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UNI-DIRECTIONAL BLENDING: LEARNING ROBUST
REPRESENTATIONS FOR FEW-SHOT ACTION RECOG-
NITION WITH FRAME-LEVEL AMBIGUITIES

Anonymous authors
Paper under double-blind review

Kick ball ∈ Intra−class ambiguity

Relevant frames = 34% Irrelevant frames = 66%

Laugh ↔ Smoke ∈ Inter-class ambiguity

Redundant frames = 80% Unique frames = 20%

Figure 1: Examples of frame-level ambiguities. Intra-class ambiguity (e.g., ‘kick ball’) and inter-
class ambiguity (e.g., ‘laugh’ and ‘smoke’).

ABSTRACT

Leveraging vision-language models (VLMs) for few-shot action recognition has
shown promising results, yet direct image-text alignment methods, such as CLIP,
encounter significant challenges in video domains due to frame-level ambiguities.
Videos frequently include irrelevant and redundant frames, leading to intra-class
ambiguity from non-essential content within the same action and inter-class ambi-
guity from visually overlapping elements across classes. These ambiguities hinder
the learning of distinctive prototypes and robust semantic representations. To over-
come this, we introduce Uni-FSAR, a novel framework that employs uni-directional
blending to selectively integrate relevant frames, preventing contamination of proto-
types by irrelevant visual noise. Additionally, a learnable text query (LTQ) bridges
the semantic gap between visual features and class labels, enhancing representation
alignment. Furthermore, our LTQ-based Semantic Bridging Loss promotes focus
on informative frames through similarity-based gradient propagation, mitigating
inter-class overlap and fostering more generalizable representations. Extensive
experiments, including cross-dataset evaluations, demonstrate that Uni-FSAR
achieves superior robustness in handling frame-level ambiguities compared to prior
works. Quantitatively and qualitatively, our method outperforms the state-of-the-art
by an average of 2.34% across benchmarks, with a notable 6.5% top-1 accuracy
gain on HMDB51, where ambiguities are most pronounced.

1 INTRODUCTION

Understanding human actions in videos from diverse sources remains a core challenge in computer
vision, as it requires reasoning over multi-frame context rather than relying on static visual cues from
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Figure 2: Comparison of prototype alignment methods in FSAR. (a) Previous methods use
bi-directional blending to align all frame features with class labels. (b) Proposed method uses uni-
directional blending, the learnable text query, and the LTQ-based loss to focus on informative frames.

a single-frame. To address this, prior research has explored temporal modeling, such as capturing
motion patterns or decomposing actions into finer sub-units (Cao et al., 2020; Feichtenhofer et al.,
2019; Qu et al., 2024; Wang et al., 2023b; Yu et al., 2024; Zhao et al., 2022). However, traditional
methods typically rely on large-scale closed-set datasets and often struggle to generalize to novel
classes that are not observed during training (Dwivedi et al., 2019; Wang et al., 2023a). In contrast,
few-shot action recognition (FSAR) aims to generalize to new action classes with only a few examples,
typically through meta-learning frameworks that construct class prototypes from limited support
samples (Finn et al., 2017; Snell et al., 2017). In this framework, a prototype is formed by averaging
features from a support set, and prediction is made based on similarity to query features. Recent
approaches have incorporated vision-language models (VLMs) (Tang et al., 2024; Wang et al., 2023d;
2024), such as CLIP (Radford et al., 2021), into FSAR to exploit the rich contextual alignment
between visual content and textual labels. These methods have demonstrated notable gains across
standard benchmarks, with CLIP-FSAR (Wang et al., 2024) showing the effectiveness of using
pre-trained image-text embeddings for few-shot action recognition. However, these approaches
often fail to address a critical challenge inherent to video data (Carreira & Zisserman, 2017; Goyal
et al., 2017; Kuehne et al., 2011; Soomro et al., 2012): frame-level ambiguity. Videos collected
from unconstrained sources, such as YouTube, movies, or television footage, frequently include
irrelevant frames (e.g., background scenes, transitions) and redundant frames that appear across
different action categories. These lead to two types of ambiguity: intra-class ambiguity due to
irrelevant content within the same class, and inter-class ambiguity caused by overlapping content
across classes. This issue is visually exemplified in Fig. 1, which shows how intra-class irrelevance
and inter-class redundancy disrupt the semantic consistency of class representations. Rather than
contributing to meaningful prototypes, these frames introduce visual noise and class overlap, making
it difficult for the model to learn clear decision boundaries.

Figure 2 illustrates a fundamental limitation in the prototype alignment process of prior FSAR
methods, and how the proposed framework addresses this issue. As shown in Fig. 2 (a), previous
methods adopt a bi-directional blending strategy (Wang et al., 2024; Wu et al., 2024), in which
all frame-level features are indiscriminately aligned with class labels. This leads to the inclusion
of irrelevant frames in the prototype, weakening class distinctiveness and increasing intra-class
ambiguity. Moreover, since blending is applied uniformly without semantic strategies, redundant
frames shared across classes are also incorporated, failing to address inter-class ambiguity. To address
these limitations, we propose a Uni-FSAR framework that aims to improve prototype construction
under frame-level ambiguity by leveraging selective use of semantically relevant frame information.
Figure 2 (b) depicts the core components of the proposed pipeline. We design a uni-directional
blending strategy to prevent irrelevant frames from contaminating class prototypes, and incorporate a
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learnable text query (LTQ) to semantically align visual features with class labels. Furthermore, we
introduce the LTQ-based Semantic Bridging (LSB) Loss, which attenuates the influence of redundant
frames through similarity-based gradient propagation. The main contributions of this paper are
summarized as follows:

• Uni-directional blending strategy and Learnable Text Query (LTQ) are designed to
alleviate intra-class ambiguity caused by irrelevant frames, enabling more effective semantic
alignment between visual representations and action labels.

• LTQ-based Semantic Bridging (LSB) Loss addresses inter-class ambiguity stemming from
redundant frames by promoting selective focus on the most distinctive visual information
through similarity-based gradient propagation.

• We propose Uni-FSAR as a novel integrative framework that synergistically combines
uni-directional blending and LSB loss to enable effective multi-modal alignment, addressing
frame-level ambiguities in diverse few-shot settings and achieving an average accuracy
improvement of 2.34% with up to 6.5% gains across datasets, alongside strong cross-dataset
generalizability.

2 RELATED WORK

Human Action Recognition. The action recognition field has progressed through innovations in
network architectures such as 3D CNNs (Ji et al., 2012; Taylor et al., 2010; Tran et al., 2015) and
transformers (Girdhar et al., 2019; Liu et al., 2022), as well as improvements in features incorporating
additional modalities such as optical flow (Beauchemin & Barron, 1995; Horn & Schunck, 1981; Lee
et al., 2018; Sevilla-Lara et al., 2019), skeleton data (Vemulapalli et al., 2014; Wang et al., 2013),
and vision language models (Chen et al., 2023; Huang et al., 2024; Wang et al., 2021). Despite these
advances, most approaches still operate under closed-set assumptions, where all classes are known
during training. Such assumptions limit generalization to unseen actions, especially in real-world
videos with temporal variation and frame-level ambiguity. To address this limitation, FSAR has been
explored as an alternative to closed-set training, enabling generalization to novel actions from only a
few labeled examples (Zhang et al., 2020).

