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ABSTRACT

This paper studies prediction with multiple candidate models, where the goal is
to combine their outputs. This task is especially challenging in heterogeneous
settings, where different models may be better suited to different inputs. We pro-
pose input adaptive Bayesian Model Averaging (IA-BMA), a Bayesian method
that assigns model weights conditional on the input. IA-BMA employs an input
adaptive prior, and yields a posterior distribution that adapts to each prediction,
which we estimate with amortized variational inference. We derive formal guar-
antees for its performance, relative to any single predictor selected per input. We
evaluate IA-BMA across regression and classification tasks, studying data from
personalized cancer treatment, credit-card fraud detection, and UCI datasets. TA-
BMA consistently delivers more accurate and better-calibrated predictions than
both non-adaptive baselines and existing adaptive methods.

1 INTRODUCTION

Many applications require adaptive predictions. In personalized medicine, different patients respond
differently to the same treatment (Mahajan et al., 2023); in fairness-sensitive domains, predictions
need to adapt to subpopulations (Wang et al., 2019; (Grother et al. 2019); and in fraud detection,
behavioral data is often heteroskedastic and varies substantially across inputs (Varmedja et al.,[2019).

When the data is complex, selecting a single model that performs well across all inputs is challeng-
ing. This motivates model averaging (MA), which produces an ensemble of models. This idea dates
back at least to the 1960s (see, e.g., (Clemenl [1989)) for a historical perspective).

We denote data points by x € X, labels by y € ), and the space of probability distributions on
labels by (). MA combines the predictive distributions of m models {f; : X — P(Y)}72 into
a weighted ensemble, p,(y | z) = ZT=1 a; fi(y | =), with weights a; > 0 (often constrained to
sum to one). MA accounts for the possibility that multiple models can provide plausible explanations
of the data.

In classical MA, the same weights «, ..., au, are used for all inputs . But in practice, different
values of the input x might call for different predictive models. This motivates adaptive averaging,
where the weights «; depend on z:

a: X — A™TH = az) = (a1 (x),...,an(z)). (1)

The result is an adaptive weighted prediction,
aly | @) Zaj ) fi(y | ). )

This model is also known as a mixture of experts (Jacobs et al.,[1991;Jordan & Jacobs,|1994)), where
the adaptive weights «;(z) are fit to maximize the predictive log likelihood of the data.

In this paper, we take a Bayesian perspective. We assume that the set of predictors F =
{f1,.-., fm} is fixed, and model the selection of a predictor as a random process. Our model
constructs a random selector g : X — {e1,...,en} where {e;}7", denote m indicator vectors,
ie., g(x) = e; selects predictor f;. Moreover, the prior on g itself depends on the inputs . There-
fore, in our model, adaptivity arises not only from the variability of g(x) across inputs, but also from
allowing its prior to vary with z.
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Under this model, MA is a natural consequence of the posterior predictive distribution. Consider a
dataset D = {x;,y;}~,. The posterior predictive distribution for a new input x is

p(y|x,D):ij(y|a:)p(g(x)=€j |JT,D), 3)

where p(g(x) = e; | x, D) is a data dependent posterior that incorporates both training inputs and
labels. Eq. is an ensemble of candidate models, with weights o (x) equal to the posterior over g:

aj(x) = p(g(x) = ¢; | z,D). 4)

Unlike maximum likelihood approaches to MoE, this posterior captures the uncertainty over which
predictor is most plausible for each input z.

Below, we first analyze the theoretical advantages of this adaptive Bayesian model averaging frame-
work and derive finite-sample guarantees that compare its performance to that of any single pre-
dictor selected per input (Section [2.1). We then develop input adaptive Bayesian Model Averaging
(IA-BMA), by (i) constructing an input adaptive prior, following |Slavutsky & Blei| (2025)), and (ii)
employing amortized variational inference to approximate the posterior (Section[3). We evaluate IA-
BMA across regression and classification benchmarks (Section ), and show that IA-BMA achieves
substantial gains in both accuracy and calibration compared to existing adaptive, and non-adaptive
strategies.

1.1 RELATED WORK

MA is regarded as the machine learning analogue of the “Condorcet’s jury” theorem (Mennis,|2006),
leveraging the “wisdom of the crowd” to mitigate the inherent uncertainty in model selection. Thus,
MA is often used when there are alternative, potentially overlapping hypotheses and no clear jus-
tification for selecting a single preferred model. Applications include ecological research (Wintle
et al., 2003} [Thuiller, 2004} Richards, |2005; [Dormann et al., 2008} |[Lauzeral et al., 2015; [Zheng
et al.l 2024) and medicine (Jiang et al., [2021; Nanglia et al., |2022; [Mahajan et al.l 2023). More
broadly, MA has been adopted in a wide range of machine learning tasks (e.g., |Fernandez-Delgado
et al. (2014), Rokach! (2010)).

As a form of model combination, MA is closely related to other ensemble techniques such as bagging
(Breiman, |1996)) and boosting (Freund) [1995). It is a variant of stacking procedure (Wolpert, |1992)),
in which outputs of base learners are combined to produce the final prediction.

MA has been shown to reduce prediction errors beyond those of the best individual component
model (Dormann et al., 2018} |Peng & Yang, [2022) and to mitigate overfitting (Dietterich et al.
2002; |Polikar, [2006). In recent years, extensive surveys have reviewed MA (Kulkarni & Sinhal
2013; [Wozniak et al.l [2014; Gomes et al., 2017} |Gonzalez et al., [2020; [Sagi & Rokach, 2018} |Wu
& Levinson, 2021), with some focusing specifically on decision trees (Rokach, 2016) or neural
networks (Ganaie et al., [2022).

A Bayesian method for MA was introduced by [Waterhouse et al.| (1995), who place a prior directly
on the averaging weights. In contrast, we reinterpret MA as a problem of random model selection,
leading to dynamic model selection in which the choice of model adapts to the specific input. Ear-
lier work on dynamic model selection includes |Cao et al.| (1995)); (Giacinto & Rolil (1999); |Gunes
et al.| (2003); Didaci et al.| (2005); Didaci & Giacinto| (2004). However, these approaches focus on
selecting a single model for each instance, rather than assigning instance-specific weights to average
predictions across multiple models.

Input adaptive model averaging methods: Few methods assign input-dependent weights. These
date back to Mixture of Experts (MoE) (Jacobs et al.,|[1991), where a gating network maps the input
x to weights a; (), estimated by maxmizing the induced likelihood. Classical MoE variants jointly
train both experts and gates, and an extensive literature explores different expert classes and gating
architectures (see (Yuksel et al.,[2012) for a review). In our setting, however, we consider the MoE
variant in which the gating network is applied on top of pre-trained experts.

Rasmussen & Ghahramani| (2001)) extended this framework by using Gaussian Processes (GPs) as
base models, providing nonparametric flexibility. They adopt a Bayesian perspective with a Dirichlet
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Process (DP) prior, yielding an infinite mixture. However, here weights and base models are learned
jointly, and thus only a single family of base predictors is considered.

Although these methods often outperform standard model averaging, maximum-likelihood—based
assignment tends to concentrate probability mass on the predictor that is most confident about the
observed outcome y, frequently resulting in overconfident predictions (Freund & Schapire, [1997;
Guo et al,[2017). Several approaches proposed alternative strategies for weight assignment.

'Woods et al.|(1997) proposed a dynamic scheme based on local accuracy estimates. For a test input
x, its neighborhood is identified (typically via k-nearest neighbors), and each classifier’s perfor-
mance in this region is summarized as a local accuracy score. The classifier with the highest score
is then selected to predict x.

