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ABSTRACT

This paper addresses prediction problems with multiple candidate models, where
the goal is to combine their outputs. This task is especially challenging in hetero-
geneous settings, where different models may be better suited to different inputs.
We propose Input-Adaptive Bayesian Model Averaging (IABMA), a Bayesian
method that assigns model weights conditional on the input. IABMA employs
an input-adaptive prior, and yields a posterior distribution that adapts to each pre-
diction, which we estimate via amortized variational inference. We derive formal
guarantees for its performance relative to any single predictor selected per in-
put, and evaluate IABMA across regression and classification tasks, studying data
from personalized cancer treatment, credit-card fraud detection, and UCI datasets.
IABMA consistently delivers more accurate and better-calibrated predictions than
both non-adaptive baselines and existing adaptive methods.

1 INTRODUCTION

Many modern applications require adaptive predictions. For instance, in personalized medicine,
different patients may respond differently to the same treatment; in fairness-sensitive domains, pre-
dictions may need to adapt to subpopulations; and in fraud detection, behavioral data is often het-
eroskedastic and can vary substantially across inputs.

When the data is complex, selecting a single model that performs well across all inputs is partic-
ularly challenging. Moreover, doing so disregards the uncertainty inherent in model selection and
often leads to overconfident predictions (Hoeting et al., 1999). A common strategy to mitigate this
challenge is model averaging (MA), which produces an ensemble of models. Let x ∈ X be data-
points, y ∈ Y labels, and denote by P(Y) the space of probability distributions on Y . Rather than
relying on a single predictor f : X → P(Y), MA combines the predictive distributions of multiple
models f1, . . . , fm into a weighted ensemble,

pα(y | x) :=
m∑
j=1

αjfj(y | x), (1)

thereby accounting for the possibility that multiple models can provide plausible explanations of the
data.

However, this presents a new challenge: for some inputs, a subset of models may be poorly suited,
while for others, a different subset may perform inadequately. Applying a single global set of
weights across all inputs can therefore assign high weight to ill-suited models, degrading predic-
tive performance. This motivates adaptive averaging, where the weights αj are allowed to depend
on the input x:

α : X → ∆m−1, x 7→ α(x) = (α1(x), . . . , αm(x)), (2)
yielding the adaptive mixture

pα(y | x) :=
m∑
j=1

αj(x)fj(y | x). (3)

Previous adaptive approaches (see Section 1.1) addressed the task of specifying the adaptive weights
αj(x) from a frequentist point of view, often relying on maximum-likelihood estimates. In this work,
we adopt a Bayesian perspective.
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We assume that the set of predictors F := {f1, . . . , fm} is fixed, and model the selection of a model
from this set as random. Thus, we introduce a selector function g : X → {e1, . . . , em}with {ej}mj=1

denoting the standard basis vectors of Rm so that g(x) = ej corresponds to selecting predictor fj .

From a Bayesian perspective, the selector function g is random. A classical approach is thus to place
a prior p(g) on the space of selector functions G := {g : X → {e1, . . . , em}}. However, this ignores
the intuition that different models may be preferable for different inputs.

Here we propose a probabilistic model, in which the identity of the selector function itself g depends
on inputs x, implying an input-dependent prior p(g | x). Unlike the classical formulation, which
assigns a single global prior p(g), and merely lets g(x) vary across inputs, our approach directly
models input-adaptive selection.

The joint distribution defined by our model yields a data-dependent posterior distribution that cap-
tures uncertainty over which predictors are most plausible for each input x. The resulting predictive
distribution p(y | x) then corresponds to a convex combination of the candidate models: the one
identified by the posterior as most consistent with the data. Thus, we define the ensemble weights
αj(x) directly according to this posterior.

We analyze the advantages of this adaptive Bayesian model averaging framework, and derive finite-
sample guarantees comparing its performance compared to that of any single predictor selected
per input (Section 2.1). We then develop Input-Adaptive Bayesian Model Averaging (IABMA), a
method that employs amortized variational inference to approximate the adaptive posterior (Section
3). This posterior depends jointly on the labeled training data D and the input x, and is induced
by an input-adaptive, likelihood-based prior over selector functions. We evaluate IABMA across
regression and classification benchmarks (Section 4), and show that IABMA achieves substantial
gains in both accuracy and calibration compared to existing adaptive, and non-adaptive strategies.

1.1 RELATED WORK

MA is regarded as the machine learning analogue of the “Condorcet’s jury” theorem (Mennis, 2006),
leveraging the “wisdom of the crowd” to mitigate the inherent uncertainty in model selection. Thus,
MA is often used when there are alternative, potentially overlapping hypotheses and no clear jus-
tification for selecting a single preferred model. Applications include ecological research (Wintle
et al., 2003; Thuiller, 2004; Richards, 2005; Dormann et al., 2008; Lauzeral et al., 2015; Zheng
et al., 2024) and medicine (Jiang et al., 2021; Nanglia et al., 2022; Mahajan et al., 2023). More
broadly, MA has been adopted in a wide range of machine learning tasks (e.g., Fernández-Delgado
et al. (2014), Rokach (2010)).

As a form of model combination, MA is closely related to other ensemble techniques such as bagging
(Breiman, 1996) and boosting (Freund, 1995). It is a variant of stacking procedure (Wolpert, 1992),
in which outputs of base learners are combined to produce the final prediction.

MA has been shown to reduce prediction errors beyond those of the best individual component
model (Dormann et al., 2018; Peng & Yang, 2022) and to mitigate overfitting (Dietterich et al.,
2002; Polikar, 2006). In recent years, extensive surveys have reviewed MA (Kulkarni & Sinha,
2013; Woźniak et al., 2014; Gomes et al., 2017; González et al., 2020; Sagi & Rokach, 2018; Wu
& Levinson, 2021), with some focusing specifically on decision trees (Rokach, 2016) or neural
networks (Ganaie et al., 2022).

Most existing MA methods assign the same set of weights to all inputs. In contrast, dynamic model
selection (Cao et al., 1995; Giacinto & Roli, 1999; Gunes et al., 2003; Didaci et al., 2005; Didaci &
Giacinto, 2004) adapts the choice of model to each input instance. However, these methods select a
single model rather than assigning instance-specific weights for averaging across multiple models.

