

000 001 002 003 004 005 006 007 008 009 010 011 UNI-DIRECTIONAL BLENDING: LEARNING ROBUST 012 REPRESENTATIONS FOR FEW-SHOT ACTION RECOG- 013 NITION WITH FRAME-LEVEL AMBIGUITIES 014 015

016 **Anonymous authors**
017 Paper under double-blind review

027 **Figure 1: Examples of frame-level ambiguities.** Intra-class ambiguity (e.g., ‘kick ball’)
028 and inter-class ambiguity (e.g., ‘laugh’ and ‘smoke’).

029 ABSTRACT

030
031 Leveraging vision-language models (VLMs) for few-shot action recognition has
032 shown promising results, yet direct image-text alignment methods, such as CLIP,
033 encounter significant challenges in video domains due to frame-level ambiguities.
034 Videos frequently include irrelevant and redundant frames, leading to intra-class
035 ambiguity from non-essential content within the same action and inter-class ambi-
036 guity from visually overlapping elements across classes. These ambiguities hinder
037 the learning of distinctive prototypes and robust semantic representations. To over-
038 come this, we introduce Uni-FSAR, a novel framework that employs uni-directional
039 blending to selectively integrate relevant frames, preventing contamination of proto-
040 types by irrelevant visual noise. Additionally, a learnable text query (LTQ) bridges
041 the semantic gap between visual features and class labels, enhancing representation
042 alignment. Furthermore, our LTQ-based Semantic Bridging Loss promotes focus
043 on informative frames through similarity-based gradient propagation, mitigating
044 inter-class overlap and fostering more generalizable representations. Extensive
045 experiments, including cross-dataset evaluations, demonstrate that Uni-FSAR
046 achieves superior robustness in handling frame-level ambiguities compared to prior
047 works. Quantitatively and qualitatively, our method outperforms the state-of-the-art
048 by an average of 2.34% across benchmarks, with a notable 6.5% top-1 accuracy
049 gain on HMDB51, where ambiguities are most pronounced.

050 1 INTRODUCTION

051
052 Understanding human actions in videos from diverse sources remains a core challenge in computer
053 vision, as it requires reasoning over multi-frame context rather than relying on static visual cues from

Figure 2: **Comparison of prototype alignment methods.** (a) Previous bi-directional methods mix informative (✓) and irrelevant (✗) frames. (b) Our Uni-FSAR uses uni-directional blending. The **LSB Loss module** (inset) illustrates how we resolve the semantic gap: only informative features (green squares) are aligned with the LTQ, while irrelevant ones (red triangles) are filtered out with negligible gradients (\emptyset), preventing prototype contamination.

a single-frame. To address this, prior research has explored temporal modeling, such as capturing motion patterns or decomposing actions into finer sub-units (Cao et al., 2020; Feichtenhofer et al., 2019; Qu et al., 2024; Wang et al., 2023b; Yu et al., 2024; Zhao et al., 2022). While prior temporal modeling approaches (Cao et al., 2020; Feichtenhofer et al., 2019; Qu et al., 2024; Wang et al., 2023b; Yu et al., 2024; Zhao et al., 2022) have shown progress, they typically rely on large-scale closed-set datasets, struggling to generalize to novel classes (Dwivedi et al., 2019; Wang et al., 2023a). In contrast, few-shot action recognition (FSAR) addresses this by learning to recognize new classes from limited examples via meta-learning (Finn et al., 2017; Snell et al., 2017). Recently, incorporating vision-language models (VLMs) like CLIP (Radford et al., 2021) into FSAR has yielded notable gains by leveraging rich semantic alignment (Tang et al., 2024; Wang et al., 2023d; 2024). However, these methods often overlook *frame-level ambiguity* inherent in unconstrained videos (Carreira & Zisserman, 2017; Goyal et al., 2017; Kuehne et al., 2011; Soomro et al., 2012). Videos collected from unconstrained sources, such as YouTube, movies, frequently include irrelevant frames (e.g., background scenes, transitions) and redundant frames that appear across different action categories. These lead to two types of ambiguity: *intra-class ambiguity* due to irrelevant content within the same class, and *inter-class ambiguity* caused by overlapping content across classes. This issue is visually exemplified in Fig. 1, which shows how intra-class irrelevance and inter-class redundancy disrupt the semantic consistency of class representations. Rather than contributing to meaningful prototypes, these frames introduce visual noise and class overlap, making it difficult for the model to learn clear decision boundaries. Furthermore, we introduce the LTQ-based Semantic Bridging (LSB) Loss, which attenuates the influence of redundant frames through similarity-based gradient propagation.

Figure 2 illustrates a fundamental limitation in the prototype alignment process of prior FSAR methods. As shown in Fig. 2 (a), previous methods (Wang et al., 2024; Wu et al., 2024) adopt a bi-directional blending strategy where all frame-level features are indiscriminately aligned with class labels. This bi-directional blending incorporates both irrelevant and redundant frames into the prototype, thereby exacerbating intra- and inter-class ambiguities. To address these limitations, we propose a **Uni-FSAR** framework that aims to improve prototype construction under frame-level ambiguity by leveraging selective use of semantically relevant frame information. Figure 2 (b) depicts the core components of the proposed pipeline. We design a uni-directional blending strategy to prevent irrelevant frames from contaminating class prototypes. **Unlike bi-directional blending where noisy frames can dominate the shared representation via attention feedback, our uni-directional design ensures that the Learnable Text Query (LTQ) aggregates visual evidence without broadcasting signals back into frame tokens.** This effectively filters out visual noise while the LTQ semantically aligns visual features with class labels. Furthermore, we introduce the LTQ-based Semantic Bridging

(LSB) Loss, which attenuates the influence of redundant frames through similarity-based gradient propagation. The main contributions of this paper are summarized as follows:

- **Uni-directional blending strategy** and **Learnable Text Query (LTQ)** are designed to alleviate intra-class ambiguity caused by irrelevant frames, enabling more effective semantic alignment between visual representations and action labels.
- **LTQ-based Semantic Bridging (LSB) Loss** addresses inter-class ambiguity stemming from redundant frames by promoting selective focus on the most distinctive visual information through similarity-based gradient propagation.
- We propose **Uni-FSAR as a novel integrative framework** that synergistically combines uni-directional blending and LSB loss to enable effective multi-modal alignment, addressing frame-level ambiguities in diverse few-shot settings and achieving an average accuracy improvement of 2.34% with up to 6.5% gains across datasets, alongside strong cross-dataset generalizability.

2 RELATED WORK

Human Action Recognition. The action recognition field has progressed through innovations in network architectures such as 3D CNNs (Ji et al., 2012; Taylor et al., 2010; Tran et al., 2015) and transformers (Girdhar et al., 2019; Liu et al., 2022), as well as improvements in features incorporating additional modalities such as optical flow (Beauchemin & Barron, 1995; Horn & Schunck, 1981; Lee et al., 2018; Sevilla-Lara et al., 2019), skeleton data (Vemulapalli et al., 2014; Wang et al., 2013), and vision language models (Chen et al., 2023; Huang et al., 2024; Wang et al., 2021). Despite these advances, most approaches still operate under closed-set assumptions, where all classes are known during training. Such assumptions limit generalization to unseen actions, especially in real-world videos with temporal variation and frame-level ambiguity. To address this limitation, FSAR has been explored as an alternative to closed-set training, enabling generalization to novel actions from only a few labeled examples (Zhang et al., 2020).

Few-shot Learning. Few-shot learning has been primarily explored through tasks like image classification (Chowdhury et al., 2021; Snell et al., 2017), typically adopting an N -way K -shot setting, where N is the number of classes, and K is the number of labeled examples per class. This framework commonly adopts episodic training where models are trained on sampled support-query splits to improve generalization across tasks. In meta-learning, models learn a shared representation (ϕ) across tasks and task-specific parameters or adaptation mechanisms (θ), enabling fast adaptation and improved generalization to unseen tasks from limited examples. This approach has also been extended to few-shot action recognition in videos, where collecting large-scale annotations is particularly expensive.

Vision-Language Models for FSAR. Vision-language models, such as CLIP (Radford et al., 2021) and BLIP (Li et al., 2022), have recently been applied to FSAR to enhance generalization by leveraging semantically aligned image-text embeddings. These methods typically select frames that are most semantically similar to class labels in the embedding space and integrate text-tokenized class label features with frame-level visual features using attention mechanisms, mean pooling, or concatenation. These approaches have improved semantic alignment in FSAR and shown strong performance under limited supervision. However, they often overlook a core challenge in action recognition: frame-level ambiguity which can degrade prototype quality and lead to semantic overlap. Addressing this issue remains crucial for achieving robust generalization in real-world FSAR.

3 METHOD

3.1 PROBLEM DEFINITION

Few-shot action recognition aims to classify a query video into one of several previously unseen classes using only a small number of labeled examples per class. Unlike conventional action recognition, which relies on large-scale annotated data for all target classes, FSAR focuses on generalization to novel classes under limited supervision. This problem setting is particularly challenging in video data due to temporal complexity, large intra-class variation, and frame-level noise. The dataset is partitioned into disjoint subsets for training, validation, and testing, denoted as

Figure 3: **Overview of our proposed Uni-FSAR.** Which consists of three main components: (a) UniQ-Former: uni-directional blending and LTQ generation, (b) temporal modeling and a semantic bridge module that connects visual features with class-level text representations, and (c) temporal alignment of support and query prototypes for few-shot classification.

$\mathcal{D}_{\text{train}}$, \mathcal{D}_{val} , and $\mathcal{D}_{\text{test}}$, respectively, where the corresponding class sets are mutually exclusive, i.e., $\mathcal{C}_{\text{train}} \cap \mathcal{C}_{\text{test}} = \emptyset$. To simulate the few-shot scenario, we adopt an episodic meta-learning framework. Each episode is constructed by sampling a support set $S_k = \{(x_i, y_i)\}_{i=1}^{N_k}$ for each class k , where x_i denotes a video sample and y_i its corresponding class label, along with a query set Q from $\mathcal{D}_{\text{train}}$. This forms an N -shot K -way classification task. At test phase, episodes are constructed similarly using $\mathcal{D}_{\text{test}}$ or \mathcal{D}_{val} , with classes that were not observed during training. We follow a prototype-based classification strategy, where each class prototype c_k is computed by averaging the support features and the query prediction is made by comparing the query feature to the nearest prototype as follows:

$$c_k = \frac{1}{N_k} \sum_{i=1}^{N_k} f(x_i) \quad (1) \quad \hat{y} = \arg \min_k d(f(x_q), c_k) \quad (2)$$

where $f(\cdot)$ denotes the feature extractor and $d(\cdot, \cdot)$ is a similarity metric between the query and class prototype, computed using the temporal alignment module described in Sec. 3.4. We introduce the Uni-FSAR, illustrated in Fig. 3, which integrates uni-directional blending, the LTQ, and the LSB loss to address frame-level ambiguities effectively.

