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ABSTRACT

The past few years have witnessed a rapid growth of the deployment of automated
vehicles (AVs). Clearly, AVs and human-driven vehicles (HVs) will co-exist for
many years, and AVs will have to operate around HVs, pedestrians, cyclists, and
more, calling for fundamental breakthroughs in AI designed for mixed traffic to
achieve mixed autonomy. Thus motivated, we study heterogeneous decision mak-
ing by AVs and HVs in a mixed traffic environment, aiming to capture the interac-
tions between human and machine decision-making and develop an AI foundation
that enables vehicles to operate safely and efficiently. There are a number of chal-
lenges to achieve mixed autonomy, including 1) humans drivers make driving de-
cisions with bounded rationality, and it remains open to develop accurate models
for HVs’ decision making; and 2) uncertainty-aware planning plays a critical role
for AVs to take safety maneuvers in response to the human behavior. In this paper,
we introduce a formulation of AV-HV interaction, where the HV makes decisions
with bounded rationality and the AV employs uncertainty-aware planning based
on the prediction on HV’s future actions. We conduct a comprehensive analysis
on AV and HV’s learning regret to answer the questions: 1) How does the learn-
ing performance depend on HV’s bounded rationality and AV’s planning; 2) How
do different decision making strategies impact the overall learning performance?
Our findings reveal some intriguing phenomena, such as Goodhart’s Law in AV’s
learning performance and compounding effects in HV’s decision making process.
By examining the dynamics of the regrets, we gain insights into the interplay be-
tween human and machine decision making in mixed autonomy.

1 INTRODUCTION

Automated vehicle (AV) is emerging as the fifth screen in our everyday life, after movies, televisions,
personal computers, and mobile phones Yurtsever et al. (2020); Parekh et al. (2022). The antici-
pated benefits from AV technology are immense, especially in terms of safety and economic impact
Talebpour & Mahmassani (2016); Wu et al. (2017); Hoogendoorn et al. (2014); Ye & Yamamoto
(2018). For example, in 2014, the National Highway Traffic Safety Administration (NHTSA) es-
timated the annual economic loss and society harm of crashes in the United States alone at $871
billion in 2010, or 1.9% of the GDP. Incredibly, the overwhelming majority of the crashes are pre-
ventable. As more technologies continue to deliver new safety and efficiency features to modern
vehicles, the advent of AVs equipped with a myriad of sensors and AI technology has ushered in
a new era of smart mobility. While 30+ states in the US have already enacted AV legislation, ex-
perts agree that the new phase of rapid global development of AVs must overcome a wide range of
technical challenges Yuen et al. (2021); Jing et al. (2020); Litman (2020). In particular, maintaining
safety while still being sufficiently efficient in a mixed-traffic environment is probably the most fun-
damental challenge for automated mobility. Indeed, AVs will have to operate around human-driven
vehicles (HVs), pedestrians, cyclists, motorcyclists, and more, for many years to come. The compli-
cated interactions between HVs and AVs could have significant implications on the traffic efficiency
given their different decision making characters. As such, a fundamental understanding on the het-
erogeneous decision making in the interplay, especially the impact of HVs’ decision making with
bounded rationality on AVs’ performance, is crucial for achieving efficient mixed autonomy.
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Existing works on modeling the interaction between AV and HV largely fall within the realm of
conventional game formulation, in which both agents try to solve the dynamic game and adopt Nash
equilibrium strategies Tian et al. (2022); Hang et al. (2020); Fisac et al. (2019); Sadigh et al. (2016).
This line of formulation faces the challenge of prohibitive computational complexity Daskalakis
et al. (2009). Needless to say, the decision making of HV and AC are different by nature. As
supported by evidence from psychology laboratory experiments Simon (1979); Kahneman (2003);
Kahneman et al. (1982), human decision-making is often short-sighted and deviates from Nash
equilibrium due to their bounded rationality in the daily life Selten (1990); Kalantari et al. (2023);
Wright & Leyton-Brown (2010). In particular, HV’s bounded rationality is unknown a prior and
it remains challenging to develop an accurate model for HV’s decision making. As a result, it is
sensible for AVs’ decision making to leverage uncertainty-aware planning for safety maneuvers in
response to human behavior Liu et al. (2017); Schwarting et al. (2019). Clearly, the heterogeneous
decision making by HVs and AVs exposes intrinsic complexities in the mixed autonomy.

Along the line of Sadigh et al. (2016; 2018), we consider a two-agent system with one AV and
one HV, where the HV takes the action by planning for a short time horizon, and the decision-
making is sub-optimal and noisy due to bounded rationality. The AV utilizes uncertainty-aware
lookahead planning based on predictions of the HV’s future actions. The primary objective of this
study is to understand the performance of heterogeneous decision making in the mixed autonomy
by answering the following questions: 1) How does the learning performance depend on HV’s
bounded rationality and AV’s planning? 2) How do different decision making strategies between AV
and HV impact the overall learning performance?

The main contributions of this paper can be summarized as follows:

(1) We first focus on the characterization of the regrets for both the HV and the AV, based
on which we identify the impact of bounded rationality and planning horizon on the learning
performance. In particular, we present the upper bound on the regret, first for the linear system
dynamics model case and then for the non-linear case. We start with the linear case, and show the
accumulation effect due to the AV’ prediction error and its impact on AV’s learning performance.
Building on the insight from the linear case, we model the prediction error as a diffusion process in
the non-linear case to capture the accumulation effect. By studying the upper bound, we identify the
compounding effects in HV’s decision making due to bounded rationality and the Goodhart’s law in
AV’s decision making associated with the planning horizon.

(2) We study the impact of HV’s bounded rationality on the overall learning performance
and the regret dynamics of AV and HV. We first establish the upper bound on the regret of the
overall system due to HV’s bounded rationality and AV’s uncertainty-aware planning. Our regret
bound naturally decompose into two parts, corresponding to the decision making of AV and HV,
respectively. We examine the regret dynamics of the overall system theoretically and show how
do different learning strategies between AV and HV affect the learning performance during each
individual interaction through empirical study. The experiments details are available in Appendix H.

1.1 RELATED WORK

Mixed Autonomy. Previous studies on mixed autonomy generally consider specific dynamics mod-
els for AV and HV. For instance, Zhu & Zhang (2018) uses Bando’s model to describe the AV and
HV’s behavior and demonstrates the traffic flow empirically on car-following model. Mahdinia et al.
(2021) conducts a empirical study on the impact of AV on HV’s performance in terms of the driving
volatility measures while assuming a specific AV’s acceleration model. Meanwhile, the impact of
humans in the mixed traffic is empirically examined through high-fidelity driving simulator Sharma
et al. (2018). Zheng et al. (2020) proposes a stochastic model for mixed traffic flow to investigate
the interaction between HV and AV while taking into account the uncertainty of human driving
behavior. It is shown that AV has huge impact on the overall traffic stability and HV’s behavior
through numerical study. Wu et al. (2017) proposes a modular learning framework for mixed traffic
by leveraging deep RL. Experiments show that AV is able to reduce congestion under the intelligent
driver model (IDM). Without imposing specific models on HV and AV’s decision making dynamics,
our work focuses on the performance of different learning strategies in the mixed autonomy.