Input-adaptive model averaging methods: Few methods assign input-dependent weights. These
date back to Mixture of Experts (MoE) (Jacobs et al., 1991), where a gating network maps the input
x to weights αj(x), estimated by maxmizing the induced likelihood.

Rasmussen & Ghahramani (2001) extended this framework by using Gaussian Processes (GPs) as
base models, providing nonparametric flexibility. They adopt a Bayesian perspective with a Dirichlet
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Process (DP) prior, yielding an infinite mixture. However, here weights and base models are learned
jointly, and thus only a single family of base predictors is considered.

Woods et al. (1997) proposed a dynamic scheme based on local accuracy estimates. For a test input
x, its neighborhood is identified (typically via k-nearest neighbors), and each classifier’s perfor-
mance in this region is summarized as a local accuracy score. The classifier with the highest score
is then selected to predict x.

Similarly, Chan & van der Schaar (2022) proposed an approach that assigns higher weight to mod-
els whose training domains better cover a test instance. Inputs are mapped into a learned low-
dimensional space where models with similar predictions are closer together, and weights are set
via kernel density estimation. Unlike Woods et al. (1997), where similarity is predefined, here it
is learned from data. Motivated by Tenzer et al. (2022), the method assumes that models making
random errors on an input are unlikely to agree.

Perhaps most relevant to our work is Bayesian hierarchical stacking (BHS) (Yao et al., 2022), which
places priors on logit weights, and models them with hierarchical low-rank linear functions. The
parameters are then estimated by maximizing the expected log predictive density.

Thus, prior work on adaptive model averaging has focused predominantly on methods targeting
frequentist objectives, with relatively few Bayesian formulations. In contrast to previous approaches,
our model assumes a fully Bayesian setting in which the selector itself is random and, crucially, is
defined locally relative to each input x. This yields an input-dependent prior p(g | x) rather than
a global prior p(g). In turn, this prior induces an adaptive posterior that corresponds exactly to the
Bayes-optimal weights, providing a principled approach for adaptive model averaging.

2 PROBABILISTIC FORMULATION OF ADAPTIVE MODEL AVERAGING

We cast adaptive model averaging as a probabilistic model selection. To reflect that some models
may be better suited for different inputs, we assume the a probabilistic model where the selection
function g is random and input-dependent:

x ∼ p(x), g ∼ p(g | x), y ∼ p(y | x, g). (4)

Let D = {(xi, yi)}ni=1 be a training set of i.i.d samples from a population distribution p(x, y) on
X × Y , and consider a new input x. Under our formulation, the full joint distribution is

p(x, y,D, g) = p(x)

n∏
i=1

[p(xi)] p(g | x, x1:n)

n∏
i=1

[p(yi | xi, g)] p(y | x, g). (5)

We defer the precise specification of the adaptive prior p(g | x, x1:n) to Section 3.1.

The predictive distribution for y given a new input x is then

p(y | x,D) =
∫

p(y | x,D, g) p(g | x,D) dµ(g) =
∫

p(y | x, g) p(g | x,D) dµ(g), (6)

where p(g | x,D) is a posterior distribution on the space of measurable functions G :=
{
g : X →

{e1, . . . , em}
}

1.

A draw from the posterior g ∼ p(g | x,D) induces a random index J(x), defined by the relation
g(x) = ej(x). Using this index, we can rewrite equation 6 as

p(y | x,D) =
∫

p(y | x, g) p(g | x,D) dµ(g) =
m∑
j=1

fj(y | x) p(J(x) = j | x,D), (7)

where the last equality follows by a standard change of measure argument, which for completeness
is outlined in Appendix A.1.

This derivation shows that, under our model, the predictive distribution is a mixture of the candidate
predictions fj(y | x) weighted by the push-forward posterior probabilities p(J(x) = j | x,D).
In other words, the input-adaptive weights αj(x) arise directly from the probabilistic formulation
itself, and they are precisely the posterior probabilities of each model being the generator at input x.

1Formally, p(g | x,D) is a density with respect to some reference measure µ on G.
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2.1 LIKELIHOOD GUARANTEES

So far we have seen that the posterior probabilities p(J(x) = j | x,D) arise naturally as input-
adaptive weights under our model. In particular, they are the Bayes-optimal weights, as they recover
the true predictive distribution.

We now show that this choice also comes with performance guarantees: the posterior-weights pre-
dictor not only reflects the correct probabilistic formulation, but in expectation achieves likelihood
performance competitive with any input-specific single-model selector. The next theorem formalizes
this result (for proof see Appendix A.2).

Theorem 2.1. DenoteDi := {(xt, yt)}it=1, and consider the posterior weights predictor p̂(i)α assign-
ing αj(x;Di) = p(J(x) = j | Di, x) to the j-th predictor fj . Assume that E[| log fj(Y | X)|] <∞
for all fj ∈ F . Then, for any measurable selector j∗ : X → {1, . . . ,m} and any n ≥ 1,

1

n

n∑
i=1

E
[
log p̂(i)α (yi | xi,Di−1)

]
≥ E

[
log fj∗(x)(y | x)

]
+

1

n

n∑
i=1

E
[
logα

(i)
j∗(xi)

(xi)
]
, (8)

where the expectations are taken w.r.t the population distribution (xi, yi) ∼ p(x, y).

Thus, the posterior weights predictor can match any per-input selector (i.e., a rule that may pick a
different j for different x), up to a term depending on the gating weights assigned to the chosen
model at each x.

Concretely, for the selector that picks the most probable model, j(i)(x) ∈ argmax1≤j≤m α
(i)
j (x),

the penalty becomes 1
n

∑n
i=1 E

[
logmaxj α

(i)
j (xi)

]
, which vanishes as the posterior sharpens, i.e.,

when maxj α
(i)
j (xi)→ 1 (in probability or almost surely).

A central difficulty, of course, is that the true posterior is unknown. Thus, in the next section, we
introduce a variational approximation to p(J(x) = j | Di, x) that preserves explicit dependence on
both x and D.

3 IABMA: INPUT-ADAPTIVE BAYESIAN MODEL AVERAGING

Our goal is to develop a method for estimating this posterior distribution over models. By doing so,
we obtain an averaging scheme that is consistent with both the training dataD and the specific input
x, thereby approximating the true predictive distribution that we ultimately aim to recover.