Similarly, Chan & van der Schaar| (2022) proposed an approach that assigns higher weight to mod-
els whose training domains better cover a test instance. Inputs are mapped into a learned low-
dimensional space where models with similar predictions are closer together, and weights are set
via kernel density estimation. Unlike |Woods et al.| (1997), where similarity is predefined, here it
is learned from data. Motivated by [Tenzer et al.| (2022), the method assumes that models making
random errors on an input are unlikely to agree.

Perhaps most relevant to our work is Bayesian hierarchical stacking (BHS) (Yao et al.}[2022)), which
places priors on logit weights, and models them with hierarchical low-rank linear functions. The
parameters are then estimated by maximizing the expected log predictive density.

Thus, prior work on adaptive model averaging has focused predominantly on methods targeting
frequentist objectives, with relatively few Bayesian formulations. In contrast to previous approaches,
our model assumes a fully Bayesian setting in which the selector itself is random and, crucially, is
defined locally relative to each input z. This yields an input-dependent prior p(g | «) rather than
a global prior p(g). In turn, this prior induces an adaptive posterior that corresponds exactly to the
Bayes-optimal weights, providing a principled approach for adaptive model averaging.

2  PROBABILISTIC FORMULATION OF ADAPTIVE MODEL AVERAGING

We cast adaptive model averaging as a probabilistic model selection. To reflect that some models
may be better suited for different inputs, we assume a probabilistic model in which the selection
function g is treated as a random input-dependent variable. For a training set D = {(z;,y;)} 4,
and a new input x, we assume the data generating process

iid
zi,x ~ p(x), (5)
g Np(g | x;xl:n)a (6)
yi ~pWi | zi,g9), y~ply |, g). (7

We defer the precise specification of the adaptive prior p(g | =, z1.,) to Section

The predictive distribution for y given a new input x and the training data is then

p(ylw,D)=/p(y\w,D7g)p(glwﬂ?) du(g) =/p(y\w7g)p(g|w,7>)du(g), (8)

where p(g | =,D) is a posterior distribution on the space of functionsE] G ={g: X >
{61, ey em}}

A draw from the posterior ¢ ~ p(g | =, D) induces a random index .J(z), defined by the relation
g(x) = ej(y). Using this index, we can rewrite equationas

p(y |z, D) =/p(y|x,g)p(g | #,D) du(g) =ij(y | ) p(J(x) =j | =, D). 9

A formal proof of this equality is outlined in Appendix

"Formally, p(g | =, D) is a density w.r.t some reference measure £ on a space of measurable functions G.
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Under our model, the predictive distribution is a mixture of the candidate predictions f;(y | )
weighted by the posterior probabilities p(J(x) = j | x,D). In other words, the input adaptive
weights o (x) arise directly from the probabilistic formulation itself, and they are precisely the
posterior probabilities of each model being the generator at input .

A central difficulty, of course, is that the true posterior is unknown. In Section [3} we introduce a
variational approximation to p(J(z) = j | D;, x) that preserves explicit dependence on both x and
D. Before presenting this approximation, we first analyze the performance guarantees that arise
when the averaging weights are set to the true posterior probabilities p(J(z) = j | x, D).

2.1 LIKELIHOOD GUARANTEES

So far we have seen that the posterior probabilities p(J(z) = j | =, D) arise naturally as input
adaptive weights under our model. In particular, they are the Bayes-optimal weights, as they recover
the true predictive distribution.

We now show that this choice also comes with performance guarantees: the posterior-weights pre-
dictor not only reflects the correct probabilistic formulation, but in expectation achieves likelihood
performance competitive with any input-specific single-model selector. The next theorem formalizes
this result (for proof see Appendix [A.2)).

Theorem 2.1. Denote D; = {(x,y;)}i_;, and consider the posterior weights predictor ;35,3 ) assign-
ing a;j(x;D;) = p(J(x) = j | D, x) to the j-th predictor f;. Assume that E[|log f;(Y | X)|] < o0
forall f; € F. Then, for any measurable selector j* : X — {1,...,m} and any n > 1,

el ZE {logp y1 | x“'Difl)} >E [log fj *(z) y ‘ iL’ ZE |:10ga( i) ( 2)] , (10)

where the expectations are taken w.r.t the population distribution (x;,y;) ~ p(z,y).

Thus, the posterior weights predictor can match any per-input selector (i.e., a rule that may pick a
different j for different x), up to a term depending on the gating weights assigned to the chosen
model at each x. Put plainly, the posterior mean performs nearly as well as if we could select the
best expert separately for every x.

Concretely, for the selector that picks the most probable model, j()(z) € arg MaxX| <<, ag-i) (x),
the penalty becomes + Zl 1 E|log max; o ol )(fz):| , which vanishes as the posterior sharpens, i.e.,

when max; ag- )(2;) — 1 in probability.

3 TA-BMA: INPUT ADAPTIVE BAYESIAN MODEL AVERAGING

Our goal is to develop a method for estimating this posterior distribution over models. By doing so,
we obtain an averaging scheme that is consistent with both the training data D and the specific input
x, thereby approximating the true predictive distribution that we ultimately aim to recover.

We begin by formulating the modeling assumptions for an adaptive prior that is conditioned jointly
on the training covariates and a new input. Building on this prior, we then develop a variational
inference method to approximate the resulting posterior.

3.1 ADAPTIVE PRIOR

Based on the adaptive prior introduced in (Slavutsky & Blei, [2025), we posit a prior that encodes
the plausibility of each model conditional on both the training covariate z;., and a new input = at
which prediction is sought. This prior is defined through an energy-based formulation.
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Specifically, for a predictor f; we consider the prior induced by the negative energy function

E(J = jixip, 1) = /Zlogp(ylxufj)+10gp(y|a:,fj) dy (11
=1
1
p(J :j|$1:n7x) = Z(f) exp (E(J :j;xlznax))v (12)

where the normalizing factmﬂis given by Z(f) = >_iL, exp (E(J = j; ¥1:0, @)).

This prior allows beliefs about model plausibility to adapt to the new input x. Unlike a prior defined
solely from the training data, which remains fixed across prediction points, our formulation updates
the relative weight of each model once x is observed. This makes the prior input adaptive, enabling
model selection probabilities to shift dynamically with the prediction covariates. To build intuition,
we next examine a simple analytical example.

Thus, TABMA adds a second layer of adaptivity: the prior itself varies with z, linking each ex-
pert’s prior selection probability to its expected likelihood and propagating this uncertainty into the
posterior.

In section 4] we show that our prior indeed rewards predictors whose likelihood is high locally at z,
and quantify the additional improvement stemming from this prior in Appendix [B.6|

A two-model Bernoulli example Suppose y € {0, 1}, and consider two candidate logistic models

1
p(y | ‘T7fj) O—(ﬂj‘r)7 0(”) 1+€—u’ ( )
with j € 1,2 and slopes 0 < B2 < ;. In this setting, the energy function is given by
n
BE(J = jiwim,x) =Y Y logpy |z )+ Y logp(y|w,f;) (14)

=1 ye{0,1} y€{0,1}

= Zlog (0(Bjzi) (1 —o(Bizi)]) +  log(o(Bjz) [1—a(Bx)]) (15)

=0 =¢;(z)
and the adaptive prior is
exp(Cj + 4;())

J=j|x1pn,2)= ™ (16)
p( J | 1 ) Zk:1 eXp(Ck +€k(x))
Accordingly, the log-odds between the two models is
J=1|z1n,2
log 24 20608 _ (0~ ) 1 (@) — tofe). (17)

p(J =2[ 21, 2)

Thus, the log-odds depend both on the difference between training baselines Cy —C, and the change
induced by conditioning also on the new input x is d, = {1 (z) — 2(z).