3.2 UNI-DIRECTIONAL BLENDING & LEARNABLE TEXT QUERY

To address the *intra-class ambiguity* challenge, frame-level interpretive capability is crucial for isolating relevant content in videos. Prior methods, such as bi-directional blending, align all video frames indiscriminately with the same text guide, leading to reduced frame-level discrimination, poorer generalization, and the recurring cost of generating manual text annotations for each prototype. To overcome these limitations, we propose a novel uni-directional blending scheme that enhances per-frame interpretation and learns temporal relations across frames, enabling efficient prototype generation without reliance on manual text guides. This is achieved by integrating a learnable text query (LTQ) that semantically bridges visual features and class labels, thereby focusing on informative content while mitigating contamination from irrelevant frames. To this end, we employ the Q-Former architecture to enable the LTQ to interpret frame-specific information. The LTQ $f_\phi \in \mathbb{R}^d$ is incorporated into the proposed UniQ-Former as shown in Fig. 3 (a) to generate frame-wise text representation $\hat{f}_\phi \in \mathbb{R}^d$. This query is concatenated with the learned Visual Queries (VQ) $f_\theta \in \mathbb{R}^{32 \times d}$ of the UniQ-Former, which are trained using multiple loss functions to capture diverse image information. The concatenated queries $f_{\text{concat}} \in \mathbb{R}^{33 \times d}$ are fed into a self-attention module, where a uni-directional attention mask $M_{\text{uni}} \in \mathbb{R}^{33 \times 33}$ (Fig. 4), is applied to prevent the LTQ’s information from being incorporated into the VQ. Specifically, M_{uni} is a block mask that allows queries (including LTQ) to attend to VQ keys but masks all attention to the LTQ key, ensuring uni-directional flow from visual to text queries. By

Figure 4: Uni-directional mask.

216 blocking the attention feedback from LTQ to VQs, this mechanism prevents class semantics from
 217 overwriting frame features. Consequently, irrelevant frames are not forced to align with the text,
 218 effectively preventing them from contaminating the shared prototype.

$$f'_{\text{concat}} = \text{MHSA}(f_{\text{concat}}; M_{\text{uni}}) \quad (3)$$

221 where MHSA denotes the multi-head self-attention module, and the output $f'_{\text{concat}} \in \mathbb{R}^{33 \times d}$ is
 222 separated into $f'_\theta \in \mathbb{R}^{32 \times d}$ and $f'_\phi \in \mathbb{R}^d$. The VQs (f'_θ) attend to the image features f_{img} through a
 223 cross-attention module, and the resulting output is processed by the feed-forward network (FFN) in
 224 the *VQ-pathway* to produce semantically rich and diverse VQs ($\hat{f}_\theta \in \mathbb{R}^{32 \times d}$).

$$\hat{f}_\theta = \text{FFN}_{\text{VQ}}(\text{MHCA}(f'_\theta, f_{\text{img}})) \quad (4)$$

225 where MHCA represents multi-head cross attention module. After incorporating rich information
 226 via Eq. 3, f'_ϕ is processed by the FFN of the *LTQ-pathway*, yielding $\hat{f}_\phi \in \mathbb{R}^d$, which capture
 227 comprehensive frame representation as follows:

$$\hat{f}_\phi = \text{FFN}_{\text{LTQ}}(f'_\phi) \quad (5) \quad V = \mathcal{T}(\hat{F}_\phi) \quad (6)$$

228 The features of a video sample, $\hat{F}_\phi = [\hat{f}_\phi^{(1)}, \hat{f}_\phi^{(2)}, \dots, \hat{f}_\phi^{(t)}]$, are computed using Eq 5. These features
 229 represent individual frames and to capture temporal relationships between frames, a multi-layer
 230 transformer \mathcal{T} is employed. **This transformer explicitly models cross-frame dependencies, allowing**
 231 **the overall pipeline to capture motion cues beyond static appearances.** This produces video features
 232 $V \in \mathbb{R}^{t \times d}$, where t denotes the number of frames and d represents the feature dimension.

233 3.3 LTQ-BASED SEMANTIC BRIDGING LOSS

234 To mitigate the *inter-class ambiguity* inherent in unconstrained videos, where noisy and redundant
 235 frames often coexist with annotated actions, indiscriminately aligning all frames to a single label
 236 exacerbates class overlap and weakens prototype distinctiveness. To overcome this, we propose
 237 the LTQ-based Semantic Bridging Loss (LSB Loss), which employs a contrastive formulation to
 238 selectively align only the K frames most semantically similar to the class label. We use UniQ-Former
 239 to extract the text feature of label as follow:

$$f'_\psi = \text{FFN}_{\text{LTQ}}(\text{MHSA}(f_\psi)), \quad \text{where } f_\psi = \text{Embedding}(\psi) \quad (7)$$

240 where the $f_\psi \in \mathbb{R}^{s \times d}$ represents the embeddings of text prompt ψ , and $f'_\psi \in \mathbb{R}^{s \times d}$ denotes the
 241 resulting text feature. When the set of all [CLS] tokens of text features is denoted as $F_\psi \in \mathbb{R}^{N \times d}$, the
 242 cosine similarity is computed between video features V and text features F_ψ . For each class, the K
 243 frames with the highest similarity are selected. We set $K=3$ based on ablation studies (see Table 6).
 244 Frames not selected by Top- K do not contribute to the LSB objective and receive zero gradient, and
 245 their average is computed as follows:

$$A = \text{Similarity}(F_\psi, V) \quad (8) \quad A' = \text{Top-K}(A) \quad (9) \quad f_\delta = \text{Mean}(A') \quad (10)$$

246 By applying the softmax to f_δ , the probability distribution \hat{p}_{LSB} for the target text features is obtained,
 247 and the cross-entropy loss is computed as follows:

$$\mathcal{L}_{\text{LSB}} = - \sum_{i=1}^N p^{(i)} \log \hat{p}_{\text{LSB}}^{(i)}, \quad \text{where } \hat{p}_{\text{LSB}}^{(i)} = \frac{\exp(f_\delta^{(i)} / \tau)}{\sum_{j=1}^N \exp(f_\delta^{(j)} / \tau)} \quad (11)$$

248 where p denotes the ground-truth probability distribution, τ is a learnable temperature parameter,
 249 and the N denotes the number of action classes. By training the model with the LSB loss, it can
 250 align selected frames with the video’s text prompt, thereby contributing to mitigating the inter-class
 251 ambiguity problem.

252 3.4 PROTOTYPE METRIC-BASED ALIGNMENT

253 Given an N -shot K -way support set $S_k = \{(x_i, y_i)\}_{i=1}^{N_k}$, samples from the support set are processed
 254 by the model and the output, as defined in Eq. 6, constitutes the features of support set $\hat{S}_k = \{V_i\}_{i=1}^{N_k}$

270 for the k -th class. The k -th prototype \mathcal{P}_k is generated by computing the mean of all elements in
 271 \hat{S}_k , representing the characteristic feature of the k -th class. Similarly, video features $V_q \in \mathbb{R}^{t \times d}$
 272 for a query sample are extracted using Eq. 6. In prototype learning, to classify a query sample, the
 273 distances between its features V_q and each prototype \mathcal{P}_k are calculated. To account for the temporal
 274 order of video frames in distance computation, we employ the OTAM (Cao et al., 2020).
 275

$$\mathcal{P}_k = \frac{1}{N_k} \sum_{i=1}^{N_k} V_i^s \quad (12) \quad d_k = \text{OTAM}(V^q, \mathcal{P}_k) \quad (13)$$

280 where the $\mathcal{P}_k \in \mathbb{R}^{t \times d}$ denotes the prototype of the k -th class, V_i^s and V^q represent the video features
 281 of the i -th support sample and the query sample, respectively, computed using Eq. 6, N_k denotes the
 282 number of samples for the k -th class, and the d_k represents the distance between the query features
 283 and the k -th prototype. Crucially, OTAM operates on the **full sequence** (V^q, \mathcal{P}_k), utilizing *all* frames.
 284 **LSB acts solely as a gradient modulator on Top- K frames, ensuring that temporal dynamics remain**
 285 **intact without information loss.** After calculating distance between a query and the prototypes, the
 286 probability distribution \hat{p}_{proto} of a query belonging to each class is derived based on these distances.
 287 The prototype metric-based alignment loss is computed as follows:
 288

$$\mathcal{L}_{\text{proto}} = - \sum_{i=1}^K p_i \log \hat{p}_{\text{proto}}(d_i), \quad \text{where} \quad \hat{p}_{\text{proto}}(d_k) = \frac{\exp(-d_k)}{\sum_{i=1}^{N_k} \exp(-d_i)} \quad (14)$$

291 where $\hat{p}_{\text{proto}}(d_k)$ represents the probability that the query belongs to the k -th class. According to
 292 Eq. 14, the query is trained to align with the prototype of its true class. The overall loss, combining
 293 Eq. 11 and Eq. 14, is computed as follows:
 294

$$\mathcal{L} = \mathcal{L}_{\text{LSB}} + \alpha \mathcal{L}_{\text{proto}} \quad (15)$$

296 where α is a weighting factor that balances the contributions of the two loss components. We provide
 297 a sensitivity analysis in Appendix A.5, demonstrating that the model performance remains stable and
 298 robust to variations in α . By training with Eq. 15, the meta-parameter f_ϕ is optimized to extract video
 299 representations robust to intra- and inter-class ambiguities. Additional explanations of the algorithms
 300 are provided in Appendix A.1.
 301

302 4 EXPERIMENTS

304 4.1 DATASETS AND EXPERIMENT SETUPS

306 **Datasets.** We conducted experiments on five datasets: UCF101 (Soomro et al., 2012), Kinetics100
 307 (Carreira & Zisserman, 2017), HMDB51 (Kuehne et al., 2011), Something-Something V2 small
 308 (Goyal et al., 2017; Zhu & Yang, 2018), to evaluate performance fairly. UCF101, Kinetics100, and
 309 HMDB51 feature third person views of daily actions such as walking and sports sourced from public
 310 media. Conversely, Something-Something V2 (SSv2) captures egocentric object interactions. We
 311 therefore prioritize benchmarks where frame-level ambiguity is intrinsic (UCF101, Kinetics100,
 312 HMDB51), and include SSv2 solely for fairness, enabling a faithful evaluation of our problem
 313 formulation. Details are provided in Appendix A.2.