Few-shot Learning. Few-shot learning has been primarily explored through tasks like image
classification (Chowdhury et al., 2021; Snell et al., 2017), typically adopting anN -wayK-shot setting,
whereN is the number of classes, andK is the number of labeled examples per class. This framework
commonly adopts episodic training where models are trained on sampled support-query splits to
improve generalization across tasks. In meta-learning, models learn a shared representation (ϕ)
across tasks and task-specific parameters or adaptation mechanisms (θ), enabling fast adaptation and
improved generalization to unseen tasks from limited examples. This approach has also been extended
to few-shot action recognition in videos, where collecting large-scale annotations is particularly
expensive.

Vision-Language Models for FSAR. Vision-language models, such as CLIP (Radford et al., 2021)
and BLIP (Li et al., 2022), have recently been applied to FSAR to enhance generalization by
leveraging semantically aligned image-text embeddings. To better capture the temporal characteristics
of actions, these methods typically select frames that are most semantically similar to class labels in
the embedding space and integrate text-tokenized class label features with frame-level visual features
using attention mechanisms, mean pooling, or concatenation. These approaches have improved
semantic alignment in FSAR and shown strong performance under limited supervision. However,
they often overlook a core challenge in action recognition: frame-level ambiguity which can degrade
prototype quality and lead to semantic overlap. Addressing this issue remains crucial for achieving
robust generalization in real-world FSAR.

3 METHOD

3.1 PROBLEM DEFINITION

Few-shot action recognition aims to classify a query video into one of several previously unseen
classes using only a small number of labeled examples per class. Unlike conventional action
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Figure 3: Overview of our proposed Uni-FSAR. Which consists of three main components: (a)
UniQ-Former: uni-directional blending and LTQ generation, (b) temporal modeling and a semantic
bridge module that connects visual features with class-level text representations, and (c) temporal
alignment of support and query prototypes for few-shot classification.

recognition, which relies on large-scale annotated data for all target classes, FSAR focuses on
generalization to novel classes under limited supervision. This problem setting is particularly
challenging in video data due to temporal complexity, large intra-class variation, and frame-level
noise. The dataset is partitioned into disjoint subsets for training, validation, and testing, denoted as
Dtrain, Dval, and Dtest, respectively, where the corresponding class sets are mutually exclusive, i.e.,
Ctrain ∩ Ctest = ∅. To simulate the few-shot scenario, we adopt an episodic meta-learning framework.
Each episode is constructed by sampling a support set Sk = {(xi, yi)}Nk

i=1 for each class k, where
xi denotes a video sample and yi its corresponding class label, along with a query set Q from Dtrain.
This forms an N -shot K-way classification task. At test phase, episodes are constructed similarly
using Dtest or Dval, with classes that were not observed during training. We follow a prototype-based
classification strategy, where each class prototype ck is computed by averaging the support features
and the query prediction is made by comparing the query feature to the nearest prototype as follows:

ck =
1

Nk

Nk∑
i=1

f(xi) (1) ŷ = argmin
k
d(f(xq), ck) (2)

where f(·) denotes the feature extractor and d(·, ·) is a similarity metric between the query and class
prototype, computed using the temporal alignment module described in Sec. 3.4. We introduce the
Uni-FSAR, illustrated in Fig. 3, which integrates uni-directional blending, the LTQ, and the LSB loss
to address frame-level ambiguities effectively.

3.2 UNI-DIRECTIONAL BLENDING & LEARNABLE TEXT QUERY

LTQVQ

VQ

LTQ

Uni-directional Mask

: Unmasked: Masked

Figure 4: Uni-
directional mask.

To address the intra-class ambiguity challenge, frame-level interpretive capa-
bility is crucial for isolating relevant content in videos. Prior methods, such as
bi-directional blending, align all video frames indiscriminately with the same
text guide, leading to reduced frame-level discrimination, poorer generaliza-
tion, and the recurring cost of generating manual text annotations for each
prototype. To overcome these limitations, we propose a novel uni-directional
blending scheme that enhances per-frame interpretation and learns tempo-
ral relations across frames, enabling efficient prototype generation without
reliance on manual text guides. This is achieved by integrating a learnable
text query (LTQ) that semantically bridges visual features and class labels,
thereby focusing on informative content while mitigating contamination from
irrelevant frames. To this end, we employ the Q-Former architecture to enable
the LTQ to interpret frame-specific information. The LTQ fϕ ∈ Rd is incorporated into the proposed
UniQ-former as shown in Fig. 3 (a) to generate frame-wise text representation f̂ϕ ∈ Rd. This query
is concatenated with the learned Visual Queries (VQ) fθ ∈ R32×d of the UniQ-Former, which
are trained using multiple loss functions to capture diverse image information. The concatenated
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queries fconcat ∈ R33×d are fed into a self-attention module, where a uni-directional attention mask
Muni ∈ R33×33 (Fig. 4), is applied to prevent the LTQ’s information from being incorporated into the
VQ. Specifically, Muni is a block mask that allows queries (including LTQ) to attend to VQ keys but
masks all attention to the LTQ key, ensuring uni-directional flow from visual to text queries.

f ′concat = MHSA(fconcat;Muni) (3)

where MHSA denotes the multi-head self-attention module, and the output f ′concat ∈ R33×d is
separated into f ′θ ∈ R32×d and f ′ϕ ∈ Rd. The VQs (f ′θ) attend to the image features fimg through a
cross-attention module, and the resulting output is processed by the feed-forward network (FFN) in
the VQ-pathway to produce semantically rich and diverse VQs (f̂θ) ∈ R32×d.

f̂θ = FFNVQ(MHCA(f ′θ, fimg)) (4)

where MHCA represents multi-head cross attention module. After incorporating rich information
via Eq. 3, f ′ϕ is processed by the FFN of the LTQ-pathway, yielding f̂ϕ ∈ Rd, which capture
comprehensive frame representation as follows:

f̂ϕ = FFNLTQ(f
′
ϕ) (5) V = T (F̂ϕ) (6)

The features of a video sample, F̂ϕ = [f̂
(1)
ϕ , f̂

(2)
ϕ , ..., f̂

(t)
ϕ ], are computed using Eq 5. These features

represent individual frames and to capture temporal relationships between frames, a multi-layer
transformer T is employed, producing video features V ∈ Rt×d, where t denotes the number of
frames and d represents the feature dimension.

3.3 LTQ-BASED SEMANTIC BRIDGING LOSS

To mitigate the inter-class ambiguity inherent in unconstrained videos, where noisy and redundant
frames often coexist with annotated actions, indiscriminately aligning all frames to a single label
exacerbates class overlap and weakens prototype distinctiveness. To overcome this, we propose
the LTQ-based Semantic Bridging Loss (LSB Loss), which employs a contrastive formulation to
selectively align only the K frames most semantically similar to the class label. We use UniQ-Former
to extract the text feature of label as follow:

f ′ψ = FFNLTQ(MHSA(fψ)), where fψ = Embedding(ψ) (7)

where the fψ ∈ Rs×d represents the embeddings of text prompt ψ, and f ′ψ ∈ Rs×d denotes the
resulting text feature. When the set of all [CLS] tokens of text features is denoted as Fψ ∈ RN×d, the
cosine similarity is computed between video features V and text features Fψ. For each class, the K
frames with the highest similarity are selected, We set K=3 based on ablation studies (see Table 6).
Frames not selected by Top-K do not contribute to the LSB objective and receive zero gradient, and
their average is computed as follows:

A = Similarity(Fψ, V ) (8) A′ = Top-K(A) (9) fδ = Mean(A′) (10)

By applying the softmax to fδ , the probability distribution p̂LSB for the target text features is obtained,
and the cross-entropy loss is computed as follows:

LLSB = −
N∑
i=1

p(i) log p̂
(i)
LSB, where p̂

(i)
LSB =

exp(f
(i)
δ /τ)∑N

j=1 exp(f
(j)
δ /τ)

(11)

where p denotes the ground-truth probability distribution, τ is a learnable temperature parameter,
and the N denotes the number of action classes. By training the model with the LSB loss, it can
align selected frames with the video’s text prompt, thereby contributing to mitigating the inter-class
ambiguity problem.

