TARE: LIGHTWEIGHT TOKEN-AWARE REPRESENTATION EDITING FOR FINE-TUNING TRANSFORMER

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032 033 034

035

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) of large Transformers often struggles to balance effectiveness with efficiency. Methods based on low-rank adaptation can be resource-intensive, while representation-editing techniques that apply a single, global transformation tend to underfit fine-grained, token-level contexts. The core challenge is achieving token-aware, fine-grained edits while keeping inference overhead and the hyperparameter tuning burden negligible. Our work introduce Token-Aware Representation Editing (TARE), a novel PEFT method. After each feed-forward network (FFN) block, TARE employs a lightweight selector that scores a small pool of "editors" for each token's hidden representation. It sparsely activates only the top-scoring editors and mixes their elementwise edits to update the representation. Because the edits are computationally minimal diagonal operations and are sparsely activated, TARE adds near-zero inference overhead and introduces no rank or scaling hyperparameters. Our work conduct extensive experiments on LLaMA-3-8B across eight knowledge reasoning and seven mathematical reasoning tasks, and on RoBERTa-base/large for the GLUE benchmark. Compared to strong baselines like LoRA, DoRA, MiLoRA, LoReFT, and RED, TARE achieves state-of-the-art results. It attains an 86.7% average on knowledge reasoning tasks, 76.7% on mathematical reasoning tasks, and 88.3% on the GLUE benchmark. These results are achieved while tuning only 0.0392% of the model's parameters and using approximately 20 GiB of memory, surpassing prior methods by several percentage points and demonstrating exceptional resource efficiency. An anonymized implementation is available at: https://anonymous.4open.science/r/tare-BCF5/.

1 Introduction

Parameter–efficient fine–tuning (PEFT) has become a central paradigm for adapting large Transformers under tight compute and memory budgets: it aims to reach strong task performance by training only a tiny fraction of parameters while keeping the backbone frozen. Existing PEFT families include weight–space adapters (e.g., LoRA Hu et al. (2021), DoRA Liu et al. (2024), MiLoRA Wang et al. (2024), representation–space editing and gating (e.g., RED Wu et al. (2024a), LoReFT Wu et al. (2024b), IA³ Liu et al. (2022), BitFit Ben Zaken et al. (2021)). Despite clear efficiency gains, a key open problem remains: how to attain fine-grained, token-aware adaptation while keeping inference overhead and hyperparameter burden negligible.

Across methods, a common limitation is the tension between expressiveness and efficiency. Lowrank approaches such as LoRA Hu et al. (2021), DoRA Liu et al. (2024), and MiLoRA Wang et al. (2024) introduce additional matrix multiplications at inference and require nontrivial choices of ranks and scaling, which complicates tuning and can increase latency. Representation-editing methods that are highly efficient at inference often apply a single, shared transformation to all tokens—e.g., RED Wu et al. (2024a) learns one global per-feature scaling/bias; IA³ Liu et al. (2022) gates channels uniformly; BitFit Ben Zaken et al. (2021) updates only biases—thereby limiting capacity to capture fine-grained context. LoReFT Wu et al. (2024b) performs low-rank projections in representation space but still uses the same projection for every token and inherits rank-selection overhead. In summary, many methods either impose a uniform hidden representation editor that underfits token-level variability, or they improve capacity at the cost of extra inference computation

Figure 1: Token-wise optimal scaling/bias (Token-optimal) forms a few modes. A single global scaling/bias (Global edit) underfits, a small set of scalings/bias (Editor edits) covers dominant modes.

and hyperparameters—motivating the token-aware representation editing strategy pursued in this work.

As shown in Figure 1, for a single layer, the per-dimension scaling (top) and bias (bottom) that would be individually optimal for different tokens (thin solid curves). Two regularities emerge. First, token requirements are highly heterogeneous across embedding dimensions: the thin curves span roughly 0.8-1.2 for both scaling and bias and exhibit clear phase shifts, indicating that different tokens prefer amplifying/suppressing different feature bands. Second, despite this heterogeneity, the thin curves concentrate around a small number of prototypical shapes (thick solid curves); most token-specific curves closely follow one of these smooth templates up to modest perturbations. In contrast, the single global edit (thin dashed) is essentially the per-dimension average; it flattens peaks and valleys and therefore underfits wherever tokens require opposite adjustments (e.g., around the mid- and high-dimensional regions where one mode rises while another falls). The same multi-modal pattern appears simultaneously in both scaling and bias, and the two often exhibit slight phase misalignment, suggesting that accurate edits must coordinate the pair rather than rely on either alone. This analysis implies that token-level edits are necessary to capture fine-grained semantics, and only a few hidden representation editors are sufficient to cover the dominant modes.

Consequently, our work proposed **Token-Aware Representation Editing** (TARE), which adopts a token-aware hidden representation editing scheme. TARE inserts a hidden representation editor module after each block's FFN: for each token, a lightweight selector produces logits over n diagonal editors and activates only the Top-k hidden representation editors; each selected hidden representation editor maintains element-wise scale and bias vectors (γ_i, b_i) to form cansdidate edits $h_i = h_1 \odot \gamma_i + b_i$, which are then linearly mixed by softmax-normalized weights to update the representation. Because the operations are diagonal along feature dimensions and selection is sparse, the inference overhead is nearly unchanged; the backbone network of large Transformer is frozen, and only (n, k) need to be set—no rank/scale hyperparameters are introduced.

The main contributions of this work are as follows:

• Our work propose **Token-Aware Representation Editing** (*TARE*), a new PEFT mechanism that replaces one-size-fits-all edits with per-token, per-dimension adjustments. A lightweight selector scores a small pool of hidden representation editors and mixes only a few of them for each token, yielding fine-grained context adaptivity while keeping computation strictly diagonal and sparse. This directly tackles the key challenge raised above—achieving token-level expressiveness without adding inference latency or complex hyperparameters.

- Our work show that token-optimal edits cluster into a handful of smooth modes; the
 proposed TARE method's selector-template co-design exploits this structure by projecting each token onto a local convex combination of learned hidden representation editors.
 This design preserves the inference friendliness of representation editing, avoids rank/scale
 knobs from low-rank adapters, and provides a simple, robust training recipe with optional
 load-balancing regularization.
- The proposed TARE method is evaluated on a decoder model (LLaMA-3-8B) across eight knowledge reasoning tasks and seven mathematical reasoning tasks, and on encoder models (RoBERTa-base/large) on GLUE benchmark. It achieves 86.7% average over eight knowledge reasoning tasks (slightly above LoReFT and notably higher than LoRA/RED), 76.7% average over seven mathematical reasoning tasks and 88.3% on GLUE benchmark, while tuning only 0.0392% of parameters with ~20 GiB memory. TARE consistently matches or surpasses strong PEFT baselines (LoRA, DoRA, MILoRA, RED, LoReFT) under tight parameter and memory budgets.

