

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
INPUT-ADAPTIVE BAYESIAN MODEL AVERAGING**Anonymous authors**

Paper under double-blind review

ABSTRACT

This paper studies prediction with multiple candidate models, where the goal is to combine their outputs. This task is especially challenging in heterogeneous settings, where different models may be better suited to different inputs. We propose input adaptive Bayesian Model Averaging (IA-BMA), a Bayesian method that assigns model weights conditional on the input. IA-BMA employs an input adaptive prior, and yields a posterior distribution that adapts to each prediction, which we estimate with amortized variational inference. We derive formal guarantees for its performance, relative to any single predictor selected per input. We evaluate IA-BMA across regression and classification tasks, studying data from personalized cancer treatment, credit-card fraud detection, and UCI datasets. IA-BMA consistently delivers more accurate and better-calibrated predictions than both non-adaptive baselines and existing adaptive methods.

1 INTRODUCTION

Many applications require *adaptive predictions*. In personalized medicine, different patients respond differently to the same treatment (Mahajan et al., 2023); in fairness-sensitive domains, predictions need to adapt to subpopulations (Wang et al., 2019; Grother et al., 2019); and in fraud detection, behavioral data is often heteroskedastic and varies substantially across inputs (Varmedja et al., 2019).

When the data is complex, selecting a single model that performs well across all inputs is challenging. This motivates *model averaging* (MA), which produces an *ensemble* of models. This idea dates back at least to the 1960s (see, e.g., (Clemen, 1989) for a historical perspective).

We denote data points by $x \in \mathcal{X}$, labels by $y \in \mathcal{Y}$, and the space of probability distributions on labels by $\mathcal{P}(\mathcal{Y})$. MA combines the predictive distributions of m models $\{f_j : \mathcal{X} \rightarrow \mathcal{P}(\mathcal{Y})\}_{j=1}^m$ into a weighted ensemble, $p_\alpha(y | x) := \sum_{j=1}^m \alpha_j f_j(y | x)$, with weights $\alpha_j > 0$ (often constrained to sum to one). MA accounts for the possibility that multiple models can provide plausible explanations of the data.

In classical MA, the same weights $\alpha_1, \dots, \alpha_m$ are used for all inputs x . But in practice, different values of the input x might call for different predictive models. This motivates *adaptive averaging*, where the weights α_j depend on x :

$$\alpha : \mathcal{X} \rightarrow \Delta^{m-1}, \quad x \mapsto \alpha(x) = (\alpha_1(x), \dots, \alpha_m(x)). \quad (1)$$

The result is an adaptive weighted prediction,

$$p_\alpha(y | x) := \sum_{j=1}^m \alpha_j(x) f_j(y | x). \quad (2)$$

This model is also known as a *mixture of experts* (Jacobs et al., 1991; Jordan & Jacobs, 1994), where the adaptive weights $\alpha_j(x)$ are fit to maximize the predictive log likelihood of the data.

In this paper, we take a Bayesian perspective. We assume that the set of predictors $\mathcal{F} := \{f_1, \dots, f_m\}$ is fixed, and model the selection of a predictor as a random process. Our model constructs a *random selector* $g : \mathcal{X} \rightarrow \{e_1, \dots, e_m\}$ where $\{e_j\}_{j=1}^m$ denote m indicator vectors, i.e., $g(x) = e_j$ selects predictor f_j . Moreover, the prior on g itself depends on the inputs x . Therefore, in our model, adaptivity arises not only from the variability of $g(x)$ across inputs, but also from allowing its prior to vary with x .

Under this model, MA is a natural consequence of the posterior predictive distribution. Consider a dataset $\mathcal{D} := \{x_i, y_i\}_{i=1}^n$. The posterior predictive distribution for a new input x is

$$p(y | x, \mathcal{D}) = \sum_{j=1}^m f_j(y | x) p(g(x) = e_j | x, \mathcal{D}), \quad (3)$$

where $p(g(x) = e_j | x, \mathcal{D})$ is a *data dependent posterior* that incorporates both training inputs and labels. Eq. 3 is an ensemble of candidate models, with weights $\alpha_j(x)$ equal to the posterior over g :

$$\alpha_j(x) = p(g(x) = e_j | x, \mathcal{D}). \quad (4)$$

Unlike maximum likelihood approaches to MoE, this posterior captures the uncertainty over which predictor is most plausible for each input x .

Below, we first analyze the theoretical advantages of this adaptive Bayesian model averaging framework and derive finite-sample guarantees that compare its performance to that of any single predictor selected per input (Section 2.1). We then develop input adaptive Bayesian Model Averaging (IA-BMA), by (i) constructing an input adaptive prior, following Slavutsky & Blei (2025), and (ii) employing amortized variational inference to approximate the posterior (Section 3). We evaluate IA-BMA across regression and classification benchmarks (Section 4), and show that IA-BMA achieves substantial gains in both accuracy and calibration compared to existing adaptive, and non-adaptive strategies.

1.1 RELATED WORK

MA is regarded as the machine learning analogue of the “Condorcet’s jury” theorem (Mennis, 2006), leveraging the “wisdom of the crowd” to mitigate the inherent uncertainty in model selection. Thus, MA is often used when there are alternative, potentially overlapping hypotheses and no clear justification for selecting a single preferred model. Applications include ecological research (Wintle et al., 2003; Thuiller, 2004; Richards, 2005; Dormann et al., 2008; Lauzeral et al., 2015; Zheng et al., 2024) and medicine (Jiang et al., 2021; Nanglia et al., 2022; Mahajan et al., 2023). More broadly, MA has been adopted in a wide range of machine learning tasks (e.g., Fernández-Delgado et al. (2014), Rokach (2010)).

As a form of model combination, MA is closely related to other ensemble techniques such as bagging (Breiman, 1996) and boosting (Freund, 1995). It is a variant of stacking procedure (Wolpert, 1992), in which outputs of base learners are combined to produce the final prediction.

MA has been shown to reduce prediction errors beyond those of the best individual component model (Dormann et al., 2018; Peng & Yang, 2022) and to mitigate overfitting (Dietterich et al., 2002; Polikar, 2006). In recent years, extensive surveys have reviewed MA (Kulkarni & Sinha, 2013; Woźniak et al., 2014; Gomes et al., 2017; González et al., 2020; Sagi & Rokach, 2018; Wu & Levinson, 2021), with some focusing specifically on decision trees (Rokach, 2016) or neural networks (Ganaie et al., 2022).

A Bayesian method for MA was introduced by Waterhouse et al. (1995), who place a prior directly on the averaging weights. In contrast, we reinterpret MA as a problem of random model selection, leading to *dynamic* model selection in which the choice of model adapts to the specific input. Earlier work on dynamic model selection includes Cao et al. (1995); Giacinto & Roli (1999); Gunes et al. (2003); Didaci et al. (2005); Didaci & Giacinto (2004). However, these approaches focus on selecting a single model for each instance, rather than assigning instance-specific weights to average predictions across multiple models.

Input adaptive model averaging methods: Few methods assign input-dependent weights. These date back to Mixture of Experts (MoE) (Jacobs et al., 1991), where a gating network maps the input x to weights $\alpha_j(x)$, estimated by maximizing the induced likelihood. Classical MoE variants jointly train both experts and gates, and an extensive literature explores different expert classes and gating architectures (see (Yuksel et al., 2012) for a review). In our setting, however, we consider the MoE variant in which the gating network is applied on top of pre-trained experts.

Rasmussen & Ghahramani (2001) extended this framework by using Gaussian Processes (GPs) as base models, providing nonparametric flexibility. They adopt a Bayesian perspective with a Dirichlet

108 Process (DP) prior, yielding an infinite mixture. However, here weights and base models are learned
 109 jointly, and thus only a single family of base predictors is considered.
 110

111 Although these methods often outperform standard model averaging, maximum-likelihood-based
 112 assignment tends to concentrate probability mass on the predictor that is most confident about the
 113 observed outcome y , frequently resulting in overconfident predictions (Freund & Schapire, 1997;
 114 Guo et al., 2017). Several approaches proposed alternative strategies for weight assignment.
 115

116 Woods et al. (1997) proposed a dynamic scheme based on local accuracy estimates. For a test input
 117 x , its neighborhood is identified (typically via k -nearest neighbors), and each classifier’s perfor-
 118 mance in this region is summarized as a local accuracy score. The classifier with the highest score
 119 is then selected to predict x .
 120

121 Similarly, Chan & van der Schaar (2022) proposed an approach that assigns higher weight to mod-
 122 els whose training domains better cover a test instance. Inputs are mapped into a learned low-
 123 dimensional space where models with similar predictions are closer together, and weights are set
 124 via kernel density estimation. Unlike Woods et al. (1997), where similarity is predefined, here it
 125 is learned from data. Motivated by Tenzer et al. (2022), the method assumes that models making
 126 random errors on an input are unlikely to agree.
 127

128 Perhaps most relevant to our work is Bayesian hierarchical stacking (BHS) (Yao et al., 2022), which
 129 places priors on logit weights, and models them with hierarchical low-rank linear functions. The
 130 parameters are then estimated by maximizing the expected log predictive density.
 131

132 Thus, prior work on adaptive model averaging has focused predominantly on methods targeting
 133 frequentist objectives, with relatively few Bayesian formulations. In contrast to previous approaches,
 134 our model assumes a fully Bayesian setting in which the selector itself is random and, crucially, is
 135 defined locally relative to each input x . This yields an input-dependent prior $p(g | x)$ rather than
 136 a global prior $p(g)$. In turn, this prior induces an adaptive posterior that corresponds exactly to the
 137 Bayes-optimal weights, providing a principled approach for adaptive model averaging.
 138

139 2 PROBABILISTIC FORMULATION OF ADAPTIVE MODEL AVERAGING

140 We cast adaptive model averaging as a probabilistic model selection. To reflect that some models
 141 may be better suited for different inputs, we assume a probabilistic model in which the *selection*
 142 *function* g is treated as a random input-dependent variable. For a training set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$,
 143 and a new input x , we assume the data generating process
 144

$$x_i, x \stackrel{\text{iid}}{\sim} p(x), \quad (5)$$

$$g \sim p(g | x, x_{1:n}), \quad (6)$$

$$y_i \sim p(y_i | x_i, g), \quad y \sim p(y | x, g). \quad (7)$$

145 We defer the precise specification of the adaptive prior $p(g | x, x_{1:n})$ to Section 3.1.
 146

147 The predictive distribution for y given a new input x and the training data is then
 148

$$p(y | x, \mathcal{D}) = \int p(y | x, \mathcal{D}, g) p(g | x, \mathcal{D}) d\mu(g) = \int p(y | x, g) p(g | x, \mathcal{D}) d\mu(g), \quad (8)$$

149 where $p(g | x, \mathcal{D})$ is a posterior distribution on the space of functions¹ $\mathcal{G} := \{g : \mathcal{X} \rightarrow$
 150 $\{e_1, \dots, e_m\}\}$.
 151

152 A draw from the posterior $g \sim p(g | x, \mathcal{D})$ induces a random index $J(x)$, defined by the relation
 153 $g(x) = e_{j(x)}$. Using this index, we can rewrite equation 8 as
 154

$$p(y | x, \mathcal{D}) = \int p(y | x, g) p(g | x, \mathcal{D}) d\mu(g) = \sum_{j=1}^m f_j(y | x) p(J(x) = j | x, \mathcal{D}). \quad (9)$$

155 A formal proof of this equality is outlined in Appendix A.1.
 156

157 ¹Formally, $p(g | x, \mathcal{D})$ is a density w.r.t some reference measure μ on a space of measurable functions \mathcal{G} .
 158

162 Under our model, the predictive distribution is a mixture of the candidate predictions $f_j(y \mid x)$
 163 weighted by the posterior probabilities $p(J(x) = j \mid x, \mathcal{D})$. In other words, the input adaptive
 164 weights $\alpha_j(x)$ *arise directly from the probabilistic formulation* itself, and *they are precisely the*
 165 *posterior probabilities* of each model being the generator at input x .