3.4 PROTOTYPE METRIC-BASED ALIGNMENT

Given an N -shot K-way support set Sk = {(xi, yi)}Nk
i=1, samples from the support set are processed

by the model and the output, as defined in Eq. 6, constitutes the features of support set Ŝk = {Vi}Nk
i=1
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for the k-th class. The k-th prototype Pk is is generated by computing the mean of all elements in
Ŝk, representing the characteristic feature of the k-th class. Similarly, video features Vq ∈ Rt×d
for a query sample are extracted using Eq. 6. In prototype learning, to classify a query sample, the
distances between its features Vq and each prototype Pk are calculated. To account for the temporal
order of video frames in distance computation, we employ the OTAM (Cao et al., 2020).

Pk =
1

Nk

Nk∑
i=1

V si (12) dk = OTAM(V q,Pk) (13)

where the Pk ∈ Rt×d denotes the prototype of the k-th class, V si and V q represent the video features
of the i-th support sample and the query sample, respectively, computed using Eq. 6, Nk denotes
the number of samples for the k-th class, and the dk represents the distance between the query
features and the k-th prototype. After calculating distance between a query and the prototypes, the
probability distribution p̂proto of a query belonging to each class is derived based on these distances.
The prototype metric-based alignment loss is computed as follows:

Lproto = −
K∑
i=1

pi log p̂proto(di), where p̂proto(dk) =
exp(−dk)∑Nk

i=1 exp(−di)
(14)

where p̂proto(dk) represents the probability that the query belongs to the k-th class. According to
Eq. 14, the query is trained to align with the prototype of its true class. The overall loss, combining
Eq. 11 and Eq. 14, is computed as follows:

L = LLSB + αLproto (15)

where α is a weighting factor that balances the contributions of the two loss components. By training
with Eq. 15, the meta-parameter fϕ is optimized to extract video representations robust to intra- and
inter-class ambiguities. Additional explanations of the algorithms are provided in Appendix A.1.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENT SETUPS

Datasets. We conducted experiments on five datasets: UCF101 (Soomro et al., 2012), Kinetics100
(Carreira & Zisserman, 2017), HMDB51(Kuehne et al., 2011), Something-Something V2 small
(Goyal et al., 2017; Zhu & Yang, 2018), to evaluate performance fairly. UCF101, Kinetics100, and
HMDB51 feature third person views of daily actions such as walking and sports sourced from public
media. Conversely, Something-Something V2 (SSv2) captures egocentric object interactions. We
therefore prioritize benchmarks where frame-level ambiguity is intrinsic (UCF101, Kinetics100,
HMDB51), and include SSv2 solely for fairness, enabling a faithful evaluation of our problem
formulation. Details are provided in Appendix A.2.

Implementation Details. The proposed model employs a pre-trained ViT-L/14 as the image encoder
and a Q-Former (Li et al., 2023). For training, the Adam optimizer is employed with a single warm-up
epoch. During inference, the model was evaluated by computing the average accuracy over 10,000
randomly sampled episodes. Details of these hyperparameters are provided in the Appendix A.2.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

To verify the effectiveness of the proposed framework, we compare the performance of our Uni-
FSAR model with current state-of-the-art few-shot action recognition methods across five standard
benchmarks under 5-way K-shot setting. The results are summarized in Tab. 1 and Tab. 2. In
particular, we present a fair and quantitative evaluation under multi-modal settings by comparing
with recent models that utilize VLMs such as CLIP and BLIP (Radford et al., 2021; Li et al., 2022).
Based on these results, we present two key observations:

As shown in Tab. 1 and Tab. 2, our model achieves state-of-the-art performance on UCF101, Kinetics,
HMDB51 and SSv2-small datasets. In particular on HMDB51, our model achieves significant
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Table 1: Comparison with state-of-the-art methods on the UCF101, Kinetics.
Method Reference Backbone UCF101 Kinetics

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot
OTAM (Cao et al., 2020) CVPR’20 INet-RN50 79.9 87.0 88.9 72.2 78.7 84.2
TRX (Perrett et al., 2021) CVPR’21 INet-RN50 78.2 92.4 96.1 63.6 80.1 85.2
STRM (Thatipelli et al., 2022) CVPR’22 INet-RN50 80.5 92.7 96.9 62.9 - 86.7
HyRSM (Wang et al., 2022) CVPR’22 INet-RN50 83.9 93.0 94.7 73.7 - 86.1
HCL (Zheng et al., 2022) ECCV’22 INet-RN50 82.5 91.0 93.9 73.7 - 85.8
MoLo (OTAM) (Wang et al., 2023c) CVPR’23 INet-RN50 85.4 93.4 95.1 73.8 - 85.1
OTAM† (Cao et al., 2020) CVPR’20 BLIPViT-B 91.4 - 96.5 82.4 - 91.1
TRX† (Perrett et al., 2021) CVPR’21 BLIPViT-B 90.9 - 97.4 76.6 - 90.8
HyRSM† (Wang et al., 2022) CVPR’22 BLIPViT-B 91.6 - 96.9 82.4 - 91.8
BLIP-Freezevisual (Li et al., 2022) ICML’22 BLIPViT-B 88.9 - 95.3 74.8 - 87.5
BLIP-Freezetext (Li et al., 2022) ICML’22 BLIPViT-B 86.4 - 95.1 72.9 - 86.5
CapFSAR (OTAM) (Wang et al., 2023d) arXiv’23 BLIPViT-B 93.3 - 97.8 84.9 - 93.1
EMP-Net (Wu et al., 2024) ECCV’24 CLIPViT-B 94.3 - 98.2 - - -
CLIP-FSAR (Wang et al., 2024) IJCV’24 CLIPViT-B 96.6 98.4 99.0 89.7 94.2 95.0
Ours (Uni-FSAR) - BLIPv2ViT-L 97.5 98.8 99.0 92.8 95.7 96.6

Table 2: Comparison with state-of-the-art methods on the SSv2-Small and HMDB51.
Method Reference Backbone SSv2-Small HMDB51

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot
OTAM (Cao et al., 2020) CVPR’20 INet-RN50 36.4 45.9 48.0 54.5 65.7 68.0
TRX (Perrett et al., 2021) CVPR’21 INet-RN50 36.0 51.9 56.7 53.1 66.8 75.6
STRM (Thatipelli et al., 2022) CVPR’22 INet-RN50 37.1 49.2 55.3 52.3 67.4 77.3
HyRSM (Wang et al., 2022) CVPR’22 INet-RN50 40.6 52.3 56.1 60.3 71.7 76.0
HCL (Zheng et al., 2022) ECCV’22 INet-RN50 38.7 49.1 55.4 59.1 71.2 76.3
MoLo (OTAM) (Wang et al., 2023c) CVPR’23 INet-RN50 41.9 50.9 56.2 59.8 71.1 76.1
OTAM† (Cao et al., 2020) CVPR’20 BLIPViT-B 45.5 - 63.9 - 76.5
TRX† (Perrett et al., 2021) CVPR’21 BLIPViT-B 40.6 - 61.0 58.9 - 79.9
HyRSM† (Wang et al., 2022) CVPR’22 BLIPViT-B 45.5 - 60.7 69.8 - 80.6
BLIP-Freezevisual (Li et al., 2022) ICML’22 BLIPViT-B 31.2 - 40.3 56.2 - 72.8
BLIP-Freezetext (Li et al., 2022) ICML’22 BLIPViT-B 28.7 - 39.5 52.4 - 67.2
CapFSAR (OTAM) (Wang et al., 2023d) arXiv’23 BLIPViT-B 45.9 - 59.9 65.2 - 78.6
EMP-Net (Wu et al., 2024) ECCV’24 CLIPViT-B 57.1 - 65.7 76.8 - 85.8
CLIP-FSAR (Wang et al., 2024) IJCV’24 CLIPViT-B 54.5 58.6 61.8 75.8 84.1 87.7
Ours (Uni-FSAR) - BLIPv2ViT-L 54.1 64.4 68.8 82.3 88.4 90.5