2 RELATED WORK (A.2)

3 TOKEN-AWARE REPRESENTATION EDITING

This section introduces the proposed TARE method. Rather than using dense low-rank adapters, TARE employs a lightweight, token-wise selector. For each token, it activates a small set of hidden representation editors (per-feature scaling and bias) and mixes their edits with normalized weights. This token-aware, *k*-sparse, diagonal adjustment increases expressiveness and captures fine-grained context. It adds virtually no inference overhead and avoids rank/scale hyperparameters. As a result, TARE transfers well across diverse tasks while alleviating the extra computation and overfitting issues of conventional fine-tuning.

3.1 DESIGN PRINCIPLES

Notation and setup. Fix a Transformer layer index ℓ . Let $h_{\ell,t} \in \mathbb{R}^{1 \times 1 \times D_{\ell}}$ denote the hidden representation of a given token t at layer ℓ . A diagonal hidden representation editor applies a feature-wise affine transformation

$$E_{\theta,\ell,t}(h_{\ell,t}) = h_{\ell,t} \odot \gamma_{\ell} + \beta_{\ell}, \quad \theta = (\gamma_{\ell}, \beta_{\ell}) \in \mathbb{R}^{1 \times 1 \times D_{\ell}} \times \mathbb{R}^{1 \times 1 \times D_{\ell}}, \tag{1}$$

where \odot is the Hadamard product. Let $f_\ell(\cdot)$ denote the remainder network from layer ℓ to the task head, and let $\mathcal{L}(\cdot)$ be the task loss. We consider diagonal edits constrained to a feasible set \mathcal{B} (e.g., $\|(\gamma_\ell-\mathbf{1},\beta_\ell)\|_2 \leq \rho$ or box constraints on γ_ℓ), which makes the optimization and approximation well-defined. For a codebook of n editors $\Theta = \{\theta_i\}_{i=1}^n$, the token-wise selector returns a Top-k index set $\mathcal{T} \subseteq \{1,\ldots,n\}, |\mathcal{T}|=k$, and nonnegative mixing weights $\{w_i\}_{i\in\mathcal{T}}$ with $\sum_{i\in\mathcal{T}}w_i=1$. We write $\Theta_k=\mathrm{conv}\{\theta_i:i\in\mathcal{T}\}$ for the corresponding convex hull. Unless stated otherwise, $\|\cdot\|$ denotes the Euclidean norm.

Token-optimal diagonal edit. For a fixed token representation $h_{\ell,t}$, we define the token-optimal diagonal parameters as

$$\theta^{\star}(h_{\ell,t}) \in \arg\min_{\theta \in \mathcal{B}} \mathcal{L}(f_{\ell}(E_{\theta,\ell,t}(h_{\ell,t}))).$$
 (2)

This object serves as the ground-truth reference for our approximation analysis; it is the best diagonal edit (within \mathcal{B}) for the current token at layer ℓ .

Why token-aware edits are necessary. Consider a first–order Taylor expansion of $\mathcal{L}(f_{\ell}(E_{\theta,\ell,t}(h_{\ell,t})))$ around the identity edit $(\gamma_{\ell},\beta_{\ell})=(\mathbf{1},\mathbf{0})$:

$$\mathcal{L}(f_{\ell}(E_{\theta,\ell,t}(h_{\ell,t}))) \approx \mathcal{L}(f_{\ell}(h_{\ell,t})) + \underbrace{g_{\ell}(h_{\ell,t})^{\top}((\gamma_{\ell} - \mathbf{1}) \odot h_{\ell,t} + \beta_{\ell})}_{\text{first-order term}} + R_{2}(\theta; h_{\ell,t}), \quad (3)$$

where $g_{\ell}(h_{\ell,t}) = \nabla_{h_{\ell,t}} \mathcal{L}(f_{\ell}(h_{\ell,t}))$ and R_2 collects second-order terms (bounded under standard smoothness assumptions). Under a norm constraint on $(\gamma_{\ell} - 1, \beta_{\ell})$, the first-order decrease aligns coordinate-wise with $-g_{\ell}(h_{\ell,t})$, which is token-dependent. Hence a single global edit is generally suboptimal; edits must be token-aware.

Why a small set of prototypes suffices. Empirically (Fig. 1), $\theta^*(h_{\ell,t})$ across tokens clusters into a handful of smooth modes. This invites a codebook view: treat each editor parameter $\theta_i = (\gamma_i, \beta_i)$ as a codeword and the set Θ as a codebook. Classical vector quantization (e.g., Lloyd–Max, k-means) relates hard assignment (Top-1) error to within-cluster radius/variance; learning Θ reduces these radii, improving approximation of $\theta^*(h_{\ell,t})$ by nearby codewords. We operationalize this with a token-wise selector.

Why Top-k convex mixing is principled. Given the Top-k set \mathcal{T} and weights $\{w_i\}_{i\in\mathcal{T}}$, the mixed parameter is

$$\widehat{\theta} = \sum_{i \in \mathcal{T}} w_i \, \theta_i \in \Theta_k. \tag{4}$$

Let $\operatorname{dist}(\theta^\star, \Theta_k) = \min_{\vartheta \in \Theta_k} \|\theta^\star - \vartheta\|$ be the distance from the token-optimal parameter to the convex set Θ_k . Then, by convexity,

$$\operatorname{dist}(\theta^{\star}, \Theta_k) \leq \min_{i \in \mathcal{T}} \|\theta^{\star} - \theta_i\|, \tag{5}$$

so allowing convex combinations (Top-k) is never worse than nearest-neighbor/Top-1 in parameter space.

Figure 2: Schematic of the proposed TARE method.