314 **Implementation Details.** The proposed model employs a pre-trained ViT-L/14 as the image encoder
 315 and a Q-Former (Li et al., 2023). For training, the Adam optimizer is employed with a single warm-up
 316 epoch. During inference, the model was evaluated by computing the average accuracy over 10,000
 317 randomly sampled episodes. Details of these hyperparameters are provided in the Appendix A.2.
 318

319 4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

321 To verify the effectiveness of the proposed framework, we compare the performance of our Uni-
 322 FSAR model with current state-of-the-art few-shot action recognition methods across five standard
 323 benchmarks under 5-way K-shot setting. The results are summarized in Tab. 1 and Tab. 2. In
 particular, we present a fair and quantitative evaluation under multi-modal settings by comparing

324 Table 1: Comparison with state-of-the-art methods on the UCF101, Kinetics.
325

Method	Reference	Backbone	UCF101			Kinetics		
			1-shot	3-shot	5-shot	1-shot	3-shot	5-shot
OTAM (Cao et al., 2020)	CVPR’20	INet-RN50	79.9	87.0	88.9	72.2	78.7	84.2
TRX (Perrett et al., 2021)	CVPR’21	INet-RN50	78.2	92.4	96.1	63.6	80.1	85.2
STRM (Thatipelli et al., 2022)	CVPR’22	INet-RN50	80.5	92.7	96.9	62.9	-	86.7
HyRSM (Wang et al., 2022)	CVPR’22	INet-RN50	83.9	93.0	94.7	73.7	-	86.1
HCL (Zheng et al., 2022)	ECCV’22	INet-RN50	82.5	91.0	93.9	73.7	-	85.8
MoLo (OTAM) (Wang et al., 2023c)	CVPR’23	INet-RN50	85.4	93.4	95.1	73.8	-	85.1
OTAM [†] (Cao et al., 2020)	CVPR’20	BLIP _{VIT-B}	91.4	-	96.5	82.4	-	91.1
TRX [†] (Perrett et al., 2021)	CVPR’21	BLIP _{VIT-B}	90.9	-	97.4	76.6	-	90.8
HyRSM [†] (Wang et al., 2022)	CVPR’22	BLIP _{VIT-B}	91.6	-	96.9	82.4	-	91.8
BLIP-Freeze _{visual} (Li et al., 2022)	ICML’22	BLIP _{VIT-B}	88.9	-	95.3	74.8	-	87.5
BLIP-Freeze _{text} (Li et al., 2022)	ICML’22	BLIP _{VIT-B}	86.4	-	95.1	72.9	-	86.5
CapFSAR (OTAM) (Wang et al., 2023d)	arXiv’23	BLIP _{VIT-B}	93.3	-	97.8	84.9	-	93.1
EMP-Net (Wu et al., 2024)	ECCV’24	CLIP _{VIT-B}	94.3	-	98.2	-	-	-
CLIP-FSAR (Wang et al., 2024)	IJCV’24	CLIP _{VIT-B}	96.6	98.4	99.0	89.7	94.2	95.0
Ours (Uni-FSAR)	-	BLIPv2 _{VIT-L}	97.5	98.8	99.0	92.8	95.7	96.6

339 Table 2: Comparison with state-of-the-art methods on the SSv2-Small and HMDB51.
340

Method	Reference	Backbone	SSv2-Small			HMDB51		
			1-shot	3-shot	5-shot	1-shot	3-shot	5-shot
OTAM (Cao et al., 2020)	CVPR’20	INet-RN50	36.4	45.9	48.0	54.5	65.7	68.0
TRX (Perrett et al., 2021)	CVPR’21	INet-RN50	36.0	51.9	56.7	53.1	66.8	75.6
STRM (Thatipelli et al., 2022)	CVPR’22	INet-RN50	37.1	49.2	55.3	52.3	67.4	77.3
HyRSM (Wang et al., 2022)	CVPR’22	INet-RN50	40.6	52.3	56.1	60.3	71.7	76.0
HCL (Zheng et al., 2022)	ECCV’22	INet-RN50	38.7	49.1	55.4	59.1	71.2	76.3
MoLo (OTAM) (Wang et al., 2023c)	CVPR’23	INet-RN50	41.9	50.9	56.2	59.8	71.1	76.1
OTAM [†] (Cao et al., 2020)	CVPR’20	BLIP _{VIT-B}	45.5	-	63.9	-	-	76.5
TRX [†] (Perrett et al., 2021)	CVPR’21	BLIP _{VIT-B}	40.6	-	61.0	58.9	-	79.9
HyRSM [†] (Wang et al., 2022)	CVPR’22	BLIP _{VIT-B}	45.5	-	60.7	69.8	-	80.6
BLIP-Freeze _{visual} (Li et al., 2022)	ICML’22	BLIP _{VIT-B}	31.2	-	40.3	56.2	-	72.8
BLIP-Freeze _{text} (Li et al., 2022)	ICML’22	BLIP _{VIT-B}	28.7	-	39.5	52.4	-	67.2
CapFSAR (OTAM) (Wang et al., 2023d)	arXiv’23	BLIP _{VIT-B}	45.9	-	59.9	65.2	-	78.6
EMP-Net (Wu et al., 2024)	ECCV’24	CLIP _{VIT-B}	57.1	-	65.7	76.8	-	85.8
CLIP-FSAR (Wang et al., 2024)	IJCV’24	CLIP _{VIT-B}	54.5	58.6	61.8	75.8	84.1	87.7
Ours (Uni-FSAR)	-	BLIPv2 _{VIT-L}	54.1	64.4	68.8	82.3	88.4	90.5

364 Figure 5: Comparison of quantitative results on
365 class-wise performance of HMDB51.
366367 Figure 6: Comparison of performance under the
368 N-way 1-shot setting on the Kinetics dataset.
369

370 with recent models that utilize VLMs such as CLIP and BLIP (Radford et al., 2021; Li et al., 2022).
371 Based on these results, we present two key observations:

372 As shown in Tab. 1 and Tab. 2, our model achieves state-of-the-art performance on UCF101, Kinetics,
373 HMDB51 and SSv2-small datasets. In particular on HMDB51, our model achieves significant
374 improvements of +6.5% in the 1-shot setting, +4.3% in 3-shot, and +2.8% in 5-shot compared to
375 the previous best method. These improvements highlight the robustness of the proposed Uni-FSAR,
376 especially on datasets with a noisy video samples. And supports our hypothesis that intra- and
377 inter class ambiguities in dataset are critical challenge and demonstrates the effectiveness of our
378 uni-directional blending approach using LTQ and the LSB Loss.

379 For the SSv2-small dataset, our model achieves the highest performance in the 3 and 5-shot settings,
380 with a comparable performance in the 1-shot case for the SSv2-small. To further investigate this,

378

379

380

Table 3: Cross-dataset validation results.

Source → Target	Method	1-shot / 5-shot
HMDB51 → Kinetics	CLIP-FSAR	75.5 / 86.7
	Ours	88.6 / 94.9
HMDB51 → SSv2-small	CLIP-FSAR	33.9 / 46.5
	Ours	52.3 / 68.2
SSv2-small → HMDB51	CLIP-FSAR	37.1 / 46.3
	Ours	72.7 / 85.0

384

385

386

Table 5: Ablation study on the effect of different numbers of Learnable Text Queries.

LTQ (T_Q)	HMDB51		SSv2-Small	
	1-shot	5-shot	1-shot	5-shot
$T_Q = 1$ (Default)	82.3	90.5	54.1	68.8
$T_Q = 4$	82.5	90.8	51.3	67.8
$T_Q = 8$	81.8	90.1	<u>52.4</u>	67.3

392

393

394

Table 7: Ablation study on different type of prompt.

Prompt types	HMDB51		SSv2-Small	
	1-shot	5-shot	1-shot	5-shot
{ } (None)	81.7	90.3	51.9	67.3
‘a photo of’ (Default)	82.3	90.5	54.1	68.8
Learnable	81.4	90.4	50.7	67.2

400

401

we conducted a cross-dataset generalization experiment with CLIP-FSAR. As shown in Tab. 3, although our method shows slightly lower performance than CLIP-FSAR in within-dataset training on SSv2, it achieves notably better results in the cross-dataset validation setting. In particular, our method outperforms CLIP-FSAR by a large margin in challenging scenarios such as transferring from HMDB51 to SSv2-small, achieving a +18.4% gain in the 1-shot setting. This suggests that CLIP-FSAR is more prone to overfitting to single-dataset distributions, whereas our method demonstrates stronger robustness and generalizability across domains. Additional quantitative analyses are provided in the Appendix A.5. In particular, we address the backbone fairness concern and demonstrate in a backbone-controlled setting that most of the performance gains stem from our Uni-FSAR modules rather than backbone scaling.

411

412

4.3 ABLATION STUDY

413

We conduct a systematic analysis of the contributions of each module in our method. Table 4 presents the ablation results assessing the individual and combined effects of Uni-directional blending & LTQ and LTQ-based Semantic Bridging Loss. Applying either module alone yields performance improvements over the baseline, with Uni-directional blending & LTQ contributing more significantly—especially on the target dataset HMDB51 (+15.3% in 1-shot), and even on the more challenging SSv2-Small (+13.6% in 1-shot). When both modules are combined, the best performance is achieved across all settings, demonstrating their complementary benefits in enhancing FSAR.

420

421

Figure 6 presents accuracy trends for various few-shot action recognition methods as the number of classes (N-way) increases from 5 to 9. Our method consistently outperforms all baselines, maintaining the highest accuracy across all settings. Previous baselines exhibit significant drops as N increases, indicating limited scalability.

424

425

The Impact of Uni-Directional Blending & LTQ. As shown in Fig. 5, the proposed method achieves notable improvements exceeding +10% gain in classes such as ‘pick’, ‘kick ball’, ‘smoke’, and ‘pour’, where frame-level ambiguities are frequent and require fine-grained contextual understanding. These results validate the robustness of our selective prototype construction. In addition, Tab. 5 shows how the number of LTQs impacts performance. The results demonstrate that while the optimal setting may vary across cases, the default configuration generally yields the best overall performance.

431

The Impact of LTQ-based Semantic Bridging Loss. To evaluate the effectiveness of different prototype selection strategies, we compare the performance of GAP and LSB losses with Top-1

Table 4: Ablation of each module on HMDB51 and SSv2-Small.

Uni-dir. blend & LTQ	LTQ-based Bridging Loss	HMDB51		SSv2-Small	
		1-shot	5-shot	1-shot	5-shot
—	—	67.0	81.5	40.5	54.3
—	✓	67.0	81.6	41.3	55.8
✓	—	<u>80.2</u>	<u>89.9</u>	<u>52.2</u>	<u>68.2</u>
✓	✓	82.3	90.5	54.1	68.8

Table 6: Ablation study on different semantic bridging strategies.

Semantic Bridging Strategy	HMDB51		SSv2-Small	
	1-shot	5-shot	1-shot	5-shot
GAP + Mean	81.6	90.1	52.4	68.3
LSB (Top-1)	81.9	90.2	53.5	68.1
LSB (Top-3)(Default)	82.3	90.5	54.1	68.8

Table 8: Ablation study on different number of frames.

