. For example, in the case of
LLaMA 3.1 8B Instruct (Figure|[T), we have m = 32, r = 13, and k = 1024.

In the first step (Line), we run only the first r layers forward to serve as a filter, obtaining the
r-th layer’s query and key matrices, Q) and K ("), Note that we do not need to run all layers of
the LLM on a long context input, thereby saving both computation time and memory (see detailed
analysis in Section[3.2). In Line [f] we select token indices based on the r-th layer attention matrix.
The selection is made by identifying the k largest values from the last row of the attention matrix,

i.e., the inner product between the last query token Qg) and all key tokens K ("), For multi-head
attention, the top-k indices are selected based on the summation of the last row across the attention
matrices of all heads. For instance, suppose we have h attention heads, and let Q("7) | K (1) ¢ R"*d
represent the query and key matrices for the r-th layer and j-th attention head. Then, we compute

J topk,index(Z?:1 QUK k), where J is a set of top & index selection. Note that our
method uses a single index set .J, whereas SnapKV (Li et al., 2024b)) and H20 (Zhang et al., [2023))
use different index sets for each layer and attention head, resulting in m - h index sets in total. A
detailed discussion is provided in Appendix B}

In Line [6] J is sorted by inner product values. However, we need to re-sort .J so that the selected
tokens follow their original input order, ensuring, for example, that the (bos) token is placed at the
beginning. Line 7] performs this reordering operation. Finally, in Line [8] we can run any language
generation function using the selected tokens 7'y, which is a sub-sequence of 7" on the index set J,
across all layers. This generation is efficient as the input context length is reduced from n to k, e.g.,
from 128K to 1024 tokens in Figure[I] Below, we provide a formal time complexity analysis.

3.2 RUNNING TIME AND MEMORY COMPLEXITY ANALYSIS

The results of our analysis on time complexity and GPU memory consumption are presented in
Theorem [3.3|below, with the proof deferred to Appendix [C]

Theorem 3.3 (Complexity analysis). Let n be the input sequence (prompt) length and d the hidden
feature dimensions. In our Algorithm[I| GemFilter uses the r-th layer as a filter to select k input
tokens. Let SnapKV and H20 also use k as their cache size. Assume the LLM has m attention layers,
each with h attention heads, and each transformer layer’s parameters consume w GPU memory.
Assuming that we generate t tokens with the GEN function and n > max{d, k,t}, the following
table summarizes the complexity for standard attention, SnapKV and H20, and GemFilter:

Complexity Standard attention SnapKV and H20 GemFilter
Time Prompt Comp. O(mhn2d) O(mhn2d) O(rhn?d)
Iter. generation | ©(mh(nt + t2)d) O(mh(kt + t2)d) O(mh(k? + t2)d)
GPU mem Prompt Comp. mw + 2mhnd mw + 2hnd + 2mhkd rw + 2hnd
" Iter. generation | mw + 2mh(n+t)d | mw + 2mh(k+t)d | mw+ 2mh(k + t)d

Under review as a conference paper at ICLR 2025

Recall that there are two phases in text generation. The first phase is prompt computation, which
involves attention computation on the long context input tokens and generating the KV cache. The
second phase is iterative generation, where auto-regressive generation occurs based on the pre-
computed KV cache. Theorem [3.3] demonstrates that GemFilter is faster and consumes less GPU
memory than SnapKV/H20 and standard attention during the prompt computation phase. Addition-
ally, during the iterative generation phase, GemFilter has the same running time and GPU memory
consumption as SnapKV/H20, which is significantly better than standard attention. This conclusion
aligns with our experimental results in Section[4.5]

Case Study. Let us consider the case n > k ~ t, e.g., n =128K, k =t = 1024 and r < m.
During the prompt computation phase, we have the running time and the GPU memory consumption:

Standard attention : SnapKV/H20 : GemFilter = O(m : m : 1),
Standard attention : SnapKV/H20 : GemFilter =~ mw + mhnd : mw + hnd : rw + hnd,

We see that GemPFilter has a lower time complexity and less GPU memory consumption than stan-
dard attention, SnapKV, and H20. During the iterative generation phase, we have the running time
and the GPU memory consumption:

Standard attention : SnapKV/H20 : GemFilter = O(n : k : k),
Standard attention : SnapKV/H20 : GemFilter ~ w/hd + 2n : w/hd + 4k : w/hd + 4k,

As such, GemFilter has the same time complexity and GPU memory consumption as SnapKV/H20,
while significantly outperforming the standard attention.

The running time bottleneck for all methods occurs during prompt computation, which takes
@(mhnzd) for standard attention, SnapKV, and H2O. In contrast, GemFilter only requires
©(rhn?d) for prompt computation, as it only processes the early layers of the LLM:s to select and
compress the input tokens during the first run. See detailed proof in Appendix |[C] Note that the
GPU memory bottleneck for standard attention occurs during iterative generation, while for other
methods, the memory bottleneck arises during prompt computation due to the reduced KV cache.
GemFilter consumes less GPU memory than SnapKV and H20 because it only requires loading
some layer model weights when processing the long context input in its first run. Our empirical
results in Section [4.5]support our complexity analysis findings.