From parameter error to output error. Fix h_{ℓ} and two parameter vectors θ, θ' . Since $E_{\theta,\ell,t}(h_{\ell,t}) = h_{\ell,t} \odot \gamma_{\ell} + \beta_{\ell}$ is affine in θ , one has

$$||E_{\theta,\ell,t}(h_{\ell,t}) - E_{\theta',\ell,t}(h_{\ell,t})||_2 = ||h_{\ell,t} \odot (\gamma_{\ell} - \gamma'_{\ell}) + (\beta_{\ell} - \beta'_{\ell})||_2 \le L(h_{\ell,t}) ||\theta - \theta'||_2, \quad (6)$$

with $L(h_{\ell,t}) = \sqrt{\|h_{\ell,t}\|_{\infty}^2 + 1}$ (a token-dependent Lipschitz constant; proof in A.3). Combining equation 5 and equation 6 yields an end-to-end token-level bound:

$$||E_{\widehat{\theta},\ell,t}(h_{\ell,t}) - E_{\theta^{\star},\ell,t}(h_{\ell,t})||_{2} \leq L(h_{\ell,t})\operatorname{dist}(\theta^{\star},\Theta_{k}) \leq L(h_{\ell,t})\min_{i\in\mathcal{T}}||\theta^{\star} - \theta_{i}||_{2}.$$
 (7)

Thus, learning a small set of diagonal hidden representation editors (a codebook) and performing token-wise Top-k convex mixing provides a principled approximation of the unknown token-optimal edit, with guarantees that are never worse than Top-1 and improve as the learned codewords shrink the cluster radii.

Summary. (1) The first-order analysis equation 3 motivates token-aware diagonal edits. (2) The clustering of $\theta^*(h_{\ell,t})$ across tokens justifies a finite codebook of hidden representation editors. (3) Top-k convex mixing is a principled realization, with the projection bound equation 5 and the Lipschitz link equation 7 connecting parameter-space approximation to output-space error. These results explain why TARE attains fine-grained adaptivity with near-zero inference overhead: hidden representation editors are diagonal (cheap) and selection is sparse (Top-k).

3.2 OVERALL DESIGN

The proposed TARE method augments hidden representation editor with a lightweight token-aware selector, as shown in Figure 2. At each token position, the selector activates a small subset of hidden representation editors, each providing its own per-feature scaling and bias; they are then linearly combined with normalized weights. This multi-path yet k-sparse design enables flexible and efficient token-wise adjustment, enhancing adaptability across heterogeneous tasks while keeping inference overhead negligible.

For every layer, TARE attach n hidden representation editors, each with an independent parameter set for editing operations (element-wise scaling and bias by default, extensible to other simple transforms). During the forward pass, a Top-k mechanism selects the k most relevant hidden representation editors conditioned on the current activation, and the final representation is obtained by a weighted combination of their edits.

The proposed TARE method consists of three main steps: Token-Aware Selection, Top-k Activation, and Hidden Representation Editing and Aggregation.

3.3 TOKEN-AWARE SELECTION

Let the hidden representation of a given token t at layer ℓ be $h_{\ell,t} \in \mathbb{R}^{1 \times 1 \times D_\ell}$. TARE first applies a token-wise selector: a small feed-forward network that produces a real-valued score for each of the n candidate diagonal editors. Formally,

$$h_{\ell,t}^{\text{new}} = \text{selector}(h_{\ell,t}) \in \mathbb{R}^{1 \times 1 \times n}.$$
 (8)

The selector uses one linear layer and is kept narrow so its parameter footprint remains negligible. Intuitively, it scores token-editor compatibility, playing a role analogous to a gating network while keeping the backbone frozen.

3.4 TOP-k ACTIVATION

To avoid activating all n hidden representation editors and increasing compute, The proposed TARE method keeps only the k highest-scoring hidden representation editors per token ($k \ll n$, e.g., k = 3):

$$(topk_values, topk_indices) = TopK(h_{\ell,t}^{new}, k).$$
(9)

The selected logits are then normalized with a softmax (along the last dimension) to obtain a probabilistic selection mask:

$$w = \operatorname{softmax}(\operatorname{topk_values}, -1), \tag{10}$$

so that $\sum_{i=1}^k w_{\ell,t,i} = 1$ for every token. This sparse selection keeps inference time virtually unchanged relative to the original model, because the cost of processing k lightweight hidden representation editors is dominated by the backbone's already-computed attention and feed-forward layers.

The selector's Top-k routing can collapse (most tokens routed to a few editors), which hurts both stability and capacity usage. We add a lightweight auxiliary term on the selector probabilities, which encourages balanced utilization across editors, stabilizes training, and yields consistent accuracy gains. A fuller discussion are given in A.4.

3.5 HIDDEN REPRESENTATION EDITING AND AGGREGATION

Each hidden representation editor i maintains its own pair of element-wise scaling and bias vectors $\gamma_{\ell,i}, b_{\ell,i} \in \mathbb{R}^{1 \times 1 \times D_{\ell}}$, trained from scratch while the backbone remains frozen. For each selected

Table 1: Knowledge Reasoning results with LLaMA-3-8B.Results for LoRA, DoRA and LoReFT follow Wu et al. (2024b). MiLoRA numbers follow Wang et al. (2024).

PEFT	Source	Params.(%)	VRAM(MiB)	BoolQ	PIQA	SIQA	HellaS.	WinoG.	ARC-e	ARC-c	OBQA	Avg.
LoRA	ICLR 21	0.7002	21 828	70.8	85.2	79.9	91.7	84.3	84.2	71.2	79.0	80.8
DoRA	ICML 24	0.7098	41 780	74.6	89.3	79.9	95.5	85.6	90.5	80.4	85.8	85.2
MiLoRA	NAACL 25	0.7002	21 580	68.8	86.7	77.2	92.9	85.6	86.8	75.5	81.8	81.9
LoReFT	NeurIPS 24	0.0260	21 050	75.1	90.2	82.0	96.3	87.4	92.4	81.6	87.5	86.6
RED	ACL 24	0.0033	20 132	68.0	83.7	79.7	90.0	83.2	85.2	72.8	79.4	80.2
TARE (ours)	This paper	0.0392	21 724	75.2	90.2	82.5	94.1	88.6	91.3	82.3	88.4	86.7

hidden representation editor, the proposed TARE method compute a candidate edit

$$h_{\ell,t,i} = h_{\ell,t} \odot \gamma_{\ell,i} + b_{\ell,i},\tag{11}$$

where \odot denotes the Hadamard (element-wise) product. Because these operations are diagonal in feature space, they introduce no additional matrix multiplications and can be fused into a single CUDA kernel in practical implementations. Finally, the k token-specific hidden representation editors are linearly combined according to their selection weights to yield the updated representation

$$h_{\ell,t}^{\text{update}} = \sum_{i=1}^{k} h_{\ell,t,i} \, w_{\ell,t,i}.$$
 (12)

This convex combination acts as a soft winner-take-all mechanism: hidden representation editors that the selector deems most relevant contribute the most, while others are softly suppressed.

In summary, the proposed TARE method adds a lightweight, token-aware, k-sparse hidden representation editor that lifts the representational ceiling of simple scaling/bias edits while keeping the backbone frozen. By conditionally selecting and mixing a few per-feature edits per token, it attains high expressiveness and contextual adaptivity with near-zero inference overhead.