# of frames	HMDB51		SSv2-Small	
	1-shot	5-shot	1-shot	5-shot
4	80.0	89.1	49.4	63.3
8	82.3	90.5	54.1	68.8
12	<u>82.1</u>	<u>90.5</u>	<u>52.8</u>	<u>68.5</u>

Figure 7: Comparison of qualitative result on noisy frame included sample of HMDB51.

and 3 setting under both 1-shot and 5-shot settings, as shown in Tab. 6. Overall, the LSB with Top-3 methods outperform GAP+Mean method Wang et al. (2024) in all scenarios, indicating that leveraging frame-level ranking information contributes to more discriminative prototype construction. **We set the Top-K=3 once based on Tab. 6 and use the same value across all datasets and cross-dataset evaluations.**

The Impact of Prompt design and Number of Frames. As shown in Tab. 7, we conduct the experiment on different types of prompt types to verify its domain inherent gap. As the tables shows, the default setting shows best performance between different settings. Table 8 shows, the different number of frames setting when using our model, typically more frames leading to better temporal information understanding, but for the CLIP-FSAR the performance is rather shows degradation.

4.4 QUALITATIVE RESULTS

We visualize the model’s frame-wise predictions on video samples from HMDB51 to demonstrate the contextual recognition capability of our framework. As shown in Fig. 7, we compare class activation patterns between CLIP-FSAR and our proposed Uni-FSAR on a sample containing noisy frames. As shown in Fig. 7 (a), CLIP-FSAR exhibits noisy and inconsistent activations, with high confidence in false positives such as ‘chew’ (a training class) on irrelevant face frames, and misclassifies other frames as ‘throw’ or ‘catch’ despite the target action being ‘kick ball’. In contrast, Uni-FSAR (Fig. 7 (b)) consistently activates only on the correct class, ‘kick ball’, while effectively ignoring distractors, indicating superior generalization to unseen classes and robustness to irrelevant visual content. Additional qualitative analyses across various samples are provided in the Appendix A.6.

5 LIMITATION

In this work, we focused on bridging context between visual inputs and action labels to address ambiguities at the frame level. Considering the inherent limitations of vision-language models (VLMs), such as their limited frame input capacity (e.g., approximately 12 frames) and the need for lightweight model deployment, future extensions should explore more efficient architectures. This increased frame capacity would subsequently enable more detailed modeling of temporal dynamics and spatial reasoning within individual frames, thereby tackling the limitations observed on SSv2 and enhancing overall spatio-temporal relationship understanding.

486

6 CONCLUSION

488 We introduced Uni-FSAR, a novel framework for few-shot action recognition that addresses frame-
 489 level ambiguities by combining uni-directional blending, the learnable text query, and the semantic
 490 bridging loss. Our method selectively aligns informative frames to improve prototype construction,
 491 effectively mitigating both intra-class and inter-class ambiguities. Extensive experiments across multi-
 492 ple benchmarks validate the robustness and generalizability of our approach, achieving state-of-the-art
 493 performance under both within-domain and cross-dataset settings. We believe this work provides a
 494 strong foundation for future research on semantically grounded prototype learning and label-aware
 495 visual reasoning in real-world video understanding scenarios. In particular, our findings highlight the
 496 importance of bridging visual-language semantics at the frame level, beyond conventional feature
 497 aggregation. Future work may extend this direction by incorporating fine-grained spatio-temporal
 498 modeling and scalable lightweight architectures for broader applicability.

499

500 7 REPRODUCIBILITY STATEMENT

501 To ensure reproducibility, we provide detailed descriptions of our methods in Section 3, including
 502 the mathematical formulations and algorithms outlined in [Appendix A.1](#). Detailed information on
 503 the hyperparameter settings, dataset processing, and preprocessing steps used in the experiments is
 504 provided in [Appendix A.2](#). The computational resources employed for all experiments are described
 505 in [Appendix A.4](#). To address performance variance due to randomness, we report results averaged
 506 over multiple independent runs with fixed random seeds (detailed in [Appendix A.3](#)), and experiments
 507 on statistical significance are presented in Table 11. For full reproducibility, the source code will be
 508 made publicly available upon acceptance.

509

510 8 ETHICS STATEMENT

511 All authors have read and adhere to the ICLR Code of Ethics. Our study uses only public benchmarks
 512 (UCF101, HMDB51, Kinetics-100 from Kinetics-400, SSv2-Small); no new data were collected, no
 513 human subjects were recruited, and no personally identifiable information beyond public releases was
 514 used (no IRB needed). We follow dataset licenses and do not redistribute data. We caution against
 515 deployment in privacy-sensitive settings without lawful basis and risk assessment. Acknowledging
 516 possible dataset biases, we report results across multiple datasets and will release code/configs for
 517 reproducibility and independent auditing. We report compute/hyperparameters to support energy
 518 estimation and favor efficient settings when possible. The authors declare no conflicts of interest.

519

520 REFERENCES

521 Steven S. Beauchemin and John L. Barron. The computation of optical flow. *ACM computing surveys (CSUR)*, 27(3):433–466, 1995.

522 Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and Juan Carlos Niebles. Few-shot video
 523 classification via temporal alignment. In *CVPR*, pp. 10618–10627, 2020.

524 Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
 525 dataset. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 526 6299–6308, 2017.

527 Yifei Chen, Dapeng Chen, Ruijin Liu, Hao Li, and Wei Peng. Video action recognition with attentive
 528 semantic units. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 529 pp. 10170–10180, 2023.

530 Arkabandhu Chowdhury, Mingchao Jiang, Swarat Chaudhuri, and Chris Jermaine. Few-shot image
 531 classification: Just use a library of pre-trained feature extractors and a simple classifier. In
 532 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 9445–9454,
 533 2021.

540 Sai Kumar Dwivedi, Vikram Gupta, Rahul Mitra, Shuaib Ahmed, and Arjun Jain. Protogan: Towards
 541 few shot learning for action recognition. In *2019 IEEE/CVF International Conference on Computer*
 542 *Vision Workshop (ICCVW)*, pp. 1308–1316. IEEE, 2019.

543

544 Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
 545 recognition. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 546 6202–6211, 2019.

547

548 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 549 deep networks. In *ICML*, pp. 1126–1135. PMLR, 2017.

550

551 Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. Video action transformer
 552 network. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 553 pp. 244–253, 2019.

554

555 Raghad Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,
 556 Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The "som-
 557 thing something" video database for learning and evaluating visual common sense. In *Proceedings of the IEEE international conference on computer vision*, pp. 5842–5850, 2017.

558

559 Berthold KP Horn and Brian G Schunck. Determining optical flow. *Artificial intelligence*, 17(1-3):
 185–203, 1981.

560

561 Xiaohu Huang, Hao Zhou, Kun Yao, and Kai Han. Froster: Frozen clip is a strong teacher for
 562 open-vocabulary action recognition. *arXiv preprint arXiv:2402.03241*, 2024.

563

564 Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action
 565 recognition. *IEEE transactions on pattern analysis and machine intelligence*, 35(1):221–231,
 566 2012.

567

568 Hildegarde Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a
 569 large video database for human motion recognition. In *2011 International conference on computer*
 570 *vision*, pp. 2556–2563. IEEE, 2011.

571

572 Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park, and Nojun Kwak. Motion feature network:
 573 Fixed motion filter for action recognition. In *Proceedings of the European conference on computer*
 574 *vision (ECCV)*, pp. 387–403, 2018.

575

576 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 577 training for unified vision-language understanding and generation. In *ICML*, pp. 12888–12900.
 578 PMLR, 2022.

579

580 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 581 pre-training with frozen image encoders and large language models. In *International conference*
 582 *on machine learning*, pp. 19730–19742. PMLR, 2023.

583

584 Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
 585 former. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 586 pp. 3202–3211, 2022.

587

588 Toby Perrett, Alessandro Masullo, Tilo Burghardt, Majid Mirmehdi, and Dima Damen. Temporal-
 589 relational crosstransformers for few-shot action recognition. In *CVPR*, pp. 475–484, 2021.

590

591 Hongyu Qu, Rui Yan, Xiangbo Shu, Hailiang Gao, Peng Huang, and Guo-Sen Xie. Mvp-shot:
 592 Multi-velocity progressive-alignment framework for few-shot action recognition. *arXiv preprint*
 593 *arXiv:2405.02077*, 2024.

594

595 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 596 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 597 models from natural language supervision. In *International conference on machine learning*, pp.
 598 8748–8763. PMLR, 2021.

594 Laura Sevilla-Lara, Yiyi Liao, Fatma Güney, Varun Jampani, Andreas Geiger, and Michael J Black.
 595 On the integration of optical flow and action recognition. In *Pattern Recognition: 40th German*
 596 *Conference, GCPR 2018, Stuttgart, Germany, October 9-12, 2018, Proceedings 40*, pp. 281–297.
 597 Springer, 2019.

598 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances*
 599 *in neural information processing systems*, 30, 2017.

600 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 601 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

602 Yutao Tang, Benjamín Béjar, and René Vidal. Semantic-aware video representation for few-shot
 603 action recognition. In *Proceedings of the IEEE/CVF Winter Conference on Applications of*
 604 *Computer Vision*, pp. 6458–6468, 2024.

605 Graham W Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolutional learning of spatio-
 606 temporal features. In *Computer Vision–ECCV 2010: 11th European Conference on Computer*
 607 *Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part VI 11*, pp. 140–153.
 608 Springer, 2010.

609 Anirudh Thatipelli, Sanath Narayan, Salman Khan, Rao Muhammad Anwer, Fahad Shahbaz Khan,
 610 and Bernard Ghanem. Spatio-temporal relation modeling for few-shot action recognition. In
 611 *CVPR*, pp. 19958–19967, 2022.

612 Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
 613 tiotemporal features with 3d convolutional networks. In *Proceedings of the IEEE international*
 614 *conference on computer vision*, pp. 4489–4497, 2015.

615 Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition by representing
 616 3d skeletons as points in a lie group. In *Proceedings of the IEEE conference on computer vision*
 617 *and pattern recognition*, pp. 588–595, 2014.

618 Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Learning actionlet ensemble for 3d human
 619 action recognition. *IEEE transactions on pattern analysis and machine intelligence*, 36(5):914–927,
 620 2013.

621 Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip: A new paradigm for video action
 622 recognition. *arXiv preprint arXiv:2109.08472*, 2021.

623 Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Lu Yuan, and
 624 Yu-Gang Jiang. Masked video distillation: Rethinking masked feature modeling for self-supervised
 625 video representation learning. In *Proceedings of the IEEE/CVF conference on computer vision*
 626 *and pattern recognition*, pp. 6312–6322, 2023a.