HV-AV Interaction Model. In related work on modeling the HV-AV interaction, Tian et al. (2022)
uses the general-sum Stackelberg game to account for the human’s influence on AV and computes
the backward reachability tube for safety assurances in the interaction. Similarly, Sadigh et al.
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(2016) formulates the interaction as a two-player game, where the influence between AV and HV
are captured in the predefined reward. Considering the vehicles’ dynamic driving actions, Fisac et al.
(2019) develops a hierarchical game-theoretic planning scheme and shows the effectiveness of the
proposed planning method in the simulation. We note that even though Sadigh et al. (2018) proposes
to use underactuated dynamical system to overcome the limitations of the game formulation, it
assumes that both AV and HV making decision in the same strategy, i.e., planning for the same
horizon. The related ad-hoc team problem Mirsky et al. (2022) mainly focused on the cooperative
case, whereas our setting does not impose assumptions on the cooperation of agents. Meanwhile,
Zero-shot coordination Hu et al. (2020) mainly focused on the robustness of the self-play, whereas
our work aims to understand the interaction between two agents with different decision makings
strategies. Moreover, our work focuses on characterizing the impact of the opponent modeling
errors on the learning performance which is also related to opponent modeling Albrecht & Stone
(2018). Despite the rich empirical results in the related filed, e.g., Ad-hoc team problem and zero-
shot coordination, we remark that the theoretical analysis on the interaction between AV and HV is
still lacking, especially considering their different decision making. Moreover, our work deviates
from the conventional game setting and aims to takes steps to quantify the impact of AV and HV’s
different decision making on the traffic system.

Model-based RL. Model-based RL (MBRL), which leverages a model of the environment, is
promising for real-world applications thanks to its data efficiency Moerland et al. (2023). In particu-
lar, our work is relevant to MBRL with lookahead planning. For instance, Sikchi et al. (2022); Xiao
et al. (2019) use lookahead policy to rollout the dynamics model into the future H steps in order
to find the action sequence with highest return. A value function is also attached at the end of the
rollout to estimate the terminal cost. Moreover, Sikchi et al. (2022) provides the sub-optimality gap
of the learned policy under an approximate model and approximate value function. Our work is dif-
ferent from previous work on MBRL since in our case, AV has access to the environment dynamics
while the modeling error exists due to the unknown bounded rationality of HV. Meanwhile, our the-
oretical analysis uses regret to evaluate the performance of the decision making, in which the value
function is updated during the learning process, resulting in the changing function approximation
error. As a result, the technique used in our proof is significant different than previous work Xiao
et al. (2019); Sikchi et al. (2022); Luo et al. (2022).

2 PRELIMINARY

Stochastic Game. We consider the Stochastic Game (SG) defined by the tuple M :=
(X ,UA,UH , P, rA, rH , γ) Shoham & Leyton-Brown (2008), where UA and UH are the action space
for AV and HV, respectively. In this work, we assume the action space for HV and AV are with
the same cardinality M . For simplicity, we use U = UA × UH . We denote X as the state space
that contains both AV and HV’s states. P (x′|x, uA, uH) : X × U × X → [0, 1] is the probability
of the transition from state x to state x′ when AV applies action uA and HV applies action uH and
rH(x, uA, uH) : X × U → [0, Rmax], rA(x, uA, uH) : X × U → [0, Rmax] is the corresponding
reward for HV and AV. γ ∈ (0, 1) is the discount factor. We denote the AV’s policy by π : X × U .
Furthermore, we use ûH(t) to represent AV’s prediction on HV’s real action uH(t) at time step t. We
use ρ0 to represent the initial state distribution. Furthermore, we compare our problem formulation
and Dec-POMDP in detail in Appendix B.

Value Function. Given AV’s policy π, we denote the value function V π(x) : X → R as

EuA(t)∼π,x(t+1)∼P (·|x(t),uH(t),uA(t))

[ ∞∑
t=0

γtrA(x(t), uA(t), uH(t))|x(0) = x, uH(t)

]
,

to measure the average accumulative reward staring from state x by following policy π. We assume
the maximum value of the value function to be Vmax. We define Q-function Qπ(x, uA, uH) :
X × U → R as Qπ(x, uA, uH) = Eπ[

∑∞
t=0 γ

trA(t)|x(0) = x, uA(0) = uA, uH(0) = uH ] to
represent the expected return when the action uA, uH are chosen at the state x. The objective of AV
is to find an optimal policy π∗ given HV’s action uH such that the value function is maximized, i.e.,

max
π

Ex∼ρ0
[V π(x)] = max

π
Ex∼ρ0,uA∼π(·|x,uH)[Q

π(x, uA, uH)]. (1)

Notations. We use ∥·∥ or ∥·∥2 to represent the Euclidean norm. ∥·∥F is used to denote Frobenius
norm. N (µ, σ2) is the normal distribution with mean µ and variance σ2. I is an identity matrix.
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2.1 MODELING AV-HV INTERACTION: HETEROGENEOUS DECISION MAKING

In this section, we examine in detail the interaction between one AV and one HV in a mixed traffic
environment. More specifically, we have the following models to capture the interplay between
human and machine decision making in the mixed autonomy.

AV’s Decision Making via L-step lookahead planning. At time step t, after observing the current
state x(t), AV will first need to predict HV’s future action ûH(t+i), i = 0, 1, 2, · · · , L−1 due to the
unknown bounded rationality of HV. Based on this prediction, AV strives to find an action sequence
that maximizes the cumulative reward with the predicted HV actions using trajectory optimization.
In order to facilitate effective long-horizon reasoning, we augment the planning trajectory with a
terminal value function approximation Q̂t−1, which is obtained by evaluating the policy obtained
from previous time step. For convenience, we denote policy π̂t as the solution to maximizing the
L-step lookahead planning objective, i.e.,

Q̂t(x(t), uA(t), ûH(t)) =E[

L−1∑
i=0

γirA(x̂(t+ i), uA(t+ i), ûH(t+ i))

+ γLQ̂t−1(x̂(t+ L), uA(t+ L), ûH(t+ L))]

π̂(x(t)|uH) = arg max
uA(t)

max
{uA(t+1),···,uA(t+L−1)}

Q̂t(x(t), uA(t), ûH(t)) (2)

where x̂(t + i) is the state that the system will end up with if HV chose action ûH(t + i) and AV
chose uA(t + i) at time step t + i. We denote uH = {uH(t)}Tt=1. It can be seen that AV’s policy
is conditioned on HV’s policy via ûH(t). We provide a detailed discussion on the relation to the
model-free RL method and Actor-Critic in Appendix C.

HV’s Decision Making with Bounded Rationality. HV’s decision making has distinct character-
istics. As mentioned by the pioneering study of behavior theory Simon (1957), individuals have
constraints in both their understanding of their surroundings and their computational capacities.
Additionally, they face search costs when seeking sophisticated information in order to devise op-
timal decision rules. Therefore, we propose to model human as responding to robots actions with
bounded rationality. We additionally assume HV choose the action by planning for a short time
horizon, in contrast to the long horizon planning in AV’s decision making. Specifically, at time step
t, HV chooses the (sub-optimal) action by planning ahead for N steps, i.e.,

ΦH(x(t), uA(t), uH(t)) :=

N−1∑
i=0

rH(x(t+ i), uA(t+ i), uH(t+ i)) (3)

Meanwhile, to underscore the impact of the bounded rationality in HV’s decision making, we use
u∗
H(t) := argmaxuH(t) maxuH(t+1),···,uH(t+N−1) ΦH(x(t), uA(t), uH(t)) to denote the optimal

solution of Equation (3) and uH(t) to denote the sub-optimal action chosen by HV. Note that HV’s
policy is conditioned on AV’s behavior uA(t) and we assume the time horizon N is short enough
such that the human can effectively extrapolate the robot’s course of action, i.e., uA(t+ i) is the true
action taken by AV. We remark that we do not assume HV has access to the overall plan of AV but
only the first few time steps. It has been shown in previous work Sadigh et al. (2018) that predicting
a short-term sequence of controls is manageable for human, e.g., the AV will merge into HV’s lane
after a short period of time.