4 EXPERIMENT

Our work conduct a comprehensive study on decoder model LLaMA-3-8B and encoder model RoBERTa-base/large. The evaluation spans 8 task families—knowledge reasoning, mathematical reasoning, GLUE, conditional text generation, code synthesis, knowledge completion, closed-book QA and symbolic reasoning—against strong PEFT baselines (LoRA, DoRA, MiLoRA, LoReFT, RED; on GLUE our work also include Adapter-FFN, IA 3 , and BitFit). Ablation Study isolate scaling vs. bias, and Sensitivity analysis study the number of hidden representation editors n and the number of selected hidden representation editors k, quantifying the expressiveness—efficiency trade-off. In addition, a visualize analysis examines load-balancing behavior at the layer level, showing how the auxiliary loss equalizes editor utilization and correlates with consistent accuracy gains. For completeness, an expanded discussion of dataset, baseline and implementation detail is deferred to A.5, A.6 and A.7.

4.1 Overall Performance

The proposed TARE method delivers state-of-the-art or competitive results across diverse tasks—including conditional text generation, code synthesis, knowledge reasoning, mathematical reasoning, GLUE, knowledge completion, closed-book QA and symbolic reasoning—while training only 0.0392% of parameters and maintaining low VRAM with near-zero inference overhead (e.g., E2E best on all metrics; HumanEval/MBPP highest Pass@1 Rate; Commonsense avg. 86.7%; Math-10K avg. 76.7%; GLUE 88.3%), outperforming or matching LoRA/DoRA/MiLoRA/LoReFT/RED.

4.1.1 KNOWLEDGE REASONING

TARE attains the highest average accuracy of 86.7 on the eight commonsense-reasoning benchmarks in Table 1. It sets or ties the best score on BoolQ (75.2), PIQA (90.2, tied), SIQA (82.5), WinoGrande (88.6), ARC-c (82.3), and OBQA (88.4), while remaining competitive on HellaSwag (94.1) and ARC-e (91.3). Compared with strong PEFT baselines, the average improves over LoRA

Table 2: Mathematical Reasoning results with LLaMA-3-8B.

PEFT	Source	Params.(%)	VRAM(MiB)	MultiArith	GSM8k	SVAMP	MAWPS	AddSub	AQuA	SingleEq
LoRA	ICLR 21	0.7002	23 048	95.7	39.0	58.6	84.0	88.4	24.5	90.9
DoRA	ICML 24	0.7098	44 260	94.7	41.5	60.4	82.4	86.6	35.1	88.6
MiLoRA	NAACL 25	0.7002	23 226	94.3	40.7	61.4	82.8	86.8	33.7	87.8
LoReFT	NeurIPS 24	0.0260	21 940	89.2	56.2	68.7	80.3	90.1	33.1	90.0
RED	ACL 24	0.0033	19 852	91.0	54.2	66.8	81.1	87.3	34.1	90.9
TARE (ours)	This paper	0.0392	20 900	95.8	57.3	72.9	86.1	90.9	41.4	92.1

Table 3: GLUE results with RoBERTa base and large. Results for LoRA, Adapter-FFN, BitFit, IA³ and RED follows Wu et al. (2024a).

PEFT	Source	RoBERTa	Params.(M)	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
LoRA	ICLR 21	base	0.29	86.6	93.9	88.7	59.7	92.6	90.4	75.3	90.3	84.7
Adapter-FFN	EMNLP 20	base	0.30	87.1	93.0	88.8	58.5	92.0	90.2	77.7	90.4	84.7
BitFit	ACL 22	base	0.10	84.7	94.0	88.1	54.0	91.0	87.3	69.8	89.5	82.3
IA ³	NeurIPS 22	base	0.06	85.4	93.4	86.4	57.8	91.1	88.5	73.5	88.5	83.1
RED	ACL 24	base	0.02	83.9	93.9	89.2	61.0	90.7	87.2	78.0	90.4	84.3
TARE (ours)	This paper	base	0.22	86.3	93.1	91.5	58.6	91.7	88.6	77.8	90.6	84.8
LoRA	ICLR 21	large	0.79	90.2	96.0	89.8	65.5	94.7	90.7	86.3	91.7	88.1
Adapter-FFN	EMNLP 20	large	0.80	90.3	96.1	90.5	64.4	94.3	91.3	84.8	90.2	87.7
IA^3	NeurIPS 22	large	0.15	90.1	94.5	87.1	63.2	93.9	89.3	85.3	91.5	86.9
RED	ACL 24	large	0.05	89.5	96.0	90.3	68.1	93.5	88.8	86.2	91.3	87.9
TARE (ours)	This paper	large	0.59	90.0	94.5	92.3	67.9	94.6	89.4	85.5	92.1	88.3

by +5.9 points, MiLoRA by +4.8, RED by +6.5 and DoRA by +1.5, edging out LoReFT by +0.1. These gains come with only 0.0392% trainable parameters and 21,724 MiB peak VRAM, notably lighter than DoRA and comparable to other baselines.

4.1.2 MATHEMATICAL REASONING

TARE attains the highest average accuracy of 76.7 on the seven math-reasoning benchmarks in Table 2, with only 0.0392% trainable parameters and 20,900 MiB peak VRAM. It sets the best score on every dataset—MultiArith (95.8), GSM8k (57.3), SVAMP (72.9), MAWPS (86.1), AddSub (90.9), AQuA (41.4), and SingleEq (92.1). On average, it improves over LoRA/MiLoRA/DoRA/RED/LoReFT by +8.0/+7.1/+6.8/+4.5/+4.2 points, respectively, while remaining far more parameter-efficient than low-rank baselines.

4.1.3 GLUE

TARE attains the best GLUE averages with 84.8 on RoBERTa-base and 88.3 on RoBERTa-large (Table 3). It delivers the top scores on MRPC (91.5/92.3) and STS-B (90.6/92.1), remains competitive on MNLI and QNLI (base: 86.3/91.7; large: 90.0/94.6), and lags on a few tasks such as CoLA or QQP. On average, it improves over LoRA and Adapter-FFN by +0.1 points each on RoBERTa-base and by +0.2/+0.6 points on RoBERTa-large, while exceeding RED by +0.5 (base) and +0.4 (large). These gains come with modest parameter counts of 0.22M (base) and 0.59M (large), smaller than LoRA (0.29M/0.79M) and Adapter-FFN (0.30M/0.80M).