627 Xiang Wang, Shiwei Zhang, Zhiwu Qing, Mingqian Tang, Zhengrong Zuo, Changxin Gao, Rong Jin,
 628 and Nong Sang. Hybrid relation guided set matching for few-shot action recognition. In *CVPR*, pp.
 629 19948–19957, 2022.

630 Xiang Wang, Shiwei Zhang, Zhiwu Qing, Changxin Gao, Yingya Zhang, Deli Zhao, and Nong
 631 Sang. Molo: Motion-augmented long-short contrastive learning for few-shot action recognition.
 632 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 633 18011–18021, 2023b.

634 Xiang Wang, Shiwei Zhang, Zhiwu Qing, Changxin Gao, Yingya Zhang, Deli Zhao, and Nong
 635 Sang. Molo: Motion-augmented long-short contrastive learning for few-shot action recognition. In
 636 *CVPR*, pp. 18011–18021, 2023c.

637 Xiang Wang, Shiwei Zhang, Hangjie Yuan, Yingya Zhang, Changxin Gao, Deli Zhao, and Nong Sang.
 638 Few-shot action recognition with captioning foundation models. *arXiv preprint arXiv:2310.10125*,
 639 2023d.

640 Xiang Wang, Shiwei Zhang, Jun Cen, Changxin Gao, Yingya Zhang, Deli Zhao, and Nong Sang. Clip-
 641 guided prototype modulating for few-shot action recognition. *International Journal of Computer*
 642 *Vision*, 132(6):1899–1912, 2024.

648 Cong Wu, Xiao-Jun Wu, Linze Li, Tianyang Xu, Zhenhua Feng, and Josef Kittler. Efficient few-shot
649 action recognition via multi-level post-reasoning. In *European Conference on Computer Vision*,
650 pp. 38–56. Springer, 2024.

651

652 Bin Yu, Yonghong Hou, Zihui Guo, Zhiyi Gao, and Yueyang Li. Ftan: Frame-to-frame temporal
653 alignment network with contrastive learning for few-shot action recognition. *Image and Vision
654 Computing*, 149:105159, 2024.

655 Hongguang Zhang, Li Zhang, Xiaojuan Qi, Hongdong Li, Philip HS Torr, and Piotr Koniusz. Few-
656 shot action recognition with permutation-invariant attention. In *ECCV*, pp. 525–542. Springer,
657 2020.

658

659 Yizhou Zhao, Zhenyang Li, Xun Guo, and Yan Lu. Alignment-guided temporal attention for video
660 action recognition. *Advances in Neural Information Processing Systems*, 35:13627–13639, 2022.

661

662 Sipeng Zheng, Shizhe Chen, and Qin Jin. Few-shot action recognition with hierarchical matching
663 and contrastive learning. In *ECCV*. Springer, 2022.

664 Linchao Zhu and Yi Yang. Compound memory networks for few-shot video classification. In *ECCV*,
665 pp. 751–766, 2018.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A APPENDIX
703704 **Overview.** The supplementary includes the following sections:
705

- 706 • Appendix **A.1**. Detail algorithms for training & testing.
- 707 • Appendix **A.2**. Implementation details of the experiments.
- 708 • Appendix **A.3**. Statistical significance for the main result.
- 709 • Appendix **A.4**. Experiments compute resources.
- 710 • Appendix **A.5**. More quantitative results.
- 711 • Appendix **A.6**. More qualitative results.
- 712 • Appendix **A.7**. The Use of Large Language Models (LLMs)

713
714 A.1 ALGORITHMS FOR TRAINING AND TESTING
715716 **Algorithm 1** Training
717

```

1: Input: Training set  $\mathcal{D}_{\text{train}}$ , image encoder  $\mathcal{V}_{\text{img}}(\cdot)$ , UniQ-Former  $\mathcal{Q}(\cdot)$ , temporal transformer  $\mathcal{T}(\cdot)$ ,  
720 VQ  $f_\theta \in \mathbb{R}^{32 \times d}$ , LTQ  $f_\phi \in \mathbb{R}^d$ , uni-directional attention mask  $M_{\text{uni}} \in \mathbb{R}^{32 \times 32}$ , ground-truth  
721 text prompts  $\Psi = \{\Psi_c\}_{c=1}^C$ , temperature  $\tau$ , loss weight  $\alpha$ , learning rate  $\eta$   
722
2: # Extract text features using Q-Former
3:  $f_\Psi \leftarrow \text{Embedding}(\Psi)$ 
4:  $f'_\Psi \leftarrow \mathcal{Q}(f_\Psi)$   $\triangleright f'_\Psi \in \mathbb{R}^{C \times d}$ 
5: for all episodes in  $\mathcal{D}_{\text{train}}$  do
6:   for all support set  $S = \{X^s, Y^s\}$ , query set  $Q = \{X^q, Y^q\}$  and text features  $f'_\psi \in \mathbb{R}^{K \times d}$  in  
726 an episode do
7:     # Extract features using image encoder
8:      $F_{\text{img}}^s \leftarrow \mathcal{V}_{\text{img}}(X^s)$   $\triangleright F_{\text{img}}^s \in \mathbb{R}^{(N \times K) \times t \times n \times d}$ 
9:      $F_{\text{img}}^q \leftarrow \mathcal{V}_{\text{img}}(X^q)$   $\triangleright F_{\text{img}}^q \in \mathbb{R}^{N_q \times t \times n \times d}$ 
10:    # Extract features using Q-Former
11:     $\hat{F}_\phi^s \leftarrow \mathcal{Q}(F_{\text{img}}^s; f_\theta, f_\phi, M_{\text{uni}})$   $\triangleright \hat{F}_\phi^s \in \mathbb{R}^{(N \times K) \times t \times d}$ 
12:     $\hat{F}_\phi^q \leftarrow \mathcal{Q}(F_{\text{img}}^q; f_\theta, f_\phi, M_{\text{uni}})$   $\triangleright \hat{F}_\phi^q \in \mathbb{R}^{N_q \times t \times d}$ 
13:    # Process temporal transformer
14:     $V^s, V^q \leftarrow \mathcal{T}(\hat{F}_\phi^s), \mathcal{T}(\hat{F}_\phi^q)$   $\triangleright V^s \in \mathbb{R}^{(N \times K) \times t \times d}, V^q \in \mathbb{R}^{N_q \times t \times d}$ 
15:     $V \leftarrow [V^s, V^q]$   $\triangleright V \in \mathbb{R}^{((N \times K) + N_q) \times t \times d}$ 
16:    # Compute text features and select top- $\kappa$  frames
17:     $A \leftarrow \text{CosineSimilarity}(V, f'_\psi)$   $\triangleright A \in \mathbb{R}^{((N \times K) + N_q) \times t \times K}$ 
18:     $A' \leftarrow \text{Top-}\kappa(S)$   $\triangleright A' \in \mathbb{R}^{((N \times K) + N_q) \times \kappa \times K}$ 
19:     $f_\delta \leftarrow \text{Mean}_\kappa(\mathcal{T})$   $\triangleright f_\delta \in \mathbb{R}^{((N \times K) + N_q) \times K}$ 
20:     $\hat{p}_{\text{LSB}} \leftarrow \frac{\exp(f_\delta / \tau)}{\sum_{k=1}^K \exp(f_{\delta, k} / \tau)}$   $\triangleright \hat{p}_{\text{LSB}} \in \mathbb{R}^{((N \times K) + N_q) \times K}$ 
21:    # Compute LSB loss
22:     $Y \leftarrow [Y^s, Y^q]$   $\triangleright Y \in \mathbb{R}^{((N \times K) + N_q)}$ 
23:     $\mathcal{L}_{\text{LSB}} \leftarrow \text{CrossEntropy}(Y, \hat{p}_{\text{LSB}})$ 
24:    # Generate prototypes and compute distances
25:     $\mathcal{P}_k \leftarrow \frac{1}{N} \sum_{i=1}^N V_{i, k}^s, \quad \forall k \in \{1, \dots, K\}$   $\triangleright \mathcal{P}_k \in \mathbb{R}^{K \times t \times d}$ 
26:     $D_k \leftarrow \text{OTAM}(V^q, \mathcal{P}_k) \quad \forall k \in \{1, \dots, K\}$   $\triangleright D \in \mathbb{R}^{N_q \times K}$ 
27:    # Compute prototype-based probability and loss
28:     $\hat{p}_{\text{proto}}(D_k) \leftarrow \frac{\exp(-D_k)}{\sum_{i=1}^K \exp(-D_i)}, \quad \forall k \in \{1, \dots, K\}$   $\triangleright \hat{p}_{\text{proto}} \in \mathbb{R}^{N_q \times K}$ 
29:     $\mathcal{L}_{\text{proto}} \leftarrow \text{CrossEntropy}(Y^q, \hat{p}_{\text{proto}})$ 
30:    # Compute overall loss and update parameters
31:     $\mathcal{L} \leftarrow \mathcal{L}_{\text{LSB}} + \alpha \mathcal{L}_{\text{proto}}$ 
32:     $w_{t+1} \leftarrow w_t - \eta \nabla_w \mathcal{L}$ 
33:  end for
34: end for

```

Algorithm 2 Testing

```

1: Input: Test set  $\mathcal{D}_{\text{test}}$ , image encoder  $\mathcal{V}_{\text{img}}(\cdot)$ , UniQ-Former  $\mathcal{Q}(\cdot)$ , temporal transformer  $\mathcal{T}(\cdot)$ , VQ
    $f_\theta \in \mathbb{R}^{32 \times d}$ , LTQ  $f_\phi \in \mathbb{R}^d$ , uni-directional attention mask  $M_{\text{uni}} \in \mathbb{R}^{32 \times 32}$ , temperature  $\tau$ 
2: for all episodes in  $\mathcal{D}_{\text{test}}$  do
3:   for all support set  $S = \{X^s, Y^s\}$  and query set  $Q = \{X^q, Y^q\}$  in an episode do
4:     # Extract features using image encoder
5:      $F_{\text{img}}^s \leftarrow \mathcal{V}_{\text{img}}(X^s)$   $\triangleright F_{\text{img}}^s \in \mathbb{R}^{(N \times K) \times t \times n \times d}$ 
6:      $F_{\text{img}}^q \leftarrow \mathcal{V}_{\text{img}}(X^q)$   $\triangleright F_{\text{img}}^q \in \mathbb{R}^{N_q \times t \times n \times d}$ 
7:     # Extract features using Q-Former
8:      $\hat{F}_\phi^s \leftarrow \mathcal{Q}(F_{\text{img}}^s; f_\theta, f_\phi, M_{\text{uni}})$   $\triangleright \hat{F}_\phi^s \in \mathbb{R}^{(N \times K) \times t \times d}$ 
9:      $\hat{F}_\phi^q \leftarrow \mathcal{Q}(F_{\text{img}}^q; f_\theta, f_\phi, M_{\text{uni}})$   $\triangleright \hat{F}_\phi^q \in \mathbb{R}^{N_q \times t \times d}$ 
10:    # Process temporal transformer
11:     $V^s, V^q \leftarrow \mathcal{T}(\hat{F}_\phi^s), \mathcal{T}(\hat{F}_\phi^q)$   $\triangleright V^s \in \mathbb{R}^{(N \times K) \times t \times d}, V^q \in \mathbb{R}^{N_q \times t \times d}$ 
12:    # Generate prototypes
13:     $\mathcal{P}_k \leftarrow \frac{1}{N} \sum_{i=1}^N V_{i,k}^s, \quad \forall k \in \{1, \dots, K\}$   $\triangleright \mathcal{P}_k \in \mathbb{R}^{K \times t \times d}$ 
14:    # Compute distances to prototypes and predict labels
15:     $D_k \leftarrow \text{OTAM}(V^q, \mathcal{P}_k) \quad \forall k \in \{1, \dots, K\}$   $\triangleright D \in \mathbb{R}^{N_q \times K}$ 
16:     $\hat{Y}^q \leftarrow \arg \max_k D_k$   $\triangleright \hat{Y}^q \in \mathbb{R}^{N_q}$ 
17:  end for
18: end for
19: Output: Predicted labels  $\hat{Y}^q$  for all query samples