We begin by formulating the modeling assumptions for an adaptive prior that is conditioned jointly
on the training covariates and a new input. Building on this prior, we then develop a variational
inference method to approximate the resulting posterior.

3.1 ADAPTIVE PRIOR

Based on the adaptive prior introduced in (Slavutsky & Blei, 2025), we posit a prior that encodes
the plausibility of each model conditional on both the training covariate x1:n and a new input x at
which prediction is sought. This prior is defined through an energy-based formulation.

Specifically, for a predictor fj we consider the prior induced by the negative energy function

E(J = j;x1:n, x) :=

∫ n∑
i=1

log p(y|xi, fj) + log p(y|x, fj) dy (9)

p(J = j|x1:n, x) :=
1

Z(f)
exp (E(J = j;x1:n, x)) , (10)

where the normalizing factor2 is given by Z(f) :=
∑m

j=1 exp (E(J = j;x1:n, x)).

2This definition requires integrability of exp (E(J = j;x1:n, x)), and thus we assume that exp(E(J =
j;x1:n, x)) is integrable for each j.

4
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This prior allows beliefs about model plausibility to adapt to the new input x. Unlike a prior defined
solely from the training data, which remains fixed across prediction points, our formulation updates
the relative weight of each model once x is observed. This makes the prior input-adaptive, enabling
model selection probabilities to shift dynamically with the prediction covariates. To build intuition,
we next examine a simple analytical example.

A two-model Bernoulli example Suppose y ∈ {0, 1}, and consider two candidate logistic models

p(y = 1 | x, fj) = σ(βjx), σ(u) :=
1

1 + e−u
, (11)

with j ∈ 1, 2 and slopes 0 < β2 < β1. In this setting, the energy function is given by

E(J = j;x1:n, x) =

n∑
i=1

∑
y∈{0,1}

log p(y | xi, fj) +
∑

y∈{0,1}

log p(y | x, fj) (12)

=

n∑
i=1

log (σ(βjxi) [1− σ(βjxi)])︸ ︷︷ ︸
=:Cj

+ log (σ(βjx) [1− σ(βjx)])︸ ︷︷ ︸
=:ℓj(x)

(13)

and the adaptive prior is

p(J = j | x1:n, x) =
exp(Cj + ℓj(x))∑m

k=1 exp(Ck + ℓk(x))
(14)

Accordingly, the log-odds between the two models is

log
p(J = 1 | x1:n, x)

p(J = 2 | x1:n, x)
= (C1 − C2) + ℓ1(x)− ℓ2(x). (15)

Thus, the log-odds depend both on the difference between training baselines C1−C2, and the change
induced by conditioning also on the new input x is δx := ℓ1(x)− ℓ2(x).

Concretely, suppose the baseline difference is fixed at C1 − C2 = log 5 ≈ 1.61, yielding p(J =
1 | D) = σ(log 5) ≈ 0.83. Based solely on the training data, the prior thus strongly favors f1.
Now consider a new input x = 1 with β2 = 1. As β1 increases, the discrepancy |ℓ1(1) − ℓ2(1)|
grows, and δx=1 shifts the likelihood ratio toward f2. For example, when β1 = 3, the prior shifts to
a mild preference for f1, at β1 = 5 it flips to favor f2, and by β1 = 9 the preference for f2 becomes
very strong. These dynamics, along with additional parameter settings for coefficients and baseline
differences, are shown in Figure 1.

This analysis highlights the interplay between the baseline preference and the input-specific adjust-
ment introduced by x. It shows that, in extreme cases, even strong baseline beliefs can be overturned
by the adaptive correction at the queried input.

Evaluation of the prior: Evaluating the proposed prior requires computing an integral over the
outcome space Y , and thus depends on whether the outcome space is discrete or continuous. When
Y is discrete (e.g., in classification problems), the integral reduces to a finite sum over all possible
outcome values. In this case, the evaluation is straightforward and can be computed exactly without
approximation. When Y is continuous, (e.g., in regression problems), the integral cannot typically
be computed in closed form and may even diverge unless we restrict the domain of integration. Thus,
to approximate the prior, as in (Slavutsky & Blei, 2025), we employ Monte-Carlo integration where
we sample K possible outcome values uniformly from a predefined integration range [ymin, ymax]
and average the Normal log-likelihood (centered at the model’s prediction with unit variance) over
the K samples.

3.2 AMORTIZED VARIATIONAL POSTERIOR

Equipped with the adaptive prior, we now turn to the estimation of the posterior p(J = j |
x1:n, y1:n, x) = p(J = j | D, x), which conditions not only on the covariates x and x1:n, but
also on the training labels y1:n. This, in turn, will enable us to assign input-adaptive weights for

5
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Figure 1: Illustration of the input-adaptive prior. Each panel shows the posterior probabilities p(J =
j | D, x) as functions of x. Top: the baseline log-odds is fixed and β1 varies; larger β1 values
increase the influence of x, producing stronger adaptive corrections. Bottom: β1, β2 are fixed while
the baseline log-odds C1 − C2 varies; stronger baselines yield higher prior preference for f1, but
input-specific corrections can still substantially reshape the prior at certain x. The marked point
(x = 1) highlights how the adaptive prior shifts the relative model probabilities compared to the
baseline.

model averaging, bringing them closer to the ideal weights that recover the predictive distribution
p(y | x).
We do so by fitting variational distributions q(fj ;x) ≈ p(J = j | D, x) parameterized as functions
of the input x. This yields an amortized posterior approximation, which allows us to efficiently
evaluate approximate posteriors at multiple inputs x.

In our case, in the context of a new input x, the true posterior distribution over predictors is Multi-
nomial p(J = j | D, x) = ρj(x) for j ∈ {1, . . . ,m}, where each ρj(x) > 0 and

∑m
j=1 ρj(x) = 1.

Thus, we set the variational family to be the set of all multinomial distributions.

Qx := {q = (q(J = 1;x), . . . , q(J = m;x) ∈ ∆m−1}. (16)

For a given input x, our goal is to minimize the KL divergence

min
q∈Qx

DKL(q∥ p) :=
m∑
j=1

q(J = j;x) log
q(J = j;x)

p(J = j | D, x)
. (17)

Note that since the true posterior and the variational family share the same (categorical) form, the
problem is well-specified: the KL depends only on estimating the probabilities P (J = j;x).