4.1.4 CONDITIONAL TEXT GENERATION

TARE achieves the best E2E conditional generation with LLaMA-3-8B, reaching BLEU 0.6333, NIST 8.3105, METEOR 0.4456, ROUGE–L 0.6758, and CIDEr 2.2027 in Table 4. It surpasses the strongest baselines on each metric, for example +0.029 BLEU over MiLoRA (0.6044), +0.064 NIST over MiLoRA (8.2461), +0.0055 METEOR over RED (0.4401), +0.0066 ROUGE–L over RED (0.6692) and +0.0069 CIDEr over RED (2.1958). The method trains only 0.0392% of parameters and uses 34,626 MiB peak VRAM. It therefore delivers higher text quality while remaining highly parameter efficient and lighter than LoRA and DoRA in memory usage.

Table 4: Conditional Text Generation results with LLaMA-3-8B.

PEFT	Source	Params.(%)	VRAM(MiB)	BLEU↑	NIST↑	METEOR↑	ROUGE-L↑	CIDEr↑
LoRA	ICLR 21	0.7002	39 904	0.5873	8.1327	0.4155	0.6101	1.9003
DoRA	ICML 24	0.7098	51774	0.5638	7.7875	0.4022	0.6058	1.7848
MiLoRA	NAACL 25	0.7002	40 148	0.6044	8.2461	0.4389	0.6182	2.1012
LoReFT	NeurIPS 24	0.0260	32 502	0.5719	7.5671	0.4304	0.6431	1.6881
RED	ACL 24	0.0033	29 492	0.5994	7.9229	0.4401	0.6692	2.1958
TARE (ours)	This paper	0.0392	34 626	0.6333	8.3105	0.4456	0.6758	2.2027

Table 5: Code Synthesis, Closed-Book QA and Symbolic Reasoning results with LLaMA-3-8B. HumanEval and MBPP report Pass@1 Rate(%). ScienceQA and CoinFlip report Accuracy(%).

PEFT	Source	Params.(%)	VRAM(MiB)	HumanEval	MBPP	ScienceQA	CoinFlip
LoRA	ICLR 21	0.7002	23 038	31.3	46.0	92.6	50.8
DoRA	ICML 24	0.7098	44 382	25.0	42.0	92.0	55.8
MiLoRA	NAACL 25	0.7002	23 478	37.5	40.0	92.9	57.1
LoReFT	NeurIPS 24	0.0260	20 116	43.8	42.0	92.4	53.5
RED	ACL 24	0.0033	18 762	25.0	46.0	93.4	50.5
TARE (ours)	This paper	0.0392	20 008	56.3	48.0	94.5	57.1

4.1.5 CODE SYNTHESIS

TARE delivers the strongest code synthesis, achieving Pass@1 Rate = 56.3 on HumanEval and 48.0 on MBPP in Table 5. It surpasses the best baseline on HumanEval by +12.5 points over LoReFT (43.8), and it leads MBPP by +2.0 points over LoRA/RED (46.0). TARE trains only 0.0392% of parameters and uses 20,008 MiB peak VRAM, which is markedly lower than LoRA (23,038 MiB) and DoRA (44,382 MiB), indicating superior accuracy with substantially lighter adaptation.

4.1.6 Knowledge Completion

TARE achieves the highest average accuracy of 67.0 on WikiFact (Table 6). It also attains the best score on four of five relations—jurisdiction 86.0, country 69.0, capital 55.0, and continent 86.0—and ties for the top on capital_of with 41.0. The average gain is +8.0 over LoRA and DoRA, +7.0 over MiLoRA, +4.0 over RED, and +2.0 over LoReFT, while training only 0.0392% of parameters. Peak memory is 16,512,MiB, which is close to the lowest among baselines.

4.1.7 CLOSED-BOOK QA AND SYMBOLIC REASONING

On Closed-Book QA and Symbolic Reasoning, TARE attains 94.5 on ScienceQA and 57.1 on Coin-Flip(Table 5). It does so while tuning only 0.0392% of parameters and using about 20 GiB VRAM. Compared with strong baselines, TARE is +1.1 points over RED on ScienceQA and +6.3 over LoRA on CoinFlip, and it matches the best CoinFlip score of MiLoRA. We attribute these gains to token-aware diagonal editing, which lets the model apply per-token, per-dimension adjustments that sharpen factual recall (ScienceQA) and stabilize discrete rule following (CoinFlip) without adding inference overhead.

4.2 ABLATION STUDY

Component ablation. TARE attains the best overall result, reaching an average accuracy of 76.7 with only 0.0392% trainable parameters and about 20,900 MiB peak VRAM (Table 8). It clearly outperforms both ablated variants—w/o scaling (50.5) and w/o bias (56.4). On representative datasets, the full scaling,+,bias edit delivers large gains: MultiArith +35–52,pp, GSM8k +24–29,pp, SVAMP \approx ,+17,pp, MAWPS +31–33,pp, AddSub +10–20,pp, AQuA +9–10,pp, and SingleEq +15–23,pp over the ablations. These improvements match the design intent: per-dimension scaling calibrates feature magnitudes, per-dimension bias corrects offsets, and their joint, token-wise adjustment better aligns hidden representations with task signals.

Table 6: Knowledge Completion results with LLaMA-3-8B across five relation domains (jurisdiction, country, capital_of, continent). Entries report Accuracy(%).

PEFT	Source	Params.(%)	VRAM(MiB)	jurisdiction	country	capital	capital_of	continent	Avg.
LoRA	ICLR 21	0.7002	17 676	77.0	58.0	40.0	39.0	82.0	59.0
DoRA	ICML 24	0.7098	36712	75.0	56.0	39.0	41.0	83.0	59.0
MiLoRA	NAACL 25	0.7002	18710	75.0	66.0	39.0	39.0	80.0	60.0
LoReFT	NeurIPS 24	0.0260	18 492	83.0	65.0	51.0	39.0	85.0	65.0
RED	ACL 24	0.0033	16 352	82.0	62.0	46.0	40.0	83.0	63.0
TARE (ours)	This paper	0.0392	16 512	86.0	69.0	55.0	41.0	86.0	67.0

Figure 3: Effect of load balancing on editor utilization.

Load-balancing ablation. Adding the load-balancing auxiliary loss(A.4) yields a higher average accuracy of 76.7 vs. 75.8 without it, at the same 0.0392% trainable ratio and nearly unchanged VRAM (Table 9; a detailed description of this loss is provided in the Appendix). The loss prevents routing collapse and spreads token traffic across editors: in the 16th block, selection counts move from highly skewed—one editor rarely chosen and others around $7.3\times10^5-1.16\times10^6$ —to near-uniform use of all eight editors ($\sim7.6\times10^5-8.2\times10^5$ each), as shown in Fig. 4. This fuller capacity utilization translates into consistent metric gains, e.g., MultiArith +2.0, AddSub +2.0, and AQuA +1.6 (Table 9), because more balanced routing exposes diverse tokens to specialized diagonal edits without adding parameters or inference cost.