166 A central difficulty, of course, is that the true posterior is unknown. In Section 3, we introduce a
 167 variational approximation to $p(J(x) = j \mid \mathcal{D}_i, x)$ that preserves explicit dependence on both x and
 168 \mathcal{D} . Before presenting this approximation, we first analyze the performance guarantees that arise
 169 when the averaging weights are set to the true posterior probabilities $p(J(x) = j \mid x, \mathcal{D})$.
 170
 171

172 2.1 LIKELIHOOD GUARANTEES

173 So far we have seen that the posterior probabilities $p(J(x) = j \mid x, \mathcal{D})$ arise naturally as input
 174 adaptive weights under our model. In particular, they are the Bayes-optimal weights, as they recover
 175 the true predictive distribution.
 176

177 We now show that this choice also comes with performance guarantees: the posterior-weights pre-
 178 dictor not only reflects the correct probabilistic formulation, but in expectation achieves likelihood
 179 performance competitive with any input-specific single-model selector. The next theorem formalizes
 180 this result (for proof see Appendix A.2).
 181

182 **Theorem 2.1.** Denote $\mathcal{D}_i := \{(x_t, y_t)\}_{t=1}^i$, and consider the posterior weights predictor $\hat{p}_\alpha^{(i)}$ assign-
 183 ing $\alpha_j(x; \mathcal{D}_i) = p(J(x) = j \mid \mathcal{D}_i, x)$ to the j -th predictor f_j . Assume that $\mathbb{E}[\log f_j(Y \mid X)] < \infty$
 184 for all $f_j \in \mathcal{F}$. Then, for any measurable selector $j^* : \mathcal{X} \rightarrow \{1, \dots, m\}$ and any $n \geq 1$,

$$185 \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\log \hat{p}_\alpha^{(i)}(y_i \mid x_i, \mathcal{D}_{i-1}) \right] \geq \mathbb{E} \left[\log f_{j^*(x)}(y \mid x) \right] + \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\log \alpha_{j^*(x_i)}^{(i)}(x_i) \right], \quad (10)$$

189 where the expectations are taken w.r.t the population distribution $(x_i, y_i) \sim p(x, y)$.
 190

191 Thus, the posterior weights predictor can match any per-input selector (i.e., a rule that may pick a
 192 different j for different x), up to a term depending on the gating weights assigned to the chosen
 193 model at each x . Put plainly, the posterior mean performs nearly as well as if we could select the
 194 best expert separately for every x .
 195

196 Concretely, for the selector that picks the most probable model, $j^{(i)}(x) \in \arg \max_{1 \leq j \leq m} \alpha_j^{(i)}(x)$,
 197 the penalty becomes $\frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\log \max_j \alpha_j^{(i)}(x_i) \right]$, which vanishes as the posterior sharpens, i.e.,
 198 when $\max_j \alpha_j^{(i)}(x_i) \rightarrow 1$ in probability.
 199

200

201 3 IA-BMA: INPUT ADAPTIVE BAYESIAN MODEL AVERAGING

202

203 Our goal is to develop a method for estimating this posterior distribution over models. By doing so,
 204 we obtain an averaging scheme that is consistent with both the training data \mathcal{D} and the specific input
 205 x , thereby approximating the true predictive distribution that we ultimately aim to recover.
 206

207 We begin by formulating the modeling assumptions for an adaptive prior that is conditioned jointly
 208 on the training covariates and a new input. Building on this prior, we then develop a variational
 209 inference method to approximate the resulting posterior.
 210

211

212 3.1 ADAPTIVE PRIOR

213

214 Based on the adaptive prior introduced in (Slavutsky & Blei, 2025), we posit a prior that encodes
 215 the plausibility of each model conditional on both the training covariate $x_{1:n}$ and a new input x at
 which prediction is sought. This prior is defined through an energy-based formulation.
 216

216 Specifically, for a predictor f_j we consider the prior induced by the negative energy function
 217

$$218 \quad 219 \quad 220 \quad E(J = j; x_{1:n}, x) := \int \sum_{i=1}^n \log p(y|x_i, f_j) + \log p(y|x, f_j) dy \quad (11)$$

$$221 \quad 222 \quad p(J = j|x_{1:n}, x) := \frac{1}{Z(f)} \exp(E(J = j; x_{1:n}, x)), \quad (12)$$

223 where the normalizing factor² is given by $Z(f) := \sum_{j=1}^m \exp(E(J = j; x_{1:n}, x))$.
 224

225 This prior allows beliefs about model plausibility to adapt to the new input x . Unlike a prior defined
 226 solely from the training data, which remains fixed across prediction points, our formulation updates
 227 the relative weight of each model once x is observed. This makes the prior *input adaptive*, enabling
 228 model selection probabilities to shift dynamically with the prediction covariates. To build intuition,
 229 we next examine a simple analytical example.

230 Thus, IABMA adds a second layer of adaptivity: the prior itself varies with x , linking each ex-
 231 pert's prior selection probability to its expected likelihood and propagating this uncertainty into the
 232 posterior.

233 In section 4 we show that our prior indeed rewards predictors whose likelihood is high locally at x ,
 234 and quantify the additional improvement stemming from this prior in Appendix B.6.

235 **A two-model Bernoulli example** Suppose $y \in \{0, 1\}$, and consider two candidate logistic models

$$236 \quad 237 \quad 238 \quad p(y = 1 | x, f_j) = \sigma(\beta_j x), \quad \sigma(u) := \frac{1}{1 + e^{-u}}, \quad (13)$$

239 with $j \in 1, 2$ and slopes $0 < \beta_2 < \beta_1$. In this setting, the energy function is given by
 240

$$241 \quad 242 \quad 243 \quad E(J = j; x_{1:n}, x) = \sum_{i=1}^n \sum_{y \in \{0,1\}} \log p(y | x_i, f_j) + \sum_{y \in \{0,1\}} \log p(y | x, f_j) \quad (14)$$

$$244 \quad 245 \quad 246 \quad = \underbrace{\sum_{i=1}^n \log (\sigma(\beta_j x_i) [1 - \sigma(\beta_j x_i)])}_{=:C_j} + \underbrace{\log (\sigma(\beta_j x) [1 - \sigma(\beta_j x)])}_{=: \ell_j(x)} \quad (15)$$

247 and the adaptive prior is
 248

$$249 \quad 250 \quad 251 \quad p(J = j | x_{1:n}, x) = \frac{\exp(C_j + \ell_j(x))}{\sum_{k=1}^m \exp(C_k + \ell_k(x))} \quad (16)$$

252 Accordingly, the log-odds between the two models is
 253

$$254 \quad 255 \quad \log \frac{p(J = 1 | x_{1:n}, x)}{p(J = 2 | x_{1:n}, x)} = (C_1 - C_2) + \ell_1(x) - \ell_2(x). \quad (17)$$

256 Thus, the log-odds depend both on the difference between training baselines $C_1 - C_2$, and the change
 257 induced by conditioning also on the new input x is $\delta_x := \ell_1(x) - \ell_2(x)$.

258 Concretely, suppose the baseline difference is fixed at $C_1 - C_2 = \log 5 \approx 1.61$, yielding $p(J = 1 | \mathcal{D}) = \sigma(\log 5) \approx 0.83$. Based solely on the training data, the prior thus strongly favors f_1 .
 259 Now consider a new input $x = 1$ with $\beta_2 = 1$. As β_1 increases, the discrepancy $|\ell_1(1) - \ell_2(1)|$
 260 grows, and $\delta_{x=1}$ shifts the likelihood ratio toward f_2 . For example, when $\beta_1 = 3$, the prior shifts to
 261 a mild preference for f_1 , at $\beta_1 = 5$ it flips to favor f_2 , and by $\beta_1 = 9$ the preference for f_2 becomes
 262 very strong. These dynamics, along with additional parameter settings for coefficients and baseline
 263 differences, are shown in Figure 1.

264 This analysis highlights the interplay between the baseline preference and the input-specific adjust-
 265 ment introduced by x . It shows that, in extreme cases, even strong baseline beliefs can be overturned
 266 by the adaptive correction at the queried input.

267
 268
 269 ²This definition requires integrability of $\exp(E(J = j; x_{1:n}, x))$, and thus we assume that $\exp(E(J = j; x_{1:n}, x))$ is integrable for each j .

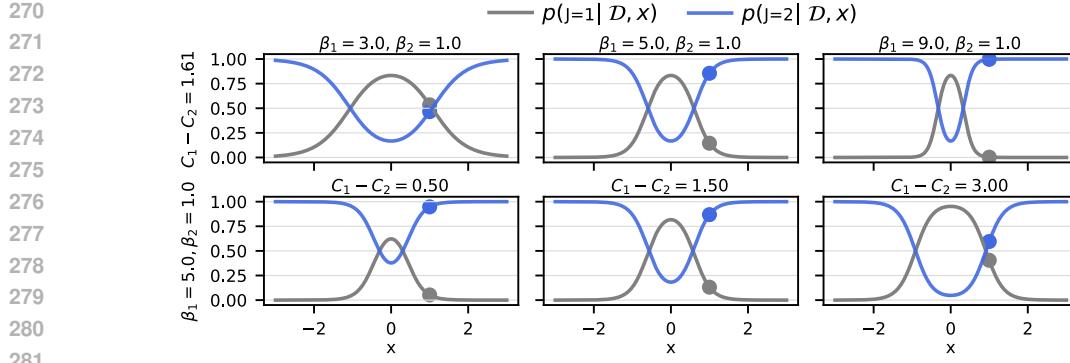


Figure 1: Illustration of the input adaptive prior. Each panel shows the posterior probabilities $p(J = j | \mathcal{D}, x)$ as functions of x . *Top*: the baseline log-odds is fixed and β_1 varies; larger β_1 values increase the influence of x , producing stronger adaptive corrections. *Bottom*: β_1, β_2 are fixed while the baseline log-odds $C_1 - C_2$ varies; stronger baselines yield higher prior preference for f_1 , but input-specific corrections can still substantially reshape the prior at certain x . The marked point ($x = 1$) highlights how the adaptive prior shifts the relative model probabilities compared to the baseline.

Evaluation of the prior: Evaluating the proposed prior requires computing an integral over the outcome space \mathcal{Y} , and thus depends on whether the outcome space is discrete or continuous. When \mathcal{Y} is *discrete* (e.g., in classification problems), the integral reduces to a finite sum over all possible outcome values. In this case, the evaluation is straightforward and can be computed exactly without approximation. When \mathcal{Y} is *continuous*, (e.g., in regression problems), the integral cannot typically be computed in closed form and may even diverge unless we restrict the domain of integration. Thus, to approximate the prior, as in (Slavutsky & Blei, 2025), we employ Monte-Carlo integration where we sample K possible outcome values uniformly from a predefined integration range $[y_{\min}, y_{\max}]$ set to large margin upon observed values in training data, and average the Normal log-likelihood (centered at the model’s prediction with unit variance) over the K samples.