3 CHARACTERIZATION OF HV AND AV’S LEARNING PERFORMANCE

3.1 REGRET OF AV WITH L-STEP LOOKAHEAD PLANNING

In this subsection, we study the impact of bounded rationality and uncertainty-aware planning on the
performance of AV. To this end, we first quantify the performance gap between choosing optimal
actions and sub-optimal actions, for given HV’s behavior fixed. Therefore, conditioned on HV’s
action uH = {uH(t)}Tt=1, the regret for T interaction of AV is defined as

RA(T |uH) =
1

T

T∑
t=1

RegA(t) := Ex∼ρ0

[
1

T

T∑
t=1

(
V ∗(x|uH(t))− V π̂t(x)

)]
,
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where we use V ∗(x|uH(t)) to denote the optimal value function attained by the optimal policy π∗

given HV’s action uH . π̂t is the policy obtained in the t-th time step while AV solving L-step looka-
head planning objective Equation (2) based on its prediction on HV’s future actions. In particular,
at each time step t, conditioned on HV’s action uH(t), the optimal value function V ∗(x|uH(t)) is
determined by choosing a policy π∗

A(t) from policy space ΠA. Hence, the regret defined for AV is
closely related to adaptive regret Loftin & Oliehoek (2022). Without loss of generality, we have a
general model on HV’s prediction error.

AV’s Prediction of HV’s Actions. Since HV’s bounded rationality is unknown to AV and the
accurate model on HV is thus challenging to obtain, we assume AV’s prediction of HV’s action
ûH(t+ l) has ϵA(t) difference from the HV’s underlying real (sub-optimal) action uH(t+ l), i.e.,

ûH(t+ l) = uH(t+ l) + ϵA(t+ l), l = 0, 1, 2, · · · , L, (4)

where ϵA(t) ∼ N (µA, σ
2
AI) is the AV’s prediction error. Given the prediction on HV’s actions,

we first quantify the performance gap RegA(t) of AV at each time-step t. Then we characterize the
AV’s learning performance in terms of regret RA(T |uH) in the non-linear case while considering
the adaptive nature of AV’s learning process, e.g., the time-varying function approximation error.

An Illustrative Example: Performance Gap in the Linear Case. For ease of exposition, we first
consider the linear system dynamics model with system parameter A,BH , BA, i.e.,

x(t+ 1) = Ax(t) +BAuA(t) +BHuH(t).

In the linear case, it is easy to see the resulting state transition model when AV is planning for the
future steps based on the prediction of HV’s action:

x̂(t+ l) = x(t+ l) +

l∑
i=1

Ai−1BHϵA(t+ l − i), l = 1, 2, · · · , (5)

where we denote x(t) as the real state when AV choose uA(t) and HV chooses uH(t). It can be seen
that due to the error accumulation in AV’s prediction, the state transition model tends to depart from
the underlying true model significantly over prediction horizon l. Next, we present the performance
for one interaction with assumptions on the function approximation error.

Assumption 1. The value function approximation error in the t-th step is ϵv,t(x) := V ∗(x)− V̂t(x)
with mean Ex[ϵv,t(x)] = µv,t. The value function is upper bounded by Vmax.

In practice, the optimal value function can be estimated by using Monte-Carlo Tree Search (MCTS)
over a class of policies or the offline training with expert prior Gelly & Silver (2011). Then, we have
the following results on the performance gap in time-step t.
Lemma 1 (AV’s Performance Gap in the Linear Case.). Suppose Assumption 1 holds. Denote
Ci = Ai−1BH . Then we have the following upper bound on the performance gap of AV in the t-th
step:

E
[
V ∗(x|uH)− V π̂t(x)

]
≤γLµv,t +

∑L

l=1
(Vmax + lRmax)γ

l

√
∥
∑l

i=1
CiµA∥22+∥σA

(∑l

i=1
CiC⊤

i

)
∥2F .

Error Accumulation in Planning. In Lemma 1, we present a tight bound on the performance gap,
where the first term in the upper bound is associated with the function approximation error and the
second term is related to the AV’s prediction error on HV’s future action. Clearly, increasing the
planning horizon L can help to reduce the dependency on the accuracy of function approximation
in a factor of γL while risking the compounding error (the second term). Notably, the function
approximation error µv,t will change during the learning process (ref. Equation (2)) and further
have impact on AV’s performance gap.

Performance Gap in the Non-linear Case. Observing the error accumulation in the linear case (ref.
Equation 6), The disparity between the actual state and the predicted state, denoted as x(t) − x̂(t),
tends to grow noticeably with time step t. Thus inspired, for the general case where the system
model is unavailable, we formulate the prediction error as a diffusion process, i.e., denote y(t) =
x(t)− x̂(t), then we have,

dy(t) = µAdt+Σ
1/2
A dW (t), y(0) = 0,

5



Under review as a conference paper at ICLR 2024

2 4 6 8 10

Planning Horizon L

0

500

1000

1500

2000

2500

P
e
rf

o
rm

a
n
c
e
 G

a
p

Setting 1

Setting 2

Setting 3

Setting 4

Setting 5

(a)

2 4 6 8 10

Planning Horizon L

500

1000

1500

2000

2500

3000

3500

R
e
g
re

t

Setting 1

Setting 2

Setting 3

Setting 4

Setting 5

(b)

2 4 6 8 10

Interaction T

0

200

400

600

800

R
e
g
re

t(
T

)

L=0

L=1

L=3

L=5

L=10

(c)

Figure 1: Numerical results on AV’s regret. (a) The impact of planning horizon L on AV’s perfor-
mance gap (ref. Lemma 2). (b) The impact of the planning horizon L on AV’s regret RA. (c) The
impact of planning horizon on regret dynamics RA(T ) during the interactions.

where tµA is the drift term adn tΣA := tσ2
AI is the variance term. W (t) is the Weiner process.

Then we can have the following results on the performance gap in the non-linear case.

Lemma 2 (AV’s Performance Gap in Non-linear Case). Suppose Assumption 1 holds, then we have
the upper bound of AV’s performance gap in the t-th step as follows,

E
[
V ∗(x|uH)− V π̂t(x)

]
≤γLµv,t +

∑L

l=1
(Vmax + lRmax)γ

l

√
(1 + l)2l2

4
∥µA∥22+tr

(
σ2
A

(1 + l)l

2
I

)
.

Goodhart’s Law and Lookahead Length. In Lemma 2, we examine the performance of AV
through the lens of Goodhart’s law, which predicts that increasing the optimization over a proxy
beyond some critical point may degrade the performance on the true objective. In our case, the plan-
ning over predicted HV actions is equivalent to the optimization on a proxy object. Increasing the
planning horizon is corresponding to increase the optimization pressure. As shown in Fig. 1a, where
we plot the upper bound of the learning performance by changing different planning horizon L, the
learning performance of AV clearly demonstrate the Goodhart’s law, when increasing the planning
horizon will initially help with the learning performance until a critical point. In practice, adjusting
the look-ahead length (e.g., through grid search) is essential to enable AV to achieve the desired
performance.

Regret Analysis in the Non-linear Case. To analyze the upper bound on the regret, we first impose
the following standard assumptions on the MDP.

Assumption 2 (Quadratic Reward Structure). The reward functions for AV and HV are the quadratic
function of AV’s action uA and HV’s action uH , respectively, i.e.,

rH(x, uA, uH) =fH(x, uA) + u⊤
HSHuH

rA(x, uA, uH) =fA(x, uH) + u⊤
ASAuA,

where SH and SA are positive definite matrix with largest eigenvalue smax. fH and fA are the
reward functions that capture the influence of other agent and can be non-linear.