4 EXPERIMENTS

Model and Datasets. We evaluated our approach using three popular long-context models:
LLaMA 3.1 8B Instructﬂ (Dubey et al., 2024), Mistral Nemo 12B Instructﬂ (Jiang et al.| 2023a),
and Phi 3.5 Mini 3.8B Instruc (Abdin et al., |2024), all of which support an input token length
of 128K. We compared our method, GemFilter, against standard attention and two state-of-the-art
methods, SnapKV (Li et al., |2024b)) and H20 (Zhang et al., 2023ﬂ For our experiments, we used
two popular datasets: Needle in a Haystack (Kamradt, [2024) (Section and LongBench (Bai
et al| [2023)) (Section[4.2). More implementation details are provided in Appendix [D.2]

Filter Layer. Except for Section for context selection, we always use the index of 13 out of
32, 19 out of 40, and 19 out of 32 layers as the input filter for LLaMA 3.1, Mistral Nemo and Phi
3.5, respectively. In Section[d.3] we provide an ablation study for the filter layer choice.

4.1 NEEDLE IN A HAYSTACK

The Needle in a Haystack (Kamradt, 2024) benchmark serves as a pressure test, challenging LLMs
to retrieve accurate information from a specific sentence (the ‘needle’) hidden within an extensive
document (the ‘haystack’), where the sentence can appear at any arbitrary location. The difficulty

1https ://huggingface.co/meta-1llama/Meta-Llama-3.1-8B-Instruct

2https ://huggingface.co/mistralai/Mistral-Nemo-Base-2407

3https ://huggingface.co/microsoft/Phi-3.5-mini—-instruct

“While there are many other generation acceleration methods, they may not be directly comparable to ours
as they use orthogonal techniques. We refer the reader to Section [2] for further details.

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/microsoft/Phi-3.5-mini-instruct

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Pressure Testing Mistral Nemo 12B Instruct All KV
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Pressure Testing LLaMA 3.1 8B Instruct All KV
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Depth Percent
Score
Depth Percent

Y > 0 R F D O G
42 D D o DD © NI SN AP MR S RGN)
® ""g?@“&@*%’&é‘ b"é’;\’@bb@,\’&,\QN%é’&qé’w

2 P P>

2P A OO N
NI AN N oL M M)
O AN S SO I
Token Limit Token Limit

(a) All KV. Mistral Nemo average score: (0.486; LLaMA 3.1 average score: 0.841.

Pressure Testing Mistral Nemo 12B Instruct SnapKV-1024
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Pressure Testing LLaMA 3.1 8B Instruct SnapKV-1024
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Depth Percent
Score
Depth Percent

> S
P @ O S
LG
A ATE GRS

DN XD DL DD O
R O A N R
LA S S S R
Token Limit Token Limit

(b) SnapKV-1024. Mistral Nemo average score: 0.494; LLaMA 3.1 average score: (0.749.

Pressure Testing Mistral Nemo 12B Instruct GemFilter-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Pressure Testing LLaMA 3.1 8B Instruct GemFilter-1024 (layer-13)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Depth Percent
Score
Depth Percent

0.0 I BRI TR N
55 5P S P D 90D R S STy
LA LN SRS IR A S WP DT TRV A
Token Limit Token Limit

(c) GemkFilter-1024. Mistral Nemo average score: 0.838; LLaMA 3.1 average score: 0.887.

Figure 4: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model (left column) and the LLaMA 3.1 8B Instruct model (right column). Re-
sults for the Phi 3.5 Mini 3.8B Instruct model are provided in Appendix [D.3] The z-axis represents
the length of the input tokens, while the y-axis shows the position depth percentage of the ‘needle’
information (e.g., 0% indicates the beginning, and 100% indicates the end). A higher score reflects
better performance, meaning more effective retrieval of the ‘needle’ information. GemPFilter signifi-
cantly outperforms both standard attention (full KV cache) and SnapKV.

increases as the length of the haystack grows. We use input lengths of 60K for Mistral Nemo 12B
Instruct and 120K for LLaMA 3.1 8B Instruct, as these are the maximum lengths for standard atten-
tion on two A100-40GB GPUs. The KV cache size is set to 1024 for both SnapKV and GemPFilter.
In Figure [d] we see that GemFilter significantly outperforms both All KV (standard attention) and
SnapKV with Mistral Nemo and LLaMA 3.1p| The Needle in a Haystack results suggest that our
method, GemPFilter, achieves superior retrieval performance for long input contexts compared to
SnapKV and standard attention. Additional results are provided in Appendix [D.3]

4.2 LONGBENCH

LongBench (Bai et al., 2023) is a multi-task benchmark designed to rigorously evaluate long-context
understanding capabilities across various datasets, including single- and multi-document Question
Answering (QA), summarization, few-shot learning, and synthetic tasks. We evaluate the English-

only dataset, following i et al.| (2024b); Xu et al| (2024b).