This procedure introduces no meaningful computational overhead: in classification it reduces to a simple summation, and in regression we approximate the expectation using $K = 64$ Monte-Carlo samples, which we found to be numerically stable in practice. Table 18 confirms that runtime remains comparable to Mixture-of-Experts and DDP models using the same architecture.

3.2 AMORTIZED VARIATIONAL POSTERIOR

Equipped with the adaptive prior, we now turn to the estimation of the posterior $p(J = j | x_{1:n}, y_{1:n}, x) = p(J = j | \mathcal{D}, x)$, which conditions not only on the covariates x and $x_{1:n}$, but also on the training labels $y_{1:n}$. This, in turn, will enable us to assign input adaptive weights for model averaging, bringing them closer to the ideal weights that recover the predictive distribution $p(y | x)$.

We do so by fitting variational distributions $q(f_j; x) \approx p(J = j | \mathcal{D}, x)$ parameterized as functions of the input x . This yields an *amortized posterior approximation*, which allows us to efficiently evaluate approximate posteriors at multiple inputs x .

In our case, in the context of a new input x , the true posterior distribution over predictors is Multinomial $p(J = j | \mathcal{D}, x) = \rho_j(x)$ for $j \in \{1, \dots, m\}$, where each $\rho_j(x) > 0$ and $\sum_{j=1}^m \rho_j(x) = 1$. Thus, we set the variational family to be the set of all multinomial distributions.

$$\mathcal{Q}_x := \{q = (q(J = 1; x), \dots, q(J = m; x) \in \Delta^{m-1}\}. \quad (18)$$

For a given input x , our goal is to minimize the KL divergence

$$\min_{q \in \mathcal{Q}_x} D_{\text{KL}}(q \| p) := \sum_{j=1}^m q(J = j; x) \log \frac{q(J = j; x)}{p(J = j | \mathcal{D}, x)}. \quad (19)$$

324 **Algorithm 1** IA-BMA: Amortized Posterior Learning (IA-BMA)

325 1: **Inputs:** Training data \mathcal{D} ; predictors $\{f_j\}_{j=1}^m$; initialization θ_0 ; learning rate η ; iterations K .

326 2: **Precompute:** For all $i = 1, \dots, n$ and predictor $j = 1, \dots, m$, store $\log f_j(y_i | x_i)$.

327 3: **for** $k = 1$ **to** K **do**

328 4: **for** $i = 1$ **to** n **do**

329 5: **for** $j = 1$ **to** m **do**

330 6: **Prior:** Compute $p(J = j | x_{-i}, x) \propto \exp(E(J = j; x_{-i}, x_i))$

331 7: **Posterior:** Compute $h_{\theta_{k-1}}(x) = (q_{\theta_{k-1}}(J = 1; x_i), \dots, q_{\theta_{k-1}}(J = m; x_i))$

332 8: **ELBO:** Compute

333 9:
$$\mathcal{L}(x_i; \theta_{k-1}) = \sum_{j=1}^m q_{\theta_{k-1}}(J = j; x_i) \log f_j(y_i | x_i) - \sum_{j=1}^m q_{\theta_{k-1}}(J = j; x_i) \log \frac{q_{\theta_{k-1}}(J = j; x_i)}{p(J = j | x_{-i}, x_i)}.$$

334 10: **end for**

335 11: **Update:** $\bar{\mathcal{L}}(\theta_{k-1}) \leftarrow \frac{1}{n} \sum_i \mathcal{L}(x_i; \theta_{k-1})$

336 12: **end for**

337 13: **end for**

338 14: **Return:** $\hat{\theta} := \theta_K$

343 Note that since the true posterior and the variational family share the same (categorical) form, the
 344 problem is well-specified: the KL depends only on estimating the probabilities $P(J = j; x)$. In
 345 particular, the variational posterior can recover the true posterior exactly, up to limitations stemming
 346 from access to finite data.

348 3.3 OPTIMIZATION

350 To minimize the KL divergence in Equation 19, we optimize the evidence lower bound (ELBO)
 351 on the log-likelihood (Kingma & Welling, 2014; Rezende & Mohamed, 2015; Blei et al., 2017).
 352 We parameterize the variational distribution with a neural network with weights θ , producing
 353 $h_\theta(x) = (q_\theta(J = 1; x), \dots, q_\theta(J = m; x))$, and optimize θ rather than the output directly. Thus,
 354 our objective to fit the amortized posterior is

355
$$\mathcal{L}(\theta; x) = \mathbb{E}_{q_\theta} [\log p(y | x, f_j)] - D_{\text{KL}}(q_\theta \| p(J | x_{1:n}, x)) \quad (20)$$

356
$$= \sum_{j=1}^m [q_\theta(J = j; x) \log f_j(y | x)] - \sum_{j=1}^m q_\theta(J = j; x) \log \frac{q_\theta(J = j; x)}{p(J = j | x_{1:n}, x)}. \quad (21)$$

359 Note that the expected log-likelihood $\mathbb{E}_{q_\theta} [\log p(y | x, f_j)]$ reduces to a weighted sum, so no sam-
 360 pling is required to evaluate our objective. The complete optimization procedure is summarized in
 361 Algorithm 1.

363 Under the Bayesian formulation, the posterior predictive distribution in Eq. 3 yields Bayes-optimal
 364 uncertainty. Any deviation of IA-BMA from this ideal arises only from the variational approxima-
 365 tion—specifically from the expressiveness of the variational family, and quantified by the KL term
 366 in Eq. 19.

367 **Weight assignment:** After training is complete (see Algorithm 1), with the estimate $\hat{\theta}$, for a new
 368 input x we compute $(q_{\hat{\theta}}(J = 1; x), \dots, q_{\hat{\theta}}(J = m; x))$ and assign $\alpha_j(x) = q_{\hat{\theta}}(J = j; x)$. This
 369 yields a predicted value $\hat{p}_\alpha(y | x) = \sum_{j=1}^m \alpha_j(x) f_j(y | x)$.

372 4 EXPERIMENTS

374 Our method operates on a fixed pool of pre-trained predictors, rather than learning experts jointly.
 375 As a result, the absolute scale or capacity of each predictor is inconsequential, and methods that rely
 376 on ensambles or require joint training of experts are not comparable. For approaches such as MoE
 377 and DDP, which typically train both experts and gating weights simultaneously, we evaluate variants
 378 that are applied on top of the same pre-trained experts.

378 Specifically, we compare IABMA against (a) non-adaptive baselines: (i) best single predictor, (ii)
 379 uniform average over predictors, (iii) accuracy-weighted average, and (iv) classical Bayesian model
 380 averaging (BMA); and (b) adaptive methods: (i) Mixture of Experts (MoE) (Jacobs et al., 1991), (ii)
 381 Dynamic Local Accuracy (DLA) (Woods et al., 1997), (iii) Synthetic Model Combination (SMC)
 382 (Rasmussen & Ghahramani, 2001), (iv) Bayesian Hierarchical Stacking (BHS) (Yao et al., 2022),
 383 and (vii) dependent Dirichlet process (DDP) with fixed “atoms” to the pre-trained predictors.

384 In each experiment we train the candidate predictors, fit the averaging methods on the training set,
 385 and evaluate their predictive distributions on the test set.

387 We conduct extensive evaluation across (i) two synthetic benchmarks, including scale and sensi-
 388 tivity studies, (ii) two large heteroskedastic real-world tasks (personalized medication and credit
 389 fraud), and (iii) four UCI benchmarks, to verify that adaptivity does not degrade performance in
 390 low-heteroskedastic settings.

391 Hyperparameters for our method and all baselines were tuned via binary search to maximize av-
 392 erage performance (accuracy for classification, RMSE for regression) on a held-out repetition ex-
 393 cluded from the analysis. The selected values and further implementation details are provided in
 394 Appendix D, with additional data processing and predictor specifications in Section C. Code to
 395 reproduce all results is included with the submission and will be released publicly upon acceptance.

396 4.1 SIMULATIONS

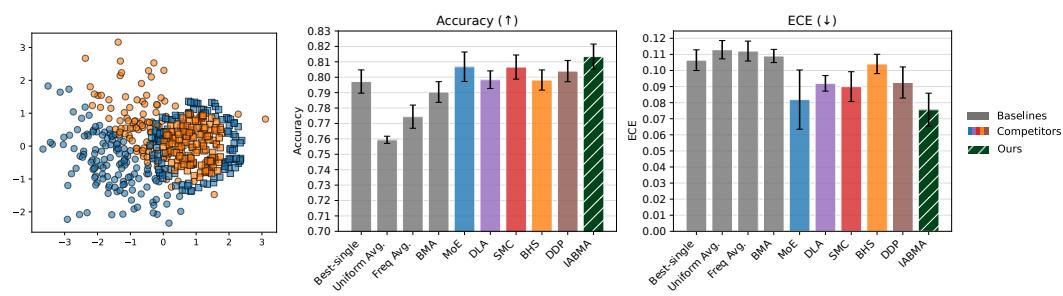
398 4.1.1 LINEAR–CIRCULAR HYBRID CLASSIFICATION

400 We evaluate IA-BMA on a two-dimensional binary task composed of two heterogeneous subpopu-
 401 lations. Half of the samples follow a linear decision rule and are drawn from a Gaussian cluster near
 402 $(-1, 0)$; the other half lie on a ring around $(1, 0)$ and follow a circular rule $y = \mathbb{1}r < 1$. We use
 403 $n_{\text{train}} = 1000$, $n_{\text{test}} = 500$, and train all methods on the raw coordinates (x_1, x_2) .

404 This construction yields three regions: (i) points linearly separable, (ii) points circularly separable,
 405 and (iii) an intermediate overlap where the correct predictor switches. Ideal weighting places mass
 406 on linear models in (i), on circular models in (ii), and mixes softly in (iii).

407 All methods share the same pool of base predictors: polynomial logistic regression (degree 2 and
 408 3), LDA, and two “soft-circle” classifiers based on radial distance to a learned center. Additional
 409 details are provided in section C.1

410 **Results:** Figure 2 shows that IA-BMA achieves highest accuracy and lowest ECE compared to all
 411 non-adaptive baselines, as well as all adaptive methods.



423 Figure 2: Simulation. Left: data (of one repetition). Results for accuracy (middle) and ECE (right)
 424 are reported for 10 repetitions. IA-BMA achieves highest accuracy and lowest ECE.

426 4.1.2 SCALE AND SENSITIVITY ANALYSIS

428 We evaluate IABMA with respect to: (i) scalability in data dimension, (ii) the number of informative
 429 (non-noise) features, (iii) the number of predictors, and (iv) the similarity between predictors.

431 As detailed in Appendix C.2, we construct a synthetic setting with two data regimes that share only
 a subset of the informative features. We vary the data dimension d , and the number of informative

432 features k . We construct m candidate predictors: (i) two per-regime *specialists*, $m - 3$ *generalists*
 433 of varying similarity to each other ρ , and an additional model that exceeds all generalists on both
 434 regimes but remains inferior to the specialists.

435 For any input x , the optimal ensemble behavior is to select the specialist corresponding to the sign
 436 of x , and never to select one of the suboptimal generalists or the overall-best predictor.

437 **Results:** IABMA consistently outperforms all baselines and selects the correct specialist far more
 438 often. Table 1 reports specialist selection rates; performance metrics and SDs in Tables 2–6.