Concretely, suppose the baseline difference is fixed at C; — Cy = logh & 1.61, yielding p(J =
1| D) = o(logh) =~ 0.83. Based solely on the training data, the prior thus strongly favors f.
Now consider a new input = 1 with 82 = 1. As f3; increases, the discrepancy |¢1(1) — £o(1)]
grows, and &, shifts the likelihood ratio toward fs. For example, when 3 = 3, the prior shifts to
a mild preference for fi, at 51 = 5 it flips to favor f5, and by 81 = 9 the preference for f; becomes
very strong. These dynamics, along with additional parameter settings for coefficients and baseline
differences, are shown in Figure E}

This analysis highlights the interplay between the baseline preference and the input-specific adjust-
ment introduced by x. It shows that, in extreme cases, even strong baseline beliefs can be overturned
by the adaptive correction at the queried input.

This definition requires integrability of exp (E(J = j; 1., )), and thus we assume that exp(E(J =
J; T1:n,x)) is integrable for each j.
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Figure 1: Illustration of the input adaptive prior. Each panel shows the posterior probabilities p(J =
j | D,x) as functions of z. Top: the baseline log-odds is fixed and (; varies; larger 3 values
increase the influence of x, producing stronger adaptive corrections. Bottom: 31, 2 are fixed while
the baseline log-odds C; — C varies; stronger baselines yield higher prior preference for f;, but
input-specific corrections can still substantially reshape the prior at certain . The marked point
(x = 1) highlights how the adaptive prior shifts the relative model probabilities compared to the
baseline.

Evaluation of the prior: Evaluating the proposed prior requires computing an integral over the
outcome space ), and thus depends on whether the outcome space is discrete or continuous. When
Y is discrete (e.g., in classification problems), the integral reduces to a finite sum over all possible
outcome values. In this case, the evaluation is straightforward and can be computed exactly without
approximation. When ) is continuous, (e.g., in regression problems), the integral cannot typically
be computed in closed form and may even diverge unless we restrict the domain of integration. Thus,
to approximate the prior, as in (Slavutsky & Blei, 2025)), we employ Monte-Carlo integration where
we sample K possible outcome values uniformly from a predefined integration range [Ymin, Ymax)
set to large margin upon observed values in training data, and average the Normal log-likelihood
(centered at the model’s prediction with unit variance) over the K samples.

This procedure introduces no meaningful computational overhead: in classification it reduces to
a simple summation, and in regression we approximate the expectation using K = 64 Monte-
Carlo samples, which we found to be numerically stable in practice. Table[I8|confirms that runtime
remains comparable to Mixture-of-Experts and DDP models using the same architecture.

3.2 AMORTIZED VARIATIONAL POSTERIOR

Equipped with the adaptive prior, we now turn to the estimation of the posterior p(J = j |
1y Y1, ) = p(J = j | D, z), which conditions not only on the covariates = and ., but
also on the training labels y;.,. This, in turn, will enable us to assign input adaptive weights for
model averaging, bringing them closer to the ideal weights that recover the predictive distribution
ply | ).

We do so by fitting variational distributions ¢(f;; ) ~ p(J = j | D, z) parameterized as functions
of the input x. This yields an amortized posterior approximation, which allows us to efficiently
evaluate approximate posteriors at multiple inputs x.

In our case, in the context of a new input z, the true posterior distribution over predictors is Multi-
nomial p(J = j | D,z) = p;(x) for j € {1,...,m}, where each p;(x) > Oand } 7", p;(z) = 1.
Thus, we set the variational family to be the set of all multinomial distributions.

. ={g=(q(J=1;2),....q(J =m;x) € A™ '} (18)
For a given input z, our goal is to minimize the KL divergence

q(J = j;x)

1’I111’1D x)lo - . (19)
min D (ql]p) : ;q 8 7= 1D.3)
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Algorithm 1 IA-BMA: Amortized Posterior Learning (IA-BMA)
1: Inputs: Training data D; predictors { f;}}/L; initialization o; learning rate 7); iterations K.
2: Precompute: Foralli = 1,...,n and predlctor Jj=1,...,m,storelog f;(y; | z;).
3: for k =1to K do
4: fori=1tondo
5 for j = 1tomdo
6: Prior: Compute p(J = jlz_;,z) o exp(E(J = jiz_;, z;))
7.
8

Posterior: Compute ho, _, () = (qo,_,(J = 1;24),...,q0,_, (J =m;x;))
ELBO: Compute

‘ - 90, (J = J5@i)
L(xi; 0x-1) quk (T = Giwa)log fi(yi | )= qo,_, (J = j; 3:) log =2

= p(J =jlo—i, @)
9: end for
10: Update: L£(0—1) < + >, L(xi;01-1)
11:  end for o
12: Update: 0 < 0,1 + ’I]V@E(Qk,ﬂ
13: end for

14: Return: 0 := 0

Note that since the true posterior and the variational family share the same (categorical) form, the
problem is well-specified: the KL depends only on estimating the probabilities P(J = j;z). In
particular, the variational posterior can recover the true posterior exactly, up to limitations stemming
from access to finite data.

3.3 OPTIMIZATION

To minimize the KL divergence in Equation we optimize the evidence lower bound (ELBO)
on the log-likelihood (Kingma & Welling) 2014; Rezende & Mohamed, 2015; Blei et al.| [2017).
We parameterize the variational distribution with a neural network with weights 6, producing
ho(x) = (go(J = 1;),...,90(J = m;x)), and optimize 6 rather than the output directly. Thus,
our objective to fit the amortized posterior is

L(0;z) = Eq, [logp(y | =, f5)] — DKL(anp(Jlxm, z)) (20)

o qo(J = j;z)
x)lo x)] =j;x) - . 21
=2l shw] Zq” SR =y P B

j=1

Note that the expected log-likelihood E,, [logp(y | z, f;)] reduces to a weighted sum, so no sam-
pling is required to evaluate our objective. The complete optimization procedure is summarized in
Algorithm T

Under the Bayesian formulation, the posterior predictive distribution in Eq. [3]yields Bayes-optimal
uncertainty. Any deviation of IA-BMA from this ideal arises only from the variational approxima-
tion—specifically from the expressiveness of the variational family, and quantified by the KL term

in Eq.[19

Weight assignment: After training is complete (see Algorithm , with the estimate 6, for a new
input « we compute (¢;(J = 1;),...,q;(J = m;x)) and assign oj(x) = g4(J = j;x). This
yields a predicted value po (y | 2) = 370 () fi(y | z).

4 EXPERIMENTS

Our method operates on a fixed pool of pre-trained predictors, rather than learning experts jointly.
As aresult, the absolute scale or capacity of each predictor is inconsequential, and methods that rely
on ensambles or require joint training of experts are not comparable. For approaches such as MoE
and DDP, which typically train both experts and gating weights simultaneously, we evaluate variants
that are applied on top of the same pre-trained experts.



Under review as a conference paper at ICLR 2026

Specifically, we compare IABMA against (a) non-adaptive baselines: (i) best single predictor, (ii)
uniform average over predictors, (iii) accuracy-weighted average, and (iv) classical Bayesian model
averaging (BMA); and (b) adaptive methods: (i) Mixture of Experts (MoE) (Jacobs et al., [T9971), (ii)
Dynamic Local Accuracy (DLA) (Woods et al., [1997), (iii) Synthetic Model Combination (SMC)

(Rasmussen & Ghahramani| 2001)), (iv) Bayesian Hierarchical Stacking (BHS) (Yao et al., 2022]),
and (vii) dependent Dirichlet process (DDP) with fixed “atoms” to the pre-trained predictors.