Figure 5: Comparison of quantitative results on
class-wise performance of HMDB51.
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Figure 6: Comparison of performance under the
N-way 1-shot setting on the Kinetics dataset.

improvements of +6.5% in the 1-shot setting, +4.3% in 3-shot, and +2.8% in 5-shot compared to
the previous best method. These improvements highlight the robustness of the proposed Uni-FSAR,
especially on datasets with a noisy video samples. And supports our hypothesis that intra- and
inter class ambiguities in dataset are critical challenge and demonstrates the effectiveness of our
uni-directional blending approach using LTQ and the LSB Loss. For the SSv2-small dataset, our
model achieves the highest performance in the 3 and 5-shot settings, with a comparable performance
in the 1-shot case for the SSv2-small. To further investigate this, we conducted a cross-dataset
generalization experiment with CLIP-FSAR. As shown in Tab. 3, although our method shows slightly
lower performance than CLIP-FSAR in within-dataset training on SSv2, it achieves notably better
results in the cross-dataset validation setting. In particular, our method outperforms CLIP-FSAR
by a large margin in challenging scenarios such as transferring from HMDB51 to SSv2-small,
achieving a +18.4% gain in the 1-shot setting. This suggests that CLIP-FSAR is more prone to
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Table 3: Cross-dataset validation results.
Source → Target Method 1-shot / 5-shot

HMDB51 → Kinetics CLIP-FSAR 75.5 / 86.7
Ours 88.6 / 94.9

HMDB51 → SSv2-small CLIP-FSAR 33.9 / 46.5
Ours 52.3 / 68.2

SSv2-small → HMDB51 CLIP-FSAR 37.1 / 46.3
Ours 72.7 / 85.0

Table 4: Ablation of each module on HMDB51
and SSv2-Small.

Uni-dir. LTQ-based HMDB51 SSv2-Small
blend & LTQ Bridging Loss 1-shot 5-shot 1-shot 5-shot

– – 67.0 81.5 40.5 54.3
– ✓ 67.0 81.6 41.3 55.8
✓ – 80.2 89.9 52.2 68.2
✓ ✓ 82.3 90.5 54.1 68.8

Table 5: Ablation study on the effect of differ-
ent numbers of Learnable Text Queries.

LTQ (TQ) HMDB51 SSv2-Small
1-shot 5-shot 1-shot 5-shot

TQ = 1 (Default) 82.3 90.5 54.1 68.8
TQ = 4 82.5 90.8 51.3 67.8
TQ = 8 81.8 90.1 52.4 67.3

Table 6: Ablation study on different semantic
bridging strategies.
Semantic Bridging Strategy HMDB51 SSv2-Small

1-shot 5-shot 1-shot 5-shot
GAP + Mean 81.6 90.1 52.4 68.3
LSB (Top-1) 81.9 90.2 53.5 68.1

LSB (Top-3)(Default) 82.3 90.5 54.1 68.8

Table 7: Ablation study on different type of
prompt.

Prompt types HMDB51 SSv2-Small
1-shot 5-shot 1-shot 5-shot

{} (None) 81.7 90.3 51.9 67.3
‘a photo of’ (Default) 82.3 90.5 54.1 68.8

Learnable 81.4 90.4 50.7 67.2

Table 8: Ablation study on different number
of frames.

# of frames HMDB51 SSv2-Small
1-shot 5-shot 1-shot 5-shot

4 80.0 89.1 49.4 63.3
8 82.3 90.5 54.1 68.8

12 82.1 90.5 52.8 68.5

overfitting to single-dataset distributions, whereas our method demonstrates stronger robustness and
generalizability across domains. Additional quantitative analyses are provided in the Appendix A.5.

4.3 ABLATION STUDY

We conduct a systematic analysis of the contributions of each module in our method. Table 4
presents the ablation results assessing the individual and combined effects of Uni-directional blending
& LTQ and LTQ-based Semantic Bridging Loss. Applying either module alone yields perfor-
mance improvements over the baseline, with Uni-directional blending & LTQ contributing more
significantly—especially on the target dataset HMDB51 (+15.3% in 1-shot), and even on the more
challenging SSv2-Small (+13.6% in 1-shot). When both modules are combined, the best performance
is achieved across all settings, demonstrating their complementary benefits in enhancing FSAR.

Figure 6 presents accuracy trends for various few-shot action recognition methods as the number of
classes (N-way) increases from 5 to 9. Our method consistently outperforms all baselines, maintaining
the highest accuracy across all settings. Previous baselines exhibit significant drops as N increases,
indicating limited scalability.

The Impact of Uni-Directional Blending & LTQ. As shown in Fig. 5, the proposed method achieves
notable improvements exceeding +10% gain in classes such as ‘pick’, ‘kick ball’, ‘smoke’, and ‘pour’,
where frame-level ambiguities are frequent and require fine-grained contextual understanding. These
results validate the robustness of our selective prototype construction. In addition, Tab. 5 shows how
the number of LTQs impacts performance. The results demonstrate that while the optimal setting
may vary across cases, the default configuration generally yields the best overall performance.

The Impact of LTQ-based Semantic Bridging Loss. To evaluate the effectiveness of different
prototype selection strategies, we compare the performance of GAP and LSB losses with Top-1
and 3 setting under both 1-shot and 5-shot settings, as shown in Tab. 6. Overall, the LSB with
Top-3 methods outperform GAP+Mean method Wang et al. (2024) in all scenarios, indicating that
leveraging frame-level ranking information contributes to more discriminative prototype construction.

The Impact of Prompt design and Number of Frames. As shown in Tab. 7, we conduct the
experiment on different types of prompt types to verify its domain inherent gap. As the tables shows,
the default setting shows best performance between different settings. Table 8 shows, the different
number of frames setting when using our model, typically more frames leading to better temporal
information understanding, but for the CLIP-FSAR the performance is rather shows degradation.

8
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(b) Uni-FSAR

(a) CLIP-FSAR
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Figure 7: Comparison of qualitative result on noisy frame included sample of HMDB51.

4.4 QUALITATIVE RESULTS

We visualize the model’s frame-wise predictions on video samples from HMDB51 to demonstrate the
contextual recognition capability of our framework. As shown in Fig. 7, we compare class activation
patterns between CLIP-FSAR and our proposed Uni-FSAR on a sample containing noisy frames. As
shown in Fig. 7 (a), CLIP-FSAR exhibits noisy and inconsistent activations, with high confidence
in false positives such as ‘chew’ (a training class) on irrelevant face frames, and misclassifies other
frames as ‘throw’ or ‘catch’ despite the target action being ‘kick ball’. In contrast, Uni-FSAR
(Fig. 7 (b)) consistently activates only on the correct class, ‘kick ball’, while effectively ignoring
distractors, indicating superior generalization to unseen classes and robustness to irrelevant visual
content. Additional qualitative analyses across various samples are provided in the Appendix A.6.