4.3 SENSITIVITY ANALYSIS

TARE achieves its best average accuracy with k=3 selected hidden representation editors, reaching 76.7% (Fig. 4, Table 10). Moving from k=1 to k=3 yields a sharp gain $71.2\% \rightarrow 76.7\%$, after which larger k brings diminishing returns and task-specific peaks—e.g., GSM8k is highest at k=7 (62.2%), AQuA at k=8 (43.0%), and SingleEq at k=6 (93.5%)—indicating that too many edits can over-average token signals, whereas a small set captures the dominant modes. Memory grows only modestly as k increases ($\approx 20.2\mbox{GiB}$ at k=1 to $\approx 22.8\mbox{GiB}$ at k=8) with the trainable-parameter ratio fixed at 0.0392%, so k=3 offers a strong accuracy–efficiency trade-off and serves as our work's default choice.

5 CONCLUSION

Our work presented **Token-Aware Representation Editing** (*TARE*), a lightweight PEFT approach that replaces one-size-fits-all edits with per-token, per-dimension adjustments. Extensive experiments validate TARE's benefits on both decoder and encoder families, while tuning only 0.0392% of parameters and using about 20GiB of GPU memory—matching or surpassing LoRA, DoRA, MiLoRA, LoReFT, and RED across many settings.

ETHICS STATEMENT

We affirm that all authors have read and will adhere to the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics). The Code applies to every stage of our participation, including submission, discussion, and (if applicable) reviewing.

Human subjects and privacy. Our work does not involve user studies, human participants, or the collection of personally identifiable information. All experiments use publicly available datasets under their respective licenses. We do not attempt to deanonymize data or link records across datasets. When datasets include potentially sensitive content (e.g., natural language containing demographic references), we use them solely for research benchmarking and follow their intended-use guidelines.

Data governance and licenses. We respect dataset licenses and attribution requirements. Any data filtering or preprocessing is documented in the paper or appendix to support transparency and reproducibility. We do not redistribute third-party datasets; readers should obtain them from the original sources under the original terms.

Safety, misuse, and downstream impacts. The proposed TARE method is a generic fine-tuning technique that can improve model adaptability. Like other PEFT methods, it could be applied to harmful tasks if misused. We do not target such applications and discourage any use that violates the Code of Ethics or applicable laws. If we release code and scripts, we will include a model card and usage guidelines clarifying intended use, out-of-scope use cases, and safety considerations. We also encourage practitioners to implement content filtering and abuse monitoring when deploying fine-tuned models.

Bias, fairness, and representational harms. Large language models can reflect and amplify biases present in training data. While our work focuses on parameter efficiency rather than content shaping, improved adaptation can inadvertently strengthen biased behaviors inherited from data. We therefore report results across diverse task families and discuss limitations. We recommend additional fairness evaluations and domain-specific audits before deployment, especially in high-stakes settings.

Security and legal compliance. We do not circumvent access controls or use prohibited sources. All experiments comply with the terms of service of data and model providers and with applicable intellectual-property and data-protection laws.

Reproducibility and transparency. We describe datasets, model backbones, hyperparameters, and compute settings in the paper or appendix. Upon acceptance, we plan to release code, configuration files, and instructions to reproduce the main results, subject to license constraints of any third-party assets.

Conflicts of interest and sponsorship. The authors disclose no conflicts of interest beyond those stated in the metadata of the submission. No external sponsorship influenced the results or their presentation beyond acknowledged funding (if any) in the paper.

Environmental considerations. To reduce computational footprint, we use parameter-efficient fine-tuning and bfloat16 precision. We encourage practitioners to reuse our released checkpoints and scripts, and to select smaller backbones when appropriate.

This ethics statement is provided to proactively address potential concerns regarding data practices, fairness, safety, reproducibility, and compliance. We welcome reviewer feedback on any additional considerations relevant to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We take several steps to facilitate independent verification of our results. The core algorithmic design of TARE are specified in §3 (with ablations and sensitivity analyses in §4.2 and §4.3). Datasets,

splits, and evaluation metrics are summarized in Table 7 and further detailed in A.5. Implementation particulars (model backbones, precision, optimizer, batch size, and hardware) are provided in A.6 and A.7. Theoretical clarifications and auxiliary loss formulations appear in A.4. Together, these materials are intended to enable end-to-end replication of our pipelines and numerical results.

REFERENCES

- Jacob Austin, Augustus Odena, and et al. Nye, Maxwell. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.
- Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models. *arXiv preprint arXiv:2106.10199*, 2021. URL https://arxiv.org/abs/2106.10199.
- Yonatan Bisk, Rowan Zellers, and et al. Ronan Le Bras. Piqa: Reasoning about physical commonsense in natural language. In *AAAI Conference on Artificial Intelligence*, 2019. URL https://api.semanticscholar.org/CorpusID:208290939.
- Mark Chen, Jerry Tworek, and et al. Heewoo Jun. Evaluating large language models trained on code. *ArXiv*, abs/2107.03374, 2021. URL https://api.semanticscholar.org/CorpusID:235755472.
- Christopher Clark, Kenton Lee, and et al. Ming-Wei Chang. Boolq: Exploring the surprising difficulty of natural yes/no questions. *ArXiv*, abs/1905.10044, 2019. URL https://api.semanticscholar.org/CorpusID:165163607.
- Peter Clark, Isaac Cowhey, and et al. Oren Etzioni. Think you have solved question answering? try arc, the ai2 reasoning challenge. *ArXiv*, abs/1803.05457, 2018. URL https://api.semanticscholar.org/CorpusID:3922816.
- Karl Cobbe, Vineet Kosaraju, and et al. Bavarian, Mohammad. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021. doi: 10.48550/arXiv.2110.14168. URL https://arxiv.org/abs/2110.14168. Introduces the GSM8K dataset.
- Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey. The llama 3 herd of models. *ArXiv*, abs/2407.21783, 2024. URL https://api.semanticscholar.org/CorpusID:271571434.
- William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39, 2022.
- Ben Goodrich, Vinay Rao, and et al. Liu, Peter J. Assessing the factual accuracy of generated text. In proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 166–175, 2019.
- Mohammad Javad Hosseini, Hannaneh Hajishirzi, and et al. Etzioni, Oren. Learning to solve arithmetic word problems with verb categorization. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 523–533, Doha, Qatar, 2014. doi: 10.3115/v1/D14-1058. URL https://aclanthology.org/D14-1058/. Introduces the AddSub dataset.
- J. Edward Hu, Yelong Shen, and et al. Phillip Wallis. Lora: Low-rank adaptation of large language models. *ArXiv*, abs/2106.09685, 2021. URL https://api.semanticscholar.org/CorpusID:235458009.
- Zhiqiang Hu, Yihuai Lan, and et al. Lei Wang. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language models. *ArXiv*, abs/2304.01933, 2023a. URL https://api.semanticscholar.org/CorpusID:257921386.