In each experiment we train the candidate predictors, fit the averaging methods on the training set,
and evaluate their predictive distributions on the test set.

We conduct extensive evaluation across (i) two synthetic benchmarks, including scale and sensi-
tivity studies, (ii) two large heteroskedastic real-world tasks (personalized medication and credit
fraud), and (iii) four UCI benchmarks, to verify that adaptivity does not degrade performance in
low-heteroskedastic settings.

Hyperparameters for our method and all baselines were tuned via binary search to maximize av-
erage performance (accuracy for classification, RMSE for regression) on a held-out repetition ex-
cluded from the analysis. The selected values and further implementation details are provided in
Appendix [D} with additional data processing and predictor specifications in Section [C] Code to
reproduce all results is included with the submission and will be released publicly upon acceptance.

4.1 SIMULATIONS

4.1.1 LINEAR—CIRCULAR HYBRID CLASSIFICATION

We evaluate IA-BMA on a two-dimensional binary task composed of two heterogeneous subpopu-
lations. Half of the samples follow a linear decision rule and are drawn from a Gaussian cluster near
(—1,0); the other half lie on a ring around (1, 0) and follow a circular rule y = 1r < 1. We use
Nyrain = 1000, nyee = 500, and train all methods on the raw coordinates (1, x2).

This construction yields three regions: (i) points linearly separable, (ii) points circularly separable,
and (iii) an intermediate overlap where the correct predictor switches. Ideal weighting places mass
on linear models in (i), on circular models in (ii), and mixes softly in (iii).

All methods share the same pool of base predictors: polynomial logistic regression (degree 2 and
3), LDA, and two “soft-circle” classifiers based on radial distance to a learned center. Additional
details are provided in section[C.I]

Results: Figure 2| shows that IA-BMA achieves highest accuracy and lowest ECE compared to all
non-adaptive baselines, as well as all adaptive methods.

Accuracy (1) ECE ()
0.83
3 0.82 0.12
0.81 % g-i;: I
2 0.80 I -
g =
! © §g;3 0 0071 == Baselines
3076 £ 0.06 / WA Competitors
° <075 0.05 1 / wa Ours
0.74 / 0.04 /
- 073 0.034
0.72 0.02 4 /
-2 0.71 0.01 4
T 0.70 0.004
A N R IR © o o & A
R S e F PP E TS &
57 & & ¥ 2 & & N
& © < & & &
M &

Figure 2: Simulation. Left: data (of one repetition). Results for accuracy (middle) and ECE (right)
are reported for 10 repetitions. IA-BMA achieves highest accuracy and lowest ECE.

4.1.2 SCALE AND SENSITIVITY ANALYSIS

We evaluate IABMA with respect to: (i) scalability in data dimension, (ii) the number of informative
(non-noise) features, (iii) the number of predictors, and (iv) the similarity between predictors.

As detailed in Appendix [C.2} we construct a synthetic setting with two data regimes that share only
a subset of the informative features. We vary the data dimension d, and the number of informative
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features k. We construct m candidate predictors: (i) two per-regime specialists, m — 3 generalists
of varying similarity to each other p, and an additional model that exceeds all generalists on both
regimes but remains inferior to the specialists.

For any input x, the optimal ensemble behavior is to select the specialist corresponding to the sign
of z, and never to select one of the suboptimal generalists or the overall-best predictor.

Results: JABMA consistently outperforms all baselines and selects the correct specialist far more
often. Table[T|reports specialist selection rates; performance metrics and SDs in Tables [2}{6]

Table 1: Correct specialist proportion across scaling experiments.

Experiment MoE DLA SMC BHS DDP IABMA
Base: d = 100, £ =30, m =10, p=0.0 0.000 0.008 0.051 0.037 0.227 0.948
Dimension increase: d = 300 0.000 0.018 0.000 0.020 0.000  0.552
More informative features: k = 50 0.000 0.013 0.000 0.022 0.000 0.675
More predictors: m = 100 0.493 0.006 0.002 0.114 0.000  0.857
Higher similarity: p = 0.5 0.000 0.001 0.000 0.022 0.000 0.922

4.2 CASE STUDIES
4.2.1 PERSONALIZED CANCER DRUG-RESPONSE

An important example of heterogeneous data is personalized drug response prediction, where dif-
ferent models may perform better on different subpopulations. We evaluate IA-BMA on this task
using the PRISM cancer drug response dataset. The data consists of pairings of molecule-cell line
RNA sequence features. For each drug—cell pair we form a continuous response y so that larger val-
ues indicate greater sensitivity. We retain drugs with broad site coverage and construct inputs from
the top variance genes. All averaging methods operate over the same four base regressors—Ridge,
Histogram-based Gradient Boosting Tree, XGBoost, and a Multilayer perceptron (MLP), each with
pre-processing tailored to model class. Additional details are provided in

Results: Figure 3|shows that IA-BMA achieves higher R? and lower RMSE compared to all other
methods. Further analysis is presented in Figures which display the weights assigned by each
averaging method for randomly selected inputs. The results show that IA-BMA consistently favored
the best (or nearly best) model, whereas other methods leaned toward other predictors, with MoE in
particular overemphasizing MLP and XGB even when suboptimal.

4.2.2 CREDIT-CARD FRAUD DETECTION

Another domain characterized by heterogeneous data is fraud detection, where the rarity of fraud-
ulent cases poses an additional challenge. We evaluate IA-BMA on this task using the IEEE-
CIS Fraud Detection dataset. The dataset consists from mixed Continuous (such as transaction
amount) and high-cardinality categorical features (such as product category), and the target variable
y € {0, 1} indicated where a transaction was fraud. All averaging methods operate over the same
base classifiers: Logistic Regression with Lasso penalty, Histogram-based Gradient Boosting Tree,
XGBoost, and an MLP. Additional details appear in Appendix [C.4]

Results: Figure [3| shows that IA-BMA achieves higher accuracy and lower expected-calibration
error compared to all other methods. Since in fraud prediction calibration matters within each bin,
we analyzed per-bin confidence |p — 0.5|, and found that IA-BMA achieves the lowest error in all
high-confidence bins (> 0.25). The corresponding analysis is shown in Figure [B.4]

4.3 EXPERIMENTS ON UCI BENCHMARK DATASETS

We evaluate IA-BMA on four UCI datasets — two classification (spambase, credit-g)
and two regression (bike-sharing, california-housing) — which represent low-
heteroskedasticity scenarios. In such settings, one should not expect consistent dominance by any
method, as the benefits of adaptive model averaging emerge when subpopulations differ substan-
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Personalized cancer drug response

Credit-card fraud detection
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Figure 3: Experimental results for main case studies. Results are reported for 10 repetitions. IA-
BMA achieves best results compared to all other averaging method on both case studies.

tially. The value of these experiments lies in confirming that IA-BMA is non-harmful in settings
where adaptivity is not expected to yield significant gain.

Results: TA-BMA yields improvements in RMSE for both regression tasks and in accuracy for both
classification tasks, with 9 of 20 pairwise comparisons showing statistically significant gains over
five baselines. Experimental details appear in Section[C.5] Results are reported in Table 8]

5 CONCLUSION

We introduced IA-BMA, a framework that casts model averaging as probabilistic model selection
conditioned on the input. Within this formulation, the posterior distribution over models provides
the natural, Bayes-optimal choice of input adaptive weights, thereby recovering the true predictive
distribution. Our approach is grounded in an input-dependent prior on the selector function and
implemented through amortized variational inference of the posterior.