5 LIMITATION

In this work, we focused on bridging context between visual inputs and action labels to address
ambiguities at the frame level. Considering the inherent limitations of vision-language models
(VLMs), such as their limited frame input capacity (e.g., approximately 12 frames) and the need for
lightweight model deployment, future extensions should explore more efficient architectures. This
increased frame capacity would subsequently enable more detailed modeling of temporal dynamics
and spatial reasoning within individual frames, thereby tackling the limitations observed on SSv2 and
enhancing overall spatio-temporal relationship understanding.

6 CONCLUSION

We introduced Uni-FSAR, a novel framework for few-shot action recognition that addresses frame-
level ambiguities by combining uni-directional blending, the learnable text query, and the semantic
bridging loss. Our method selectively aligns informative frames to improve prototype construction,
effectively mitigating both intra-class and inter-class ambiguities. Extensive experiments across multi-
ple benchmarks validate the robustness and generalizability of our approach, achieving state-of-the-art
performance under both within-domain and cross-dataset settings. We believe this work provides a
strong foundation for future research on semantically grounded prototype learning and label-aware
visual reasoning in real-world video understanding scenarios. In particular, our findings highlight the
importance of bridging visual-language semantics at the frame level, beyond conventional feature
aggregation. Future work may extend this direction by incorporating fine-grained spatio-temporal
modeling and scalable lightweight architectures for broader applicability.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our methods in Section 3, including
the mathematical formulations and algorithms outlined in Appendix A.1. Detailed information on
the hyperparameter settings, dataset processing, and preprocessing steps used in the experiments is
provided in Appendix A.2. The computational resources employed for all experiments are described
in Appendix A.4. To address performance variance due to randomness, we report results averaged
over multiple independent runs with fixed random seeds (detailed in Appendix A.3), and experiments
on statistical significance are presented in Table 11. For full reproducibility, the source code will be
made publicly available upon acceptance.

8 ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics. Our study uses only public benchmarks
(UCF101, HMDB51, Kinetics-100 from Kinetics-400, SSv2-Small); no new data were collected, no
human subjects were recruited, and no personally identifiable information beyond public releases was
used (no IRB needed). We follow dataset licenses and do not redistribute data. We caution against
deployment in privacy-sensitive settings without lawful basis and risk assessment. Acknowledging
possible dataset biases, we report results across multiple datasets and will release code/configs for
reproducibility and independent auditing. We report compute/hyperparameters to support energy
estimation and favor efficient settings when possible. The authors declare no conflicts of interest.
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A APPENDIX

Overview. The supplementary includes the following sections:

• Appendix A.1. Detail algorithms for training & testing.

• Appendix A.2. Implementation details of the experiments.

• Appendix A.3. Statistical significance for the main result.

• Appendix A.4. Experiments compute resources.

• Appendix A.5. More quantitative results.

• Appendix A.6. More qualitative results.

• Appendix A.7. The Use of Large Language Models (LLMs)

A.1 ALGORITHMS FOR TRAINING AND TESTING

Algorithm 1 Training
1: Input: Training setDtrain, image encoder Vimg(·), UniQ-FormerQ(·), temporal transformer T (·),

VQ fθ ∈ R32×d, LTQ fϕ ∈ Rd, uni-directional attention mask Muni ∈ R32×32, ground-truth
text prompts Ψ = {Ψc}Cc=1, temperature τ , loss weight α, learning rate η

2: # Extract text features using Q-Former
3: fΨ ← Embedding(Ψ)
4: f ′Ψ ← Q(fΨ) ▷ f ′Ψ ∈ RC×d

5: for all episodes in Dtrain do
6: for all support set S = {Xs, Y s}, query set Q = {Xq, Y q} and text features f ′ψ ∈ RK×d in

an episode do
7: # Extract features using image encoder
8: F simg ← Vimg(X

s) ▷ F simg ∈ R(N×K)×t×n×d

9: F qimg ← Vimg(X
q) ▷ F qimg ∈ RNq×t×n×d

10: # Extract features using Q-Former
11: F̂ sϕ ← Q(F simg; fθ, fϕ,Muni) ▷ F̂ sϕ ∈ R(N×K)×t×d

12: F̂ qϕ ← Q(F
q
img; fθ, fϕ,Muni) ▷ F̂ qϕ ∈ RNq×t×d

13: # Process temporal transformer
14: V s, V q ← T (F̂ sϕ), T (F̂

q
ϕ) ▷ V s ∈ R(N×K)×t×d, V q ∈ RNq×t×d

15: V ← [V s, V q] ▷ V ∈ R((N×K)+Nq)×t×d

16: # Compute text features and select top-κ frames
17: A← CosineSimilarity(V, f ′ψ) ▷ A ∈ R((N×K)+Nq)×t×K

18: A′ ← Top-κ(S) ▷ A′ ∈ R((N×K)+Nq)×κ×K

19: fδ ← Meanκ(T ) ▷ fδ ∈ R((N×K)+Nq)×K

20: p̂LSB ← exp(fδ/τ)∑K
k=1 exp(fδ,k/τ)

▷ p̂LSB ∈ R((N×K)+Nq)×K

21: # Compute LSB loss
22: Y ← [Y s, Y q] ▷ Y ∈ R((N×K)+Nq)

23: LLSB ← CrossEntropy(Y, p̂LSB)
24: # Generate prototypes and compute distances
25: Pk ← 1

N

∑N
i=1 V

s
i,k, ∀k ∈ {1, . . . ,K} ▷ Pk ∈ RK×t×d

26: Dk ← OTAM(V q,Pk) ∀k ∈ {1, . . . ,K} ▷ D ∈ RNq×K

27: # Compute prototype-based probability and loss
28: p̂proto(Dk)← exp(−Dk)∑K

i=1 exp(−Di)
, ∀k ∈ {1, . . . ,K} ▷ p̂proto ∈ RNq×K

29: Lproto ← CrossEntropy(Y q, p̂proto)
30: # Compute overall loss and update parameters
31: L ← LLSB + αLproto
32: wt+1 ← wt − η∇wL
33: end for
34: end for
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Algorithm 2 Testing
1: Input: Test set Dtest, image encoder Vimg(·), UniQ-Former Q(·), temporal transformer T (·), VQ
fθ ∈ R32×d, LTQ fϕ ∈ Rd, uni-directional attention mask Muni ∈ R32×32, temperature τ

2: for all episodes in Dtest do
3: for all support set S = {Xs, Y s} and query set Q = {Xq, Y q} in an episode do
4: # Extract features using image encoder
5: F simg ← Vimg(X

s) ▷ F simg ∈ R(N×K)×t×n×d

6: F qimg ← Vimg(X
q) ▷ F qimg ∈ RNq×t×n×d

7: # Extract features using Q-Former
8: F̂ sϕ ← Q(F simg; fθ, fϕ,Muni) ▷ F̂ sϕ ∈ R(N×K)×t×d

9: F̂ qϕ ← Q(F
q
img; fθ, fϕ,Muni) ▷ F̂ qϕ ∈ RNq×t×d

10: # Process temporal transformer
11: V s, V q ← T (F̂ sϕ), T (F̂

q
ϕ) ▷ V s ∈ R(N×K)×t×d, V q ∈ RNq×t×d

12: # Generate prototypes
13: Pk ← 1

N

∑N
i=1 V

s
i,k, ∀k ∈ {1, . . . ,K} ▷ Pk ∈ RK×t×d

14: # Compute distances to prototypes and predict labels
15: Dk ← OTAM(V q,Pk) ∀k ∈ {1, . . . ,K} ▷ D ∈ RNq×K