440

441

Table 1: Correct specialist proportion across scaling experiments.

Experiment	MoE	DLA	SMC	BHS	DDP	IABMA
Base: $d = 100$, $k = 30$, $m = 10$, $\rho = 0.0$	0.000	0.008	0.051	0.037	0.227	0.948
Dimension increase: $d = 300$	0.000	0.018	0.000	0.020	0.000	0.552
More informative features: $k = 50$	0.000	0.013	0.000	0.022	0.000	0.675
More predictors: $m = 100$	0.493	0.006	0.002	0.114	0.000	0.857
Higher similarity: $\rho = 0.5$	0.000	0.001	0.000	0.022	0.000	0.922

442

443

4.2 CASE STUDIES

444

4.2.1 PERSONALIZED CANCER DRUG-RESPONSE

445

An important example of heterogeneous data is personalized drug response prediction, where different models may perform better on different subpopulations. We evaluate IA-BMA on this task using the PRISM cancer drug response dataset. The data consists of pairings of molecule-cell line RNA sequence features. For each drug–cell pair we form a continuous response y so that larger values indicate greater sensitivity. We retain drugs with broad site coverage and construct inputs from the top variance genes. All averaging methods operate over the same four base regressors—Ridge, Histogram-based Gradient Boosting Tree, XGBoost, and a Multilayer perceptron (MLP), each with pre-processing tailored to model class. Additional details are provided in C.3.

446

Results: Figure 3 shows that IA-BMA achieves higher R^2 and lower RMSE compared to all other methods. Further analysis is presented in Figures 4–7 which display the weights assigned by each averaging method for randomly selected inputs. The results show that IA-BMA consistently favored the best (or nearly best) model, whereas other methods leaned toward other predictors, with MoE in particular overemphasizing MLP and XGB even when suboptimal.

447

448

4.2.2 CREDIT-CARD FRAUD DETECTION

449

450

Another domain characterized by heterogeneous data is fraud detection, where the rarity of fraudulent cases poses an additional challenge. We evaluate IA-BMA on this task using the IEEE-CIS Fraud Detection dataset. The dataset consists from mixed Continuous (such as transaction amount) and high-cardinality categorical features (such as product category), and the target variable $y \in \{0, 1\}$ indicated where a transaction was fraud. All averaging methods operate over the same base classifiers: Logistic Regression with Lasso penalty, Histogram-based Gradient Boosting Tree, XGBoost, and an MLP. Additional details appear in Appendix C.4.

451

452

Results: Figure 3 shows that IA-BMA achieves higher accuracy and lower expected-calibration error compared to all other methods. Since in fraud prediction calibration matters within each bin, we analyzed per-bin confidence $|p - 0.5|$, and found that IA-BMA achieves the lowest error in all high-confidence bins (> 0.25). The corresponding analysis is shown in Figure B.4.

453

454

4.3 EXPERIMENTS ON UCI BENCHMARK DATASETS

455

456

457

458

459

460

461

We evaluate IA-BMA on four UCI datasets — two classification (spambase, credit-g) and two regression (bike-sharing, california-housing) — which represent *low-heteroskedasticity scenarios*. In such settings, one should not expect consistent dominance by any method, as the benefits of adaptive model averaging emerge when subpopulations differ substan-

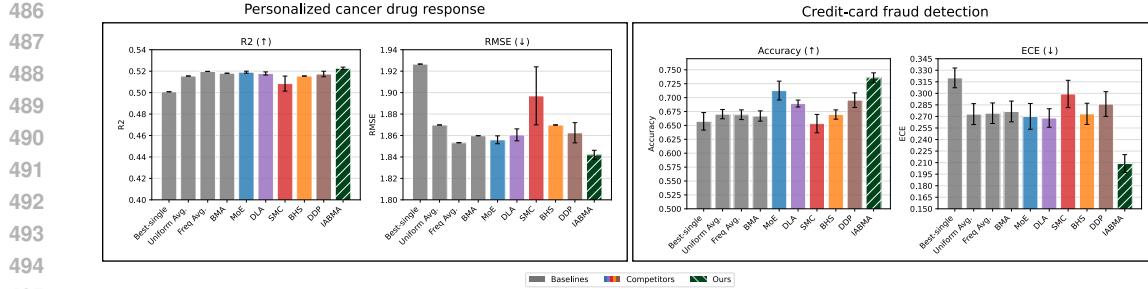


Figure 3: Experimental results for main case studies. Results are reported for 10 repetitions. IA-BMA achieves best results compared to all other averaging method on both case studies.

tially. The value of these experiments lies in confirming that IA-BMA is *non-harmful* in settings where adaptivity is not expected to yield significant gain.

Results: IA-BMA yields improvements in RMSE for both regression tasks and in accuracy for both classification tasks, with 9 of 20 pairwise comparisons showing statistically significant gains over five baselines. Experimental details appear in Section C.5. Results are reported in Table 8.

5 CONCLUSION

We introduced IA-BMA, a framework that casts model averaging as probabilistic model selection conditioned on the input. Within this formulation, the posterior distribution over models provides the natural, Bayes-optimal choice of input adaptive weights, thereby recovering the true predictive distribution. Our approach is grounded in an input-dependent prior on the selector function and implemented through amortized variational inference of the posterior.

We establish finite-sample bounds showing that the posterior-weights predictor achieves strong likelihood performance compared to any input-specific single-model selector. Empirically, we evaluate IA-BMA across regression and classification tasks, including personalized cancer treatment response, credit-card fraud detection, and standard UCI benchmarks. We show that IA-BMA consistently outperforms both non-adaptive baselines and existing adaptive methods, delivering more accurate and better calibrated predictions.

540 REFERENCES
541

542 David M Blei, Alp Kucukelbir, and Jon McAuliffe. Variational inference: A review for statisticians.
543 *Journal of the American Statistical Association*, 112(518):859–877, 2017.

544 Leo Breiman. Bagging predictors. *Machine Learning*, 24(2):123–140, 1996.
545

546 Jun Cao, Majid Ahmadi, and Malayappan Shridhar. Recognition of handwritten numerals with
547 multiple feature and multistage classifier. *Pattern Recognition*, 28(2):153–160, 1995.
548

549 Alex Chan and Mihaela van der Schaar. Synthetic model combination: An instance-wise approach
550 to unsupervised ensemble learning. *Advances in Neural Information Processing Systems*, 35:
551 27797–27809, 2022.

552 Robert T Clemen. Combining forecasts: A review and annotated bibliography. *International journal
553 of forecasting*, 5(4):559–583, 1989.
554

555 Luca Didaci and Giorgio Giacinto. Dynamic classifier selection by adaptive k-nearest-
556 neighbourhood rule. In *Proceedings of the International Workshop on Multiple Classifier Systems*,
557 pp. 174–183. Springer, 2004.

558 Luca Didaci, Giorgio Giacinto, Fabio Roli, and Gian Luca Marcialis. A study on the performances
559 of dynamic classifier selection based on local accuracy estimation. *Pattern Recognition*, 38(11):
560 2188–2191, 2005.
561

562 Thomas G Dietterich et al. Ensemble learning. *The Handbook of Brain Theory and Neural Networks*,
563 2(1):110–125, 2002.
564

565 Carsten F Dormann, Oliver Schweiger, Paul Arens, Isabel Augenstein, S. T. Aviron, Debra Bailey,
566 Jacques Baudry, Regula Billeter, Rob Bugter, Roman Bukacek, et al. Prediction uncertainty of
567 environmental change effects on temperate european biodiversity. *Ecology Letters*, 11(3):235–
568 244, 2008.

569 Carsten F Dormann, Justin M Calabrese, Gurutzeta Guillera-Arroita, Eleni Matechou, Volker Bahn,
570 Kamil Bartoní, Colin M Beale, Simone Ciuti, Jane Elith, Katharina Gerstner, et al. Model averaging
571 in ecology: A review of bayesian, information-theoretic, and tactical approaches for predictive
572 inference. *Ecological Monographs*, 88(4):485–504, 2018.
573

574 Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hun-
575 dreds of classifiers to solve real world classification problems? *Journal of Machine Learning
576 Research*, 15(1):3133–3181, 2014.
577

578 Yoav Freund. Boosting a weak learning algorithm by majority. *Information and Computation*, 121
(2):256–285, 1995.
579

580 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
581 application to boosting. *Journal of computer and system sciences*, 55(1):119–139, 1997.
582

583 Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N
584 Suganthan. Ensemble deep learning: A review. *Engineering Applications of Artificial Intelli-
585 gence*, 115:105151, 2022.

586 Giorgio Giacinto and Fabio Roli. Methods for dynamic classifier selection. In *Proceedings of the
587 10th International Conference on Image Analysis and Processing*, pp. 659–664. IEEE, 1999.
588

589 Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, and Albert Bifet. A survey on
590 ensemble learning for data stream classification. *ACM Computing Surveys*, 50(2):1–36, 2017.
591

592 Sergio González, Salvador García, Javier Del Ser, Lior Rokach, and Francisco Herrera. A practical
593 tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software
tools, performance study, practical perspectives and opportunities. *Information Fusion*, 64:205–
237, 2020.

594 Patrick Grother, Mei Ngan, Kayee Hanaoka, et al. Ongoing face recognition vendor test (frvt) part
 595 3: Demographic effects. *Nat. Inst. Stand. Technol., Gaithersburg, MA, USA, Rep. NISTIR*, 8280,
 596 2019.

597 Veyis Gunes, Michel Menard, Pierre Loonis, and Simon Petit-Renaud. Combination, cooperation
 598 and selection of classifiers: A state of the art. *International Journal of Pattern Recognition and*
 599 *Artificial Intelligence*, 17(08):1303–1324, 2003.

600 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 601 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

602 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 603 local experts. *Neural Computation*, 3(1):79–87, 1991.

604 Zhencun Jiang, Zhengxin Dong, Lingyang Wang, and Wenping Jiang. Method for diagnosis of
 605 acute lymphoblastic leukemia based on vit-cnn ensemble model. *Computational Intelligence and*
 606 *Neuroscience*, 2021(1):7529893, 2021.

607 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
 608 *Neural computation*, 6(2):181–214, 1994.

609 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *International Conference*
 610 *on Learning Representations*, 2014.

611 Vrushali Y Kulkarni and Pradeep K Sinha. Random forest classifiers: A survey and future research
 612 directions. *International Journal of Advanced Computer*, 36(1):1144–1153, 2013.

613 Christine Lauzeral, Gaël Grenouillet, and Sébastien Brosse. The iterative ensemble modelling ap-
 614 proach increases the accuracy of fish distribution models. *Ecography*, 38(2):213–220, 2015.

615 Palak Mahajan, Shahadat Uddin, Farshid Hajati, and Mohammad Ali Moni. Ensemble learning for
 616 disease prediction: A review. In *Healthcare*, volume 11, pp. 1808. MDPI, 2023.

617 Edmund A Mennis. The wisdom of crowds: Why the many are smarter than the few and how
 618 collective wisdom shapes business, economies, societies, and nations. *Business Economics*, 41
 619 (4):63–65, 2006.

620 S Nanglia, Muneer Ahmad, Fawad Ali Khan, and N. Z. Jhanjhi. An enhanced predictive heteroge-
 621 neous ensemble model for breast cancer prediction. *Biomedical Signal Processing and Control*,
 622 72:103279, 2022.