- Zhiqiang Hu, Lei Wang, and et al. Lan, Yihuai. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 5254–5276, Singapore, 2023b. doi: 10.18653/v1/2023.emnlp-main.319. URL https://aclanthology.org/2023.emnlp-main.319/. Introduces the Math10K dataset.
- Rik Koncel-Kedziorski, Hannaneh Hajishirzi, and et al. Sabharwal, Ashish. Parsing algebraic word problems into equations. *Transactions of the Association for Computational Linguistics*, 3:585–597, 2015. doi: 10.1162/tacl_a_00160. URL https://aclanthology.org/Q15-1042/. Introduces the SingleEq dataset.
- Rik Koncel-Kedziorski, Subhro Roy, and et al. Amini, Aida. Mawps: A math word problem repository. In *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 1152–1157, San Diego, California, 2016. doi: 10.18653/v1/N16-1136. URL https://aclanthology.org/N16-1136/.
- Wang Ling, Dani Yogatama, and et al. Dyer, Chris. Program induction by rationale generation: Learning to solve and explain algebraic word problems. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 158–167, Vancouver, Canada, 2017. doi: 10.18653/v1/P17-1015. URL https://aclanthology.org/P17-1015/. Introduces the AQuA-RAT dataset.
- Haokun Liu, Derek Tam, and et al. Muqeeth, Mohammed. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022.
- Shih-Yang Liu, Chien-Yi Wang, and et al. Hongxu Yin. Dora: Weight-decomposed low-rank adaptation. *ArXiv*, abs/2402.09353, 2024. URL https://api.semanticscholar.org/CorpusID:267657886.
- Yinhan Liu, Myle Ott, and et al. Goyal, Naman. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019. doi: 10.48550/arXiv.1907.11692. URL https://arxiv.org/abs/1907.11692.
- Todor Mihaylov, Peter Clark, and et al. Tushar Khot. Can a suit of armor conduct electricity? a new dataset for open book question answering. In *Conference on Empirical Methods in Natural Language Processing*, 2018. URL https://api.semanticscholar.org/CorpusID: 52183757.
- Jekaterina Novikova, Ondrej Dusek, and Verena Rieser. The e2e dataset: New challenges for end-to-end generation. *ArXiv*, abs/1706.09254, 2017. URL https://api.semanticscholar.org/CorpusID:19662556.
- Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math word problems? In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, 2021. doi: 10.18653/v1/2021.naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168/. Introduces the SVAMP dataset.
- Subhro Roy and Dan Roth. Solving general arithmetic word problems. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pp. 1743–1752, Lisbon, Portugal, 2015. doi: 10.18653/v1/D15-1202. URL https://aclanthology.org/D15-1202/.
- Tanik Saikh, Tirthankar Ghosal, and et al. Amish Mittal. Scienceqa: a novel resource for question answering on scholarly articles. *International Journal on Digital Libraries*, 23:289 301, 2022. URL https://api.semanticscholar.org/CorpusID:250729995.
- Keisuke Sakaguchi, Ronan Le Bras, and et al. Chandra Bhagavatula. An adversarial winograd schema challenge at scale. 2019. URL https://api.semanticscholar.org/CorpusID:199370376.

- Maarten Sap, Hannah Rashkin, and et al. Chen, Derek. Socialiqa: Commonsense reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.
- Alex Wang, Amanpreet Singh, and et al. Michael, Julian. Glue: A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019. URL https://openreview.net/forum?id=rJ4km2R5t7.
- Hanqing Wang, Zeguan Xiao, and et al. Yixia Li. Milora: Harnessing minor singular components for parameter-efficient llm finetuning. In *North American Chapter of the Association for Computational Linguistics*, 2024. URL https://api.semanticscholar.org/CorpusID: 270440848.
- Jason Wei, Xuezhi Wang, and et al. Dale Schuurmans. Chain of thought prompting elicits reasoning in large language models. *ArXiv*, abs/2201.11903, 2022. URL https://api.semanticscholar.org/CorpusID:246411621.
- Muling Wu, Wenhao Liu, and et al. Xiaohua Wang. Advancing parameter efficiency in fine-tuning via representation editing. *ArXiv*, abs/2402.15179, 2024a. URL https://api.semanticscholar.org/CorpusID:267897732.
- Zhengxuan Wu, Aryaman Arora, and et al. Zheng Wang. Reft: Representation finetuning for language models. *ArXiv*, abs/2404.03592, 2024b. URL https://api.semanticscholar.org/CorpusID:268889731.
- Rowan Zellers, Ari Holtzman, and et al. Yonatan Bisk. Hellaswag: Can a machine really finish your sentence? In *Annual Meeting of the Association for Computational Linguistics*, 2019. URL https://api.semanticscholar.org/CorpusID:159041722.

A APPENDIX

A.1 USE OF LLMS

We used large language models strictly for editorial assistance, including spell checking, grammar polishing, and minor wording suggestions for the paper text. No model outputs were used to create, modify, or label datasets, implement algorithms, tune hyperparameters, or select results. All technical content (methods, proofs, experiments, and numbers) was written and verified by the authors, and every LLM-suggested edit was reviewed manually for accuracy and clarity.

A.2 RELATED WORK

Parameter-Efficient Fine-Tuning and Representation Editing PEFT aims to adapt large Transformers by training only a tiny fraction of parameters while freezing the backbone. Low-rank adapters such as LoRA Hu et al. (2021) inject rank-r updates into weight matrices, but introduce extra matrix multiplications at inference and require nontrivial rank/scale choices. DoRA Liu et al. (2024) decouples direction and magnitude to stabilize optimization while remaining low-rank; MiLoRA Wang et al. (2024) modifies singular subspaces to reduce redundancy in LoRA updates. A complementary line edits hidden representations directly: RED Wu et al. (2024a) learns a single global diagonal scaling/bias with near-zero inference cost but limited contextual adaptivity; LoReFT Wu et al. (2024b) performs low-rank projections in representation space but applies the same projection to every token and inherits rank selection. Our work follows representation editing but replaces one-size-fits-all edits with token-aware diagonal modulation, retaining the efficiency of feature-wise operations while addressing the lack of per-token expressiveness observed in global edits and uniform low-rank mappings.