SH20 cannot be implemented with FlashAttention due to its cumulative attention score strategy and is
therefore unable to handle super long input contexts, which is why we exclude it here, following
;[Xuetal

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison on LongBench across various LLMs and methods. A larger
number means better performance. The best score is boldfaced.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic
Method > \od & > Average
Sl N o) Qf N o & & & @
Q' & & Q @ X o O = < . S RN 2
S oM & O A & & =) S A W &
A S i1 A Q@‘Q ,fé* = > é\"\ AP N S
LLaMA 3.1 8B Instruct
AllKV 32.02 13.04 27.34 16.23 16.05 11.22 3452 2341 2689 73.0 91.64 438 7.16 97.73 36.72
H20-4096 2294 12.61 2648 16.63 1581 10.14 3351 2347 2681 69.0 91.15 4397 6.66 71.67 33.63
Minference 27.52 14.72 28.89 17.55 15.22 10.58 3476 2234 26.64 725 89.78 4194 7.59 9291 3592
LLMLingua-1024 11.73 6.28 12.43 13.82 12.92 8.15 22.82 20.18 2332 24.0 66.75 24.02 9.09 424 1855

SnapKV-1024 3198 11.17 2533 14.81 1573 10.69 2695 22.89 2586 67.5 9189 4285 7.67 98.16 35.25
GemFilter-1024 20.71 11.0 29.28 19.12 17.01 13.01 3037 21.75 2517 63.0 90.7 425 7.15 9222 3450

SnapKV-2048 3145 11.94 2624 1573 16.03 11.66 29.64 2324 2644 695 9148 42.68 7.21 98.03 35.80
GemFilter-2048 24.36 12.63 2539 19.58 17.03 14.11 33.15 2231 2649 69.5 91.59 4264 4.61 98.75 3587

SnapKV-4096 32.13 13.12 2738 16.11 16.08 116 3239 2347 2676 715 91.64 4346 7.33 97.24 36.44
GemFilter-4096 25.66 12.95 27.38 17.76 15.6 12.02 3417 2325 2687 700 9236 4334 596 98.0 36.09

Mistral Nemo 12B Instruct

All KV 2891 40.74 54.65 52.15 4836 3028 30.66 23.53 2631 750 89.66 4432 45 100.0 46.36
H20-4096 31.61 39.52 5475 47.83 48.09 27.0 3044 2321 2642 725 89.76 4447 3.0 73.0 43.69
LLMLingua-1024 19.24 1692 2143 30.94 25.09 1324 2196 19.8 2394 245 6848 3333 40 50 2342

SnapKV-1024 26.42 3849 5296 51.21 4786 27.06 2432 2266 2552 73.0 89.82 43.16 3.5 100.0 44.71
GemFilter-1024 27.53 40.68 53.86 55.51 5543 3411 2725 21.16 2556 69.0 8732 4249 4.0 88.06 45.14

SnapKV-2048 25.85 40.69 5448 5196 49.06 2695 2629 23.17 259 745 89.66 4389 40 995 4542
GemFilter-2048 29.27 41.53 5491 57.62 5497 35.09 2934 2258 2619 720 89.65 4493 4.0 975 47.11

SnapKV-4096 2792 409 5475 5169 48.16 29.19 29.17 2336 2635 750 89.66 4393 45 100.0 46.04
GemFilter-4096 3029 399 5648 5878 51.48 3281 3032 2321 2648 71.5 90.24 4213 20 995 46.79

Phi 3.5 Mini 3.8B Instruct
All KV 27.51 17.23 35.63 21.7 25.7 11.68 34.14 2317 2495 715 8737 13.08 7.17 83.85 34.62
H20-4096 19.74 1623 34.17 21.02 23.05 1049 3342 2195 2495 675 86.13 1671 1.55 47.46 3031
LLMLingua-1024 8.58 6.74 14.93 12.37 11.01 4.48 21.23 17.08 20.75 24.0 56.09 23.01 096 3.79 16.07

SnapKV-1024 2431 16.03 3493 20.72 2602 1374 2827 2203 2402 675 87.71 1457 6.08 85.6 33.68
GemFilter-1024 16.57 18.29 3591 24.22 26.1 9.7 3029 1896 23.64 645 8585 23.02 02 81.12 3274

SnapKV-2048 2641 16.59 36.99 21.8 26.07 1257 30.88 2237 2451 695 87.54 13.13 6.57 83.92 34.20
GemFilter-2048 19.63 14.84 3599 21.38 1972 1013 3239 2124 2471 650 8649 2047 217 69.5 31.69

SnapKV-4096 27.25 1742 369 21.37 2542 1255 329 22.6 2487 705 8745 1328 6.81 84.04 34.53
GemFilter-4096 2095 19.98 3522 28.82 2821 1398 342 2245 2508 0645 8586 18.68 3.43 6556 3335

For each LLM, we evaluate GemFilter and SnapKV with selected tokens/KV caches of 1024, 2048,
and 4096. We also evaluated standard attention (all KV cache) and H20 with a KV cache size of
4096 on the LongBench dataset to further demonstrate the performance of GemFilter, following
(2024b). Table [I] shows a negligible performance drop in LLMs using GemFilter compared
to standard attention, even with only 1024 selected tokens. In some cases, GemFilter even outper-
forms standard attention, such as GemFilter-2048 for Mistral Nemo 12B Instruct. It demonstrates
significantly better performance than H20 and comparable performance with SnapKV. Furthermore,
GemFilter effectively filters key information in long contexts, provides interpretable summaries, and
compresses the input context effectively, e.g., it reduces input tokens to an average of 8% when using
1024 tokens, and 32% when using 4096, with negligible accuracy drops.