623 Jingfu Peng and Yuhong Yang. On improbability of model selection by model averaging. *Journal*
 624 *of Econometrics*, 229(2):246–262, 2022.

625 Robi Polikar. Ensemble based systems in decision making. *IEEE Circuits and Systems Magazine*, 6
 626 (3):21–45, 2006.

627 Carl Rasmussen and Zoubin Ghahramani. Infinite mixtures of gaussian process experts. *Advances*
 628 *in Neural Information Processing Systems*, 14, 2001.

629 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Proceedings*
 630 *of the International Conference on Machine Learning*, pp. 1530–1538. PMLR, 2015.

631 Shane A Richards. Testing ecological theory using the information-theoretic approach: Examples
 632 and cautionary results. *Ecology*, 86(10):2805–2814, 2005.

633 Lior Rokach. *Pattern Classification Using Ensemble Methods*, volume 75. World Scientific, 2010.

634 Lior Rokach. Decision forest: Twenty years of research. *Information Fusion*, 27:111–125, 2016.

635 Omer Sagi and Lior Rokach. Ensemble learning: A survey. *Wiley Interdisciplinary Reviews: Data*
 636 *Mining and Knowledge Discovery*, 8(4):e1249, 2018.

637 Yuli Slavutsky and David M Blei. Quantifying uncertainty in the presence of distribution shifts.
 638 *Advances in Neural Information Processing Systems*, 2025.

648 Yaniv Tenzer, Omer Dror, Boaz Nadler, Erhan Bilal, and Yuval Kluger. Crowdsourcing regression:
 649 A spectral approach. In *International Conference on Artificial Intelligence and Statistics*, pp.
 650 5225–5242. PMLR, 2022.

651

652 Wilfried Thuiller. Patterns and uncertainties of species’ range shifts under climate change. *Global
 653 Change Biology*, 10(12):2020–2027, 2004.

654

655 Dejan Varmedja, Mirjana Karanovic, Srdjan Sladojevic, Marko Arsenovic, and Andras Anderla.
 656 Credit card fraud detection-machine learning methods. In *2019 18th International Symposium
 657 Infoteh-Jahorina (Infoteh)*, pp. 1–5. IEEE, 2019.

658

659 Mei Wang, Weihong Deng, Jiani Hu, Xunqiang Tao, and Yaohai Huang. Racial faces in the wild:
 660 Reducing racial bias by information maximization adaptation network. In *Proceedings of the
 661 ieee/cvpr international conference on computer vision*, pp. 692–702, 2019.

662

663 Steve Waterhouse, David MacKay, and Anthony Robinson. Bayesian methods for mixtures of ex-
 664 perts. *Advances in neural information processing systems*, 8, 1995.

665

666 Brendan A Wintle, Michel A McCarthy, Chris T Volinsky, and Rodney P Kavanagh. The use of
 667 bayesian model averaging to better represent uncertainty in ecological models. *Conservation
 668 Biology*, 17(6):1579–1590, 2003.

669

670 David H Wolpert. Stacked generalization. *Neural Networks*, 5(2):241–259, 1992.

671

672 Kevin Woods, W. Philip Kegelmeyer, and Kevin Bowyer. Combination of multiple classifiers using
 673 local accuracy estimates. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19
 674 (4):405–410, 1997.

675

676 Michał Woźniak, Manuel Grana, and Emilio Corchado. A survey of multiple classifier systems as
 677 hybrid systems. *Information Fusion*, 16:3–17, 2014.

678

679 Hao Wu and David Levinson. The ensemble approach to forecasting: A review and synthesis.
 680 *Transportation Research Part C: Emerging Technologies*, 132:103357, 2021.

681

682 Yuling Yao, Gregor Pirš, Aki Vehtari, and Andrew Gelman. Bayesian hierarchical stacking: Some
 683 models are (somewhere) useful. *Bayesian Analysis*, 17(4):1043–1071, 2022.

684

685 Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture of experts. *IEEE
 686 transactions on neural networks and learning systems*, 23(8):1177–1193, 2012.

687

688 Yue Zheng, Jun Wei, Wenming Zhang, Yiping Zhang, Tuqiao Zhang, and Yongchao Zhou. An
 689 ensemble model for accurate prediction of key water quality parameters in river based on deep
 690 learning methods. *Journal of Environmental Management*, 366:121932, 2024.

691

692

693

694

695

696

697

698

699

700

701

702 **A PROOFS**
 703

704 **A.1 CHANGE OF MEASURE ARGUMENT**
 705

706 Let $F : X_2 \rightarrow X_1$ be a measurable function between two measure spaces $(X_1, \mathcal{A}_1, \eta)$ and
 707 $(X_2, \mathcal{A}_2, \nu)$. Let $g : X_1 \rightarrow \mathbb{R}$ measurable function. Recall that the change of variables formula
 708 is given by

$$709 \quad \int_{X_1} g \, dF_{\#}\eta = \int_{X_1} (g \circ F) \, d\eta, \quad (22)$$

711 where $F_{\#}\eta$ denotes the push-forward of η through F .

713 Applying this to our setting, a draw from the posterior $g \sim p(g | x, \mathcal{D})$ induces a random index $j(x)$
 714 defined by the relation $g(x) = e_{j(x)}$. Formally, the evaluation map
 715

$$716 \quad s_x : \mathcal{G} \rightarrow \{1, \dots, m\}, \quad s_x(g) = j(x),$$

717 pushes the posterior measure $p(g | x, \mathcal{D})$ forward onto a distribution over indices. Using this push-
 718 forward, we can rewrite equation 8 as

$$719 \quad \int_{\mathcal{G}} p(y | x, g) \, d\mathbb{P}(g | x, \mathcal{D}) = \int_{\mathcal{G}} f_{s_x(g)}(y | x) \, d\mathbb{P}(g | x, \mathcal{D}) \quad (23)$$

$$722 \quad = \int_{\{1, \dots, m\}} f_j(y | x) \, d(E_{x\#}\mathbb{P})(j | x, \mathcal{D}) \quad (24)$$

$$724 \quad = \sum_{j=1}^m f_j(y | x) \, p(j | x, \mathcal{D}). \quad (25)$$

727 **A.2 PROOF OF THEOREM 2.1**
 728

729 **Theorem.** Denote $\mathcal{D}_i := \{(x_t, y_t)\}_{t=1}^i$, and consider the posterior weights predictor $\hat{p}_{\alpha}^{(i)}$ assigning
 730 $\alpha_j^{(i)}(x) := p(J(x) = j | \mathcal{D}_i, x)$ to the j -th predictor f_j . Assume that $\mathbb{E}[|\log f_j(Y | X)|] < \infty$ for
 731 all $f_j \in \mathcal{F}$. Then, for any measurable selector $j^* : \mathcal{X} \rightarrow \{1, \dots, m\}$ and any $n \geq 1$,

$$733 \quad \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\log \hat{p}_{\alpha}^{(i)}(y_i | x_i, \mathcal{D}_{i-1})] \geq \mathbb{E} [\log f_{j^*(x)}(y | x)] + \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\log \alpha_{j^*(x_i)}^{(i)}(x_i)], \quad (26)$$

736 where the expectations are taken w.r.t the population distribution $(x, y) \sim p(x, y)$.

738 *Proof.* Define the posterior-weights predictor

$$740 \quad \hat{p}_{\alpha}^{(i)}(y | x, \mathcal{D}_{i-1}) = \sum_{j=1}^m \alpha_j^{(i)}(x) f_j(y | x) \quad (27)$$

742 For a fixed input x_i and a fixed predictor f_k we have that

$$744 \quad \log \hat{p}_{\alpha}^{(i)}(y_i | x_i, \mathcal{D}_{i-1}) = \log \left(\sum_{j=1}^m \alpha_j^{(i)}(x_i) f_j(y_i | x_i) \right) \quad (28)$$

$$747 \quad \geq \log \left(\alpha_k^{(i)}(x_i) f_k(y_i | x_i) \right) \quad (29)$$

$$749 \quad = \log f_k(y_i | x_i) + \log \alpha_k^{(i)}(x_i). \quad (30)$$

750 Taking $\mathbb{E}_{(x, y) \sim p(x, y)} [\cdot | x_i, \mathcal{D}_{i-1}]$, since $f_{j^*(x)}(y_i | x_i)$ is independent of \mathcal{D}_{i-1} ,

$$752 \quad \mathbb{E} [\log \hat{p}_{\alpha}^{(i)}(y_i | x_i, \mathcal{D}_{i-1})] \geq \mathbb{E} [\log f_k(y_i | x_i)] + \mathbb{E} [\log \alpha_k^{(i)}(x_i) | \mathcal{D}_{i-1}]. \quad (31)$$

754 This holds for any $1 \leq k \leq m$, hence for $k = j^*(x_i)$,

$$755 \quad \mathbb{E} [\log \hat{p}_{\alpha}^{(i)}(y_i | x_i, \mathcal{D}_{i-1}) | \mathcal{D}_{i-1}] \geq \mathbb{E} [\log f_{j^*(x)}(y_i | x_i)] + \mathbb{E} [\log \alpha_{j^*(x_i)}^{(i)}(x_i) | \mathcal{D}_{i-1}]. \quad (32)$$

756 Taking $\mathbb{E}[\cdot | \mathcal{D}_{i-1}]$, by the law of total expectation,

$$758 \mathbb{E} \left[\log \hat{p}_\alpha^{(i)}(y_i | x_i, \mathcal{D}_{i-1}) \right] \geq \mathbb{E} \left[\log f_{j^*(x_i)}(y_i | x_i) \right] + \mathbb{E} \left[\log \alpha_{j^*(x_i)}^{(i)}(x_i) \right]. \quad (33)$$

760 Averaging over i , we get

$$762 \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\log \hat{p}_\alpha^{(i)}(y_i | x_i, \mathcal{D}_{i-1}) \right] \geq \mathbb{E} \left[\log f_{j^*(x_i)}(y_i | x_i) \right] + \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\log \alpha_{j^*(x_i)}^{(i)}(x_i) \right].$$

764 \square

766 B ADDITIONAL EXPERIMENTAL RESULTS

769 In what follows we provide a deeper analysis of the performance of adaptive model averaging methods on the two case-studies.