```

Training. As described in Algorithm 1, we train our Uni-FSAR model using a prototype learning approach. Before training, we input ground-truth text prompts $\Psi = \{\Psi_c\}_{c=1}^C$ into the UniQ-Former to extract text features $f'_\Psi \in \mathbb{R}^{C \times d}$ (Eq. 7). For each episode, we generate an N -shot K -way support set $S = \{X^s, Y^s\}$ and query set $Q = \{X^q, Y^q\}$ from the training dataset $\mathcal{D}_{\text{train}}$, and select a K -way text feature set $f'_\psi \in \mathbb{R}^{K \times d}$ for the episode’s classes from the ground-truth text features $f'_\Psi \in \mathbb{R}^{C \times d}$ (Eq. 7). Both sets are processed by the image encoder to extract image features F_{img}^s and F_{img}^q , which are then fed into the UniQ-Former along with learned visual queries (VQ) $f_\theta \in \mathbb{R}^{32 \times d}$, learnable text query (LTQ) $f_\phi \in \mathbb{R}^d$, and a uni-directional attention mask $M_{\text{uni}} \in \mathbb{R}^{32 \times 32}$ (Eqs. 3, 4, 5). The UniQ-Former’s output (Eq. 5) is processed by the temporal transformer to obtain video features $V^s \in \mathbb{R}^{(N \times K) \times t \times d}$ and $V^q \in \mathbb{R}^{N_q \times t \times d}$. In lines 13–19 of Algorithm 1, we compute the LTQ-based Semantic Bridging (LSB) loss (Eq. 11) to align video features with the target text space. In lines 20–26, we compute the prototype learning loss (Eq. 14) using OTAM (Cao et al., 2020) to assign queries to appropriate class prototypes. The final loss (Eq. 15) is computed in line 28, and model weights are updated in line 29.

Testing. During testing, as described in Algorithm 2, we generate episodes by sampling N -shot K -way support sets $S = \{X^s, Y^s\}$ and query sets $Q = \{X^q, Y^q\}$ from the test dataset $\mathcal{D}_{\text{test}}$. Similar to the training process, we extract image features from both the support and query sets using the image encoder, process them through the UniQ-Former, and feed them into the temporal transformer to obtain video features $V^s \in \mathbb{R}^{(N \times K) \times t \times d}$ and $V^q \in \mathbb{R}^{N_q \times t \times d}$. We compute class prototypes from the support set's video features and use OTAM to calculate distances between the prototypes and query features, assigning each query to the class of the closest prototype.

A.2 IMPLEMENTATION DETAILS

Hyperparameters. To ensure fair comparison, we adopt a consistent hyperparameter settings, following prior work (Wang et al., 2024). We uniformly sample 8 frames from each video and resize them to 255×255 pixels. During training, we apply random cropping to obtain images of 224×224 pixels, while during testing, we use center cropping to achieve the same size. For additional data augmentation, we apply only color jittering. The pretrained Q-Former from the BLIP-2 (Li et al., 2023) model and ViT-L/14 as the image encoder are used. The ViT-L/14 is trained and tested in half-precision (FP16) and kept frozen during training. In the Q-Former, the learned visual queries (VQ) and all weights in the VQ-pathway are frozen, while the learnable text query (LTQ) and all weights in the LTQ-pathway are trained. By default, the temporal transformer consists of 2 layers.

810

811

Table 9: The implementation details of our proposed Uni-FSAR.

812

813

Dataset	SSV2 Small	HMDB-51	UCF-101	Kinetics
Optimizer	Adam, Momentum = 0.9, Nesterov = True			
Max Epoch		10		
Warm up epoch		1		
Batchsize		4		
Frame		8		
Data augmentation		Color jitter, Random crop		
Learning rate	5e-5	1e-5	2e-6	1e-5
Warm up learning rate	2e-5	1e-6	1e-7	1e-6
Train tasks	30000	3000	5000	5000
Test tasks		10000		
α (Balance term)	1/1.2	1/1.5	1/3	1/1.5

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Table 10: Dataset splits and evaluation settings for few-shot action recognition.

Dataset	#Classes	#Videos	Train/Val/Test Split	Evaluation Setting
UCF101 (Soomro et al., 2012)	101	13,320	70 / 10 / 21	5-way 1/3/5-shot
Kinetics (Carreira & Zisserman, 2017)	100	100 per class (=10,000)	64 / 12 / 24	5-way 1/3/5-shot
HMDB51 (Kuehne et al., 2011)	51	6,849	31 / 10 / 10	5-way 1/3/5-shot
SSv2-small (Goyal et al., 2017)	174	100 per class (= 17,400)	64 / 12 / 24	5-way 1/3/5-shot

We use the Adam optimizer with a single warm-up epoch applied consistently across all datasets. As shown in Tab. 9, we applied different learning rates and weight decay values for each dataset. During training, we assigned a varying number of tasks per epoch for each dataset, while during testing, we evaluated the model using 10,000 tasks per dataset. Additionally, the balance term α in the loss function (Eq. 15) was set differently for each dataset.

Dataset Characteristics and Split. As shown in Tab. 10, we evaluate our method on five widely-used few-shot action recognition benchmarks: SSV2-small(Goyal et al., 2017) (Something-Something V2), Kinetics-Fewshot subset(Carreira & Zisserman, 2017), HMDB51(Kuehne et al., 2011), and UCF101(Soomro et al., 2012). To ensure fair comparison, we adopt a consistent split protocol for few-shot evaluation, following prior work (Wang et al., 2024; 2023b; Zhu & Yang, 2018).

- **UCF101** : Consists of 13,320 videos across 101 action categories. View: predominantly third-person. Source: YouTube and web media. Actions: daily/human activities and sports (e.g., playing instruments, sports skills, simple interactions). The dataset is split into 70 classes for training, 10 for validation, and 21 for testing.
- **Kinetics-Fewshot subset** : A subset of 100 classes is selected from the original 400 categories, with 100 videos per class (10,000 total). View: mostly third-person, diverse camera viewpoints. Source: large-scale web video (YouTube). Actions: broad human actions and interactions spanning everyday activities to sports. Classes are divided into 64 for training, 12 for validation, and 24 for testing.
- **HMDB51** : Contains 6,766 videos covering 51 action categories. View: third-person; many clips are cinematic or consumer video style. Source: movies, YouTube, and other public media. Actions: body-motion-centric actions and facial/body interactions (e.g., laugh, clap, kick, drink). The dataset is split into 31 classes for training, 10 for validation, and 10 for testing.
- **Something-Something v2** : Comprises 220,847 videos across 174 fine-grained action categories. SSV2-Small samples 100 videos per class, with 64/12/24 classes for train, validation, and test. View: egocentric (first-person), handheld. Source: crowd-sourced short clips collected to match textual templates/prompts. Actions: fine-grained object manipulations (e.g., moving, pushing, pulling, covering/uncovering common objects). Unlike the third-person datasets above, this egocentric setup implies a slight domain shift. Under our definition of frame-level ambiguity (Section 1), SSV2 does not explicitly exhibit such ambiguity; we therefore include it primarily for fairness and completeness in comparison.

864
 865 Table 11: Top-1 accuracy (%) of Uni-FSAR on HMDB51 and SSv2-Small under 1-shot and 5-shot
 866 settings across 5 random seeds. The last row reports the mean \pm standard deviation.

Seed	HMDB51		SSv2-Small	
	1-shot	5-shot	1-shot	5-shot
0 (default)	82.1	90.6	53.7	68.5
41	81.2	90.3	54.3	68.1
42	82.1	90.3	53.9	67.4
43	81.4	90.3	54.5	67.4
44	81.5	90.2	54.1	68.6
45	81.9	90.0	54.0	67.1
Mean \pm Std	81.6 \pm 0.42	90.3 \pm 0.18	54.1 \pm 0.28	67.8 \pm 0.63

874
 875
 876 Table 12: Comparison of model complexity and computational cost between CLIP-FSAR and Uni-
 877 FSAR.

Model	Backbone	Total parameters	Learnable parameters	GFLOPS	GPU Mem.	FPS
CLIP-FSAR	ViT-B/16	89.34M	89.34M	134.96	1.09 GB	15.32
Uni-FSAR	ViT-L/14	508.21M	68.10M	641.28	2.42 GB	8.31

884 A.3 STATISTICAL SIGNIFICANCE

885
 886 **Seed Sensitivity and Reproducibility Analysis.** To assess the statistical robustness of our results,
 887 we conducted five independent training runs of Uni-FSAR under the 5-way 1-shot and 5-shot settings,
 888 using five different random seeds (including the default). The top-1 accuracy for each seed on
 889 HMDB51 and SSv2-small is reported in Tab. 11.

890 We observe that the performance is stable across seeds, with low standard deviations. These variations
 891 primarily reflect the effects of random initialization and sampling in the few-shot evaluation episodes.
 892 The mean and standard deviation values are computed using a simple sample mean and unbiased
 893 standard deviation (1-sigma). This confirms the reproducibility and statistical reliability of the
 894 proposed method.

895 A.4 EXPERIMENTS COMPUTE RESOURCES

896
 897 **Compute Resources.** All experiments were conducted using a local server equipped with 4 NVIDIA
 898 V100 GPUs (32GB each). During training, each model used approximately 14GB of GPU memory
 899 per process. The environment was configured with PyTorch 1.9.0+cu111, Torchvision 0.10.0+cu111,
 900 and CUDA 11.6. Each episode-level training session for Uni-FSAR took approximately 6–8 hours
 901 depending on the dataset (e.g., HMDB51 vs. SSv2-Small), while inference was completed within
 902 minutes due to batch-level processing and the frozen backbone structure. For fair comparison, all
 903 baseline models were also trained under the same compute setting.