We note that Assumption 2 is commonly used in the analysis of regret especially in model-based
RL Abbeel et al. (2006); Coates et al. (2008); Kolter et al. (2008) and the studies in mixed traffic
Tian et al. (2022); Sadigh et al. (2016). In practice, the estimation of the parameter SH and SA

can be achieved by various methods, e.g., Inverse Reinforcement Learning Tian et al. (2022). The
limitations of Assumption 2 are discussed in Appendix D. Based on our findings in the performance
gap, we now have the following result on the regret corresponding to AV’s learning performance.

Let C = maxuA
uAµ

⊤
A(µAµ

⊤
A)

−1 and M be the cardinality of the action space UA and UH . Denote
λ =

√
eigmax(C

⊤SAC)smax. Then we have the following result.
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Theorem 3 (Regret on AV’s Decision Making). Suppose Assumptions 1 and 2 hold, the regret of
AV’s decision making over T interactions is bounded above by

RA(T ) ≤
∑L

l=1
(Vmax + lRmax)γ

l

√
(1 + l)2l2

4
∥µA∥22+tr

(
σ2
A

(1 + l)l

2
I

)
+

γL

T

(
Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2)
)
,

where Γ := γL+1(1−γT (L+1))
1−γL+1 and Λ :=

∑T
k=0

∏k
i=0

(
γi(L+1) · γ(1−γL)

1−γ

)
.

Reduce the Regret by Adjusting the Lookahead Length. The upper bound in Theorem 3 is tight
and it reveals the impact of the approximation error (µv,0), prediction error (µA, σA) and lookahead
length L on the learning performance. Specifically, we observe from the second term in the upper
bound represents the accumulation of the function approximation error. The first term therein de-
pends on the initial function approximation error µv,0 and the last term is the compounding error due
to the AV’s prediction error during the T times interactions. Our key observations are as follows: (1)
Longer planning horizon, e.g., L = 10 in Fig. 1b and Fig. 1c, will likely make the prediction error
more pronounced and dominate the upper bound. (2) While in the case when the planning horizon
is short, e.g., L = 1 in Fig. 1b and Fig. 1c, we observe the function approximation error will likely
dominate the upper bound. The empirical results provide the insighs on how to adjust the lookahead
length in practice. For instance, if the function approximation error is more pronounced than the
prediction error, it is beneficial of using longer planning horizon L. The proof of AV’s regret is
relegated to Appendix E.

3.2 REGRET OF HV WITH BOUNDED RATIONALITY

Given AV’s action uA, we define the regret for HV conditioned on AV’s action uA as follows:

RH(T |uA) = Ex(0)∼ρ0

[
1

T

T∑
t=1

(Φ∗
H(t)− Φ(t))

]
,

where Φ∗
H(t) := ΦH(x(t), u∗

H(t), uA(t)) is the optimal value and it is determined by choos-
ing a policy π∗

H(t) from policy space ΠH such that Φ(x, πt
A, πH) is maximized. Φ(t) :=

ΦH(x(t), uH(t), uA(t)) represents the value achieved when HV chooses sub-optimal action due
to bounded rationality. For ease of exposition, we assume HV’s decision making is myopic and
HV’s planning horizon is N = 1, such that ΦH(x(t), uA(t), uH(t)) := rH(x(t), uA(t), uH(t)).
Meanwhile, we assume HV makes sub-optimal decision as follows,

uH(x(t), uA(t)) = u∗
H(x(t), uA(t)) + ϵH(t)

where ϵH(t) ∼ N (µH ,ΣH) is due to bounded rationality of humans and it is not known by AV.

Let CH = maxuH
uHµ⊤

H(µHµ⊤
H)−1 and λH =

√
eigmax(C

⊤
HSHCH)smax, then we have the fol-

lowing results on the upper bound of HV’s regret which shows the impact of bounded rationality on
HV’s performance. The proof of Theorem 4 is available in Appendix F.
Theorem 4 (Regret for HV.). Suppose Assumption 2 holds. Then we have the regret of HV’s decision
making over T interactions to be bounded above by

RH(T ) ≤ smaxM · σ2
H + (smax + λH)∥µH∥2

4 REGRET DYNAMICS IN MIXED AUTONOMY

Aiming to understand ”How do different decision making strategies impact the overall learning
performance?”, especially on the impact of HV’s bounded rationality on AV’s performance, we
study the regret dynamics in this section. More concretely, we denote the regret for the whole
system as RA−H(T ), i.e., RA−H(T ) :=

1

T

T∑
t=1

(
E
[
V ∗(x|u∗

H(t))− V π̂t(x)
]︸ ︷︷ ︸

(i)

+E [Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), uH(t))]︸ ︷︷ ︸

(ii)

)
,
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Figure 2: Empirical studies on AV and HV’s decision making on the overall performance.

where V ∗(x|u∗
H(t)) is the optimal value function when HV also takes the optimal action u∗

H(t), e.g.,
u∗
H(t) = argmaxuH

Φ(x(t), u∗
A(t), uH). Meanwhile Φ(x(t), u∗

A(t), u
∗
H(t)) is the optimal value

when AV takes the optimal action u∗
A(t) = argmaxuA

V ∗(x, uA, u
∗
H(t)) (without prediction error

or function approximation error) while HV takes optimal action u∗
H . Intuitively, regret RA−H(T ) is

defined as the difference between the best possible outcome, i.e., both AV and HV act and response
to each other optimally, and the realized outcome, i.e., AV makes decision with prediction error and
function approximation error while HV makes decisions with bounded rationality. Specifically, we
note that the regret definition RA−H can be naturally decomposed into two parts such that term (i)
and term (ii) characterize the impact of HV’s (AV’s) decision making on AV (HV), respectively.

Term (i). Notice that term (i) in RA−H(T ) can be decoupled as

V ∗(x|u∗
H)− V π̂t(x) := (V ∗(x|u∗

H)− V ∗(x|uH)) + (V ∗(x|uH)− V π̂t(x)).

The first term is induced by the sub-optimality of HV while the second term is the performance gap
of AV, i.e., RegA(t).

Term (ii). Similarly, we can decouple term (i) into two parts,

Φ(x(t), u∗
A(t), uH(t))− Φ(x(t), uA(t), uH(t))

=Φ(x(t), u∗
A(t), u

∗
H)− Φ(x(t), uA(t), u

∗
H) + Φ(x(t), uA(t), u

∗
H)− Φ(x(t), uA(t), uH(t)),

where the impact of AV’s decision making is shown as the first term and the second term is the
performance gap of HV, i.e., RegH(t).

Denote ΨA(l)=

√
(1+l)2l2

4 ∥µA∥2
2+tr(σ2

A
(1+l)l

2 I) and ΨH(l)=

√
(1+l)2l2

4 ∥µH∥2
2+tr(σ2

H
(1+l)l

2 I). For ease of
presentation, we use notation Ψv = Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2) to represent the
regret term in Theorem 3 and ΞH = smaxM · σ2

H + (smax + λH)∥µH∥2 to represent the term in
Theorem 4. Hence, building upon our results in Theorem 3 and Theorem 4, we give the upper bound
of RA−H(T ) in the following corollary.
Corollary 5 (Regret of the HV-AV Interaction System). Suppose Assumptions 2 holds. Then we
have the upper bound on the regret of AV-HV system as follows,

RA−H(T ) ≤
L∑

l=1

(Vmax + lRmax)γ
l(2ΨA(l) + ΨH(l)) + ΞH +

1

T
γLΨv

Corollary 5 shows the impact of HV and AV’s decision making on the overall learning performance
through terms ΨA,Ψv and ΨH ,ΞH , respectively. In what follows, we conduct the empirically
studies to thoroughly examine the impact of each agent while holding another agent fixed.