772 B.1 SCALE AND SENSITIVITY ANALYSIS

775 Table 2: Scaling and sensitivity analysis for $d = 100, k = 30, m = 10, \rho = 0.0$

776 Method	777 Accuracy	778 ECE	779 Correct Specialist	780 Global Predictor	781 Generalists
782 MoE	783 0.904 (0.002)	784 0.076 (0.003)	785 0.000 (0.000)	786 1.000 (0.000)	787 0.000 (0.000)
788 DLA	789 0.825 (0.007)	790 0.100 (0.002)	791 0.008 (0.001)	792 0.966 (0.005)	793 0.015 (0.003)
797 SMC	798 0.680 (0.132)	799 0.302 (0.155)	800 0.051 (0.042)	801 0.481 (0.424)	802 0.414 (0.339)
806 BHS	807 0.821 (0.007)	808 0.097 (0.002)	809 0.037 (0.034)	810 0.164 (0.018)	811 0.724 (0.036)
815 DDP	816 0.910 (0.008)	817 0.061 (0.017)	818 0.227 (0.280)	819 0.773 (0.280)	820 0.000 (0.000)
825 IABMA	826 0.919 (0.004)	827 0.026 (0.007)	828 0.948 (0.017)	829 0.037 (0.006)	830 0.015 (0.019)

785 Table 3: Scaling and sensitivity analysis for $d = 300, k = 30, m = 10, \rho = 0.0$

786 Method	787 Accuracy	788 ECE	789 Correct Specialist	790 Global Predictor	791 Generalists
796 MoE	797 0.858 (0.003)	798 0.117 (0.003)	799 0.000 (0.000)	800 1.000 (0.000)	801 0.000 (0.000)
805 DLA	806 0.809 (0.005)	807 0.068 (0.004)	808 0.018 (0.005)	809 0.929 (0.004)	810 0.037 (0.001)
814 SMC	815 0.816 (0.005)	816 0.073 (0.004)	817 0.000 (0.000)	818 1.000 (0.000)	819 0.000 (0.000)
823 BHS	824 0.804 (0.005)	825 0.067 (0.004)	826 0.020 (0.002)	827 0.150 (0.005)	828 0.633 (0.011)
832 DDP	833 0.858 (0.003)	834 0.117 (0.003)	835 0.000 (0.000)	836 1.000 (0.000)	837 0.000 (0.000)
841 IABMA	842 0.882 (0.004)	843 0.035 (0.001)	844 0.552 (0.007)	845 0.163 (0.007)	846 0.285 (0.007)

795 Table 4: Scaling and sensitivity analysis for $d = 100, k = 50, m = 10, \rho = 0.0$

796 Method	797 Accuracy	798 ECE	799 Correct Specialist	800 Global Predictor	801 Generalists
805 MoE	806 0.882 (0.008)	807 0.092 (0.008)	808 0.000 (0.000)	809 1.000 (0.000)	810 0.000 (0.000)
814 DLA	815 0.805 (0.009)	816 0.087 (0.005)	817 0.013 (0.003)	818 0.960 (0.008)	819 0.017 (0.003)
823 SMC	824 0.813 (0.009)	825 0.093 (0.008)	826 0.000 (0.000)	827 1.000 (0.000)	828 0.000 (0.000)
832 BHS	833 0.802 (0.008)	834 0.084 (0.004)	835 0.022 (0.002)	836 0.036 (0.004)	837 0.735 (0.013)
841 DDP	842 0.882 (0.008)	843 0.092 (0.008)	844 0.000 (0.000)	845 1.000 (0.000)	846 0.000 (0.000)
850 IABMA	851 0.902 (0.007)	852 0.029 (0.006)	853 0.675 (0.010)	854 0.325 (0.010)	855 0.000 (0.000)

856 B.2 FORMAL STATISTICAL TESTS

864 For the other three heteroskedastic experiments, Table 7 provides p-values for one-sided t-test with
865 Benjamini–Hochberg correction for multiple comparisons (accuracy for classification, RMSE for
866 regression). All resulting values are below 0.054.

810

811

Table 5: Scaling and sensitivity analysis for $d = 100, k = 50, m = 100, \rho = 0.0$

Method	Accuracy	ECE	Correct Specialist	Global Predictor	Generalists
MoE	0.926 (0.005)	0.038 (0.002)	0.493 (0.009)	0.507 (0.009)	0.000 (0.000)
DLA	0.758 (0.010)	0.027 (0.005)	0.006 (0.001)	0.955 (0.005)	0.035 (0.005)
SMC	0.725 (0.067)	0.104 (0.151)	0.002 (0.004)	0.755 (0.355)	0.240 (0.347)
BHS	0.757 (0.010)	0.027 (0.005)	0.114 (0.005)	0.019 (0.002)	0.867 (0.005)
DDP	0.900 (0.002)	0.081 (0.004)	0.000 (0.000)	1.000 (0.000)	0.000 (0.000)
IABMA	0.916 (0.004)	0.028 (0.005)	0.857 (0.008)	0.091 (0.007)	0.045 (0.002)

819

820

Table 6: Scaling and sensitivity analysis for $d = 100, k = 50, m = 100, \rho = 0.5$

Method	Accuracy	ECE	Correct Specialist	Global Predictor	Generalists
MoE	0.902 (0.006)	0.073 (0.006)	0.000 (0.000)	1.000 (0.000)	0.000 (0.000)
DLA	0.797 (0.008)	0.137 (0.002)	0.001 (0.001)	0.996 (0.001)	0.002 (0.000)
SMC	0.837 (0.008)	0.163 (0.004)	0.000 (0.000)	1.000 (0.000)	0.000 (0.000)
BHS	0.787 (0.008)	0.126 (0.006)	0.022 (0.003)	0.019 (0.004)	0.952 (0.003)
DDP	0.902 (0.006)	0.073 (0.006)	0.000 (0.000)	1.000 (0.000)	0.000 (0.000)
IABMA	0.919 (0.006)	0.022 (0.005)	0.922 (0.001)	0.077 (0.001)	0.000 (0.000)

829

830

p-values for UCI experiments appear in Table 9.

832

833

Table 7: Paired t-test p-values vs. IABMA on heterogeneous datasets.

Experiment	BMA	MoE	DLA	SMC	BHS	DPP
Cancer	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fraud	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Linear-circular	< 0.01	0.054	< 0.01	0.037	< 0.01	< 0.01

839

840

B.3 CANCER TREATMENT RESPONSE

842

To illustrate how different methods allocate weights, we sampled 16 cases as follows: for each classifier f_j , we randomly selected four examples from those where IA-BMA assigned the highest weight to f_j . Figures 4–7 display the weights assigned by each averaging method for Ridge, XGB, HGB, and MLP. For each case, we also report the RMSE achieved by the individual classifiers. This analysis shows that in all cases, IA-BMA places the largest weight on the model with either the lowest error or a near-tied second. By contrast, competing methods tend to favor other predictors. In particular, MoE consistently prioritizes MLP or XGB, even in instances where these models are locally suboptimal.

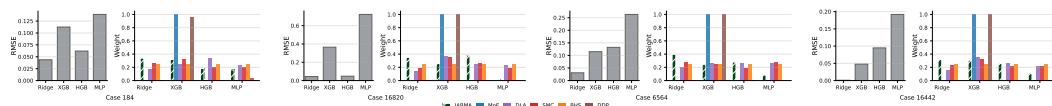


Figure 4: Cases where IA-BMA assigns the highest weight to Ridge.

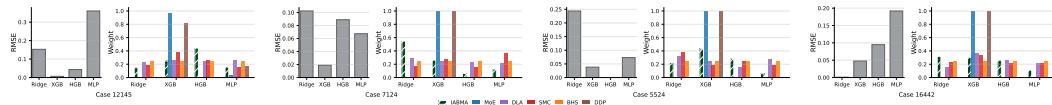


Figure 5: Cases where IA-BMA assigns the highest weight to XGB.

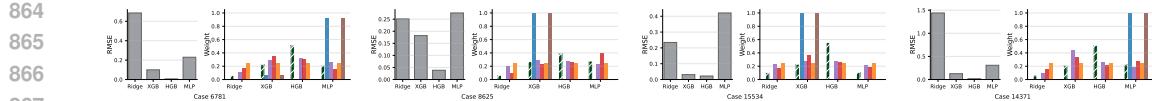


Figure 6: Cases where IA-BMA assigns the highest weight to HGB.

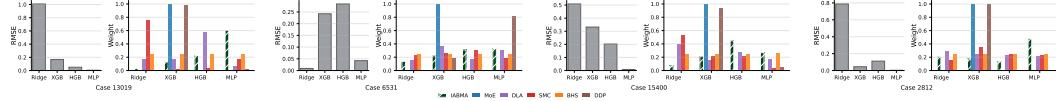


Figure 7: Cases where IA-BMA assigns the highest weight to MLP.

B.4 CREDIT CARD FRAUD

Credit card fraud prediction is a highly sensitive area, with risks of false alarms and misreporting, calibration is crucial not only overall but also within each bin. To this end, we analyzed the confidence measure $|p - 0.5|$ where p is the estimated probability, which captures certainty for both positive and negative events, and compared the bin-wise errors across averaging methods. Figure B.4 shows that in all bins, IA-BMA attains the lowest error, decreasing with confidence, showing that most wrong predictions occur in low confidence instances.

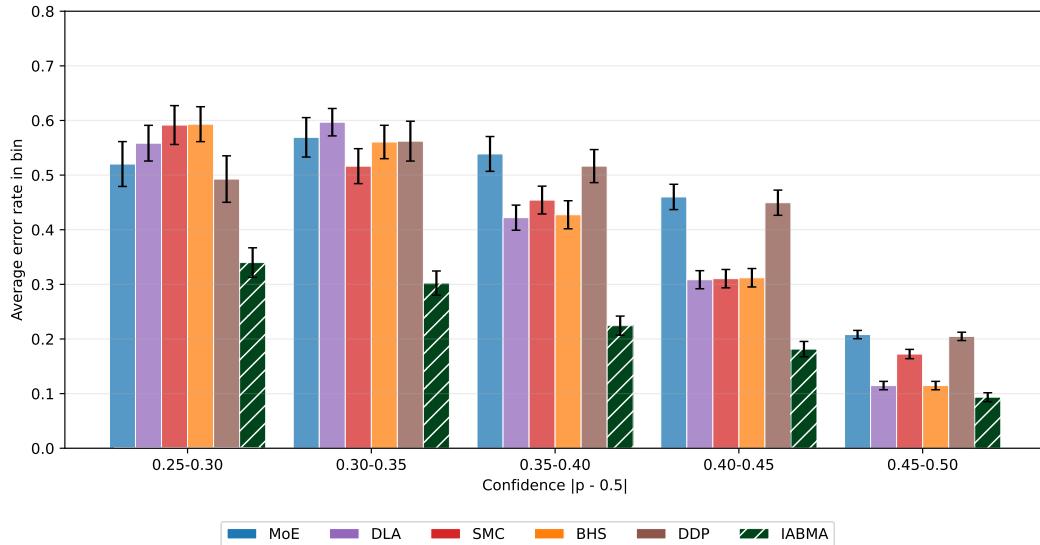


Figure 8: Calibration across confidence bins in credit-card fraud prediction

B.5 UCI BENCHMARK DATASETS

Results are reported in Table 8, and p-values for one-sided t-test results with Benjamini–Hochberg correction for multiple comparisons (accuracy for classification, RMSE for regression) in Table 9.

B.6 ANALYSIS OF THE EFFECT OF THE ADAPTIVE PRIOR

IA-BMA places an input-dependent prior over selectors g . Therefore, variability in our model arises not only from variability of $g(x)$ as in other adaptive methods, but additionally from the adaptivity

918
919
920

Table 8: UCI benchmarks: mean (sd) across runs.