904 In addition to the main experiments reported in the paper, we performed a number of preliminary
 905 and ablation studies (e.g., alternative frame sampling strategies, query token configurations), which
 906 consumed approximately 1.5 \times the compute of the final experimental runs. We provide this information
 907 to support reproducibility and transparency regarding the resource requirements of our method.

908
 909 **Computational Cost Analysis.** As summarized in Tab. 12, Uni-FSAR adopts a larger backbone yet
 910 maintains training efficiency by freezing it and updating only lightweight components, including the
 911 LTQ-pathway in the UniQ-former and the temporal transformer. Although the backbone is ViT-L/14
 912 rather than ViT-B/16, this choice stems from the BLIP-2 framework design, where the Q-former
 913 is only available with a ViT-L/14 vision encoder. Nevertheless, the overall architecture remains
 914 computationally practical, supporting real-time inference and stable training. In our experimental
 915 environment using four V100 GPUs, CLIP-FSAR encountered out-of-memory (OOM) errors during
 916 training, whereas Uni-FSAR trained stably—highlighting its practical viability and resource-efficient
 917 design compared to full end-to-end tuning approaches.

Figure 8: **Class-wise accuracy comparison between Uni-FSAR and CLIP-FSAR on the SSv2-small dataset.** The abbreviation ‘S’ in the class names stands for ‘Something’.

A.5 MORE QUANTITATIVE RESULTS

SSv2-small Class-wise Performance. Figure 8 compares class-wise performance between CLIP-FSAR and the proposed Uni-FSAR on the SSv2-small dataset. Since the official checkpoint for CLIP-FSAR is not available, we reproduced its performance using the same hyperparameters and evaluation settings reported in the original paper (Wang et al., 2024) to ensure a fair comparison. All results are based on the 5-way 1-shot setting.

The SSv2 (Goyal et al., 2017) dataset does not contain frame-level ambiguities as formally defined in our work. In particular, videos do not include irrelevant frames or redundant frames shared across multiple classes. The challenge for this specific dataset, instead lies in aligning fine-grained and continuous actions to complex, compositional class labels.

To address the challenges posed by SSv2, it is essential for a model to (1) accurately capture fine-grained spatial dynamics from limited visual input, and (2) semantically align these observations with long, compositional class labels that often encode complex object relationships and actions. For instance, the class ‘Rolling something on a flat surface’ requires reasoning over multiple sub-components: the motion primitive “Rolling,” the object entities “something” and “flat surface,” and the spatial relationship expressed by “on.” Given the limited number of examples and frames, this semantic decomposition must be learned from highly constrained supervision.

To our knowledge, such fine-grained label decomposition and alignment has not been explicitly explored in previous few-shot video recognition studies. We identify this as a promising direction for future work, and this is more specifically discussed in Section 5.

We observe that performance drops in some classes in Fig. 8 can be attributed to the above limitations. In contrast, classes showing significant performance gains often contain visually prominent objects, facilitating stronger object–label correspondence. We hypothesize that the superior performance of Uni-FSAR in such classes is due to its improved ability to learn discriminative visual–textual alignments under limited supervision.

Backbone Fairness Analysis To address potential concerns regarding backbone fairness, we provide a detailed analysis and controlled experiments demonstrating that the performance gains of Uni-FSAR stem primarily from our novel methodological components (UniQ-Former, uni-directional blending,

972
 973 Table 13: Proxy and Comparable Backbone Variants for Fairness Analysis (1-shot). Gains are relative
 974 to the previous row in each group.

975 Variant	976 HMDB51	977 SSv2-Small
978 ResNet-50 (OTAM-equivalent)	979 54.5	980 36.4
981 CLIP ViT-B (Freeze)	982 58.2 (+3.7)	983 29.5 (-6.9)
984 BLIP ViT-B (Freeze)	985 52.4	986 28.7
987 BLIP ViT-B (Uni-Blend + LSB, w/o LTQ)	988 53.7 (+1.3)	989 32.2 (+3.5)
990 BLIP ViT-B (Uni-Blend + LSB + LTQ)	991 58.4 (+4.7)	992 33.3 (+1.1)
993 BLIPv2 ViT-L (Vanilla, w/ Q-Former)	994 67.0	995 40.5
996 BLIPv2 ViT-L (Ours: w/ UniQ-Former, Uni-Blend + LSB + LTQ)	997 82.3 (+15.3)	998 54.1 (+13.6)

985
 986 LTQ, and LSB loss) rather than differences in backbone scale. Our choice of BLIPv2 ViT-L was
 987 motivated by the need for a Q-Former architecture to support caption-level grounding and selective
 988 multi-modal alignment, which is integral to our framework and not feasible in uni-modal backbones
 989 like ResNet-50 or simpler multi-modal setups without Q-Former (e.g., CLIP ViT-B in prior works).
 990

991 **Controlled Backbone Scaling Experiments** We further analyze the results in Table 13 to derive key
 992 insights on backbone fairness. The table is divided into three groups for systematic comparison:

993 *Group 1 (Uni-modal vs. Simple Multi-modal Baseline):* Starting with ResNet-50 (a uni-modal
 994 backbone equivalent to OTAM), switching to frozen CLIP ViT-B yields a modest gain on HMDB51
 995 (+3.7%) but a decline on SSv2-Small (-6.9%). This highlights that simply adopting a pre-trained
 996 multi-modal backbone without tailored adaptations does not guarantee consistent improvements, and
 997 dataset-specific sensitivities (e.g., temporal reasoning in SSv2) may lead to performance drops.

998 *Group 2 (BLIP ViT-B Ablation):* Using frozen BLIP ViT-B as a baseline, incorporating uni-directional
 999 blending (Uni-Blend) and LSB loss results in gains of +1.3% on HMDB51 and +3.5% on SSv2-Small.
 1000 Further adding LTQ boosts performance significantly (+4.7% and +1.1%, respectively), demonstrating
 1001 the incremental value of our components even on a smaller-scale backbone. Overall, from the frozen
 1002 baseline, our methods achieve +6.0% on HMDB51 and +4.6% on SSv2-Small, underscoring their
 1003 effectiveness independent of backbone size.

1004 *Group 3 (BLIPv2 ViT-L with Our Components):* The vanilla BLIPv2 ViT-L (with standard Q-Former)
 1005 serves as a strong baseline. Applying our full suite (UniQ-Former, Uni-Blend, LSB, and LTQ) yields
 1006 substantial gains: +15.3% on HMDB51 and +13.6% on SSv2-Small. These improvements are notably
 1007 larger than those from mere backbone scaling (e.g., compare to Group 1’s mixed results), confirming
 1008 that our innovations drive the primary performance uplift rather than the larger ViT-L architecture
 1009 alone.

1010 In summary, across variants, our methodological contributions consistently enhance performance,
 1011 often outweighing backbone differences. For instance, the gains from our components on BLIPv2
 1012 ViT-L (+15.3% and +13.6%) far exceed those from shifting to larger backbones without them. This
 1013 analysis mitigates fairness concerns by isolating the impact of our novel elements, ensuring the
 1014 reported advancements are attributable to Uni-FSAR’s core design rather than extrinsic factors like
 1015 model scale. Future work could extend this to even more diverse backbones for broader validation.

1016 **Hyperparameter Sensitivity (α).** To verify the stability of the loss balancing term α in Eq. 15,
 1017 we conducted a sensitivity analysis on HMDB51 and SSv2-Small (5-way 1-shot). We evaluated
 1018 performance with $\alpha \in \{1.0, 1.5, 3.0\}$ while keeping other settings fixed. As shown in Table 14,
 1019 the accuracy fluctuates only by $\pm 0.2\%$ on HMDB51 and $\pm 0.5\%$ on SSv2-Small. This indicates
 1020 that Uni-FSAR is robust to reasonable changes in α , and the reported performance does not rely on
 1021 exhaustive, dataset-specific tuning.

1022 **Feature Space Analysis for Ambiguity Handling.** To quantitatively verify how Uni-FSAR handles
 1023 frame-level ambiguity without an explicit variance loss, we analyzed the feature statistics on HMDB51.
 1024 Comparing the pre-trained features to our trained features, we observed that the **frame-level feature**
 1025 **variance increased by +302.6%** and the **mean pairwise feature distance increased by +123.0%**.
 This indicates that our method implicitly learns to disperse frame embeddings in a discriminative

1026
1027 Table 14: Sensitivity analysis of the loss weight α . The performance remains stable across different
1028 α values.

α	HMDB51 (1-shot)	SSv2-Small (1-shot)
1.0	82.1	53.3
1.5	82.0	53.8
3.0	81.9	53.6
Variation (Δ)	± 0.2	± 0.5

1035
1036 Table 15: Ablation study on prototype construction strategy: Original (all frames) vs. Top- K -only
1037 frames.

Dataset	Shot	Original Acc (%)	Top- K -only Acc (%)	Δ (%)
HMDB51	1	82.3	65.5	-16.8
HMDB51	5	90.5	76.8	-13.7
SSv2-small	1	54.1	41.4	-12.7
SSv2-small	5	65.2	52.3	-12.9

1044 manner, effectively separating informative frames from redundant noise, while maintaining high
1045 temporal consistency (cosine similarity > 0.9) between adjacent frames.

1059
1060 Figure 9: Feature-level statistics before and after training on HMDB51. Uni-FSAR substantially
1061 increases feature variance and pairwise feature distance, while keeping temporal consistency high,
1062 indicating that frames become more discriminative in the embedding space without introducing
1063 excessive noise.

1064 Fig. 9 summarizes as violin plots. The red distributions (trained) are clearly shifted towards larger
1065 variance and distance compared to the blue ones (pretrained), while the temporal-consistency distribu-
1066 tion remains concentrated near 1.0 with only a modest shift. This visualizes that Uni-FSAR learns to
1067 *spread out* frame embeddings in a class-discriminative way without destroying temporal coherence.

1068 These changes in feature-space variance occur together with the **Top-1 accuracy gains on HMDB51**
1069 reported in Tab. 1, where frame-level ambiguity is particularly severe. This suggests that the learned
1070 increase in inter-frame dispersion is **beneficial**, helping the model focus on truly informative frames
1071 and reduce the impact of redundant/irrelevant ones, and ultimately resolve frame-level ambiguity by
1072 de-emphasizing noisy content while amplifying distinctive action cues.

1073 Moreover, the same training strategy also improves performance on SSv2-small, where videos are
1074 temporally well trimmed and exhibit far fewer irrelevant/redundant frames, indicating that this
1075 implicit handling is **not overfitted to a specific dataset** and helps generalization.