In the section, we also evaluated on two important baselines, MInference (Jiang et al} [2024al) and
LLMLingua (Jiang et al. |2()23b We can see that MlInference (Jiang et al| [2024a) has com-
patible performance with SnapKV, while it requires offline to determine the best attention pattern,
which cannot save the prompt computation phase running time. We can see that although LLMLin-
gua (Jiang et al} 2023D) achieves a good comparison rate, the performance may not be satisfactory.

4.3 ABLATION STUDY: FILTER LAYER CHOICE

In this section, we explore which layer should be chosen as the input filter. First, we aim to determine
which layer of the LLM can best identify the position of the needle information. In Figure [5] we

SWe skip LongLLLMLingua[Jiang et al.|(2024b) for a fair comparison, as it requires explicitly separating the

input context into text information and questions, while other methods do not require that.

Under review as a conference paper at ICLR 2025

Input: 108172 tokens. The distance between Input: 55989 tokens. The distance between Input: 122647 tokens. The distance between
top 1024 nearest neighbors and needle position. 200050 1024 nearest neighbors and needle position. 6000(t)op 1024 nearest neighbors and needle position.
40000 17500
50000
15000
§ 30000 g 12500 § 40000
£ 8 £
a 210000 £30000
2 20000 z 2
g & 7500 g
s g & 20000
10000 5000
2500 10000
o 0 o
5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30
LLaMA 3.1 8B Instruct layer index Mistral Nemo 12B Instruct layer index Phi 3.5 Mini 3.8B Instruct layer index
(a) LLaMA 3.1 8B Instruct (b) Mistral Nemo 12B Instruct (c) Phi 3.5 Mini 3.8B Instruct

Figure 5: Distance between the needle position and selected token index position across three LLMs.
The position depth percentage of the “needle” information is 50%. The z-axis means the layer index
of different LLMs. The y-axis means min(topk_index — niddle_index). When y = 0, it means the
needle information is covered by the selected token. The needle information has been successfully
discovered in the early layers of all three LLMs.

plot the distance between the needle’s position and the selected token index across all layers in the
LLM. The results reveal three stages in the prompt computation of LLMs. In the first stage, the
initial layers preprocess the input context and search for the ‘needle’. In the second stage, some
early to middle layers identify the needle information. Finally, in the third stage, the LLM prepares
to generate the output based on the selected tokens.

Table 2: Performance of our method on LongBench using different layers as an input filter. A larger
number means better performance. The best score is boldfaced.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic
Filter layer \ad & & Average
T ¢ & & e T E T e
X Q W Q‘o\ (tﬂ* W o o) * ANIPR P <

LLaMA 3.1 8B Instruct (32 layers)
layer-1 1632 738 13.86 139 13.21 522 2561 2009 2451 47.0 76.59 39.78 255 23.01 23.50
layer-7 16.89 6.83 1347 13.78 1223 9.67 2656 1949 2455 58.0 84.87 41.07 6.5 50.69 27.47
layer-12 1553 7.73 16.53 17.08 13.33 9.88 2894 2032 2501 58.0 88.16 4042 8.36 43.06 28.03
layer-13 20.71 11.0 29.28 19.12 17.01 13.01 3037 21.75 25.17 63.0 90.7 425 7.15 9222 34.50
layer-14 21.14 13.06 2545 20.89 17.32 129 29.85 22.06 2491 62.0 89.88 42.33 6.17 92.17 34.30
layer-19 19.06 11.69 27.12 20.98 1698 14.04 29.17 21.88 2518 58.0 89.65 404 8.75 94.84 34.12
layer-25 24.74 12.33 26.18 18.56 16.3 1254 28.66 21.75 25.14 61.5 88.78 3947 8.67 90.59 33.94
layer-31 20.62 9.13 17.51 19.13 13.76 ~ 10.07 2821 21.11 25.16 58.0 884 4237 823 58.8 30.04

We then use the first layer that accurately identifies the needle’s position as the input filter. In
our experiments, we find that this layer remains consistent across different inputs. As shown in
Table [2] performance first increases and then decreases as we select the input filter layer from the
beginning to the end. The peak performance is observed at the 13th layer, which supports our layer
selection strategy. Performance remains robust between layers 13 and 25, providing flexibility in
layer selection. Exploring the distinct functions of different layers presents an interesting direction
for future research.

4.4 MORE ABLATION STUDY

To understand the intuition behind selecting tokens with the most attention specifically from the last
query, we study using different rows rather than the last row in the attention matrix for indices se-
lection, as shown in Figure[J]in Appendix[D.4] In Figure[9} we introduce two methods: (a) selecting
middle rows of the attention matrix and (2) selecting rows with the largest /2 norm. Both methods
fail in the Needle in a Haystack task, verifying that selecting the last query token is essential.