Dataset	Metric	Best single	Uniform Avg.	Freq Avg.	BMA	MoE	DLA	SMC	BHS	DDP	IA-BMA
Bike-sharing	R2 (\uparrow)	0.706 (0.022)	0.752 (0.010)	0.773 (0.012)	0.774 (0.014)	0.706 (0.022)	0.781 (0.013)	0.756 (0.010)	0.752 (0.010)	0.753 (0.013)	0.794 (0.010)
	RMSE (\downarrow)	0.582 (0.033)	0.491 (0.021)	0.448 (0.020)	0.447 (0.021)	0.581 (0.033)	0.446 (0.020)	0.483 (0.020)	0.491 (0.021)	0.479 (0.022)	0.433 (0.018)
Cal.-housing	R2 (\uparrow)	0.772 (0.022)	0.840 (0.018)	0.840 (0.017)	0.812 (0.017)	0.778 (0.024)	0.840 (0.018)	0.817 (0.066)	0.840 (0.018)	0.805 (0.031)	0.844 (0.014)
	RMSE (\downarrow)	0.036 (0.004)	0.025 (0.003)	0.025 (0.003)	0.029 (0.003)	0.035 (0.004)	0.025 (0.003)	0.029 (0.010)	0.025 (0.003)	0.031 (0.005)	0.024 (0.003)
Credit-g	Accuracy (\uparrow)	0.634 (0.036)	0.676 (0.029)	0.662 (0.038)	0.648 (0.036)	0.624 (0.036)	0.668 (0.039)	0.626 (0.046)	0.682 (0.039)	0.655 (0.040)	0.684 (0.047)
	ECE (\downarrow)	0.260 (0.034)	0.172 (0.022)	0.169 (0.020)	0.174 (0.023)	0.296 (0.035)	0.173 (0.025)	0.222 (0.038)	0.176 (0.25)	0.257 (0.031)	0.175 (0.020)
Spambase	Accuracy (\uparrow)	0.699 (0.110)	0.702 (0.094)	0.738 (0.044)	0.760 (0.024)	0.760 (0.035)	0.729 (0.052)	0.757 (0.032)	0.646 (0.132)	0.754 (0.064)	0.764 (0.032)
	ECE (\downarrow)	0.114 (0.022)	0.163 (0.049)	0.148 (0.042)	0.169 (0.018)	0.095 (0.034)	0.171 (0.051)	0.222 (0.023)	0.180 (0.061)	0.149 (0.042)	0.146 (0.025)

933
934

Table 9: Paired t-test p-values vs. IA-BMA on UCI benchmarks.

Experiment	BMA	MoE	DLA	SMC	BHS
Credit-g	0.104	< 0.01	0.338	< 0.01	0.758
Spambase	0.349	0.380	0.019	0.349	0.016
Bike-sharing	0.316	< 0.01	1.000	< 0.01	< 0.01
California-housing	< 0.01	< 0.01	0.153	0.153	0.153

941
942

943 of the prior itself. To isolate the contribution of this adaptive prior, we evaluate our method under a
944 uniform prior and compare the resulting behavior.

945
946
947

The results below (Tables 10 and 11) show that without the adaptive prior, our method still outperforms other methods in most cases, but with a smaller margin.

948

Table 10: Impact of the input–adaptive prior on RMSE across regression tasks

Experiment	Best-single	Uniform Avg	Freq Avg	BMA	MoE	DLA	SMC	BHS	DDP	IA-BMA	IA-BMA Uniform
PRISM	1.927	1.870	1.853	1.860	1.856	1.861	1.897	1.870	1.863	1.842	1.853
Bike-Sharing	0.582	0.491	0.448	0.447	0.581	0.433	0.483	0.491	0.479	0.446	1.311
California-Housing	0.036	0.025	0.025	0.029	0.035	0.025	0.029	0.025	0.031	0.024	0.019

955

956

Table 11: Impact of the input–adaptive prior on accuracy across classification tasks

Experiment	Best-single	Uniform Avg	Freq Avg	BMA	MoE	DLA	SMC	BHS	DDP	IA-BMA	IA-BMA Ablation
Fraud small	0.657	0.670	0.669	0.667	0.713	0.689	0.653	0.670	0.695	0.736	0.713
Synthetic Binary	0.797	0.759	0.774	0.790	0.807	0.798	0.807	0.798	0.804	0.813	0.813
Credit-G	0.634	0.684	0.662	0.648	0.624	0.668	0.626	0.682	0.655	0.676	0.575
Spambase	0.699	0.702	0.738	0.760	0.760	0.729	0.757	0.646	0.754	0.764	0.739

957
958
959

C EXPERIMENTAL DETAILS

960
961
962

C.1 LINEAR–CIRCULAR HYBRID CLASSIFICATION

963
964

C.1.1 DATA AND PROCESSING

965
966
967
968
969
970
971

We generated a two-dimensional binary dataset with two subpopulations governed by different decision rules. For the *linear* subpopulation, we drew $n_{\text{lin}} = n_{\text{train}}/2$ training points from a Gaussian

972 cloud centered at $(-t, 0)$ (with $t = 1$),
 973

$$974 \quad X^{(\text{lin,train})} \sim \mathcal{N}((-t, 0), 0.1 I_2),$$

975 and assigned labels by a linear rule $y = \mathbb{1}\{x_1 + x_2 > -t\}$. For the *circular* subpopulation, we drew
 976 $n_{\text{circ}} = n_{\text{train}} - n_{\text{lin}}$ points on a ring around $(t, 0)$ by sampling $\theta \sim \text{Unif}(0, 2\pi)$ and $r = \sqrt{U}$ with
 977 $U \sim \text{Unif}(0, 2)$, and set

$$978 \quad X^{(\text{circ})} = (t, 0) + (r \cos \theta, r \sin \theta), \quad y = \mathbb{1}\{r < 1\}.$$

980 We used $n_{\text{train}} = 1,000$ and $n_{\text{test}} = 500$; the train/test splits were generated independently.
 981

982 Only the two coordinates (x_1, x_2) were provided as features. A region indicator $z \in$
 983 $\{0 \text{ (linear), } 1 \text{ (circular)}\}$ was recorded for analysis but was not used during training.

984 This dataset naturally forms three regimes: (i) linearly separable points, (ii) circularly separable
 985 points, (iii) an ambiguous overlap region where neither boundary dominates.

986 987 C.1.2 CANDIDATE PREDICTORS

988 All averaging methods were evaluated on the same 3 base classifiers:

- 990 1. *Polynomial logistic regression (degrees 2 and 3)*. We fit logistic regression with polynomial
 991 features of degree $d \in \{2, 3\}$ (no bias term in the expansion).
- 992 2. *Linear Discriminant Analysis (LDA)*. A linear generative classifier fit on the raw coordinates,
 993 providing a single linear boundary.
- 994 3. *Soft-circle classifiers (two instances)*. Each instance modeled the positive-class probability
 995 as a logistic function of radial distance to a fixed center,

$$996 \quad p_{\text{circle}}(y=1 | x) = \sigma(\gamma(R - \|x - c\|)), \quad c = (0.8t, 0), \quad R = 1.0, \quad \gamma = 5.0,$$

998 yielding smooth circular decision regions around $(t, 0)$.

999 We include two instances of each predictor to allow the averaging procedure to allocate
 1000 weight among near-identical experts.

1001 1002 C.2 SCALE AND SENSITIVITY ANALYSIS

1003 We evaluate IABMA with respect to four factors: (i) scalability in data dimension, (ii) the number
 1004 of informative (non-noise) features, (iii) the number of predictors, and (iv) the similarity between
 1005 predictors.

1006 1007 C.2.1 DATA

1008 We generate inputs $x \in \mathbb{R}^d$ by sampling each coordinate independently from 0, 1 with probability
 1009 1/2. With probability 1/2 we flip the sign of the entire vector, creating two regimes: positive and
 1010 negative. Labels y are assigned by majority vote over k designated coordinates. The identity of these
 1011 coordinates differs across regimes, and we control the fraction of shared coordinates ρ to control
 1012 heteroskedasticity. Independent Gaussian noise $\mathcal{N}(0, 0.1)$ is then added to each input, identically
 1013 for training and test sets.

1014 1015 C.2.2 CANDIDATE PREDICTORS

1016 We form a pool of m logistic predictors. Two *specialists* are trained exclusively on one regime
 1017 each, performing well on that regime, and poorly on the other. The remaining $m - 3$ *generalists* are
 1018 trained on mixtures of the two regimes, yielding weaker per-regime accuracy; varying the mixture
 1019 proportion p controls their similarity.

1020 Finally, we include a two-layer MLP (32 and 16 units, ReLU activations) trained on combined
 1021 balanced data. It is designed to exceed all generalists on both regimes, but remains inferior to the
 1022 specialists.

1023 For any input x , the optimal ensemble behavior is to select the specialist corresponding to the sign
 1024 of x , and never to select one of the suboptimal generalists or the overall-best predictor.

1026 We set our baseline experiment parameters as $d = 100, k = 30, \rho = 0.0, m = 11$. We then vary
 1027 each.
 1028

1029

1030 C.3 PRISM CANCER EXPERIMENT

1031

1032 C.3.1 DATA AND PROCESSING

1033

1034 We used the publicly available PRISM cancer drug response dataset. The primary data³ was com-
 1035 bined with an RNA-seq expression matrix⁴, cell-line metadata⁵, and tissue labels⁶. All files are
 1036 available from https://depmap.org/portal/data_page/.

1037 The PRISM file reports drug–cell line responses with identifiers of the form ACH-#. We normalized
 1038 all identifiers to the canonical zero-padded format (ACH-XXXXXX). Non-Continuous entries and
 1039 all observations lacking a primary cancer site were excluded. Responses correspond to log-fold
 1040 changes (LFC), clipped to the range $[-6, 6]$, and the prediction target was defined as $y = -v$, where
 1041 v is the clipped LFC.

1042 We focused on the 40 drugs with the greatest site-level heterogeneity. Specifically, we computed the
 1043 between-site variance of y and retained compounds observed in at least 3 distinct sites, with at least
 1044 5 samples per site and at least 40 samples overall. A minimum per-site coverage threshold of 20
 1045 samples was enforced. To avoid domination by a few large tissues, we capped each site at $1.1 \times s$,
 1046 where s is its sample size. This yielded approximately 18,460 drug–cell line pairs (slight variation
 1047 across random splits), of which 80% were used for training and 20% for testing.

1048 Gene expression features were restricted to the 100 highest-variance genes. Each gene was stan-
 1049 dardized to mean 0 and variance 1 based on training statistics. The final feature matrix consisted of
 1050 standardized gene expression values and a categorical compound indicator.

1051 The full processing code was submitted with this paper and will be released publicly upon accep-
 1052 tance.
 1053

1054

1055 C.3.2 CANDIDATE PREDICTORS

1056

1057 All averaging methods were evaluated on averaging the same four regression models with repro-
 1058 cessing pipelines tailored per model:

1059

1. *Ridge regression (ℓ_2 regularized linear model)*. Gene features were imputed (median),
 1060 standardized to zero mean and unit variance, and combined with a dense one-hot encoding
 1061 of the compound identity.
2. *Histogram-based Gradient Boosting regressor (HGB)*. Tree-based model trained on raw
 1064 gene values (median imputation only) together with a sparse one-hot encoding of the com-
 1065 pound identity.
3. *XGBoost regressor (XGB)*. Gradient-boosted decision trees with squared-error objective,
 1068 trained using the same pre-processing as HGB. We used 400 estimators, learning rate 0.05,
 1069 maximum depth 8, subsample ratio 0.9, and column subsample ratio 0.8, with ℓ_1 and ℓ_2
 1070 regularization.
4. *Multi-layer perceptron (MLP)*. A feed-forward neural network with hidden layers of size
 1073 (128, 64), ReLU activations, learning rate 10^{-3} , batch size 64, and early stopping based on
 1074 a 10% validation split. Inputs were preprocessed as for Ridge (dense, imputed, standardized
 1075 gene features and dense one-hot drug encoding).