16: Ŷ q ← argmaxkDk ▷ Ŷ q ∈ RNq

17: end for
18: end for
19: Output: Predicted labels Ŷ q for all query samples

Training. As described in Algorithm 1, we train our Uni-FSAR model using a prototype learning
approach. Before training, we input ground-truth text prompts Ψ = {Ψc}Cc=1 into the UniQ-Former
to extract text features f ′Ψ ∈ RC×d (Eq. 7). For each episode, we generate an N -shot K-way support
set S = {Xs, Y s} and query set Q = {Xq, Y q} from the training dataset Dtrain, and select a K-way
text feature set f ′ψ ∈ RK×d for the episode’s classes from the ground-truth text features f ′Ψ ∈ RC×d

(Eq. 7). Both sets are processed by the image encoder to extract image features F simg and F qimg, which
are then fed into the UniQ-Former along with learned visual queries (VQ) fθ ∈ R32×d, learnable
text query (LTQ) fϕ ∈ Rd, and a uni-directional attention mask Muni ∈ R32×32 (Eqs. 3, 4, 5). The
UniQ-Former’s output (Eq. 5) is processed by the temporal transformer to obtain video features
V s ∈ R(N×K)×t×d and V q ∈ RNq×t×d. In lines 13–19 of Algorithm 1, we compute the LTQ-based
Semantic Bridging (LSB) loss (Eq. 11) to align video features with the target text space. In lines
20–26, we compute the prototype learning loss (Eq. 14) using OTAM (Cao et al., 2020) to assign
queries to appropriate class prototypes. The final loss (Eq. 15) is computed in line 28, and model
weights are updated in line 29.

Testing. During testing, as described in Algorithm 2, we generate episodes by sampling N -shot
K-way support sets S = {Xs, Y s} and query sets Q = {Xq, Y q} from the test dataset Dtest. Similar
to the training process, we extract image features from both the support and query sets using the
image encoder, process them through the UniQ-Former, and feed them into the temporal transformer
to obtain video features V s ∈ R(N×K)×t×d and V q ∈ RNq×t×d. We compute class prototypes from
the support set’s video features and use OTAM to calculate distances between the prototypes and
query features, assigning each query to the class of the closest prototype.

A.2 IMPLEMENTATION DETAILS

Hyperparameters. To ensure fair comparison, we adopt a consistent hyperparameter settings,
following prior work (Wang et al., 2024). We uniformly sample 8 frames from each video and resize
them to 255×255 pixels. During training, we apply random cropping to obtain images of 224×224
pixels, while during testing, we use center cropping to achieve the same size. For additional data
augmentation, we apply only color jittering. The pretrained Q-Former from the BLIP-2 (Li et al.,
2023) model and ViT-L/14 as the image encoder are used. The ViT-L/14 is trained and tested in
half-precision (FP16) and kept frozen during training. In the Q-Former, the learned visual queries
(VQ) and all weights in the VQ-pathway are frozen, while the learnable text query (LTQ) and all
weights in the LTQ-pathway are trained. By default, the temporal transformer consists of 2 layers.
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Table 9: The implementation details of our proposed Uni-FSAR.
Dataset SSV2 Small HMDB-51 UCF-101 Kinetics

Optimizer Adam, Momentum = 0.9, Nesterov = True
Max Epoch 10
Warm up epoch 1
Batchsize 4
Frame 8
Data augmentation Color jitter, Random crop
Learning rate 5e-5 1e-5 2e-6 1e-5
Warm up learning rate 2e-5 1e-6 1e-7 1e-6
Train tasks 30000 3000 5000 5000
Test tasks 10000
α (Balance term) 1/1.2 1/1.5 1/3 1/1.5

Table 10: Dataset splits and evaluation settings for few-shot action recognition.
Dataset #Classes #Videos Train/Val/Test Split Evaluation Setting

UCF101 (Soomro et al., 2012) 101 13,320 70 / 10 / 21 5-way 1/3/5-shot
Kinetics (Carreira & Zisserman, 2017) 100 100 per class (=10,000) 64 / 12 / 24 5-way 1/3/5-shot
HMDB51 (Kuehne et al., 2011) 51 6,849 31 / 10 / 10 5-way 1/3/5-shot
SSv2-small (Goyal et al., 2017) 174 100 per class (= 17,400) 64 / 12 / 24 5-way 1/3/5-shot

We use the Adam optimizer with a single warm-up epoch applied consistently across all datasets. As
shown in Tab. 9, we applied different learning rates and weight decay values for each dataset. During
training, we assigned a varying number of tasks per epoch for each dataset, while during testing,
we evaluated the model using 10,000 tasks per dataset. Additionally, the balance term α in the loss
function (Eq. 15) was set differently for each dataset.

Dataset Characteristics and Split. As shown in Tab. 10, we evaluate our method on five widely-used
few-shot action recognition benchmarks: SSV2-small(Goyal et al., 2017) (Something-Something
V2), Kinetics-Fewshot subset(Carreira & Zisserman, 2017), HMDB51(Kuehne et al., 2011), and
UCF101(Soomro et al., 2012). To ensure fair comparison, we adopt a consistent split protocol for
few-shot evaluation, following prior work (Wang et al., 2024; 2023b; Zhu & Yang, 2018).

• UCF101 : Consists of 13,320 videos across 101 action categories. View: predominantly
third-person. Source: YouTube and web media. Actions: daily/human activities and sports
(e.g., playing instruments, sports skills, simple interactions). The dataset is split into 70
classes for training, 10 for validation, and 21 for testing.

• Kinetics-Fewshot subset : A subset of 100 classes is selected from the original 400
categories, with 100 videos per class (10,000 total). View: mostly third-person, diverse
camera viewpoints. Source: large-scale web video (YouTube). Actions: broad human
actions and interactions spanning everyday activities to sports. Classes are divided into 64
for training, 12 for validation, and 24 for testing.

• HMDB51 : Contains 6,766 videos covering 51 action categories. View: third-person; many
clips are cinematic or consumer video style. Source: movies, YouTube, and other public
media. Actions: body-motion–centric actions and facial/body interactions (e.g., laugh, clap,
kick, drink). The dataset is split into 31 classes for training, 10 for validation, and 10 for
testing.

• Something-Something v2 : Comprises 220,847 videos across 174 fine-grained action cate-
gories. SSv2-Small samples 100 videos per class, with 64/12/24 classes for train, validation,
and test. View: egocentric (first-person), handheld. Source: crowd-sourced short clips col-
lected to match textual templates/prompts. Actions: fine-grained object manipulations (e.g.,
moving, pushing, pulling, covering/uncovering common objects). Unlike the third-person
datasets above, this egocentric setup implies a slight domain shift. Under our definition
of frame-level ambiguity (Section 1), SSv2 does not explicitly exhibit such ambiguity; we
therefore include it primarily for fairness and completeness in comparison.
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Table 11: Top-1 accuracy (%) of Uni-FSAR on HMDB51 and SSv2-Small under 1-shot and 5-shot
settings across 5 random seeds. The last row reports the mean ± standard deviation.

Seed HMDB51 SSv2-Small
1-shot 5-shot 1-shot 5-shot

0 (default) 82.1 90.6 53.7 68.5
41 81.2 90.3 54.3 68.1
42 82.1 90.3 53.9 67.4
43 81.4 90.3 54.5 67.4
44 81.5 90.2 54.1 68.6
45 81.9 90.0 54.0 67.1

Mean ± Std 81.6 ± 0.42 90.3 ± 0.18 54.1 ± 0.28 67.8 ± 0.63

Table 12: Comparison of model complexity and computational cost between CLIP-FSAR and Uni-
FSAR.