Note that the performance improvement of GemFilter may stem from two factors: (1) the selection
of important tokens, and (2) the re-computation of these tokens, which might mitigate issues like
“lost-in-the-middle”. To understand whether both factors made contributions, we provide an ablation
study to isolate the contribution of each factor in Figure[I0]of Appendix[D-3}

Under review as a conference paper at ICLR 2025

4.5 RUNNING TIME AND GPU MEMORY CONSUMPTION

In this section, we compare the running time and GPU memory consumption of different methods
with FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., [2024) supportﬂ The iterative gen-
eration running time and memory consumption are evaluated on 50 tokens generation. As shown
in Figure 3] our method, GemFilter, achieves a 2.4x speedup compared to SnapKV and standard
attention, with 30% and 70% reductions in GPU memory usage, respectively. It saves both running
time and GPU memory by processing the long input context only during the first stage, as described
in Section[4.3] For the latter two stages, the LLMs only need to handle compressed inputs. In Fig-
ure [6) we present a comparison of running time and GPU memory consumption for Mistral Nemo
12B Instruct and Phi 3.5 Mini 3.8B Instruct using various methods. GemFilter runs faster and uses
less GPU memory than the state-of-the-art methods, as discussed above. Additionally, Figure 3| and
Figure[6] further support our Theorem [3.3]in Section [3.2]

Mistral Nemo 12B Instruct running time comparison Mistral Nemo 12B Instruct GPU memory comparison

HEE standard prompt time 80 Hmm standard prompt GPU mem
u 201 W standard gen time m mm standard gen GPU mem
S HEl snapkv prompt time o N snapkv prompt GPU mem
i . >
@95 B snapkv gen time S 601 W snapkv gen GPU mem
B HE gemfilter prompt time g Hm gemfilter prompt GPU mem
£ B gemfilter gen time = B gemfilter gen GPU mem
s 10 % 40
2 o
c
c =]
25 & 20

0
8192 16384 32768 65536 131072 8192 16384 32768 65536 131072
Input token number Input token number
(a) Mistral Nemo 12B Instruct
Phi 3.5 Mini 3.8B Instruct running time comparison Phi 3.5 Mini 3.8B Instruct GPU memory comparison
12 Hm standard prompt time 2007 H standard prompt GPU mem

8 I standard gen time) B standard gen GPU mem
S 10 EEE snapkv prompt time 3150, EEl snapkv prompt GPU mem
§ EE snapkv gen time S mmm snapkv gen GPU mem
B 81 mmm gemfilter prompt time GEJ E gemfilter prompt GPU mem
£ 6 mm gemfilter gen time 5 1001 mmm gemfilter gen GPU mem
= ©
£ K
c 4 S
S o 504
o > G]

0
8192 16384 32768 65536 131072 8192 16384 32768 65536 131072
Input token number Input token number

(b) Phi 3.5 Mini 3.8B Instruct

Figure 6: Comparison of time and GPU memory usage across different methods on Mistral Nemo
12B Instruct and Phi 3.5 Mini 3.8B Instruct. GemPFilter uses the 19th layer as an input filter for both
LLMs. It achieves a 2.4 x speedup and reduces GPU memory usage by 30% compared to SnapKV.

5 CONCLUSION

In this work, we presented a novel approach, GemFilter, to accelerate LLM inference and reduce
memory consumption for long context inputs. By leveraging the ability of early LLM layers to iden-
tify relevant information, GemFilter achieves significant improvements over existing techniques.
It demonstrates a 2.4x speedup and 30% reduction in GPU memory usage compared to SOTA
methods, while also showing superior performance on the Needle in a Haystack benchmark. Our
approach is simple, training-free, applicable to various LLMs, and offers enhanced interpretability
by directly inspecting selected tokens. These results not only provide practical benefits for LLM
deployment, but also provide insight into a better understanding of LLM internal mechanisms.

"We exclude H20 as it does not support FlashAttention and thus requires more GPU memory and running
time than standard attention during prompt computation.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
han Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. htps://www-cdn.anthropic.com, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms. arXiv
preprint arXiv:2408.07055, 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,

35:16344-16359, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358-13376, Singapore, December 2023b. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024a.

Huiqgiang Jiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658-1677, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-1long. 91l

11

h
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2024.acl-long.91

Under review as a conference paper at ICLR 2025

Ziyan Jiang, Xueguang Ma, and Wenhu Chen. Longrag: Enhancing retrieval-augmented generation
with long-context llms. arXiv preprint arXiv:2406.15319, 2024c. URL https://arxiv.
org/abs/2406.153109.

Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt /LLMTest_NeedleInAHaystack, 2024.

Jingyao Li, Han Shi, Xin Jiang, Zhenguo Li, Hong Xu, and Jiaya Jia. Quickllama: Query-aware
inference acceleration for large language models. arXiv preprint arXiv:2406.07528, 2024a.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024b.

Zhuoshi Pan, Qianhui Wu, Huigiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Ruhle, Yuqging Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang.
LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt compression. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 963-981, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings—-acl.57.

John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan Fe-
lipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing language
models for dialogue. OpenAl blog, 2(4), 2022.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
Li Yuan. Look-m: Look-once optimization in kv cache for efficient multimodal long-context
inference. arXiv preprint arXiv:2406.18139, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
large language models, 2024a. URL https://arxiv.org/abs/2310.03025|

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2023.

12

https://arxiv.org/abs/2406.15319
https://arxiv.org/abs/2406.15319
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://aclanthology.org/2024.findings-acl.57
https://aclanthology.org/2024.findings-acl.57
https://arxiv.org/abs/2310.03025

Under review as a conference paper at ICLR 2025

Appendix

A MORE PRELIMINARY

In this section, we introduce some key definitions of language modeling modules. We begin with
the input embedding function and the output embedding function. They are functions that bridge
between the input token space and the real vector space.