3.3 OPTIMIZATION

To minimize the KL divergence in Equation 17, we optimize the evidence lower bound (ELBO)
on the log-likelihood (Kingma & Welling, 2014; Rezende & Mohamed, 2015; Blei et al., 2017).
We parameterize the variational distribution with a neural network with weights θ, producing
hθ(x) = (qθ(J = 1;x), . . . , qθ(J = m;x)), and optimize θ rather than the output directly. Thus,
our objective to fit the amortized posterior is

L (θ;x) = Eqθ [log p(y | x, fj)]−DKL(qθ∥ p(J |x1:n, x)) (18)

=

m∑
j=1

[qθ(J = j;x) log fj(y | x)]−
m∑
j=1

qθ(J = j;x) log
qθ(J = j;x)

p(J = j | x1:n, x)
. (19)

Note that the expected log-likelihood Eqθ [log p(y | x, fj)] reduces to a weighted sum, so no sam-
pling is required to evaluate our objective. The complete optimization procedure is summarized in
Algorithm 1.

6
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Algorithm 1 IABMA: Amortized Posterior Learning (IABMA)
1: Inputs: Training data D; predictors {fj}mj=1; initialization θ0; learning rate η; iterations K.
2: Precompute: For all i = 1, . . . , n and predictor j = 1, . . . ,m, store log fj(yi | xi).
3: for k = 1 to K do
4: for i = 1 to n do
5: for j = 1 to m do
6: Prior: Compute p(J = j|x−i, x) ∝ exp

(
E(J = j;x−i, xi)

)
7: Posterior: Compute hθk−1

(x) = (qθk−1
(J = 1;xi), . . . , qθk−1

(J = m;xi))
8: ELBO: Compute

L(xi; θk−1) =

m∑
j=1

qθk−1
(J = j;xi) log fj(yi | xi) −

m∑
j=1

qθk−1
(J = j;xi) log

qθk−1
(J = j;xi)

p(J = j|x−i, xi)
.

9: end for
10: Update: L(θk−1)← 1

n

∑
i L(xi; θk−1)

11: end for
12: Update: θk ← θk−1 + η∇θL(θk−1)
13: end for
14: Return: θ̂ := θK

Weight assignment: After training is complete (see Algorithm 1), with the estimate θ̂, for a new
input x we compute (qθ̂(J = 1;x), . . . , qθ̂(J = m;x)) and assign αj(x) = qθ̂(J = j;x). This
yields a predicted value p̂α(y | x) =

∑m
j=1 αj(x)fj(y | x).

4 EXPERIMENTS

We evaluate IABMA via 7 experiments on classification and regression tasks, based on simulated
data, 2 case-studies, and 4 UCI benchmark datasets.

We compare predictive distributions against (a) non-adaptive baselines: (i) best single predictor,
(ii) uniform average over predictors, (iii) accuracy-weighted average, and (iv) classical Bayesian
model averaging (BMA); and (b) adaptive methods (see Section 1.1): (i) Mixture of Experts (MoE)
(Jacobs et al., 1991), (ii) Dynamic Local Accuracy (DLA) (Woods et al., 1997), (iii) Synthetic Model
Combination (SMC) (Rasmussen & Ghahramani, 2001), and (iv) Bayesian Hierarchical Stacking
(BHS) (Yao et al., 2022).

In each experiment we train candidate predictors and fit all model averaging methods on the training
set. We test the performance of the resulting predictive distributions: for regression tasks we report
R2 and root mean square error (RMSE); for classification tasks we report accuracy and expected
calibration error (ECE).

Hyperparameters for our method and all baselines were tuned via binary search to maximize av-
erage performance (accuracy for classification, RMSE for regression) on a held-out repetition ex-
cluded from the analysis. The selected values and further implementation details are provided in
Appendix D, with additional data processing and predictor specifications in Section C. Code to
reproduce all results is included with the submission and will be released publicly upon acceptance.

4.1 SIMULATION

We start with evaluating IABMA on a simple two-dimensional binary task: half of the observations
were drawn from a Gaussian cluster centered at (−1, 0), and labels were assigned by a linear rule
y = 1x1+x2>−1. The remaining observations were sampled around (1, 0) on a ring; labels followed
a circular rule y = 1r<1 with r =

√
x2
1 + x2

2 measured from (1, 0). We generated ntrain = 1, 000
and ntest = 500 examples and used only the 2-dimensional coordinates as features (region indicators
were recorded for analysis but not used for training).

This example illustrates three subpopulations defined by their first dimension: (i) inputs that are per-
fectly separable by a linear boundary, (ii) inputs that are perfectly separable by a circular boundary,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and (iii) inputs for which it is ambiguous whether they belong to the first or the second group. Thus,
and ideal weighting would put all weight on the best predictor for subpopulations (i) and (ii), and
employ soft weighting at (iii). All averaging methods operated on the same base classifiers: polyno-
mial logistic regression (degrees 2 and 3), Linear Discriminant Analysis, and tailored “soft-circle”
models that predict class probability via a logistic function of radial distance to a learned center.
Additional details are provided in section C.1

Results: Figure 2 shows that IABMA achieves highest accuracy and lowest ECE compared to all
non-adaptive baselines, as well as all adaptive methods.

Figure 2: Simulation. Left: data (of one repetition). Results for accuracy (middle) and ECE (right)
are reported for 10 repetitions. IABMA achieves highest accuracy and lowest ECE.

4.2 CASE STUDIES

4.2.1 PERSONALIZED CANCER DRUG-RESPONSE

An important example of heterogeneous data is personalized drug response prediction, where dif-
ferent models may perform better on different subpopulations. We evaluate IABMA on this task
using the PRISM cancer drug response dataset. The data consists of pairings of molecule-cell line
RNA sequence features. For each drug–cell pair we form a continuous response y so that larger val-
ues indicate greater sensitivity. We retain drugs with broad site coverage and construct inputs from
the top variance genes. All averaging methods operate over the same four base regressors—Ridge,
Histogram-based Gradient Boosting Tree, XGBoost, and a Multilayer perceptron (MLP), each with
pre-processing tailored to model class. Additional details are provided in C.2.