Model Backbone Total Learnable GFLOPS GPU Mem. FPSparameters parameters
CLIP-FSAR ViT-B/16 89.34M 89.34M 134.96 1.09 GB 15.32
Uni-FSAR ViT-L/14 508.21M 68.10M 641.28 2.42 GB 8.31

A.3 STATISTICAL SIGNIFICANCE

Seed Sensitivity and Reproducibility Analysis. To assess the statistical robustness of our results,
we conducted five independent training runs of Uni-FSAR under the 5-way 1-shot and 5-shot settings,
using five different random seeds (including the default). The top-1 accuracy for each seed on
HMDB51 and SSv2-small is reported in Tab. 11.

We observe that the performance is stable across seeds, with low standard deviations. These variations
primarily reflect the effects of random initialization and sampling in the few-shot evaluation episodes.
The mean and standard deviation values are computed using a simple sample mean and unbiased
standard deviation (1-sigma). This confirms the reproducibility and statistical reliability of the
proposed method.

A.4 EXPERIMENTS COMPUTE RESOURCES

Compute Resources. All experiments were conducted using a local server equipped with 4 NVIDIA
V100 GPUs (32GB each). During training, each model used approximately 14GB of GPU memory
per process. The environment was configured with PyTorch 1.9.0+cu111, Torchvision 0.10.0+cu111,
and CUDA 11.6. Each episode-level training session for Uni-FSAR took approximately 6–8 hours
depending on the dataset (e.g., HMDB51 vs. SSv2-Small), while inference was completed within
minutes due to batch-level processing and the frozen backbone structure. For fair comparison, all
baseline models were also trained under the same compute setting.

In addition to the main experiments reported in the paper, we performed a number of preliminary
and ablation studies (e.g., alternative frame sampling strategies, query token configurations), which
consumed approximately 1.5× the compute of the final experimental runs. We provide this information
to support reproducibility and transparency regarding the resource requirements of our method.

Computational Cost Analysis. As summarized in Tab. 12, Uni-FSAR adopts a larger backbone yet
maintains training efficiency by freezing it and updating only lightweight components, including the
LTQ-pathway in the UniQ-former and the temporal transformer. Although the backbone is ViT-L/14
rather than ViT-B/16, this choice stems from the BLIP-2 framework design, where the Q-former
is only available with a ViT-L/14 vision encoder. Nevertheless, the overall architecture remains
computationally practical, supporting real-time inference and stable training. In our experimental
environment using four V100 GPUs, CLIP-FSAR encountered out-of-memory (OOM) errors during
training, whereas Uni-FSAR trained stably—highlighting its practical viability and resource-efficient
design compared to full end-to-end tuning approaches.
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Figure 8: Class-wise accuracy comparison between Uni-FSAR and CLIP-FSAR on the SSv2-
small dataset. The abbreviation ‘S’ in the class names stands for ‘Something’.

A.5 MORE QUANTITATIVE RESULTS

SSv2-small Class-wise Performance. Figure 8 compares class-wise performance between CLIP-
FSAR and the proposed Uni-FSAR on the SSv2-small dataset. Since the official checkpoint for
CLIP-FSAR is not available, we reproduced its performance using the same hyperparameters and
evaluation settings reported in the original paper (Wang et al., 2024) to ensure a fair comparison. All
results are based on the 5-way 1-shot setting.

The SSv2 (Goyal et al., 2017) dataset does not contain frame-level ambiguities as formally defined in
our work. In particular, videos do not include irrelevant frames or redundant frames shared across
multiple classes. The challenge for this specific dataset, instead lies in aligning fine-grained and
continuous actions to complex, compositional class labels.

To address the challenges posed by SSv2, it is essential for a model to (1) accurately capture fine-
grained spatial dynamics from limited visual input, and (2) semantically align these observations
with long, compositional class labels that often encode complex object relationships and actions.
For instance, the class ‘Rolling something on a flat surface’ requires reasoning over multiple sub-
components: the motion primitive “Rolling,” the object entities “something” and “flat surface,” and
the spatial relationship expressed by “on.” Given the limited number of examples and frames, this
semantic decomposition must be learned from highly constrained supervision.

To our knowledge, such fine-grained label decomposition and alignment has not been explicitly
explored in previous few-shot video recognition studies. We identify this as a promising direction for
future work, and this is more specifically discussed in Section 5.

We observe that performance drops in some classes in Fig. 8 can be attributed to the above limitations.
In contrast, classes showing significant performance gains often contain visually prominent objects,
facilitating stronger object–label correspondence. We hypothesize that the superior performance
of Uni-FSAR in such classes is due to its improved ability to learn discriminative visual–textual
alignments under limited supervision.

Backbone Fairness Analysis To address potential concerns regarding backbone fairness, we provide
a detailed analysis and controlled experiments demonstrating that the performance gains of Uni-FSAR
stem primarily from our novel methodological components (UniQ-Former, uni-directional blending,
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Table 13: Proxy and Comparable Backbone Variants for Fairness Analysis (1-shot). Gains are relative
to the previous row in each group.

Variant HMDB51 SSv2-Small

ResNet-50 (OTAM-equivalent) 54.5 36.4
CLIP ViT-B (Freeze) 58.2 (+3.7) 29.5 (-6.9)

BLIP ViT-B (Freeze) 52.4 28.7
BLIP ViT-B (Uni-Blend + LSB, w/o LTQ) 53.7 (+1.3) 32.2 (+3.5)
BLIP ViT-B (Uni-Blend + LSB + LTQ) 58.4 (+4.7) 33.3 (+1.1)

BLIPv2 ViT-L (Vanilla, w/ Q-Former) 67.0 40.5
BLIPv2 ViT-L (Ours: w/ UniQ-Former, Uni-Blend + LSB + LTQ) 80.2 (+13.2) 54.4 (+13.9)

LTQ, and LSB loss) rather than differences in backbone scale. Our choice of BLIPv2 ViT-L was
motivated by the need for a Q-Former architecture to support caption-level grounding and selective
multi-modal alignment, which is integral to our framework and not feasible in uni-modal backbones
like ResNet-50 or simpler multi-modal setups without Q-Former (e.g., CLIP ViT-B in prior works).

Controlled Backbone Scaling Experiments We further analyze the results in Table 13 to derive key
insights on backbone fairness. The table is divided into three groups for systematic comparison:

Group 1 (Uni-modal vs. Simple Multi-modal Baseline): Starting with ResNet-50 (a uni-modal
backbone equivalent to OTAM), switching to frozen CLIP ViT-B yields a modest gain on HMDB51
(+3.7%) but a decline on SSv2-Small (-6.9%). This highlights that simply adopting a pre-trained
multi-modal backbone without tailored adaptations does not guarantee consistent improvements, and
dataset-specific sensitivities (e.g., temporal reasoning in SSv2) may lead to performance drops.

Group 2 (BLIP ViT-B Ablation): Using frozen BLIP ViT-B as a baseline, incorporating uni-directional
blending (Uni-Blend) and LSB loss results in gains of +1.3% on HMDB51 and +3.5% on SSv2-Small.
Further adding LTQ boosts performance significantly (+4.7% and +1.1%, respectively), demonstrating
the incremental value of our components even on a smaller-scale backbone. Overall, from the frozen
baseline, our methods achieve +6.0% on HMDB51 and +4.6% on SSv2-Small, underscoring their
effectiveness independent of backbone size.

Group 3 (BLIPv2 ViT-L with Our Components): The vanilla BLIPv2 ViT-L (with standard Q-Former)
serves as a strong baseline. Applying our full suite (UniQ-Former, Uni-Blend, LSB, and LTQ) yields
substantial gains: +13.2% on HMDB51 and +13.9% on SSv2-Small. These improvements are notably
larger than those from mere backbone scaling (e.g., compare to Group 1’s mixed results), confirming
that our innovations drive the primary performance uplift rather than the larger ViT-L architecture
alone.