We establish finite-sample bounds showing that the posterior-weights predictor achieves strong like-
lihood performance compared to any input-specific single-model selector. Empirically, we eval-
uate IA-BMA across regression and classification tasks, including personalized cancer treatment
response, credit-card fraud detection, and standard UCI benchmarks. We show that IA-BMA con-
sistently outperforms both non-adaptive baselines and existing adaptive methods, delivering more
accurate and better calibrated predictions.
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A PROOFS

A.1 CHANGE OF MEASURE ARGUMENT

Let FF : X5 — X; be a measurable function between two measure spaces (X1,.41,7) and
(X2, As,v). Let g : X; — R measurable function. Recall that the change of variables formula
is given by

/X ng#n:/ (g o F) dn, (22)

X1

where F,n denotes the push-forward of ) through F'.

Applying this to our setting, a draw from the posterior g ~ p(g | «, D) induces a random index j(z)
defined by the relation g(z) = e;(,). Formally, the evaluation map

sz :G—={1,...,m}, sz(9) = j(x),
pushes the posterior measure p(g | =, D) forward onto a distribution over indices. Using this push-
forward, we can rewrite equation 8] as

/p(ylx,g)dP(g\%D)=/fsz(g>(y|w)d1?(g|%D) (23)
g g
- /{ DA | D) (24)
=Y fily|@)p(i |2, D). (25)
j=1

A.2 PROOF OF THEOREM 2.1]

Theorem. Denote D; := {(x4,y:)}i_,, and consider the posterior weights predictor ﬁ(ai ) assigning

oz;i) (x) = p(J(x) = j | D;,x) to the j-th predictor f;. Assume that E[|log f;(Y | X)|] < oo for
all f; € F. Then, for any measurable selector j* : X — {1,...,m} and anyn > 1,

,Z]E[logp (y | x5, Di_ 1)} > E [log fj«@ (y | )] ZE[loga ( z)]ﬂ (26)

where the expectations are taken w.r.t the population distribution (x,y) ~ p(x,y).

Proof. Define the posterior-weights predictor
PO |2 Dia) =Y ol (@) f;(y | v) 27)
j=1

For a fixed input x; and a fixed predictor fj we have that

logp (yl | z;,D;—1) = log Za (@) f(yi | z4) (28)
> log (an (2:) iy | 22)) 29)
= log fu(y: | @) +log ay (). (30)
Taking E (5 y)p(a,y) [ | Zi, Di—1], since fj«(z)(yi | x;) is independent of D;_;,
E [1og 5 (4 | @1, Di-1)| 2 Ellog fuly | @) + E [log o (@) | Dica | (D)

This holds for any 1 < k < m, hence for k = j*(z;),

E [log 2 (y: | 2, Di1) | Dot | 2 E [log - (i | 20)] +E [logal’y, (@) | D] . (32)

14
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Taking E [- | D;_1], by the law of total expectation,

E [log 2 (yi | 21, Di1)] 2 E [l0g £+ oy (i | 7)) +E [logall, (@) . 633)
Averaging over i, we get
IS g Don)| = E [log fy- o (s | 20)] + L3 E [loga ()]
Z ng yl | Ly, 171) = [ngj (zi)(yz | xz)] + n Z Oga] (x4 )(1‘1)
i=1
O

B ADDITIONAL EXPERIMENTAL RESULTS

In what follows we provide a deeper analysis of the performance of adaptive model averaging meth-
ods on the two case-studies.

B.1 SCALE AND SENSITIVITY ANALYSIS

Table 2: Scaling and sensitivity analysis for d = 100, k = 30, m = 10, p = 0.0

Method Accuracy ECE Correct Specialist Global Predictor ~ Generalists
MoE 0.904 (0.002) 0.076 (0.003) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
DLA 0.825 (0.007) 0.100 (0.002) 0.008 (0.001) 0.966 (0.005) 0.015 (0.003)
SMC 0.680(0.132) 0.302 (0.155) 0.051 (0.042) 0.481 (0.424) 0.414(0.339)
BHS 0.821 (0.007) 0.097 (0.002) 0.037(0.034) 0.164 (0.018) 0.724 (0.036)
DDP 0.910(0.008) 0.061 (0.017) 0.227(0.280) 0.773 (0.280) 0.000 (0.000)
IABMA 0.919(0.004) 0.026(0.007) 0.948 (0.017) 0.037 (0.006) 0.015(0.019)
Table 3: Scaling and sensitivity analysis for d = 300,k = 30, m = 10,p = 0.0
Method Accuracy ECE Correct Specialist Global Predictor = Generalists
MoE 0.858 (0.003) 0.117(0.003) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
DLA 0.809 (0.005) 0.068 (0.004) 0.018 (0.005) 0.929 (0.004) 0.037(0.001)
SMC 0.816 (0.005) 0.073 (0.004) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
BHS 0.804 (0.005) 0.067 (0.004) 0.020 (0.002) 0.150 (0.005) 0.633(0.011)
DDP 0.858 (0.003) 0.117(0.003) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
IABMA 0.882(0.004) 0.035(0.001) 0.552(0.007) 0.163 (0.007) 0.285 (0.007)
Table 4: Scaling and sensitivity analysis for d = 100,k = 50, m = 10,p = 0.0
Method Accuracy ECE Correct Specialist Global Predictor  Generalists
MOoE 0.882(0.008) 0.092 (0.008) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
DLA 0.805 (0.009) 0.087 (0.005) 0.013(0.003) 0.960 (0.008) 0.017(0.003)
SMC 0.813(0.009) 0.093 (0.008) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
BHS 0.802 (0.008) 0.084 (0.004) 0.022 (0.002) 0.036 (0.004) 0.735(0.013)
DDP 0.882(0.008) 0.092 (0.008) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
IABMA 0.902(0.007) 0.029(0.006) 0.675(0.010) 0.325(0.010) 0.000 (0.000)

B.2 FORMAL STATISTICAL TESTS

For the other three heteroskedastic experiments, Table[7] provides p-values for one-sided t-test with
Benjamini—-Hochberg correction for multiple comparisons (accuracy for classification, RMSE for
regression). All resulting values are below 0.054.
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Table 5: Scaling and sensitivity analysis for d = 100, k = 50, m = 100, p = 0.0

Method Accuracy ECE Correct Specialist Global Predictor  Generalists
MoE 0.926 (0.005)  0.038 (0.002) 0.493 (0.009) 0.507 (0.009) 0.000 (0.000)
DLA 0.758 (0.010)  0.027(0.005) 0.006 (0.001) 0.955 (0.005) 0.035 (0.005)
SMC 0.725 (0.067) 0.104 (0.151) 0.002 (0.004) 0.755 (0.355) 0.240 (0.347)
BHS 0.757(0.010)  0.027(0.005) 0.114 (0.005) 0.019 (0.002) 0.867 (0.005)
DDP 0.900 (0.002) 0.081 (0.004) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
IABMA  0.916 (0.004) 0.028 (0.005) 0.857(0.008) 0.091 (0.007) 0.045 (0.002)
Table 6: Scaling and sensitivity analysis for d = 100, k = 50, m = 100, p = 0.5
Method Accuracy ECE Correct Specialist Global Predictor  Generalists
MoE 0.902 (0.006) 0.073 (0.006) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
DLA 0.797 (0.008) 0.137(0.002) 0.001 (0.001) 0.996 (0.001) 0.002 (0.000)
SMC 0.837(0.008) 0.163 (0.004) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
BHS 0.787(0.008) 0.126 (0.006) 0.022 (0.003) 0.019(0.004) 0.952 (0.003)
DDP 0.902 (0.006) 0.073 (0.006) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000)
IABMA 0.919(0.006) 0.022(0.005)  0.922(0.001) 0.077 (0.001)  0.000 (0.000)

p-values for UCI experiments appear in Table 9]

Table 7: Paired t-test p-values vs. IABMA on heterogeneous datasets.