Impact of AV’s decision making on the overall system performance. (1) Implications on choos-
ing discounting factors. In Fig. 2b, we show the impact of the prediction error µA on the regret
considering different discounting factor settings. Clearly, the larger discounting factor puts more
emphasis on the future rewards comparing with the small discounting factor, which can “amplify”
the impact of the prediction error µA, e.g., the distance between each line for the same µA. (2)
Impact of function approximation error during interaction. In Fig. 3a, we study the impact of the
function approximation error on the learning performance. As expected, the initial function approx-
imation error µv,0 have the huge impact on the regret in the first few interaction T . While during
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Figure 3: Empirical results on how AV and HV’s decision making have impact on the overall regret
dynamics, i.e., take regret as function of T .

(a) µA, µH v.s. RA +RH . (b) µA, µH v.s. RA−H .

Figure 4: Illustration of the impact of µA, µH on the regret summation RA + RH and the overall
regret RA−H .

the learning process, the value function is updated and contributes less to the overall learning regret,
e.g., the last term in Corollary 5. (3) Implications on the Priority of training: function approximation
v.s. prediction model. In Fig. 3a and Fig. 3b we show the impact of different function approxima-
tion error (µv,0) and prediction error (µA) on the system regret. It can be seen that by reducing the
prediction error from 0.4 to 0.2, the regret have significant change from 4000 to 1800 (-30%). While
reducing the function approximation error from 100 to 50, the regret changes from 51.41 to 51.38
(-0.06%). The empirical results indicate that optimizting over prediction model tends to help us get
more improvement on regret. The proof of Corollary 5 can be found in Appendix G.

Impact of HV’s Bounded Rationality on the overall system performance. As illustrated in Fig.
2c, we conduct the experiments on the relationship between regret and human’s decision making
error µH by setting different discounting factors. In Fig. 3c, we can see that the regret difference
caused by µH can be consistent during the interaction, which can be related to the second term in
the upper bound of RA−H . Moreover, we also demonstrate the impact of HV’s decision making on
AV (and vice versa) in Fig. 4. For instance, in Figure 4b, a given uH will constrain the best possible
outcome that AV can achieve, e.g., the projection on the µA-Regret plane.

5 CONCLUSION AND FUTURE WORK

In this work, we take the regret analysis approach to address the questions 1) “How does learning
performance depend on HV’s bounded rationality and AV’s planning horizon?” and 2) “How do
different decision making strategies between AV and HV impact the overall learning performance?”.
To this end, we first propose a HV-AV interaction formulation which is able to capture the hetero-
geneous decision making of HV and AV. Based on the proposed formulation, we derive the upper
bound on the regret for both HV and AV, respectively. By delving into the upper bound, we identify
the Goodhart’s law phenomenon in AV’s decision making, where AV adopt the planning based RL
using predicted human actions. Meanwhile we show the error accumulation effect in HV’s decision
making due to the bounded rationality in HV’s decision making. Based on these results, we further
analyze the impact of AV and HV’s decision making on the overall system performance and we
also derive the upper bound of the system regret. Through empirical study, we demonstrate how
do different learning strategies affect the system performance. In this work, we assume that AV’s
prediction error is set to follow a fixed distribution. It is worth to explore the time varying prediction
error distribution and further develop practical algorithms to address the regret minimization.
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Appendix

A EXTENSION TO MORE THAN TWO AGENTS

We remark that it is feasible to extend to more than one AV and one HV setting and we share some
preliminary thoughts as follows. Assume there are NH HVs and NA AVs in the mixed traffic system.
With abuse of notations, we define the action vector for AVs and HVs as follows, at time step t,

uH(t) = [uH,1(t), uH,2(t), · · · , uH,NH
(t)]

uA(t) = [uA,1(t), uA,2(t), · · · , uA,NA
(t)]

By defining the prediction error as in Equation (4) and HVs’ bounded rationality as in Section 3.2,
our analysis framework still can be applied. We remark that the dimenion of the approximation
error term and the bounded rationality term is thus NA and NH times higher than the two-agent
case. Hence, the resulting regret in Theorem 3 and Theorem 4 are NA and NH times higher than
the two-agent case.

B DIFFERENCE IN PROBLEM SETTING

Difference between our MDP formulation and Dec-POMDP. We outline a few new ideas beyond
the conventional Dec-POMDP as follows.

• In theoretical studies, many MARL formulations for Dec-POMDP, often assume all agents
use the same RL algorithms to ‘maximize’ the rewards. Our work aims to study the case
where AV and HV use different learning methods, i.e., longer-term look-ahead planning
and myopic decision making to achieve their objectives.

• Further, in our setting, HV makes decision with bounded rationality at each time step,
which deviates from reward maximization.

• (Theoretical Results) In our setting, we study the regret dynamics of the system (cf.
RA−H Section 4) such that the impact of different learning strategies on the system perfor-
mance is characterized. Specifically, we show how HV’s bounded rationality, AV’s plan-
ning horizon and function approximation error have impact on the overall system dynamics.
We remark this is different from the analysis in MARL formulation, where in general, the
Nash Equilibrium is to be identified. Thus, the analysis method used in our work is very
different from previous MARL formulation.

C GENERALIZATION OF AV AND HV’S LEARNING STRATEGIES.

AV’s Learning Strategies. We clarify that Equation (2) can be degenerated into many commonly
used RL algorithms, for instance,

• (Model-free Case) Set L = 1, Equation (2) is the model-free Q-function update and our
regret analysis still holds.

• (Actor-Critic Case) Let Q-function and policy π be parameterized by θ and ϕ, respectively,
Then Equation (2) can be learned by using Actor-Critic, i.e., in the actor step, θ is updated
by maximizing the L-step look-ahead objective and ϕ is updated using policy gradient.
Note that in this case, the approximation error in both Actor and Critic update can be
encapsulate into ϵv,t as in Assumption 1. Our proof of the regret remains the same.

HV’s Learning Strategies. In Equation (3), we consider AV’s decision making to be N -step plan-
ning while we do not impose any constrains on the length of N . In particular, when N → ∞,
the decision making of HV is related to dynamic programming (assume the model is available) and
otherwise, the decision making of AV is in the same spirit of Model Predictive Control (MPC).
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D LIMITATIONS OF ASSUMPTIONS

We summarize the limitations of two assumptions as follows:

• (Assumption 1: Function Approximation Error) In practice, since the underlying optimal
value function is unknown, a commonly used approach to estimate the function approxima-
tion error ϵv,t and µv,t is to compare the difference between the rollout of the current policy
(to estimate V̂t) and Monte-Carlo Tree Search (MCTS) (to estimate V ∗) [R1]. However, in
order to get an accurate estimation of the optimal value, MCTS need to try different poli-
cies and can be time-consuming if the state space and action space are large. One of the
promising approach is to leverage an offline dataset with the interaction history between
the HVs and AVs [R2].

• (Assumption 2: Reward Structure) In order to obtain the reward parameters SH and SA

for HVs and AVs, various factors may be taken into considerations, e.g., safety, speed,
comfort. In practice, the reward function design is an open question and highly depends on
the problem of interest. For instance, [R3] also considers reference path deviation to avoid
the vehicles to drive out of the lane. Handcraft all the factors that matter to the questions can
be challenging. A promising way to efficiently learn such a reward signal can be achieved
by Inverse Reinforcement Learning (IRL) based on HVs and AVs driving data.

E PROOF OF AV’S REGRET.

Proxy in the System Dynamics. In the linear case, we first derive the resulting state transition
model when AV is planning for the future steps while using the prediction of HV’s action. The
corresponding state dynamics can be written as, i.e., after observing x(t),

x̂(t+ 1) =Ax̂(t) +BAuA(t) +BH ûH(t)

=Ax(t) +BAuA(t) +BHuH(t) +BHϵA(t)

:=x(t+ 1) +BHϵA(t)

where x(t+ 1) is the true state when AV and HV takes action uA(t) and uH(t).