Definition A.1 (Input embedding function and input tokens). The input embedding function £ :
Y — R"*9 maps the input tokens to hidden features using the vocabulary dictionary D¥°¢ €
RIVIXd Let T € V" be input tokens. Then, we have £(T) € R™*% and £(T); = Dyc € R? for
any i € [n)].

Definition A.2 (Output embedding function). The output embedding function G : R* — RIV! maps
hidden features to the probability logits of the vocabulary dictionary.

We introduce Softmax, which allows self-attention to learn the probability distribution rather than
function anymore.

Definition A.3 (Softmax). Let z € R™. We define Softmax : R™ — R" satisfying
Softmax(z) := exp(z)/(exp(z), 1,).

B DETAILED COMPARISON WITH OTHER METHODS

GemPFilter reduces both running time and GPU memory usage in both the prompt computation and
iterative generation phases, whereas SnapKV (Li et al., 2024b)) and H20 (Zhang et al.,|2023) focus
only on the iterative generation phase. During the prompt computation phase, standard attention
computes and stores the entire KV cache for all layers in GPU memory, which is used during the
generation phase. SnapKV and H20, on the other hand, compute the entire KV cache for all layers
but only store a portion of it in GPU memory (e.g., k¥ = 1024). They use the selected KV cache for
memory-efficient generation. SnapKYV selects important clustered positions of the KV cache from
an ‘observation” window located at the end of the prompt, while H20 greedily drops tokens based
on cumulative attention scores to retain only a small portion of the KV cache. In contrast, GemFilter
avoids computing the KV cache for all layers during the prompt computation phase.

Compared to SnapKV and H20, there are two additional differences. First, SnapKV and H20
maintain separate index sets for each layer and attention head, resulting in m - h index sets in
total. This leads to different behaviors across attention heads, making their intermediate mechanisms
more difficult to interpret. On the other hand, GemFilter uses a single index set, .J, allowing for
easier interpretability by enabling the printing of the selected sequence for human review before the
second run (see a real example in Figure[I). Another distinction lies in how positional embeddings
are handled. In SnapKV and H20O, the maximum positional embedding distance is n + ¢, as the
same positional embedding is used in both the prompt computation and iterative generation phases.
However, in GemFilter’s second run, the maximum positional embedding distance is reduced to k+¢
because the input token length is reduced from n to k, and the RoPE functiorﬂ is re-computed. This
reduction makes GemPFilter more efficient, as the model can better handle shorter input sequences,
as demonstrated in Figure [(a).

C PROOF OF TIME COMPLEXITY

Theorem C.1 (Complexity analysis. Restatement of Theorem [3.3). Let n be the input sequence
(prompt) length and d the hidden feature dimensions. In our Algorithm|l| GemFilter uses the r-th
layer as a filter to select k input tokens. Let SnapKV and H20 also use k as their cache size. Assume

8RoPE is the rotary positional embedding (Su et al., 2024), encoding the positional information of tokens.

13

Under review as a conference paper at ICLR 2025

the LLM has m attention layers, each with h attention heads, and each transformer layer’s param-
eters consume w GPU memory. Assuming that we generate t tokens with the GEN function and
n > max{d, k,t}, the following table summarizes the complexity for standard attention, SnapKV
and H20, and GemFilter:

Complexity Standard attention SnapKV and H20 GemfFilter
Time Prompt Comp. O(mhn?d) O(mhn?d) O(rhnd)
Iter: generation | ©(mh(nt + t2)d) O(mh(kt + t2)d) O(mh(k? + t2)d)
GPU mem Prompt Comp. muw + 2mhnd mw + 2hnd 4+ 2mhkd rw + 2hnd
" Iter. generation | mw + 2mh(n +t)d | mw + 2mh(k +t)d | mw + 2mh(k + t)d

Proof of Theorem We prove each method separately.
Proof of standard attention:

During prompting computation, it takes ©(mhn2d) time complexity, as there are m transformer
layers, each layer has h attention head, and each head takes ©(n2d) to calculate the attention (Attn;
in Definition and ©(nd) for other operations (g; in Definition 3.2).

During iterative generation, it takes ©(mh(nt + t2)d) time complexity.

During prompting computation, mw GPU memory consumption is taken for the model weights and
2mhnd GPU memory consumption for the KV cache.

During iterative generation, it takes mw GPU memory consumption for the model weights and
2mh(n + t)d GPU memory consumption for the KV cache. Proof of SnapKV and H20:

During prompting computation, it takes © (mhn?d) time complexity, which is the same as standard
attention.

During iterative generation, it takes © (mh(kt + t2)d) time complexity, as it reduces the KV cache
size from n to k.

During prompting computation, mw GPU memory is consumed for the model weights, 2hnd for
the selection of the key-value matrix for each layer, and 2mhkd for the selected KV cache.

During iterative generation, mw GPU memory is consumed for the model weights and 2mh(k +t)d
GPU memory is consumed for the KV cache.

Proof of our Algorithm [I| GemFilter:

During prompting computation, GemFilter takes ©(rhn?d) time complexity, which is faster than
other methods.