Results: Figure 3 shows that IABMA achieves higher R2 and lower RMSE compared to all other
methods. Further analysis is presented in Figures 4–7 which display the weights assigned by each
averaging method for randomly selected inputs. The results show that IABMA consistently favored
the best (or nearly best) model, whereas other methods leaned toward other predictors, with MoE in
particular overemphasizing MLP and XGB even when suboptimal.

4.2.2 CREDIT-CARD FRAUD DETECTION

Another domain characterized by heterogeneous data is fraud detection, where the rarity of fraudu-
lent cases poses an additional challenge. We evaluate IABMA on this task using the IEEE-CIS Fraud
Detection dataset. The dataset consists from mixed Continuous (such as transaction amount) and
high-cardinality categorical features (such as product category), and the target variable y ∈ {0, 1}
indicated where a transaction was fraud. All averaging methods operate over the same base classi-
fiers: Logistic Regression with Lasso penalty, Histogram-based Gradient Boosting Tree, XGBoost
(with class-imbalance weighting), and an MLP. Additional details are provided in Section C.3.

Results: Figure 3 shows that IABMA achieves higher accuracy and lower expected-calibration
error compared to all other methods. Since in fraud prediction calibration matters within each bin,
we analyzed per-bin confidence |p − 0.5|, and found that IABMA achieves the lowest error in all
high-confidence bins (> 0.25). The corresponding analysis is shown in Figure B.2.
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Figure 3: Experimental results for main case studies. Results are reported for 10 repetitions. IAB-
MAachieves best results compared to all other averaging method on both case studies.

4.3 EXPERIMENTS ON UCI BENCHMARK DATASETS

We evaluated IABMA on 4 UCI benchmark datasets spanning both classification and regression.
For classification we used spambase and credit-g; for regression we used bike-sharing
and california-housing. All pre-processing information is detailed in Section C.4

Across all datasets we trained a common set of base learners. For classification: Multinomial Naive
Bayes, k–NN (k = 3), Random Forest, Extra Trees, and a linear SVM. For regression: Ridge
(α=0.05), Lasso (α=0.05), k–NN (k=3, distance-weighted), Random Forest, and Extra-Trees. To
encourage diversity, each model was trained on a subset of features (“feature bundles”). Full pre-
processing steps, feature bundles, and model specifications are detailed in Section C.4.

Results: Unlike complex heterogeneous datasets, UCI benchmarks are highly normalized and thus
show less variability across methods. Even so, IABMA outperforms all competitors in all four
experiments on at least one metric, and in two cases on both. Results are reported in Table 1.

5 CONCLUSION

daptive model averaging in heterogeneous data settings, where different predictors may be preferable
for different inputs. We introduced IABMA, framework that casts model averaging as probabilistic
model selection conditioned on the input. Within this formulation, the posterior distribution over
models provides the natural, Bayes-optimal choice of input-adaptive weights, thereby recovering the
true predictive distribution. Our approach is grounded in an input-dependent prior on the selector
function and implemented through amortized variational inference of the posterior.

We establish finite-sample bounds showing that the posterior-weights predictor achieves strong like-
lihood performance compared to any input-specific single-model selector. Empirically, we evaluate
IABMA across regression and classification tasks, including personalized cancer treatment response,
credit-card fraud detection, and standard UCI benchmarks. We show that IABMA consistently out-
performs both non-adaptive baselines and existing adaptive methods, delivering more accurate and
better calibrated predictions.

9
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A PROOFS

A.1 CHANGE OF MEASURE ARGUMENT

Let F : X2 → X1 be a measurable function between two measure spaces (X1,A1, η) and
(X2,A2, ν). Let g : X1 → R measurable function. Recall that the change of variables formula
is given by ∫

X1

g dF#η =

∫
X1

(g ◦ F ) dη. (20)

where F#η denotes the pushforward of η through F .

Applying this to our setting, recall that a draw from the posterior g ∼ p(g | x,D) induces a random
index j(x) defined by the relation g(x) = ej(x). Formally, the evaluation map

sx : G → {1, . . . ,m}, sx(g) = j(x),

pushes the posterior measure p(g | x,D) forward onto a distribution over indices. Using this push-
forward, we can rewrite equation 6 as∫

G
p(y | x, g) dP(g | x,D) =

∫
G
fsx(g)(y | x) dP(g | x,D) (21)

=

∫
{1,...,m}

fj(y | x) d (Ex#P)(j | x,D) (22)

=

m∑
j=1

fj(y | x) p(j | x,D). (23)

A.2 PROOF OF THEOREM 2.1

Theorem. Denote Di := {(xt, yt)}it=1, and consider the posterior weights predictor p̂(i)α assigning
α
(i)
j (x) := p(J(x) = j | Di, x) to the j-th predictor fj . Assume that E[| log fj(Y | X)|] < ∞ for

all fj ∈ F . Then, for any measurable selector j∗ : X → {1, . . . ,m} and any n ≥ 1,

1

n

n∑
i=1

E
[
log p̂(i)α (yi | xi,Di−1)

]
≥ E

[
log fj∗(x)(y | x)

]
+

1

n

n∑
i=1

E
[
logα

(i)
j∗(xi)

(xi)
]
, (24)

where the expectations are taken w.r.t the population distribution (x, y) ∼ p(x, y).