Then at the next step, we have,
x̂(t+ 2) =Ax̂(t+ 1) +BAuA(t+ 1) +BH ûH(t+ 1)

=Ax̂(t+ 1) +BAuA(t+ 1) +BH ûH(t+ 1)

=Ax(t+ 1) +BAuA(t+ 1) +BHuH(t+ 1) +ABHϵA(t) +BHϵA(t+ 1)

It can be seen that the estimated state and the real state has the following relationship,

x̂(t+ l) = x(t+ l) +

l∑
i=1

Ai−1BHϵA(t+ l − i). (6)

Quantify the Regret. Recall the definition of the regret (performance gap), i.e.,

RegA(T ) :=Ex∼ρ0 [
1

T

T∑
t=1

(
V ∗(x(t))− V π̂(x(t))

)
]

RegA(t) ≜V ∗(x(t))− V πA(x(t))︸ ︷︷ ︸
FA Error

+V πA(x(t))− V π̂A(x(t)︸ ︷︷ ︸
Modeling Error and Lookahead

:=V ∗(x(t))− V π(x(t))︸ ︷︷ ︸
(1)

+V π(x(t))− V π̂(x(t))︸ ︷︷ ︸
(2)

(7)

For simplicity, we define the following notations,
τ̂ trajectory obtained by running π̂A with function approximation error (FA)
τ trajectory obtained by running π with FA error
τ∗ trajectory obtained by running in M without FA error
ut = (uA(t), uH(t))
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Meanwhile, we use π̂ to denote the policy obtained by running lookahead on a inaccurate model and
π is the policy using the accurate model. Note that in both cases, the terminal cost are estimated by
V̂ (with function approximation error).

Part 1. Impact of the Function Approximation Error. We first quantify the first term (1) in
Equation (7) as follows,

V ∗ (x0)− V π (x0) =Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (sL)

]
− Eτ

[∑
γtr (xt, ut) + γLV π (xL)

]
=Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
+ Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV π (xL)

]
=Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
+ γLEτ [V

∗ (xL)− V π (xL)] (8)

Assumptions on the approximation error. We assume that the function approximation error is ϵv
with mean µv and variance Σv , i.e.,

V ∗(x)− V̂ (x) = ϵv(x)

Bring the above relation to the first two terms of Equation (8) gives us,

Eτ∗

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL) + γLϵv(xL)

]
Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
= Eτ

[∑
γtr (xt, ut) + γLV̂ (x) (xL) + γLϵv(xL)

]
Then we have,

V ∗ (x0)− V π (x0)

= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL) + γLϵv(xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV̂ (x) (xL) + γLϵv(xL)

]
+ γLEτ [V

∗ (xL)− V π (xL)]

= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV̂ (x) (xL)

]
+ γL (Eτ∗ [ϵv(xL)]− Eτ [ϵv(xL)])

+ γLEτ

[
V̂ (xL) + ϵv(xL)− V π (xL)

]
= Eτ∗

[∑
γtr (xt, ut) + γLV̂ (x)(xL)

]
− Eτ

[∑
γtr (xt, ut)

]
+ γLEτ∗ [ϵv(xL)]− γLEτ [V

π (xL)]

=
(
Eτ∗

[∑
γtr (xt, ut)

]
− Eτ

[∑
γtr (xt, ut)

])
+ γL

(
Eτ∗

[
V̂ (x)(xL)

]
− Eτ

[
V̂ (x)(xL)

])
+ γLEτ∗ [ϵv(xL)]

First term: (1) (Eτ∗ [
∑

γtr (xt, ut)]− Eτ [
∑

γtr (xt, ut)]).

Assume the reward function is bounded by Rmin ≤ r(x, u) ≤ Rmax,∀ (x, u). Then we have

1− γL

1− γ
(Rmin −Rmax) ≤ (1) ≤ 1− γL

1− γ
Rmax

Second term: (2) γL
(
Eτ∗

[
V̂ (x)(xL)

]
− Eτ

[
V̂ (x)(xL)

])
. By assuming the function approxima-

tion value is bounded by [V̂min, V̂max], we have,

γL(V̂min − V̂max) ≤ (2) ≤ γLV̂max
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Second term: (3) γLEτ∗ [ϵv(xL)]

γLϵv,min ≤ (3) ≤ γLϵv,max

Alternatively we have

(3) = γLµv

By combing all three parts, we have the upper bound and lower bound as follows,

V ∗ (x0)− V π (x0) ≤
1− γL

1− γ
Rmax + γLV̂max + γLϵv,max

V ∗ (x0)− V π (x0) ≥
1− γL

1− γ
(Rmin −Rmax) + γL(V̂min − V̂max) + γLϵv,min

Part 2. The Impact of the Modeling Error in the L-step Planning. Now we are ready to quantify
the second term in Equation (7).

We first define Ul as follows. For any 0 ≤ l ≤ L, define Ul to be the l-step value expansion that
rolls out the true model P for the first l steps and the approximate model P̂ for the remaining L− l
steps:

Ul =

l−1∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] +

L−1∑
t=l

γtExt∼P̂π
t−l◦P

π
l (·|x) [R

π (xt)]

+ γLExL∼P̂π
L−l◦P

π
l (·|x)

[
V̂ (xL)

]
,

where P̂π
L−l ◦ Pπ

l (· | x) denotes the distribution over states after rolling out l steps with P and t− l

steps with P̂ .

P̂π
t−l ◦ Pπ

l (· | x) =
∑
x′∈X

Pπ
l (x′ | x) P̂π

t−l (· | x′)

Then we have,

UL =V π(x(t))

U0 =V π̂(x(t))

Hence we have,

V π (x(t))− V π̂(x(t)) = UL − U0 =

L−1∑
l=0

Ul+1 − Ul

To analyze each term in the sum, we re-arrange Ul in the following ways

Ul =

l−1∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] + γlExl∼Pπ
l (·|x)

[
V π̂
L−l (xl)

]
(9)

Ul =

l∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] + γl+1Exl+1∼P̂π◦Pπ
l (·|x)

[
V π̂
L−l−1 (xl+1)

]
. (10)

where we denote V π̂
L (xl) :=

∑L−1
t=0 γtExt∼P̂π

t (x) [R
π (xt)] + γLExL∼P̂π

L (x)

[
V̂ (xH)

]
. Note that

V̂ is not the same as V π̂ , where the latter represents the value of running the current policy π̂ with
L step lookahead planning over a inaccurate model with a terminal cost estimation V̂ .
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Now applying Equation (10) to Ul and Equation (9) to Ul+1, then we have,

Ul+1 − Ul =

l∑
t=0

γtExt∼Pπ
t (·|x) [R

π (xt)] + γl+1Exl+1∼Pπ
l+1(·|x)

[
V π
P̂ ,L−l−1

(xl+1)
]

−
l∑

t=0

γtExt∼Pπ
t (·|x) [R

π (xt)]− γl+1Exl+1∼P̂π◦Pπ
l (·|x)

[
V π
P̂ ,L−l−1

(xl+1)
]

=γl+1Exl∼Pπ
l (·|x),ul∼π(·|xl)

[
Ex′∼P (·|xl,ul)

[
V π̂
L−l−1 (x

′)

]

− Ex′∼P̂ (·|xl,ul)

[
V π̂
L−l−1 (x

′)
]]

=γl+1Exl∼Pπ
l (·|x),ul∼π(·|xl)

[∫
x′

(
P (x′ | xl, ul)− P̂ (x′ | xl, ul)

)
V π̂
L−l−1(x

′)dx′
]

:=γl+1Exl∼Pπ
l (·|x),ul∼π(·|xl)[D(xl+1|P, P̂ )],

where we denote D(xl+1|P, P̂ ) =
∫
x′

(
P (x′ | xl, ul)− P̂ (x′ | xl, ul)

)
V π̂
L−l−1(x

′)dx′.