During iterative generation, it takes ©(mh(k? + kt + t?)d) = ©(mh(k? + t?)d) time complexity,
as it reduces the KV cache size from n to k.

During prompting computation, rw + 2hnd GPU memory is consumed for the model weights and
the selection of the key value matrix for each layer.

During iterative generation, mw + 2mh(k + t)d GPU memory is consumed for the KV cache and
model weights.

Thus, we finish the proof. O
D MORE DETAILS ABOUT EXPERIMENTS

D.1 PYTORCH CODE

We provide the PyTorch code of Algorithm [I| GemFilter below, where our method only needs a few
lines of adaptation based on standard attention’]

9https ://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/
mistral/modeling_mistral.py

14

https://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/mistral/modeling_mistral.py
https://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/mistral/modeling_mistral.py

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

o - Y. T S VO SR

Under review as a conference paper at ICLR 2025

find the selected input for the specific attention layer
def find_context (self, query_states, key_states, k):
repeat kv for group query attention

key_states = repeat_kv(key_states, self.num_key_value_groups)
only use the last query token for the top k selection
top_k_indices = top_index (key_states, query_states([:, :, -1:, :1, k)

sort the index into the correct order
return torch.sort (top_k_indices, dim=-1).indecies

def top_index (keys, queries, k, kernel=5):
calculate the inner product
in_pro = torch.matmul (queries, keys.transpose (-1, -2))
cumulate the score over all attention heads in one attention layer
in_pro = torch.sum(in_pro, dim=1, keepdim=True)
use 1D pooling for clustering, similar as SnapKV
in_pro = F.avg_poolld(in_pro, kernel=kernel, padding=kernel//2,
stride=1)
return torch.topk(in_pro, k, dim=-1).indices

D.2 IMPLEMENTATION DETAILS

All the Needle in a Haystack and LongBench experiments run on A100-40GB GPUs. All the ex-
periments of running time and memory complexity are evaluated on H100-80GB GPUs. We use
HuggingFace v4.43 PyTorch implementation. There is no randomness or training in all baseline
methods or our method. For the SnapKV/H20, we use 32 recent size/observation window, which
is the optimal choice suggested by [Li et al| (2024b)); Xu et al.| (2024b). However, GemFilter does
not have an observation window. We use a maximum pooling kernel size (line 16 of the PyTorch
code below) of 5 for SnapKV and our method. For generation, we use standard generation (greedy
generationﬁ_vl where num_beams=1, do_sample = False.

Pressure Testing LLaMA 3.1 8B Instruct GemFilter-1024 (layer-14)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

1.0

0.8

0.6

Score

0.4

Depth Percent

0.2

0.0
S D 02> >N DO 2D >N 0O N OB LN
N VDO NNV XG0 N ORSAND
Q107 O 97 AQ 59° Q' (97 07 DY AT N O8N 00 AT N
w«¢§@§:§&°&&@@@@&&§)

Token Limit

(a) GemFilter-1024 (layer-14). LLaMA 3.1 average score: 0.870.

Figure 7: Needle in a Haystack performance comparison of different filter layers with LLaMA 3.1
8B Instruct model. The x-axis represents the length of the input tokens, while the y-axis shows the
position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning, and 100%
indicates the end). A higher score reflects better performance, meaning more effective retrieval of
the ‘needle’ information.

D.3 MORE NEEDLE IN A HAYSTACK

We provide more results of Section 1] here. In Figure[8] GemFilter outperforms All KV (standard
attention) and SnapKV by a large margin with Phi 3.5 Mini 3.8B Instruct. In Figure[7] we use layer
14 of LLama 3.1 as the input filter layer, which is an empirical support of the ablation study in
Section[#.3] as it can also obtain good performance on the Needle in a Haystack benchmark.

1qhttps ://huggingface.co/docs/transformers/v4.43. 2/en/main_classes/text_generationl

15

https://huggingface.co/docs/transformers/v4.43.2/en/main_classes/text_generation

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Pressure Testing Phi 3.5 Mini 3.8B Instruct All KV
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

1.0
0.8
€
o 0.6
= o
2 :
2 04%
[
a
0.2
O AN >IN D DO XD >IN0 DN O N> 0.0
N QPP 970 A 9, N AP XD 0N O AN AN
10" QF 97 A 9° L' (9 0TS AN O N S AN A
NAY WA (07 7 90 OV AT E GV P \9‘0\,\/’\,\:&0&
Token Limit
(a) AlIl KV. Phi 3.5 average score: 0.851.
Pressure Testing Phi 3.5 Mini 3.8B Instruct SnapKV-1024
Fact Retrieval Across Context Lengths ("Needle In A HayStack") 10
0.8
e
]
5 069
& 3
H 047
[9]
o
0.2
QWD AN >N O DO WO >D AN O WM 0.0
N QPP 970 A 9. N A° XG0 N (O AN AN
19" O 97 A 5° L' (DA DA LN G AN A
MATITATAN DT ST DT @AV AT GV o P
Token Limit
(b) SnapKV-1024. Phi 3.5 average score: 0.864.
Pressure Testing Phi 3.5 Mini 3.8B Instruct GemFilter-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack") 10
0.8
€
o 0.6
= o
2 :
2 04%
[
[a]
0.2
O AN >IN D DO XD >N O DN O N> 0.0
N QP 970 A 9, N AP XD 0N O AN AN
10" Q97 A 9° ' (97 0T DA N PN O AN A
NAY WA (07 7 90 OV AT E GV P @60«,\:&0&
Token Limit

(c) GemFilter-1024 (layer-19). Phi 3.5 average score: 0.910.