Proof. Define the posterior-weights predictor

p̂(i)α (y | x,Di−1) =

m∑
j=1

α
(i)
j (x)fj(y | x) (25)

For a fixed input xi and a fixed predictor fk we have that

log p̂(i)α (yi | xi,Di−1) = log

 m∑
j=1

α
(i)
j (xi)fj(yi | xi)

 (26)

≥ log
(
α
(i)
k (xi)fk(yi | xi)

)
(27)

= log fk(yi | xi) + logα
(i)
k (xi). (28)

Taking E(x,y)∼p(x,y) [· | xi,Di−1], since fj∗(x)(yi | xi) is independent of Di−1,

E
[
log p̂(i)α (yi | xi,Di−1)

]
≥ E [log fk(yi | xi)] + E

[
logα

(i)
k (xi) | Di−1

]
. (29)

This holds for any 1 ≤ k ≤ m, hence for k = j∗(xi),

E
[
log p̂(i)α (yi | xi,Di−1) | Di−1

]
≥ E

[
log fj∗(x)(yi | xi)

]
+ E

[
logα

(i)
j∗(xi)

(xi) | Di−1

]
. (30)
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Taking E [· | Di−1], by the law of total expectation,

E
[
log p̂(i)α (yi | xi,Di−1)

]
≥ E

[
log fj∗(xi)(yi | xi)

]
+ E

[
logα

(i)
j∗(xi)

(xi)
]
. (31)

Averaging over i, we get

1

n

n∑
i=1

E
[
log p̂(i)α (yi | xi,Di−1)

]
≥ E

[
log fj∗(xi)(yi | xi)

]
+

1

n

n∑
i=1

E
[
logα

(i)
j∗(xi)

(xi)
]
.

B ADDITIONAL EXPERIMENTAL RESULTS

In what follows we provide a deeper analysis of the performance of adaptive model averaging meth-
ods on the two case-studies.

B.1 CANCER TREATMENT RESPONSE

To illustrate how different methods allocate weights, we sampled 16 cases as follows: for each
classifier fj , we randomly selected four examples from those where IABMA assigned the highest
weight to fj . Figures 4–7 display the weights assigned by each averaging method for Ridge, XGB,
HGB, and MLP. For each case, we also report the RMSE achieved by the individual classifiers.
This analysis shows that in all cases, IABMA places the largest weight on the model with either the
lowest error or a near-tied second. By contrast, competing methods tend to favor other predictors.
In particular, MoE consistently prioritizes MLP or XGB, even in instances where these models are
locally suboptimal.

Figure 4: Cases where IABMA assigns the highest weight to Ridge.
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Figure 5: Cases where IABMA assigns the highest weight to XGB.

Figure 6: Cases where IABMA assigns the highest weight to HGB.

Figure 7: Cases where IABMA assigns the highest weight to MLP.
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Table 1: UCI benchmarks: mean (sd) across runs.

Dataset Metric
Best

single
Uniform

Avg.
Freq
Avg. BMA MoE DLA SMC BHS IABMA

Bike-sharing R2 (↑)
0.706

(0.022)
0.752

(0.010)
0.773

(0.012)
0.774

(0.014)
0.706

(0.022)
0.781

(0.013)
0.756

(0.010)
0.752

(0.010)
0.794

(0.010)

Bike-sharing RMSE (↓)
0.582

(0.033)
0.491

(0.021)
0.448

(0.020)
0.447

(0.021)
0.581

(0.033)
0.446

(0.020)
0.483

(0.020)
0.491

(0.021)
0.433

(0.018)

Cal.-housing R2 (↑)
0.772

(0.022)
0.840

(0.018)
0.840

(0.017)
0.812

(0.017)
0.778

(0.024)
0.840

(0.018)
0.817

(0.066)
0.840

(0.018)
0.844

(0.014)

Cal.-housing RMSE (↓)
0.036

(0.004)
0.025

(0.003)
0.025

(0.003)
0.029

(0.003)
0.035

(0.004)
0.025

(0.003)
0.029

(0.010)
0.025

(0.003)
0.024

(0.003)

Credit-g Accuracy (↑)
0.634

(0.036)
0.676

(0.029)
0.662

(0.038)
0.648

(0.036)
0.624

(0.036)
0.668

(0.039)
0.626

(0.046)
0.682

(0.039)
0.684

(0.047)

Credit-g ECE (↓)
0.260

(0.034)
0.172

(0.022)
0.169

(0.020)
0.174

(0.023)
0.296

(0.035)
0.173

(0.025)
0.222

(0.038)
0.176

(0.025)
0.175

(0.020)

Spambase Accuracy (↑)
0.699

(0.110)
0.702

(0.094)
0.738

(0.044)
0.760

(0.024)
0.760

(0.035)
0.729

(0.052)
0.757

(0.032)
0.646

(0.132)
0.764

(0.032)

Spambase ECE (↓)
0.114

(0.022)
0.163

(0.049)
0.148

(0.042)
0.169

(0.018)
0.095

(0.034)
0.171

(0.051)
0.222

(0.023)
0.180

(0.061)
0.146

(0.025)

B.2 CREDIT CARD FRAUD

Credit card fraud prediction is a highly sensitive area, with risks of false alarms and misreporting,
calibration is crucial not only overall but also within each bin. To this end, we analyzed the con-
fidence measure |p − 0.5| where p is the estimated probability, which captures certainty for both
positive and negative events, and compared the bin-wise errors across averaging methods. Fig-
ure B.2 shows that in all high-confidence bins (confidence > 0.25), IABMA attains the lowest error,
showing that most miscalculated predictions occur in low confidence instances.

0.00-0.05 0.05-0.10 0.10-0.15 0.15-0.20 0.20-0.25 0.25-0.30 0.30-0.35 0.35-0.40 0.40-0.45 0.45-0.50
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Figure 8: Calibration across confidence bins in credit-card fraud prediction

B.3 UCI BENCHMARK DATASETS

Results are reported in Table 1.
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C EXPERIMENTAL DETAILS

C.1 SIMULATION

C.1.1 DATA AND PROCESSING

We generated a two-dimensional binary dataset with two subpopulations governed by different de-
cision rules. For the linear subpopulation, we drew nlin = ntrain/2 training points from a Gaussian
cloud centered at (−t, 0) (with t = 1),

X(lin,train) ∼ N
(
(−t, 0), 0.1 I2

)
,

and assigned labels by a linear rule y = 1{x1+x2 > −t}. For the circular subpopulation, we drew
ncirc = ntrain − nlin points on a ring around (t, 0) by sampling θ ∼ Unif(0, 2π) and r =

√
U with

U ∼ Unif(0, 2), and set

X(circ) = (t, 0) +
(
r cos θ, r sin θ

)
, y = 1{r < 1}.

We used ntrain = 1, 000 and ntest = 500; the train/test splits were generated independently.

Only the two coordinates (x1, x2) were provided as features. A region indicator z ∈
{0 (linear), 1 (circular)} was recorded for analysis but was not used during training.