Experiment BMA MoE DLA SMC BHS DPP

Cancer <001 <001 <001 <001 <0.01 <o0.01
Fraud <001 <001 <001 <001 <0.01 <o0.01
Linear-circular < 0.01 0.054 < 0.01 0.037 <0.01 <0.01

B.3 CANCER TREATMENT RESPONSE

To illustrate how different methods allocate weights, we sampled 16 cases as follows: for each
classifier f;, we randomly selected four examples from those where IA-BMA assigned the highest
weight to f;. Figures display the weights assigned by each averaging method for Ridge, XGB,
HGB, and MLP. For each case, we also report the RMSE achieved by the individual classifiers. This
analysis shows that in all cases, IA-BMA places the largest weight on the model with either the
lowest error or a near-tied second. By contrast, competing methods tend to favor other predictors.
In particular, MoE consistently prioritizes MLP or XGB, even in instances where these models are
locally suboptimal.
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Figure 4: Cases where IA-BMA assigns the highest weight to Ridge.
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Figure 5: Cases where IA-BMA assigns the highest weight to XGB.
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Figure 6: Cases where IA-BMA assigns the highest weight to HGB.
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Figure 7: Cases where IA-BMA assigns the highest weight to MLP.
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B.4 CREDIT CARD FRAUD

Credit card fraud prediction is a highly sensitive area, with risks of false alarms and misreporting,
calibration is crucial not only overall but also within each bin. To this end, we analyzed the confi-
dence measure |p — 0.5] where p is the estimated probability, which captures certainty for both pos-
itive and negative events, and compared the bin-wise errors across averaging methods. Figure [B.4]
shows that in all bins, IA-BMA attains the lowest error, decreasing with confidence, showing that
most wrong predictions occur in low confidence instances.
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Figure 8: Calibration across confidence bins in credit-card fraud prediction

B.5 UCI BENCHMARK DATASETS

Results are reported in Table[8] and p-values for one-sided t-test results with Benjamini—Hochberg
correction for multiple comparisons (accuracy for classification, RMSE for regression) in Table [9]

B.6 ANALYSIS OF THE EFFECT OF THE ADAPTIVE PRIOR

TA-BMA places an input—dependent prior over selectors g. Therefore, variability in our model arises
not only from variability of g(z) as in other adaptive methods, but additionally from the adaptivity
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Table 8: UCI benchmarks: mean (sd) across runs.

Best Uniform Freq

Dataset Metric single Avg. Avg. BMA MoE DLA SMC BHS DDP IA-BMA
0.706 0.752 0773 0774 0706 0781 0756 0752  0.753 0.794
Bike-sharing ~ R2 (1) 0.022)  (0010)  (0.012) (0.014) (0.022) (0.013) (0.010) (0.010) (0.013)  (0.010)
) 0.491 0448 0447 0581 0446 0483 0491 0479 0.433
Bike-sharing  RMSE ({) (0.033)  (0.021)  (0.020)  (0.021)  (0.033)  (0.020)  (0.020)  (0.021)  (0.022)  (0.018)
0.772 0.840 0840 0812 0778 0840 0817 0840  0.805 0.844
Cal-housing  R2 (1) 0.022)  (0018)  (0017) (0.017) (0.024) (0.018)  (0.066) (0.018)  (0.031)  (0.014)
0.036 0.025 0025 0029 0035 0025 0029 0025 0031 0.024
Cal.-housing  RMSE (1) (0.004)  (0.003)  (0.003)  (0.003)  (0.004)  (0.003)  (0.010)  (0.003)  (0.005  (0.003)
0.634 0.676 0662 0648 0624 0668  0.626  0.682  0.655 0.684
Credit-g Accuracy (1) (0.036)  (0.029)  (0.038)  (0.036)  (0.036)  (0.039)  (0.046)  (0.039)  (0.040)  (0.047)
0.260 0.172 0.169°  0.174 0296 0173 0222 0176 0257 0.175
Credit-g ECE (1) 0.034)  (0.022)  (0.020)  (0.023)  (0.035)  (0.025)  (0.038)  (0.25)  (0.031)  (0.020)
0.699 0.702 0738 0760 0760 0729 0757  0.646  0.754 0.764
Spambase Accuracy (1) (0.110) (0.094) (0.044) (0.024) (0.035) (0.052) (0.032) (0.132) (0.064) (0.032)
0.114 0.163 0.148 0169  0.095 0170 0222 0180  0.149 0.146
Spambase ECE () (0.022)  (0.049)  (0.042) (0.018)  (0.034)  (0.051)  (0.023)  (0.061)  (0.042)  (0.025)
Table 9: Paired t-test p-values vs. IA-BMA on UCI benchmarks.
Experiment BMA MoE DLA SMC BHS
Credit-g 0.104 < 0.01 0338 <0.01 0.758
Spambase 0.349 0.380 0.019 0.349 0.016
Bike-sharing 0316 <0.01 1.000 <0.01 <o0.01
California-housing < 0.01 < 0.01 0.153 0.153 0.153
of the prior itself. To isolate the contribution of this adaptive prior, we evaluate our method under a
uniform prior and compare the resulting behavior.
The results below (Tables [10{and [I 1)) show that without the adaptive prior, our method still outper-
forms other methods in most cases, but with a smaller margin.
Table 10: Impact of the input—adaptive prior on RMSE across regression tasks
Experiment Best-single ~ Uniform Avg  Freq Avg BMA MoE DLA SMC BHS DDP IA-BMA I[}Al;l]?xlﬁ
PRISM 1.927 1.870 1.853 1.860 1856 1.861 1.897 1.870  1.863 1.842 1.853
Bike-Sharing 0.582 0.491 0.448 0447 0581 0433 0483 0491 0479 0446 1311
California-Housing 0.036 0.025 0.025 0.029 0035 0.025 0029 0025 0031 0.024 0.019
Table 11: Impact of the input—adaptive prior on accuracy across classification tasks
Experiment Best-single  Uniform Avg  Freq Avg BMA MoE DLA SMC BHS DDP IA-BMA fsl;l]:i\i/:)ﬁ
Fraud small 0.657 0.670 0.669 0667 0713 0689 0653 0670 0.695  0.736 0.713
Synthetic Binary 0.797 0.759 0.774 0790  0.807 0.798 0.807 0.798  0.804 0.813 0.813
Credit-G 0.634 0.684 0.662 0.648  0.624  0.668 0.626  0.682  0.655 0.676 0.575
Spambase 0.699 0.702 0.738 0760 0760 0729 0757 0.646 0754  0.764 0.739

C EXPERIMENTAL DETAILS

C.1 LINEAR-CIRCULAR HYBRID CLASSIFICATION

C.1.1 DATA AND PROCESSING

We generated a two-dimensional binary dataset with two subpopulations governed by different de-
cision rules. For the linear subpopulation, we drew njy, = nyuin/2 training points from a Gaussian
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cloud centered at (—¢,0) (with ¢ = 1),
X(lin,lrain) ~ J\[((_t7 0)7 0.1 IQ)’
and assigned labels by a linear rule y = 1{x; + 22 > —t}. For the circular subpopulation, we drew
Neire = Train — Main POINts on a ring around (¢, 0) by sampling # ~ Unif(0, 27) and 7 = /U with
U ~ Unif(0, 2), and set
X = (£,0) + (rcos 0, rsinf), y=1{r < 1}.
We used nyin = 1,000 and nesr = 500; the train/test splits were generated independently.