It can be seen that D(xl+1) is directly relevant to the lookahead length l and the modeling error
P̂ −P . In the linear case, the longer lookahead length makes the difference between P and P̂ more
significant, i.e., Equation (6). Next, we give the expression for D(xl+1|P, P̂ ) to show its relation
with the lookahead length L.

D(xl+1|P, P̂ ) =

∫
x′

(
P (x′ | xl, ul)− P̂ (x′ | xl, ul)

)
V π̂
L−l−1(x

′)dx′

Linear Case. Recall Equation (6),

x̂(t+ l) = x(t+ l) +

l∑
i=1

Ai−1BHϵA(t+ l − i),

where ϵA ∼ N (µA,ΣA). Then we have,

P̂ (x′ | xl, ul) = P(
l∑

i=1

Ai−1BHϵA(t+ l − i) = x′ −Axl −Bul)

Given ϵA follows Gaussian distribution, we have

l∑
i=1

Ai−1BHϵA(t+ l − i) ∼ N (

l∑
i=1

Ai−1BHµA,

l∑
i=1

Ai−1BHΣA(A
i−1BH)⊤)

Then we have
l∑

i=1

Ai−1BHϵA(t+ l − i) ∼ N (

l∑
i=1

CiµA, σ
2
A

l∑
i=1

CiC
⊤
i )

where Ci := Ai−1BH .

For simplicity, assume Ai−1BH = I , then we have

l∑
i=1

Ai−1BHϵA(t+ l − i) ∼ N (l · µA, lσ
2
AI)
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Meanwhile, we have the underlying true dynamics of the system is

x(t+ 1) = Ax(t) +BAuA(t) +BHuH(t) + ϵp(t).

Then we have,

P (x′ | xl, ul) = P(ϵp = x′ −Axl −Bul)

Notice that ϵp ∼ N (0, σ2
pI).

Then the difference between P and P̂ boils down to the difference between two Normal distribution.
We have the following results,

W (P̂ , P ) =

√√√√∥
L∑

i=1

CiµA∥22+∥(σA

(
l∑

i=1

CiC⊤
i

)
− σp)I∥2F

Or in the simple case

W (P̂ , P ) =

√
l2∥µA∥22+∥(σA

√
l − σp)I∥2F

Assume the value function is bounded by Vmax = suph

∥∥∥V̂ π̂
l

∥∥∥
L

, i.e., the maximum Lipschitzness of
the estimated value function over all possible horizons. Now we have,

Ul+1 − Ul ≤ Vmaxγ
l+1Exl+1

[D(xl+1)] ≤ Vmaxγ
l+1Exl+1

[W (P̂ , P )] (11)

where W is the Wasserstein distance.

Then we have

UL − U0 ≤ Vmax

L∑
l=1

γlExl+1,ul+1∼π[W (P̂ (·|x, u), P (·|x, u))]

Combing two parts gives upper bound.

By adding the upper bound of the two parts, we obtain the upper bounds and lower bound for the
performance difference,

Linear Case, no FA error. In this case, we have the regret as follows,

RegA(t) ≤
1− γL

1− γ
Rmax + Vmax

L∑
l=1

√
l2∥µA∥22+∥(σA

√
l − σp)I∥2F

Linear Case, with FA error.

RegA(t) ≤
1− γL

1− γ
Rmax + Vmax

L∑
l=1

√
l2∥µA∥22+∥(σA

√
l − σp)I∥2F + γLϵv,max

Non-linear Case, with FA error.

RegA(t) ≤
1− γL

1− γ
Rmax + γLV̂max + γLϵv,max

+Vmax

L∑
l=1

γlExl+1,ul+1∼π[W (P̂ (·|x, u), P (·|x, u))]
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Treat the Prediction Error as a Diffusion Process. Recall the diffusion process:

dx(t) =µdt+ σdW (t)

Drift: µt =E[x(t)− x(0)]

Variance: σ2t =Var[x(t)− x(0)]

where W (t) is a wiener process, i.e., dW (t) = εt
√
dt, εt ∼ N (0, 1). Alternatively in the discrete

case, we have x(t) − x(0) = µt + σW (t). In our setting, due to the compounding error in the
lookahead planning, the difference between true state and predicted state becomes more and more
different as the time horizon expands. Define the difference between the true state and predicted
state as y(t) = x̂(t)− x(t), then we assume the prediction error follows a diffusion process, i.e.,

dy(t) = µAdt+ΣAdW (t), y(0) = 0

For simplicity, assume ΣA = σ2
AI .

Then we can obtain that at time t, the prediction error follows a Gaussian distribution, i.e., y(t) ∼
N (tµA, tσ

2
AI). Then we have the Wasserstein distance P̂ and P as follows Delon & Desolneux

(2020),

W (P̂l+1 − P ) =

√
(1 + l)2l2

4
∥µA∥22+tr

(
σ2
A

(1 + l)l

2
I + σ2

pI − 2σ2
Aσ

2
p

(1 + l)l

2
I

)
Finally, we obtain the upper bound for the non-linear case as follows:

RegA(t) ≤
1− γL

1− γ
Rmax + γLV̂max + γLµv,t

+ Vmax

L∑
l=1

γl

√
(1 + l)2l2

4
∥µA∥22+tr

(
σ2
A

(1 + l)l

2
I + σ2

pI − 2σ2
Aσ

2
p

(1 + l)l

2
I

)
Regret over time T . Now we consider the regret over time t = 1, 2, · · · , T . Assume the current
policy is π̂t and the learned value function is V̂t. Recall that AV chose its policy in the following
way,

• Estimate value function using policy π̂t:

Q̂t+1 =

(
L∑

i=1

E
[
γirA(x̂(t+ i), uA(t+ i), ûH(t+ i))

]
+ γL+1Q̂t(x̂(t+ L+ 1), û(t+ L+ 1))

)
,

• Derive the greedy policy (as in MPC):

π̂t+1 = arg max
uA(t+1)

max
uA(t+2),···,uA(t+L)

Q̂t+1

It can be seen that due to the update of the value function Q̂. Next we show the difference between
Q̂t+1 and Q̂t. Recall that we assume V ∗ − V̂t = ϵv , and we denote (with abuse of notation)
Q∗ − Q̂t = ϵt. Now we have

Q̂t+1 −Q∗ = γL+1ϵt +

L∑
i=1

γi(r̂A − rA),

where we denote r̂A = rA(x̂(t+i), uA(t+i), ûH(t+i)) and rA = rA(x̂(t+i), uA(t+i), uH(t+i)).
Similar to the analysis to HV regret, we have

µv,t+1 := E[ϵt+1] ≤ γL+1µv,t +
γ(1− γL)

1− γ
(RegA)
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where RegA = msσ2
A + (s+ λ)∥µA∥2.

Now we are ready to derive the regret for AV as follows,

RegA(T ) =
1

T

T∑
t=1

Reg(t)

≤

(
1− γL

1− γ
Rmax + γLV̂max

+ Vmax

L∑
l=1

γl

√
(1 + l)2l2

4
∥µA∥22+tr

(
σ2
A

(1 + l)l

2
I + σ2

pI − 2σ2
Aσ

2
p

(1 + l)l

2
I

))

+
γL

T

(
γL+1(1− γT (L+1))

1− γL+1
µv,0 +

T∑
k=0

k∏
i=0

(
γi(L+1) · γ(1− γL)

1− γ
RegA

))

=
∑L

l=1
(Vmax + lRmax)γ

l

√
(1 + l)2l2

4
∥µA∥22+tr

(
σ2
A

(1 + l)l

2
I

)
+

γL

T

(
Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2)
)
,

where Γ := γL+1(1−γT (L+1))
1−γL+1 and Λ :=

∑T
k=0

∏k
i=0

(
γi(L+1) · γ(1−γL)

1−γ

)
.