C.1.2 CANDIDATE PREDICTORS

All averaging methods were evaluated on the same 3 base classifiers:

1. Polynomial logistic regression (degrees 2 and 3). We fit logistic regression with polynomial
features of degree d ∈ {2, 3} (no bias term in the expansion).

2. Linear Discriminant Analysis (LDA). A linear generative classifier fit on the raw coordi-
nates, providing a single linear boundary.

3. Soft-circle classifiers (two instances). Each instance modeled the positive-class probability
as a logistic function of radial distance to a fixed center,

pcircle(y=1 | x) = σ
(
γ (R− ∥x− c∥)

)
, c = (0.8 t, 0), R = 1.0, γ = 5.0,

yielding smooth circular decision regions around (t, 0).
We instantiated two copies of each model to allow the averaging procedure to allocate
weight across similar experts.

C.2 PRISM CANCER EXPERIMENT

C.2.1 DATA AND PROCESSING

We used the publicly available PRISM cancer drug response dataset. The primary data3 was com-
bined with an RNA-seq expression matrix4, cell-line metadata5, and tissue labels6. All files are
available from https://depmap.org/portal/data page/.

The PRISM file reports drug–cell line responses with identifiers of the form ACH-#. We normalized
all identifiers to the canonical zero-padded format (ACH-XXXXXX). Non-Continuous entries and
all observations lacking a primary cancer site were excluded. Responses correspond to log-fold
changes (LFC), clipped to the range [−6, 6], and the prediction target was defined as y = −v, where
v is the clipped LFC.

We focused on the 40 drugs with the greatest site-level heterogeneity. Specifically, we computed the
between-site variance of y and retained compounds observed in at least 3 distinct sites, with at least
5 samples per site and at least 40 samples overall. A minimum per-site coverage threshold of 20

3Repurposing Public 23Q2 Extended Primary Data Matrix.csv
4OmicsExpressionProteinCodingGenesTPMLogp1.csv
5Cell lines annotations 20181226.txt
6Model.csv
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samples was enforced. To avoid domination by a few large tissues, we capped each site at 1.1 × s,
where s is its sample size. This yielded approximately 18,460 drug–cell line pairs (slight variation
across random splits), of which 80% were used for training and 20% for testing.

Gene expression features were restricted to the 100 highest-variance genes. Each gene was stan-
dardized to mean 0 and variance 1 based on training statistics. The final feature matrix consisted of
standardized gene expression values and a categorical compound indicator.

The full processing code was submitted with this paper and will be released publicly upon accep-
tance.

C.2.2 CANDIDATE PREDICTORS

All averaging methods were evaluated on averaging the same four regression models with repro-
cessing pipelines tailored per model:

1. Ridge regression (ℓ2 regularized linear model). Gene features were imputed (median),
standardized to zero mean and unit variance, and combined with a dense one-hot encoding
of the compound identity.

2. Histogram-based Gradient Boosting regressor (HGB). Tree-based model trained on raw
gene values (median imputation only) together with a sparse one-hot encoding of the com-
pound identity.

3. XGBoost regressor (XGB). Gradient-boosted decision trees with squared-error objective,
trained using the same pre-processing as HGB. We used 400 estimators, learning rate 0.05,
maximum depth 8, subsample ratio 0.9, and column subsample ratio 0.8, with ℓ1 and ℓ2
regularization.

4. Multi-layer perceptron (MLP). A feed-forward neural network with hidden layers of size
(128, 64), ReLU activations, learning rate 10−3, batch size 64, and early stopping based on
a 10% validation split. Inputs were preprocessed as for Ridge (dense, imputed, standardized
gene features and dense one-hot drug encoding).

C.3 IEEE-CIS FRAUD EXPERIMENT

C.3.1 DATA AND PROCESSING

We used the IEEE-CIS credit-card fraud dataset, available at https://www.kaggle.com/c/ieee-fraud-
detection/data.

We removed rows with missing target (isFraud) and features with more than 50% missing val-
ues. To limit explosion in feature dimension, infrequent categories were grouped into a shared rare
category.

In each repetition 80% of the data was used for training and 20% for testing. The training data
was then reduced to obtained class balance, while in test data class imbalance was maintained. To
reduced covariate shift in the train-test split we stratified jointly on (ProductCD, card4) crossed
with per-row missingness bins and TransactionAmt quantile bins, with a fallback “RARE”
bucket for very small strata. This procedure yielded a stable empirical mix of products, card net-
works, and spending levels. Specifically, to control the empirical mix of products, card networks,
and spending levels we stratified jointly on (ProductCD, card4) crossed with per-row missing-
ness bins and TransactionAmt quantile bins.

Continuous features were median-imputed and where appropriate, standardized to zero mean and
unit variance. Categorical features were imputed to the most frequent level and one-hot encoded,
with infrequent categories pooled into a rare-level. Class imbalance was addressed within each
classifier as noted below.

C.3.2 CANDIDATE PREDICTORS

All averaging methods were evaluated over the same following base classifiers.
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1. Logistic Regression (ℓ1-penalized). We fit a penalized logistic model to the processed fea-
ture set, using an ℓ1 penalty with strength to encourage sparsity and robustness to correlated
predictors. We used a saga solver, ℓ1 penalty with regularization strength of 0.05, maximal
number of iterations as 4000, and tolerance of 10−3.

2. XGBoost (XGB). We trained a gradient-boosted ensemble of shallow decision trees using
histogram-based splits and early stopping. Depth, learning rate, and number of estimators
were selected via a held-out validation set. Hyper parameters were set as maximal bin of
256, 300 estimators, maximal depth of 5, learning rate 0.1, row subsampling of 0.3, feature
subsampling of 0.7, and ℓ2 penalty with strength 1.0.

3. Histogram-based Gradient Boosting (HGB). We train boosted trees with a histogram grow
policy, subsampling of observations and features, and ℓ2 regularization. Class imbalance
was addressed via the standard positive-class weight nneq

npos
, estimated from the training ex-

amples. Hyperparameters (learning rate, depth, estimators, subsampling ratios) were fixed
based on validation performance and kept constant across comparisons. Hyperparameters
were set to maximal depth of 4, learning rate 0.07, and ℓ2 regularization with strength 0.5,
and at most 350 iterations.