1077 Effectiveness of Top-K Training vs. Inference.

1078 As shown in Tab. 15, we further investigated the role of Top-K selection. We evaluated a variant
1079 that uses only Top-K frames for prototype construction at inference (“Top-K Only Prototype”).

1080 This variant degraded performance by approximately **12-17%** across datasets compared to our full
 1081 model which averages all frames. This confirms our design choice: Top-K acts as a crucial *gradient*
 1082 *selector* during training to mitigate noise, while aggregating all frames at inference preserves essential
 1083 temporal context.

1084

1085

1086

1087 **A.6 MORE QUALITATIVE RESULTS**

1088

1089 In addition to the examples presented in Sec. 4.4, we present additional frame-level heatmap visual-
 1090 izations and t-SNE visualization on the HMDB51 dataset to further illustrate the prediction patterns
 1091 of our proposed model.

1092

1093 **Comparative Analysis of Embedding Distribution.** To qualitatively analyze the discriminative
 1094 capacity of the learned features, we visualize the class-wise feature embeddings on the HMDB51 test
 1095 set using t-SNE, as shown in Fig. 10. The top figure corresponds to CLIP-FSAR, while the bottom
 1096 shows Uni-FSAR. In the CLIP-FSAR embedding space, most classes are densely packed and exhibit
 1097 significant overlap, indicating limited separation between semantically distinct actions. This suggests
 1098 that the model struggles to learn discriminative features under few-shot conditions, possibly due to
 1099 frame-level noise or suboptimal supervision.

1100

1100 In contrast, Uni-FSAR produces clearly separable and compact clusters, especially for classes such
 1101 as ‘kick ball’, ‘smoke’, and ‘pour’, which exhibit tighter intra-class distributions and lower inter-
 1102 class confusion. This reflects the model’s ability to focus on informative frames via the proposed
 1103 mechanism, thereby enhancing feature distinctiveness even with limited training data. Overall, the
 1104 t-SNE visualization supports the quantitative results and further demonstrates that Uni-FSAR better
 1105 captures class-specific semantics in the few-shot regime compared to CLIP-FSAR.

1106

1106 **Examples of Inter-class Ambiguity.** Figure 11 shows the heatmap for a sample from the ‘laugh’
 1107 class. The baseline model, CLIP-FSAR (Wang et al., 2024), incorrectly predicts the action as ‘drink’
 1108 during frames 0–1 and exhibits a generally noisy confidence distribution, assigning relatively low
 1109 confidence to the ground-truth class ‘laugh’. In contrast, the proposed Uni-FSAR assigns high
 1110 confidence to ‘laugh’ specifically in frames 4–7, while appropriately assigning moderate confidence
 1111 to the ‘smoke’ class in frames 0–3, where the subject holds a pipe. Figure 12 presents an example from
 1112 the ‘smoke’ class. While the baseline incorrectly predicts ‘drink’ in frames 4–6, our model accurately
 1113 classifies the action as ‘smoke’ with high confidence at frame 7. These examples demonstrate that our
 1114 model outperforms the baseline in addressing the challenges of *inter-class ambiguity* and redundant
 1115 frames.

1116

1116 **Example of Intra-class Ambiguity.** Figure 13 shows the heatmap for a ‘run’ class sample. The
 1117 baseline model misclassifies frame 0 as ‘kiss’ and frames 1–7 as ‘walk’, thus failing to correctly
 1118 identify the ground-truth class ‘run’. In contrast, Uni-FSAR eliminates the spurious high confidence
 1119 for ‘kiss’ at frame 0 and assigns confidence to both ‘walk’ and especially ‘run’ in frames 1–7. This
 1120 example highlights the superiority of our model in handling *intra-class ambiguity* and irrelevant
 1121 frames compared to the baseline.

1122

1122 **Examples of Visually Consistent Content.** Figure 14 illustrates the heatmap for a ‘pushup’ class
 1123 sample. The baseline incorrectly predicts ‘handstand’ in frames 0–1 and exhibits low confidence
 1124 for the correct class ‘pushup’. In contrast, Uni-FSAR suppresses the noise in early frames and
 1125 consistently predicts ‘pushup’ across all frames. Similarly, Fig. 15 presents a ‘fencing’ class sample
 1126 where the baseline shows relatively weak confidence in the ground-truth class compared to our model.
 1127 Figure 16 illustrates a ‘pour’ class sample, where CLIP-FSAR shows dispersed and inconsistent
 1128 predictions, frequently misclassifying frames as ‘sword’-related actions. In contrast, Uni-FSAR
 1129 produces focused and stable predictions aligned with the correct class across all frames, demonstrating
 1130 improved ability to interpret the visual representation of the given frames accurately. These results
 1131 show that our model also achieves robust performance on sequences with consistent visual content.

1132

1132 **Qualitative ablation of attention direction.** Each heatmap in Figure 17 visualizes **frame-class**
 1133 **attention weights** for the same HMDB51 episode (8 frames, all classes), where the vertical axis
 1134 denotes the frame index and the horizontal axis denotes the class token. Warmer colors correspond to
 1135 higher attention between a frame and a class.

1134 **Bi-directional attention.** In the bi-directional design, attention is widely spread across many
 1135 classes and frames. **Several non-target classes such as *kiss*, *sword* and *flic-flac*** receive relatively
 1136 strong responses across multiple frames, while the true class *laugh* does not stand out with a clear,
 1137 concentrated stripe. This pattern indicates that the bi-directional interaction tends to mix visual and
 1138 textual information symmetrically, but also allows irrelevant classes to keep non-negligible attention,
 1139 which is consistent with the risk of prototype contamination discussed in the paper.

1140

1141 **Reverse-directional attention.** When we flip the direction (text → frames only), the model **fails**
 1142 to learn a stable alignment: **the heatmap shows strong activations on incorrect classes (again,**
 1143 ***chew*, *kiss*, *pour*, *smoke*, *wave*****), while the true *laugh* class receives no distinctive peak.** Attention
 1144 is also concentrated on a few early frames without meaningful differentiation across the rest. This
 1145 qualitatively matches the severe performance drop (~ 20% Top-1) observed for the reverse-directional
 1146 variant and suggests that pushing information from class tokens back into frame tokens alone is not
 1147 sufficient to learn reliable prototypes.

1148

1149 **Uni-directional attention (ours).** In contrast, the uni-directional blending (frames → text queries)
 1150 produces a **sharply focused pattern: attention is strongly concentrated on the *laugh* class and**
 1151 ***smoke* class**, while other classes remain close to zero across all frames. This matches our Top- K
 1152 design, where only a few semantically most relevant frames are emphasized, and explains why the
 1153 uni-directional variant achieves the best performance (82.3% Top-1 vs. 81.2% for bi-directional and
 1154 ~ 20% for reverse-directional) despite sharing the same LTQ, LSB, and Top- K components.

1155

1156 The heatmaps thus provide qualitative evidence that uni-directional blending more effectively sup-
 1157 presses cross-class interference and isolates truly informative frame-class interactions, and we
 1158 observe the same tendency consistently across additional qualitative examples in Figs. 10–16

1159

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1160

1161 We used an LLM only for minor grammar and phrasing corrections. It did not contribute to ideas,
 1162 methods, experiments, analyses, or substantive writing. The authors take full responsibility for all
 1163 content.

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Figure 10: **Comparison between CLIP-FSAR (top) and Uni-FSAR (bottom).** t-SNE visualization of class-wise feature embeddings on the HMDB51 test set.

Figure 11: **Examples of frame-level ambiguities in the ‘laugh’ class.** Heatmap comparison between CLIP-FSAR (a) and Uni-FSAR (b) on an HMDB51 sample. CLIP-FSAR shows noisy activations and high confidence for incorrect classes like ‘drink’, while Uni-FSAR accurately focuses on ‘laugh’ in frames 4–7 and reasonably attends to ‘smoke’ in frames 0–3, demonstrating improved robustness to inter-class ambiguity.

Figure 12: **Examples of frame-level ambiguities in the ‘smoke’ class.** Comparison of heatmap visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from HMDB51. CLIP-FSAR incorrectly predicts the action as ‘drink’ in frames 4–6 and fails to assign strong confidence to the correct class ‘smoke’. In contrast, Uni-FSAR accurately classifies the action as ‘smoke’ with high confidence at frame 7, demonstrating its effectiveness in resolving inter-class ambiguity.

1316
1317
1318
1319
1320
1321

Figure 13: Examples of frame-level ambiguities in the ‘run’ class. Comparison of heatmap visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from HMDB51. CLIP-FSAR misclassifies frame 0 as ‘kiss’ and frames 1–7 as ‘walk’, showing confusion across similar motion patterns. Uni-FSAR suppresses the spurious activation at frame 0 and correctly attends to ‘run’ in frames 1–7. This example illustrates Uni-FSAR’s superiority in handling intra-class ambiguity and filtering out irrelevant frames.

Figure 14: Examples of visually consistent frames in the ‘pushup’ class. Comparison of heatmap visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from HMDB51. CLIP-FSAR predicts ‘handstand’ in early frames (0–1) and assigns weak confidence to the correct class ‘pushup’. In contrast, Uni-FSAR eliminates early-frame noise and consistently predicts ‘pushup’ across all frames, showing improved stability on consistent content.

1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 15: **Examples of visually consistent frames in the ‘fencing’ class.** Comparison of heatmap visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from HMDB51. CLIP-FSAR assigns weaker confidence to correct class ‘fencing’ throughout the sequence. In contrast, Uni-FSAR demonstrates more consistent and confident predictions across frames, indicating stronger performance on content with stable semantics. For both models, classes semantically related to the ground-truth label include ‘draw sword’, ‘sword’, and ‘sword exercise’.

Figure 16: **Examples of visually consistent frames in the ‘pour’ class.** Comparison of heatmap visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from HMDB51. CLIP-FSAR exhibits inconsistent predictions across frames, with high activations for incorrect classes such as ‘draw sword’, ‘sword’, and ‘sword exercise’, indicating confusion in visual representation. In contrast, Uni-FSAR shows more stable and concentrated responses, correctly attending to action-relevant frames and assigning consistent predictions to the ground-truth classes ‘drink’ and ‘pour’.

Figure 17: Qualitative comparison of frame–class attention patterns under different blending directions on HMDB51. From left to right, we visualize (i) bi-directional, (ii) reverse-directional, and (iii) our uni-directional blending for the same 8 sampled frames and action classes. All variants share the same Uni-FSAR pipeline (including LTQ, LSB, and Top- K selection); only the attention direction differs. Bi-directional(1st row) and reverse-directional(2nd row) designs spread attention over many classes and often highlight non-target actions, while our uni-directional blending(3rd row) concentrates high attention on the correct class and a small subset of informative frames, consistent with its higher Top-1 accuracy.