Only the two coordinates (z1,z2) were provided as features. A region indicator z €
{0 (linear), 1 (circular)} was recorded for analysis but was not used during training.

This dataset naturally forms three regimes: (i) linearly separable points, (ii) circularly separable
points, (iii) an ambiguous overlap region where neither boundary dominates.

C.1.2 CANDIDATE PREDICTORS

All averaging methods were evaluated on the same 3 base classifiers:

1. Polynomial logistic regression (degrees 2 and 3). We fit logistic regression with polynomial
features of degree d € {2, 3} (no bias term in the expansion).

2. Linear Discriminant Analysis (LDA). A linear generative classifier fit on the raw coordi-
nates, providing a single linear boundary.

3. Soft-circle classifiers (two instances). Each instance modeled the positive-class probability
as a logistic function of radial distance to a fixed center,

Percte(y=1|2) = o(v(R— ||z —c|)), ¢=(0.80), R=1.0, v=5.0,

yielding smooth circular decision regions around (¢, 0).

We include two instances of each predictor to allow the averaging procedure to allocate
weight among near-identical experts.

C.2 SCALE AND SENSITIVITY ANALYSIS

We evaluate IABMA with respect to four factors: (i) scalability in data dimension, (ii) the number
of informative (non-noise) features, (iii) the number of predictors, and (iv) the similarity between
predictors.

C.2.1 DATtA

We generate inputs € R? by sampling each coordinate independently from 0, 1 with probability
1/2. With probability 1/2 we flip the sign of the entire vector, creating two regimes: positive and
negative. Labels y are assigned by majority vote over k designated coordinates. The identity of these
coordinates differs across regimes, and we control the fraction of shared coordinates p to control
heteroskedasticity. Independent Gaussian noise A(0,0.1) is then added to each input, identically
for training and test sets.

C.2.2 CANDIDATE PREDICTORS

We form a pool of m logistic predictors. Two specialists are trained exclusively on one regime
each, performing well on that regime, and poorly on the other. The remaining m — 3 generalists are
trained on mixtures of the two regimes, yielding weaker per-regime accuracy; varying the mixture
proportion p controls their similarity.

Finally, we include a two-layer MLP (32 and 16 units, ReLU activations) trained on combined
balanced data. It is designed to exceed all generalists on both regimes, but remains inferior to the
specialists.

For any input x, the optimal ensemble behavior is to select the specialist corresponding to the sign
of z, and never to select one of the suboptimal generalists or the overall-best predictor.
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We set our baseline experiment parameters as d = 100,k = 30,p = 0.0,m = 11. We then vary
each.

C.3 PRISM CANCER EXPERIMENT
C.3.1 DATA AND PROCESSING

We used the publicly available PRISM cancer drug response dataset. The primary datéﬂ was com-
bined with an RNA-seq expression matrixﬂ cell-line metadatﬂ and tissue labelsﬂ All files are
available from https://depmap.org/portal/data_page/.

The PRISM file reports drug—cell line responses with identifiers of the form ACH-#. We normalized
all identifiers to the canonical zero-padded format (ACH-XXXXXX). Non-Continuous entries and
all observations lacking a primary cancer site were excluded. Responses correspond to log-fold
changes (LFC), clipped to the range [—6, 6], and the prediction target was defined as y = —v, where
v is the clipped LFC.

We focused on the 40 drugs with the greatest site-level heterogeneity. Specifically, we computed the
between-site variance of y and retained compounds observed in at least 3 distinct sites, with at least
5 samples per site and at least 40 samples overall. A minimum per-site coverage threshold of 20
samples was enforced. To avoid domination by a few large tissues, we capped each site at 1.1 X s,
where s is its sample size. This yielded approximately 18,460 drug—cell line pairs (slight variation
across random splits), of which 80% were used for training and 20% for testing.

Gene expression features were restricted to the 100 highest-variance genes. Each gene was stan-
dardized to mean 0 and variance 1 based on training statistics. The final feature matrix consisted of
standardized gene expression values and a categorical compound indicator.

The full processing code was submitted with this paper and will be released publicly upon accep-
tance.

C.3.2 CANDIDATE PREDICTORS

All averaging methods were evaluated on averaging the same four regression models with repro-
cessing pipelines tailored per model:

1. Ridge regression ({5 regularized linear model). Gene features were imputed (median),
standardized to zero mean and unit variance, and combined with a dense one-hot encoding
of the compound identity.

2. Histogram-based Gradient Boosting regressor (HGB). Tree-based model trained on raw
gene values (median imputation only) together with a sparse one-hot encoding of the com-
pound identity.

3. XGBoost regressor (XGB). Gradient-boosted decision trees with squared-error objective,
trained using the same pre-processing as HGB. We used 400 estimators, learning rate 0.05,
maximum depth 8, subsample ratio 0.9, and column subsample ratio 0.8, with ¢; and {5
regularization.

4. Multi-layer perceptron (MLP). A feed-forward neural network with hidden layers of size
(128, 64), ReL.U activations, learning rate 103, batch size 64, and early stopping based on
a 10% validation split. Inputs were preprocessed as for Ridge (dense, imputed, standardized
gene features and dense one-hot drug encoding).

3Repurposing_Public_23Q2_Extended _Primary_Data_Matrix.csv
*OmicsExpressionProteinCodingGenesTPMLogp1 .csv
SCell_lines_annotations_20181226.txt

®Model.csv
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C.4 1EEE-CIS FRAUD EXPERIMENT

C.4.1 DATA AND PROCESSING

We used the IEEE-CIS credit-card fraud dataset, available at https://www.kaggle.com/c/ieee-fraud-
detection/data.

We removed rows with missing target (i sFraud) and features with more than 50% missing val-
ues. To limit explosion in feature dimension, infrequent categories were grouped into a shared rare
category.

In each repetition 80% of the data was used for training and 20% for testing. The training data
was then reduced to obtained class balance, while in test data class imbalance was maintained. To
reduced covariate shift in the train-test split we stratified jointly on (ProductCD, card4) crossed
with per-row missingness bins and TransactionAmt quantile bins, with a fallback “RARE”
bucket for very small strata. This procedure yielded a stable empirical mix of products, card net-
works, and spending levels. Specifically, to control the empirical mix of products, card networks,
and spending levels we stratified jointly on (ProductCD, card4) crossed with per-row missing-
ness bins and TransactionAmt quantile bins.

Continuous features were median-imputed and where appropriate, standardized to zero mean and
unit variance. Categorical features were imputed to the most frequent level and one-hot encoded,
with infrequent categories pooled into a rare-level. Class imbalance was addressed within each
classifier as noted below.

C.4.2 CANDIDATE PREDICTORS

All averaging methods were evaluated over the same following base classifiers.

1. Logistic Regression ({1-penalized). We fit a penalized logistic model to the processed fea-
ture set, using an /1 penalty with strength to encourage sparsity and robustness to correlated
predictors. We used a saga solver, ¢1 penalty with regularization strength of 0.05, maximal
number of iterations as 4000, and tolerance of 10~3.

2. XGBoost (XGB). We trained a gradient-boosted ensemble of shallow decision trees using
histogram-based splits and early stopping. Depth, learning rate, and number of estimators
were selected via a held-out validation set. Hyper parameters were set as maximal bin of
256, 300 estimators, maximal depth of 5, learning rate 0.1, row subsampling of 0.3, feature
subsampling of 0.7, and ¢5 penalty with strength 1.0.

3. Histogram-based Gradient Boosting (HGB). We train boosted trees with a histogram grow
policy, subsampling of observations and features, and ¢5 regularization. Class imbalance
was addressed via the standard positive-class weight =4 estimated from the training ex-

Npos
amples. Hyperparameters (learning rate, depth, estimators, subsampling ratios) were fixed
based on validation performance and kept constant across comparisons. Hyperparameters
were set to maximal depth of 4, learning rate 0.07, and ¢, regularization with strength 0.5,
and at most 350 iterations.