Figure 8: Needle in a Haystack performance comparison of different methods using the Phi 3.5
Mini 3.8B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. GemFilter significantly outperforms both standard attention
(full KV cache) and SnapKV.

D.4 ABLATION STUDY ON ROW SELECTION

To understand the intuition behind selecting tokens with the most attention specifically from the
last query, we study using different rows rather than the last row in the attention matrix for indices
selection, as shown in Figure 2]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Pressure Testing Mistral Nemo 12B Instruct Middle-Row-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

1.0
0.8
5
o 0.6
o @
&]
L
2 04"
[
[a]
0.2
© 0. O 0D H DD > A Qb’bcb‘o 0.0
Q%xbfvﬁ'bcaﬁeb'»«'bqvc@
S M N S e M S R I i) el >
SR ORI A G A A S P R SR R AR S
Token Limit
(a) Middle-Row-1024 (layer-19). Mistral Nemo average score: 0.198.
Pressure Testing Mistral Nemo 12B Instruct Largest-Row-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack") 10
0.8
%
) 0.6
g o
&)
L
=] 0.4
[
o
0.2
Q o D> O 0D H D P ’\’be’b@‘o 0.0
o%xbm%’b%%obq,’\'bquoﬁ
WA QR0 AN Y (S Do N D
SV EIFEEEC L E ST F P

Token Limit
(b) Largest-Row-1024 (layer-19). Mistral Nemo average score: 0.125.

Figure 9: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model. The z-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. (a) is using the middle row to select top & indices and (b) is
using the row with largest 5 norm to select top k indices.

In FigureEL we introduce two methods: (a) selecting the middle rows of the attention matrix and (2)
selecting rows with the largest £5 norm. As we can see both methods fail in the Needle in a Haystack
task. It shows that selecting the last query token is essential in our method.

D.5 ABLATION STUDY ON RUNS

Note that the performance improvement of GemFilter may stem from two factors: (1) the selection
of important tokens, and (2) the re-computation of these tokens, which might mitigate issues like
“lost-in-the-middle”. To understand whether both factors made contributions, we provide an ablation
study to isolate the contribution of each factor.

In Figure we introduce GemFilter-One-Run, which does not have the second run as GemFilter.
In detail, after getting the indices as GemFilter, it directly uses this index set to evict the KV cache
for all attention heads and attention layers and continuously conducts the iterative generation phase.

D.5.1 DIFFERENCE FROM GEMFILTER AND SNAPKV

It is different from GemFilter as (1) it requires computing full attention matrices for all layers for the
KV cache eviction, so it does not save prompt computation phase complexity; (2) it does not have
the second run so that the RoPE positional distance is not updated as GemPFilter, where its distance
between ‘needle’ and query can be very large.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Pressure Testing Mistral Nemo 12B Instruct GemFilter-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

1.0
0.8
|5
o 0.6
g o
&]
e
B 0.4%
(9]
[a]
0.2
Q o > O o BN IS DN O DO O 0.0
M NN R P R S LRGN I i R AR CIE - SR SRR P
S P00 AN ° DL DD DD O
’\rb"\\/0.\,&\"\,19,1:6,{/\,,)0,5”),56‘)9@b‘bbfb,,;’)(,’b(,,q

Token Limit
(a) GemFilter-1024 (layer-19). Mistral Nemo average score: 0.838.

Pressure Testing Mistral Nemo 12B Instruct GemFilter-One-Run-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

Depth Percent

Token Limit

(b) GemFilter-One-Run-1024 (layer-19). Mistral Nemo average score: 0.827.

Figure 10: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. (a) is our method GemFilter and (b) is the degenerate version
GemPFilter-One-Run for ablation study.

It is different from SnapKYV as all attention heads and attention layers share the same index set, while
SnapKYV has different index sets for different attention heads and different attention layers.

D.5.2 RESULTS

As we can see in Figure[T0] the GemFilter-One-Run has a comparable performance with GemFilter,
while it is worse when the distance between the query and the ‘needle’ is large. This is expected
as the RoPE positional distance does not update in GemFilter-One-Run. On the other hand, the
GemFilter-One-Run takes a larger running time complexity and a larger memory consumption than
GemPFilter as it requires computing full attention matrices for all layers, while GemFilter only needs
to compute the first few layers.

18

	Introduction
	Related Works
	Method
	Our Algorithm: GemFilter
	Running Time and Memory Complexity Analysis

	Experiments
	Needle in a Haystack
	LongBench
	Ablation Study: Filter Layer Choice
	More Ablation Study
	Running Time and GPU Memory Consumption

	Conclusion
	More Preliminary
	Detailed Comparison with Other Methods
	Proof of Time Complexity
	More Details about Experiments
	PyTorch Code
	Implementation Details
	More Needle in a Haystack
	Ablation Study on Row Selection
	Ablation Study on Runs
	Difference from GemFilter and SnapKV
	Results