4. Multi-layer perceptron (MLP). We used a feed-forward network with two hidden layers of
sizes 384, 192 and ReLU activations, trained with weight decay and early stopping on a
validation split. Weight decay was set to α = 3 · 10−3, batch size 512, adaptive learning
rate with initial value of 10−3, early stopping with validation fraction 0.12 and no change
for 12 iterations, maximal number of iterations as 300, and tolerance 10−4.

C.4 UCI EXPERIMENTS

C.4.1 DATA AND PROCESSING

We evaluated IABMA on standard UCI tasks retrieved from OpenML. We chose datasets with rel-
atively large number of observations and features. For classification, we used spambase (target:
class) and credit-g (target: class). For regression, we used bike-sharing (target: cnt)
and california-housing (target: MedHouseVal).

We replaces common “unknown” tokens (e.g., ?, NA, NaN, unknown) with missing values, strip-
ping whitespace on string columns in each dataset, and dropped features whose missing rate ex-
ceeded 40%.

We used an 80%/20% train-test split in each repetition. For classification, we performed stratified
sampling on the label to preserve class proportions in the test set, and then balanced only the training
split by downsampling the majority class to the minority size. For regression, we created an approx-
imately balanced split by binning the continuous target into 12 quantile bins and stratifying on those
bins. All pre-processing statistics (imputation, scaling, and one- hot vocabularies) were computed
on the training partition and applied unchanged to the test data.

To encourage diversity among base models, we formed several heterogeneous, partially overlap-
ping feature bundles and trained each model on a bundle tailored to its strengths. Bundles were
constructed from the training data as follows:

• B1: up to 3 Continuous features with highest absolute Pearson correlation with the target
(continuous median-imputed for this computation).

• B2: up to 3 highest-variance Continuous features.
• B3: up to 3 categorical features with highest cardinality.
• B4: up to 5 remaining low-cardinality categorical variables.
• B5: all categorical features.
• B6: all Continuous features.
• B7: the union of B1 and B3.

Continuous features in non-tree models were median-imputed and standardized. Categorical fea-
tures were imputed to the most frequent level and one-hot encoded with a minimum frequency
threshold of 10 to pool rare levels; unknown categories at test time were ignored.
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C.4.2 CANDIDATE PREDICTORS

All averaging methods were evaluated on the same base models

D IMPLEMENTATION DETAILS

In all our experiments the posterior network for IABMA and the gating network for MoE were
implemented as feed-forward neural networks with hidden layers of size (64, 32, 16) and ReLU
activations. We used Adam optimizer for MoE and IABMA across all experiments.

Hyperparameters for our method and all baselines were tuned via binary search to maximize average
performance (accuracy for classification, RMSE for regression) on a held-out repetition excluded
from the analysis. The selected values and running times by experiment and method are reported
below.

D.1 HYPERPARAMETERS OF ENSEMBLE METHODS

Table 2: Hyperparameters of Mixture-of-Experts
Hyperparameter Synthetic PRISM (Cancer) Fraud (IEEE-CIS) UCI

Learning rate 10−3 10−3 10−3 10−3

Batch size 64 128 64 64
Epochs 10 20 10 10

Table 3: Hyperparameters of Dynamic Local Accuracy (DLA).
Hyperparameter Synthetic PRISM (Cancer) Fraud (IEEE-CIS) UCI

Neighborhood size k 50 50 50 50
Temperature T 0.8 1.0 1.0 1.0
Smoothing α 1.0 1.0 1.0 1.0

Table 4: Synthetic Mixture of Experts (SMC).
Hyperparameter Synthetic PRISM (Cancer) Fraud (IEEE-CIS) UCI

Confident-cover threshold 0.6 0.6 0.6 0.6
Cover quantile (reg.) – 0.30 – 0.30
Min coverage per model 20 20 20 20
Cov. reg. (reg. mix) 0.9 (Gaussian scores) 0.9 0.9 0.7

Table 5: Bayesian Hierarchical Stacking (BHS).
Hyperparameter Synthetic PRISM (Cancer) Fraud (IEEE-CIS) UCI

Temperature T 1.0 1.0 1.0 1.0
Prior weight 1.0 1.0 1.0 1.0
Slab scale s0 5.0 5.0 5.0 5.0
Learning rate 5× 10−3 5× 10−3 5× 10−3 10−3

Batch size 64 128 64 64
Epochs 10 20 10 10

D.2 RUNTIMES
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Table 6: Input-Adaptive Bayesian Model Averaging (IABMA)
Hyperparameter Synthetic PRISM (Cancer) Fraud (IEEE-CIS)

Learning rate 10−3 10−3 10−3

Batch size 64 128 64
Epochs 10 30 10
KL weight λKL 0.05 0.2 0.2

Table 7: IABMA (PosteriorNet) hyperparameters per UCI dataset.
Hyperparameter Spambase (clf) Credit-g (clf) Bike-sharing (reg) Cal housing (reg)

Learning rate 5× 10−3 5× 10−3 1× 10−3 1× 10−3

Batch size 64 64 64 64
Epochs 10 10 10 10
KL weight λKL 0.1 0.1 0.8 3.0

Table 8: Method runtimes (seconds): mean (sd) across 10 repetitions.

Experiment MoE DLA SMC BHS IABMA

Cancer
147.359
(5.282)

22.269
(0.454)

0.072
(0.114)

28.572
(1.167)

252.985
(5.571)

Fraud
439.502

(129.487)
8.246

(1.719)
688.473

(155.629)
16.622
(3.139)

461.312
(121.168)

Simulation
5.664

(0.104)
0.218

(0.008)
0.079

(0.004)
1.040

(0.079)
5.889

(0.038)

Bike-Sharing
25.080
(3.780)

0.868
(0.179)

0.007
(0.001)

21.364
(1.063)

29.663
(4.094)

Cal. housing
8.510

(0.987)
0.350

(0.041)
0.006

(0.001)
7.281

(0.324)
9.815

(1.029)

Credit-g
3.178

(0.049)
0.439

(0.017)
0.174

(0.007)
1.184

(0.148)
3.345

(0.048)

Spambase
16.420
(0.287)

0.642
(0.025)

0.822
(0.159)

1.781
(0.147)

18.651
(5.122)
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