4. Multi-layer perceptron (MLP). We used a feed-forward network with two hidden layers of
sizes 384, 192 and ReLU activations, trained with weight decay and early stopping on a
validation split. Weight decay was set to o = 3 - 1072, batch size 512, adaptive learning
rate with initial value of 10™3, early stopping with validation fraction 0.12 and no change
for 12 iterations, maximal number of iterations as 300, and tolerance 10~4.

C.5 UCI EXPERIMENTS

C.5.1 DATA AND PROCESSING

We evaluated IA-BMA on standard UCI tasks retrieved from OpenML. We chose datasets with
relatively large number of observations and features. For classification, we used spambase (target:
class)and credit—g (target: class). For regression, we used bike—sharing (target: cnt)
and california-housing (target: MedHouseVal).
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We replaces common “unknown” tokens (e.g., ?, NA, NaN, unknown) with missing values, strip-
ping whitespace on string columns in each dataset, and dropped features whose missing rate ex-
ceeded 40%.

We used an 80%/20% train-test split in each repetition. For classification, we performed stratified
sampling on the label to preserve class proportions in the test set, and then balanced only the training
split by downsampling the majority class to the minority size. For regression, we created an approx-
imately balanced split by binning the continuous target into 12 quantile bins and stratifying on those
bins. All pre-processing statistics (imputation, scaling, and one- hot vocabularies) were computed
on the training partition and applied unchanged to the test data.

To encourage diversity among base models, we formed several heterogeneous, partially overlap-
ping feature bundles and trained each model on a bundle tailored to its strengths. Bundles were
constructed from the training data as follows:

* B1: up to 3 Continuous features with highest absolute Pearson correlation with the target
(continuous median-imputed for this computation).
* B2: up to 3 highest-variance Continuous features.
* B3: up to 3 categorical features with highest cardinality.
* B4: up to 5 remaining low-cardinality categorical variables.
* BS: all categorical features.
* B6: all Continuous features.
* B7: the union of B1 and B3.
Continuous features in non-tree models were median-imputed and standardized. Categorical fea-

tures were imputed to the most frequent level and one-hot encoded with a minimum frequency
threshold of 10 to pool rare levels; unknown categories at test time were ignored.

C.5.2 CANDIDATE PREDICTORS

Across all datasets we trained a common set of base learners. For classification: Multinomial Naive
Bayes, k-NN (k = 3), Random Forest, Extra Trees, and a linear SVM. For regression: Ridge
(a=0.05), Lasso («=0.05), k-NN (k=3, distance-weighted), Random Forest, and Extra-Trees. To
encourage diversity, each model was trained on a subset of features (“feature bundles”).

D IMPLEMENTATION DETAILS

In all our experiments the posterior network for IA-BMA and the gating network for MoE were
implemented as feed-forward neural networks with hidden layers of size (64, 32, 16) and ReLU
activations. We used Adam optimizer for MoE and IA-BMA across all experiments.

Hyperparameters for our method and all baselines were tuned via binary search to maximize average
performance (accuracy for classification, RMSE for regression) on a held-out repetition excluded
from the analysis. The selected values and running times by experiment and method are reported
below.

D.1 HYPERPARAMETERS OF ENSEMBLE METHODS

Table 12: Hyperparameters of Mixture-of-Experts
Hyperparameter Synthetic ~PRISM (Cancer) Fraud (IEEE-CIS) UCI

Learning rate 1073 1073 1073 1073
Batch size 64 128 64 64
Epochs 10 20 10 10

22



Under review as a conference paper at ICLR 2026

Table 13: Hyperparameters of Dynamic Local Accuracy (DLA).

Hyperparameter Synthetic PRISM (Cancer) Fraud (IEEE-CIS) UCI
Neighborhood size &k 50 50 50 50

Temperature T’ 0.8 1.0 1.0 1.0
Smoothing « 1.0 1.0 1.0 1.0

Table 14: Synthetic Mixture of Experts (SMC).

Hyperparameter Synthetic PRISM (Cancer) Fraud (IEEE-CIS) UCI
Confident-cover threshold 0.6 0.6 0.6 0.6
Cover quantile (reg.) - 0.30 - 0.30
Min coverage per model 20 20 20 20
Cov. reg. (reg. mix) 0.9 (Gaussian scores) 0.9 0.9 0.7

Table 15: Bayesian Hierarchical Stacking (BHS).
Hyperparameter ~Synthetic ~PRISM (Cancer) Fraud (IEEE-CIS) UCI

Temperature T’ 1.0 1.0 1.0 1.0
Prior weight 1.0 1.0 1.0 1.0
Slab scale s 5.0 5.0 5.0 5.0
Learning rate 5x 1073 5x 1073 5x 1073 1073
Batch size 64 128 64 64
Epochs 10 20 10 10

Table 16: Input Adaptive Bayesian Model Averaging (IA-BMA)

Hyperparameter ~ Synthetic

PRISM (Cancer) Fraud (IEEE-CIS)

Learning rate 1073 1073 1073
Batch size 64 128 64
Epochs 10 30 10
KL weight Akr. 0.05 0.2 0.2

Table 17: IA-BMA (PosteriorNet) hyperparameters per UCI dataset.

Hyperparameter Spambase (clf)

Credit-g(clf) Bike-sharing (reg)

Learning rate 5x 1073 5x 1073 1x1073 1x1073
Batch size 64 64 64 64
Epochs 10 10 10 10
KL weight Akt, 0.1 0.1 0.8 3.0

Cal housing (reg)

E RUNTIMES

Overall run-times per method are reported in Table[I8] While computational cost scales with number
of predictors and data samples, across all experiments run-times of IJA-BMA remmain consistent
with those of MoE and DDP with the same network architectures.
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Table 18: Method runtimes (seconds): mean (sd) across 10 repetitions.

Experiment MoE DLA SMC BHS DPP IA-BMA
147.359  22.269 0.072 28.572  271.320  252.985
Cancer (5.282) (0454) (0.114) (1.167) (5.129) (5.571)
439.502 8.246 688.473  16.622 502.854 461.312
Fraud (129.487) (1.719) (155.629) (3.139) (12.831) (121.168)
5.664 0.218 0.079 1.040 6.381 5.889
Simulation (0.104)  (0.008)  (0.004)  (0.079) (0.075) (0.038)
25.080 0.868 0.007 21.364  31.889 29.663
Bike-Sharing (3.780)  (0.179)  (0.001)  (1.063) (3.971) (4.094)
8.510 0.350 0.006 7.281 10.785 9.815
Cal. housing (0.987)  (0.041) (0.001) (0.324) (1.122) (1.029)
3.178 0.439 0.174 1.184 3.345 3.345
Credit-g (0.049)  (0.017)  (0.007)  (0.148) (0.071) (0.048)
16.420 0.642 0.822 1.781 20.831 18.651
Spambase (0.287)  (0.025) (0.159)  (0.147) (5.367) (5.122)
40.977 1.794 28.174 3.009 48.898 40.333
Scale (m=10, d=100) (3.83) (0.16) (9.61) (0.26) (3.72) (4.12)
40.517 4.158 85.922 2.501 50.541 40.650
Scale (m=10, d=300) (3.84) 0.17) (8.65) 0.21) (3.68) (3.21)
41.638 2.169 254.196 2.612 51.914 45.433
Scale (m=100,d=100) (3.36) (0.75) (18.17) (0.23) (3.83) (3.55)
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