1076

³Repurposing_Public_23Q2_Extended_Primary_Data_Matrix.csv

1077

⁴OmicsExpressionProteinCodingGenesTPMLLog1.csv

1078

⁵Cell_lines_annotations_20181226.txt

1079

⁶Model.csv

1080 C.4 IEEE-CIS FRAUD EXPERIMENT
10811082 C.4.1 DATA AND PROCESSING
10831084 We used the IEEE-CIS credit-card fraud dataset, available at <https://www.kaggle.com/c/ieee-fraud-detection/data>.
10851086 We removed rows with missing target (`isFraud`) and features with more than 50% missing values.
1087 To limit explosion in feature dimension, infrequent categories were grouped into a shared rare
1088 category.1089 In each repetition 80% of the data was used for training and 20% for testing. The training data
1090 was then reduced to obtained class balance, while in test data class imbalance was maintained. To
1091 reduced covariate shift in the train-test split we stratified jointly on (`ProductCD`, `card4`) crossed
1092 with per-row missingness bins and `TransactionAmt` quantile bins, with a fallback “RARE”
1093 bucket for very small strata. This procedure yielded a stable empirical mix of products, card net-
1094 works, and spending levels. Specifically, to control the empirical mix of products, card networks,
1095 and spending levels we stratified jointly on (`ProductCD`, `card4`) crossed with per-row missing-
1096 ness bins and `TransactionAmt` quantile bins.1097 Continuous features were median-imputed and where appropriate, standardized to zero mean and
1098 unit variance. Categorical features were imputed to the most frequent level and one-hot encoded,
1099 with infrequent categories pooled into a rare-level. Class imbalance was addressed within each
1100 classifier as noted below.1101
1102 C.4.2 CANDIDATE PREDICTORS
1103

1104 All averaging methods were evaluated over the same following base classifiers.

1105 1. *Logistic Regression (ℓ_1 -penalized)*. We fit a penalized logistic model to the processed fea-
1106 ture set, using an ℓ_1 penalty with strength to encourage sparsity and robustness to correlated
1107 predictors. We used a saga solver, ℓ_1 penalty with regularization strength of 0.05, maximal
1108 number of iterations as 4000, and tolerance of 10^{-3} .
1109 2. *XGBoost (XGB)*. We trained a gradient-boosted ensemble of shallow decision trees using
1110 histogram-based splits and early stopping. Depth, learning rate, and number of estimators
1111 were selected via a held-out validation set. Hyper parameters were set as maximal bin of
1112 256, 300 estimators, maximal depth of 5, learning rate 0.1, row subsampling of 0.3, feature
1113 subsampling of 0.7, and ℓ_2 penalty with strength 1.0.
1114 3. *Histogram-based Gradient Boosting (HGB)*. We train boosted trees with a histogram grow
1115 policy, subsampling of observations and features, and ℓ_2 regularization. Class imbalance
1116 was addressed via the standard positive-class weight $\frac{n_{\text{neg}}}{n_{\text{pos}}}$, estimated from the training ex-
1117 amples. Hyperparameters (learning rate, depth, estimators, subsampling ratios) were fixed
1118 based on validation performance and kept constant across comparisons. Hyperparameters
1119 were set to maximal depth of 4, learning rate 0.07, and ℓ_2 regularization with strength 0.5,
1120 and at most 350 iterations.
1121 4. *Multi-layer perceptron (MLP)*. We used a feed-forward network with two hidden layers of
1122 sizes 384, 192 and ReLU activations, trained with weight decay and early stopping on a
1123 validation split. Weight decay was set to $\alpha = 3 \cdot 10^{-3}$, batch size 512, adaptive learning
1124 rate with initial value of 10^{-3} , early stopping with validation fraction 0.12 and no change
1125 for 12 iterations, maximal number of iterations as 300, and tolerance 10^{-4} .1126
1127 C.5 UCI EXPERIMENTS
11281129 C.5.1 DATA AND PROCESSING
11301131 We evaluated IA-BMA on standard UCI tasks retrieved from OpenML. We chose datasets with
1132 relatively large number of observations and features. For *classification*, we used `spambase` (target:
1133 `class`) and `credit-g` (target: `class`). For *regression*, we used `bike-sharing` (target: `cnt`)
and `california-housing` (target: `MedHouseVal`).

1134 We replaces common “unknown” tokens (e.g., ?, NA, NaN, unknown) with missing values, strip-
 1135 ping whitespace on string columns in each dataset, and dropped features whose missing rate ex-
 1136 ceeded 40%.

1137 We used an 80%/20% train-test split in each repetition. For classification, we performed stratified
 1138 sampling on the label to preserve class proportions in the test set, and then balanced only the training
 1139 split by downampling the majority class to the minority size. For regression, we created an approx-
 1140 imately balanced split by binning the continuous target into 12 quantile bins and stratifying on those
 1141 bins. All pre-processing statistics (imputation, scaling, and one- hot vocabularies) were computed
 1142 on the training partition and applied unchanged to the test data.

1143 To encourage diversity among base models, we formed several heterogeneous, partially overlap-
 1144 ping *feature bundles* and trained each model on a bundle tailored to its strengths. Bundles were
 1145 constructed from the training data as follows:

- 1147 • **B1:** up to 3 Continuous features with highest absolute Pearson correlation with the target
 1148 (continuous median-imputed for this computation).
- 1149 • **B2:** up to 3 highest-variance Continuous features.
- 1150 • **B3:** up to 3 categorical features with highest cardinality.
- 1151 • **B4:** up to 5 remaining low-cardinality categorical variables.
- 1152 • **B5:** all categorical features.
- 1153 • **B6:** all Continuous features.
- 1154 • **B7:** the union of **B1** and **B3**.

1155 Continuous features in non-tree models were median-imputed and standardized. Categorical fea-
 1156 tures were imputed to the most frequent level and one-hot encoded with a minimum frequency
 1157 threshold of 10 to pool rare levels; unknown categories at test time were ignored.

1162 C.5.2 CANDIDATE PREDICTORS

1163 Across all datasets we trained a common set of base learners. For classification: Multinomial Naive
 1164 Bayes, k -NN ($k = 3$), Random Forest, Extra Trees, and a linear SVM. For regression: Ridge
 1165 ($\alpha=0.05$), Lasso ($\alpha=0.05$), k -NN ($k=3$, distance-weighted), Random Forest, and Extra-Trees. To
 1166 encourage diversity, each model was trained on a subset of features (“feature bundles”).

1168 D IMPLEMENTATION DETAILS

1169 In all our experiments the posterior network for IA-BMA and the gating network for MoE were
 1170 implemented as feed-forward neural networks with hidden layers of size (64, 32, 16) and ReLU
 1171 activations. We used Adam optimizer for MoE and IA-BMA across all experiments.

1172 Hyperparameters for our method and all baselines were tuned via binary search to maximize average
 1173 performance (accuracy for classification, RMSE for regression) on a held-out repetition excluded
 1174 from the analysis. The selected values and running times by experiment and method are reported
 1175 below.

1179 D.1 HYPERPARAMETERS OF ENSEMBLE METHODS

1182 Table 12: Hyperparameters of Mixture-of-Experts

1183 Hyperparameter	1184 Synthetic	1185 PRISM (Cancer)	1186 Fraud (IEEE-CIS)	1187 UCI
1188 Learning rate	10^{-3}	10^{-3}	10^{-3}	10^{-3}
1189 Batch size	64	128	64	64
1190 Epochs	10	20	10	10

1188

1189

Table 13: Hyperparameters of Dynamic Local Accuracy (DLA).

1190

1191

1192

1193

1194

1195

1196

Table 14: Synthetic Mixture of Experts (SMC).

1197

1198

1199

1200

1201

1202

1203

1204

1205

Table 15: Bayesian Hierarchical Stacking (BHS).

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

Table 16: Input Adaptive Bayesian Model Averaging (IA-BMA)

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Hyperparameter	Synthetic	PRISM (Cancer)	Fraud (IEEE-CIS)	UCI
Neighborhood size k	50	50	50	50
Temperature T	0.8	1.0	1.0	1.0
Smoothing α	1.0	1.0	1.0	1.0

Hyperparameter	Synthetic	PRISM (Cancer)	Fraud (IEEE-CIS)	UCI
Confident-cover threshold	0.6	0.6	0.6	0.6
Cover quantile (reg.)	–	0.30	–	0.30
Min coverage per model	20	20	20	20
Cov. reg. (reg. mix)	0.9 (Gaussian scores)	0.9	0.9	0.7

Hyperparameter	Synthetic	PRISM (Cancer)	Fraud (IEEE-CIS)	UCI
Temperature T	1.0	1.0	1.0	1.0
Prior weight	1.0	1.0	1.0	1.0
Slab scale s_0	5.0	5.0	5.0	5.0
Learning rate	5×10^{-3}	5×10^{-3}	5×10^{-3}	10^{-3}
Batch size	64	128	64	64
Epochs	10	20	10	10

Hyperparameter	Synthetic	PRISM (Cancer)	Fraud (IEEE-CIS)
Learning rate	10^{-3}	10^{-3}	10^{-3}
Batch size	64	128	64
Epochs	10	30	10
KL weight λ_{KL}	0.05	0.2	0.2

Table 17: IA-BMA (PosteriorNet) hyperparameters per UCI dataset.

Hyperparameter	Spambase (clf)	Credit-g (clf)	Bike-sharing (reg)	Cal housing (reg)
Learning rate	5×10^{-3}	5×10^{-3}	1×10^{-3}	1×10^{-3}
Batch size	64	64	64	64
Epochs	10	10	10	10
KL weight λ_{KL}	0.1	0.1	0.8	3.0

E RUNTIMES

Overall run-times per method are reported in Table 18. While computational cost scales with number of predictors and data samples, across all experiments run-times of IA-BMA remain consistent with those of MoE and DDP with the same network architectures.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259

Table 18: Method runtimes (seconds): mean (sd) across 10 repetitions.

Experiment	MoE	DLA	SMC	BHS	DPP	IA-BMA
Cancer	147.359 (5.282)	22.269 (0.454)	0.072 (0.114)	28.572 (1.167)	271.320 (5.129)	252.985 (5.571)
Fraud	439.502 (129.487)	8.246 (1.719)	688.473 (155.629)	16.622 (3.139)	502.854 (12.831)	461.312 (121.168)
Simulation	5.664 (0.104)	0.218 (0.008)	0.079 (0.004)	1.040 (0.079)	6.381 (0.075)	5.889 (0.038)
Bike-Sharing	25.080 (3.780)	0.868 (0.179)	0.007 (0.001)	21.364 (1.063)	31.889 (3.971)	29.663 (4.094)
Cal. housing	8.510 (0.987)	0.350 (0.041)	0.006 (0.001)	7.281 (0.324)	10.785 (1.122)	9.815 (1.029)
Credit-g	3.178 (0.049)	0.439 (0.017)	0.174 (0.007)	1.184 (0.148)	3.345 (0.071)	3.345 (0.048)
Spambase	16.420 (0.287)	0.642 (0.025)	0.822 (0.159)	1.781 (0.147)	20.831 (5.367)	18.651 (5.122)
Scale ($m=10, d=100$)	40.977 (3.83)	1.794 (0.16)	28.174 (9.61)	3.009 (0.26)	48.898 (3.72)	40.333 (4.12)
Scale ($m=10, d=300$)	40.517 (3.84)	4.158 (0.17)	85.922 (8.65)	2.501 (0.21)	50.541 (3.68)	40.650 (3.21)
Scale ($m=100, d=100$)	41.638 (3.36)	2.169 (0.75)	254.196 (18.17)	2.612 (0.23)	51.914 (3.83)	45.433 (3.55)

1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295