F PROOF OF HV’S REGRET.

Due to the bounded rationality, HV does not choose the optimal action and thus introduces the regret
as follows

RegH(T ) :=
1

T

T∑
t=1

RegH(t) =E [Φ(x(t), u∗
H(t), ûA(t))− Φ(x(t), uH(t), ûA(t))] ,

where we assume that HV can observe the action of AV in a timely manner. Next, we impose the
assumptions on the reward structure to be quadratic, i.e.,

rH(x, uA, uH) = fH(x, uA) + u⊤
HSHuH , (12)

where SH are positive definite matrices.

Then we have the regret for HV to be,

RegH(t) =E
[
(u∗

H(t))⊤SHu∗
H(t)− (uH(t))⊤SHuH(t)

]
=
1

2
E

[
(u∗

H(t) + uH(t))
⊤
SH (u∗

H(t)− uH(t))

+ (u∗
H(t)− uH(t))

⊤
SH (u∗

H(t) + uH(t))

]

=
1

2
E
[(

(u∗
H(t) + uH(t))

⊤
SHϵH(t) + ϵH(t)⊤SH (u∗

H(t) + uH(t))
)]

=
1

2
E
[(

(2u∗
H(t) + ϵH(t))

⊤
SHϵH(t) + ϵH(t)⊤SH (2u∗

H(t) + ϵH(t))
)]

=E
[
ϵH(t)⊤SHϵH(t) + u∗

H(t)⊤SHϵH(t) + ϵH(t)⊤SHu∗
H(t)

]
=Tr(SHΣH) + µ⊤

HSHµH + u∗
H(t)⊤SHµH + µ⊤

HSHu∗
H(t)

Furthermore, we have the following assumptions on the matrices
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• ΣH = σHI , where I is an identity matrix.
• The dimension of the action space is n
• 0 < smin ≤ eig(SH) ≤ smax, where eig(SH) is the eigenvalue of SH .
• There exist a matrix C such that CminµH ≤ u∗

H(t) ≤ CµH , notice that u∗
H depends on

AV’s action.

With those assumptions in place, we have the upper bound for the regret as follows:

RegH(T ) ≤ nsmax · σ2
H + (smax + λ)∥µH∥2

where λ :=
√
eigmax(C

⊤SHC) · smax.

G PROOF OF COROLLARY 5

We denote the regret for the whole system as RA−H(T ), i.e., RA−H(T ) :=

1

T

T∑
t=1

(
E
[
V ∗(x|u∗

H(t))− V π̂t(x)
]︸ ︷︷ ︸

(i)

+E [Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), uH(t))]︸ ︷︷ ︸

(ii)

)
,

where V ∗(x|u∗
H(t)) is the optimal value function when HV also takes the optimal action u∗

H(t), e.g.,
u∗
H(t) = argmaxuH

Φ(x(t), u∗
A(t), uH). Notice that both term (i) and term (ii) can be decomposed

in the following way

V ∗(x|u∗
H(t))− V π̂t(x)

=V ∗(x|u∗
H(t))− V ∗(x|uH(t))︸ ︷︷ ︸

(a)

+V ∗(x|uH(t))− V π̂t(x)︸ ︷︷ ︸
(b)

Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), uH(t))

=Φ(x(t), u∗
A(t), u

∗
H(t))− Φ(x(t), uA(t), u

∗
H(t))︸ ︷︷ ︸

(a)

+Φ(x(t), uA(t), u
∗
H(t))− Φ(x(t), uA(t), uH(t))︸ ︷︷ ︸

(b)

In the decomposition above, term (b) is related to AV and HV’s regret, respectively. Now we quantify
term (a).

AV. Term (a) is related to V ∗ function and we need to show that due to the bounded rationality of HV,
it has direct impact on AV’s overall best possible performance, i.e., denote the trajectory collected
by running through MDP M with HV’s action u∗

H as τopt, while the trajectory collected with HV’s
action uH is denoted as τ , then we have

(a) =Eτopt

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
− Eτ

[∑
γtr (xt, ut) + γLV ∗ (xL)

]
=Eτopt

[∑
γtr (xt, ut)

]
− Eτ

[∑
γtr (xt, ut)

]
+ Eτopt

[
γLV ∗ (sL)

]
− Eτ

[
γLV ∗ (sL)

]
=

L∑
i=1

γi
(
ηi,opt(x, u)− ηi(x, u)

)
r(x, u) + γL

∫
x

P[x|sL−1, u
∗
L−1]− P[x|xL−1, uL−1]V

∗(x)

≤
L∑

i=1

γi · iϵmrmax + γLLVmaxϵm,

where ϵm is the total variation between M and M̂ due to HV’s noisy action as the disturbance
is upper bounded by ϵm. The explicate formulation of the upper bound is available in Prop. 2.1
Devroye et al. (2018).

HV. Term (a) is related to Φ and we have (a) ≤ Rmax

Denote ΨA(l)=

√
(1+l)2l2

4 ∥µA∥2
2+tr(σ2

A
(1+l)l

2 I) and ΨH(l)=

√
(1+l)2l2

4 ∥µH∥2
2+tr(σ2

H
(1+l)l

2 I). For ease of
presentation, we use notation Ψv = Γµv,0 + Λ(smaxMσ2

A + (smax + λ)∥µA∥2) to represent the
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regret term in Theorem 3 and ΞH = smaxM · σ2
H + (smax + λH)∥µH∥2 to represent the term in

Theorem 4. Hence, building upon our results in Theorem 3 and Theorem 4, we give the upper bound
of RA−H(T )

RA−H(T ) ≤
L∑

l=1

(Vmax + lRmax)γ
l(2ΨA(l) + ΨH(l)) + ΞH +

1

T
γLΨv

H EXPERIMENTAL SETTINGS.

In this section, we include the detailed parameter setup when conducting the experiments. The
default setting is as follows:

• γ = 0.85

• L = 5

• µv,0 = 10

• Vmax = 10

• Rmax = 1

• µA = 1.8

• σA = 1

• M = 10

In Figure 4 we choose the parameters as follows:

• γ = 0.5

• T = 5

• Vmax = 10

• Rmax = 1

• σA = 0.1

• σH = 0.1

• smax = 2

• λ = 10

• M = 10

• l = 2

We list the parameter settings of Figure 1a, Figure 1b and Figure 2a in Table 1, Table 2 and Table 3,
respectively.

Parameter Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
γ 0.85 0.85 0.85 0.85 0.55

µv,0 10 10 10 10 10
Vmax 10 10 20 10 10
Rmax 1 5 1 1 1
µA 0.8 1.8 1.8 1.8 1.8
σA 1 1 1 1 1
M 10 10 10 10 10

Table 1: Parameter Settings in Figure 1a
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Parameter Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
γ 0.85 0.85 0.85 0.85 0.55

µv,0 10 10 10 10 10
Vmax 10 10 20 10 10
Rmax 1 5 1 1 1
µA 0.8 1.8 1.8 1.8 1.8
σA 1 1 1 1 1
M 10 10 10 10 10
T 10 5 5 5 5

Table 2: Parameter Settings in Figure 1b

Parameter Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
γ 0.85 0.85 0.85 0.85 0.55

µv,0 10 10 10 10 10
Vmax 10 10 20 10 10
Rmax 1 5 1 1 1
µA 0.8 1.8 1.8 1.8 1.8
σH 0.1 0.5 0.1 0.1 0.1
σA 1 1 1 1 1
M 10 10 10 10 10
T 5 10 10 10 10

Table 3: Parameter Settings in Figure 2a
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