In summary, across variants, our methodological contributions consistently enhance performance,
often outweighing backbone differences. For instance, the gains from our components on BLIPv2
ViT-L (+13.2% and +13.9%) far exceed those from shifting to larger backbones without them. This
analysis mitigates fairness concerns by isolating the impact of our novel elements, ensuring the
reported advancements are attributable to Uni-FSAR’s core design rather than extrinsic factors like
model scale. Future work could extend this to even more diverse backbones for broader validation.

A.6 MORE QUALITATIVE RESULTS

In addition to the examples presented in Sec. 4.4, we present additional frame-level heatmap visual-
izations and t-SNE visualization on the HMDB51 dataset to further illustrate the prediction patterns
of our proposed model.

Comparative Analysis of Embedding Distribution. To qualitatively analyze the discriminative
capacity of the learned features, we visualize the class-wise feature embeddings on the HMDB51 test
set using t-SNE, as shown in Fig. 9. The top figure corresponds to CLIP-FSAR, while the bottom
shows Uni-FSAR. In the CLIP-FSAR embedding space, most classes are densely packed and exhibit
significant overlap, indicating limited separation between semantically distinct actions. This suggests
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that the model struggles to learn discriminative features under few-shot conditions, possibly due to
frame-level noise or suboptimal supervision.

In contrast, Uni-FSAR produces clearly separable and compact clusters, especially for classes such
as ‘kick ball’, ‘smoke’, and ‘pour’, which exhibit tighter intra-class distributions and lower inter-
class confusion. This reflects the model’s ability to focus on informative frames via the proposed
mechanism, thereby enhancing feature distinctiveness even with limited training data. Overall, the
t-SNE visualization supports the quantitative results and further demonstrates that Uni-FSAR better
captures class-specific semantics in the few-shot regime compared to CLIP-FSAR.

Examples of Inter-class Ambiguity. Figure 10 shows the heatmap for a sample from the ‘laugh’
class. The baseline model, CLIP-FSAR (Wang et al., 2024), incorrectly predicts the action as ‘drink’
during frames 0–1 and exhibits a generally noisy confidence distribution, assigning relatively low
confidence to the ground-truth class ‘laugh’. In contrast, the proposed Uni-FSAR assigns high
confidence to ‘laugh’ specifically in frames 4–7, while appropriately assigning moderate confidence
to the ‘smoke’ class in frames 0–3, where the subject holds a pipe. Figure 11 presents an example from
the ‘smoke’ class. While the baseline incorrectly predicts ‘drink’ in frames 4–6, our model accurately
classifies the action as ‘smoke’ with high confidence at frame 7. These examples demonstrate that our
model outperforms the baseline in addressing the challenges of inter-class ambiguity and redundant
frames.

Example of Intra-class Ambiguity. Figure 12 shows the heatmap for a ‘run’ class sample. The
baseline model misclassifies frame 0 as ‘kiss’ and frames 1–7 as ‘walk’, thus failing to correctly
identify the ground-truth class ‘run’. In contrast, Uni-FSAR eliminates the spurious high confidence
for ‘kiss’ at frame 0 and assigns confidence to both ‘walk’ and especially ‘run’ in frames 1–7. This
example highlights the superiority of our model in handling intra-class ambiguity and irrelevant
frames compared to the baseline.

Examples of Visually Consistent Content. Figure 13 illustrates the heatmap for a ‘pushup’ class
sample. The baseline incorrectly predicts ‘handstand’ in frames 0–1 and exhibits low confidence
for the correct class ‘pushup’. In contrast, Uni-FSAR suppresses the noise in early frames and
consistently predicts ‘pushup’ across all frames. Similarly, Fig. 14 presents a ‘fencing’ class sample
where the baseline shows relatively weak confidence in the ground-truth class compared to our model.
Figure 15 illustrates a ‘pour’ class sample, where CLIP-FSAR shows dispersed and inconsistent
predictions, frequently misclassifying frames as ‘sword’-related actions. In contrast, Uni-FSAR
produces focused and stable predictions aligned with the correct class across all frames, demonstrating
improved ability to interpret the visual representation of the given frames accurately. These results
show that our model also achieves robust performance on sequences with consistent visual content.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used an LLM only for minor grammar and phrasing corrections. It did not contribute to ideas,
methods, experiments, analyses, or substantive writing. The authors take full responsibility for all
content.
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Figure 9: Comparison between CLIP-FSAR (top) and Uni-FSAR (bottom). t-SNE visualization
of class-wise feature embeddings on the HMDB51 test set.
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Figure 10: Examples of frame-level ambiguities in the ‘laugh’ class. Heatmap comparison between
CLIP-FSAR (a) and Uni-FSAR (b) on an HMDB51 sample. CLIP-FSAR shows noisy activations
and high confidence for incorrect classes like ‘drink’, while Uni-FSAR accurately focuses on ‘laugh’
in frames 4–7 and reasonably attends to ‘smoke’ in frames 0–3, demonstrating improved robustness
to inter-class ambiguity.
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Figure 11: Examples of frame-level ambiguities in the ‘smoke’ class. Comparison of heatmap
visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from
HMDB51. CLIP-FSAR incorrectly predicts the action as ‘drink’ in frames 4–6 and fails to assign
strong confidence to the correct class ‘smoke’. In contrast, Uni-FSAR accurately classifies the action
as ‘smoke’ with high confidence at frame 7, demonstrating its effectiveness in resolving inter-class
ambiguity.
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Figure 12: Examples of frame-level ambiguities in the ‘run’ class. Comparison of heatmap
visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from
HMDB51. CLIP-FSAR misclassifies frame 0 as ‘kiss’ and frames 1–7 as ‘walk’, showing confusion
across similar motion patterns. Uni-FSAR suppresses the spurious activation at frame 0 and correctly
attends to ‘run’ in frames 1–7. This example illustrates Uni-FSAR’s superiority in handling intra-class
ambiguity and filtering out irrelevant frames.
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Figure 13: Examples of visually consistent frames in the ‘pushup’ class. Comparison of heatmap
visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from
HMDB51. CLIP-FSAR predicts ‘handstand’ in early frames (0–1) and assigns weak confidence
to the correct class ‘pushup’. In contrast, Uni-FSAR eliminates early-frame noise and consistently
predicts ‘pushup’ across all frames, showing improved stability on consistent content.
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(b) Uni-FSAR

(a) CLIP-FSAR

F
ra

m
es

0 1 2 3 4 5 6 7

Figure 14: Examples of visually consistent frames in the ‘fencing’ class. Comparison of heatmap
visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from
HMDB51. CLIP-FSAR assigns weaker confidence to correct class ‘fencing’ throughout the sequence.
In contrast, Uni-FSAR demonstrates more consistent and confident predictions across frames, indi-
cating stronger performance on content with stable semantics. For both models, classes semantically
related to the ground-truth label include ‘draw sword’, ‘sword’, and ‘sword exercise’.
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(a) CLIP-FSAR

Figure 15: Examples of visually consistent frames in the ‘pour’ class. Comparison of heatmap
visualizations between CLIP-FSAR (a) and the proposed Uni-FSAR (b) on a video sample from
HMDB51. CLIP-FSAR exhibits inconsistent predictions across frames, with high activations for
incorrect classes such as ‘draw sword’, ‘sword’, and ‘sword exercise’, indicating confusion in visual
representation. In contrast, Uni-FSAR shows more stable and concentrated responses, correctly
attending to action-relevant frames and assigning consistent predictions to the ground-truth classes
‘drink’ and ‘pour’.
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