Token-Aware Conditional Modulation and Dynamic Editing For encoder models, widely used PEFT baselines include LoRA and RED as above, together with IA³ Liu et al. (2022) and BitFit Ben Zaken et al. (2021). IA³ gates attention/FFN channels via learned per-feature multipliers, and BitFit updates only biases; both are extremely lightweight but share a uniform modulation across

tokens, limiting fine-grained adaptivity. LoRA improves capacity through low-rank weight updates at the cost of additional matmuls and hyperparameter tuning, whereas RED is inference-friendly but globally shared. In contrast, the proposed TARE method performs token-aware, diagonal representation editing: for each token it mixes a few learned diagonal templates to yield per-token, per-dimension adjustments while preserving near-zero inference overhead. This design directly targets the expressiveness–efficiency tension highlighted by these baselines. You may include other additional sections here.

Relation to Mixture-of-Experts (MoE) Similarities. TARE borrows two well-established ideas from the MoE literature Fedus et al. (2022): (i) token-wise sparse routing, where each token is routed to a small subset (Top-k) of candidates; and (ii) an auxiliary load-balancing loss that encourages the average routing distribution to be close to uniform, preventing collapse of routing to only a few choices. In our implementation the selector produces token-level scores over n candidates and activates k of them, and we use a KL-to-uniform load-balancing term (weight λ =0.02) to distribute traffic across candidates. Key differences. Despite these conceptual overlaps, TARE is not an MoE replacement of FFN layers. In classic MoE, each "expert" is a full (or sizable) feed-forward subnetwork that replaces the FFN block for routed tokens, incurring additional matmuls, parameters, capacity management, and dispatch overhead at inference. By contrast, TARE's "experts" are lightweight diagonal hidden representation editors—per-dimension scale and bias applied after the FFN within a PEFT regime. The backbone remains frozen; no FFN is duplicated or replaced. Computation stays strictly diagonal and sparse, yielding near-zero inference overhead and a parameter footprint ($\ll 1\%$) in line with PEFT goals. Practically, TARE performs a convex mixture of a few diagonal edits for each token rather than switching among large FFN experts, so there is no capacity factor tuning or expert-capacity drop, and routing latency is negligible. Positioning and intent. We intentionally reuse MoE's load-balancing principle to stabilize token-wise routing and improve utilization, while introducing a new application of these principles to efficient representation editing. This framing positions TARE as a creative specialization of MoE-style routing for PEFT: it preserves the benefits of token-level adaptivity, but delivers them through tiny diagonal hidden representation editors that are computationally frugal and architecturally compatible with frozen backbones and low-overhead fine-tuning.

A.3 LIPSCHITZ CONTINUITY OF THE EDITOR'S PARAMETERS

Fix a layer ℓ and a token t's hidden representation $h_{\ell,t} \in \mathbb{R}^{1 \times 1 \times D_{\ell}}$. For diagonal hidden representation editors $E_{\theta}(h_{\ell,t}) = h_{\ell,t} \odot \gamma_{\ell} + \beta_{\ell}$ with $\theta = (\gamma_{\ell}, \beta_{\ell}) \in \mathbb{R}^{1 \times 1 \times D_{\ell}} \times \mathbb{R}^{1 \times 1 \times D_{\ell}}$, we have for any θ, θ' :

$$\left\| E_{\theta,\ell,t}(h_{\ell,t}) - E_{\theta',\ell,t}(h_{\ell,t}) \right\|_{2} \le L(h_{\ell,t}) \|\theta - \theta'\|_{2}, \qquad L(h_{\ell,t}) := \sqrt{\|h_{\ell,t}\|_{\infty}^{2} + 1}.$$
 (13)

Let $\Delta \gamma_{\ell} := \gamma_{\ell} - \gamma_{\ell}'$ and $\Delta \beta_{\ell} := \beta_{\ell} - \beta_{\ell}'$, and write $\Delta \theta := (\Delta \gamma_{\ell}, \Delta \beta_{\ell})$. By definition,

$$E_{\theta \ell}(h_{\ell t}) - E_{\theta' \ell t}(h_{\ell t}) = h_{\ell t} \odot \Delta \gamma_{\ell} + \Delta \beta_{\ell}. \tag{14}$$

Using the triangle inequality and Hölder/Cauchy-Schwarz,

$$\|h_{\ell,t} \odot \Delta \gamma_{\ell} + \Delta \beta_{\ell}\|_{2} \leq \|h_{\ell,t} \odot \Delta \gamma_{\ell}\|_{2} + \|\Delta \beta_{\ell}\|_{2} \leq \|h_{\ell,t}\|_{\infty} \|\Delta \gamma_{\ell}\|_{2} + \|\Delta \beta_{\ell}\|_{2}.$$
(15)

Define $u := (\|h_{\ell,t}\|_{\infty}, 1) \in \mathbb{R}^2$ and $v := (\|\Delta \gamma_{\ell}\|_2, \|\Delta \beta_{\ell}\|_2) \in \mathbb{R}^2$. Then the previous line is $u^{\top}v$ and, by Cauchy–Schwarz,

$$u^{\top}v \leq \|u\|_2 \|v\|_2 = \sqrt{\|h_{\ell,t}\|_{\infty}^2 + 1} \sqrt{\|\Delta\gamma_{\ell}\|_2^2 + \|\Delta\beta_{\ell}\|_2^2} = L(h_{\ell,t}) \|\Delta\theta\|_2.$$
 (16)

This proves the claim.

A.4 LOAD-BALANCING AUXILIARY LOSS

Let $N=B\times L$ be the number of tokens in a batch, and let $p_t\in\Delta^{n-1}$ denote the token-wise selection distribution over the n hidden representation editors (e.g., the softmax over the last dimension of

Table 7: Datasets and metrics used.

task	training set	test set	metrics
Knowledge Reasoning	Commonsense-170K	BoolQ, PIQA, SIQA HellaSwag, WinoGrande ARC-e/c, OBQA	Accuracy
Mathematical Reasoning	Math-10K	MultiArith, GSM8k, SVAMP, MAWPS, AddSub, AQuA, SingleEq	Accuracy
GLUE	MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, STS-B train	MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, STS-B test	Matthews Correlation F1, Accuracy Pearson, Spearmanr
Conditional Text Generation	E2E-Challenge train	E2E-Challenge test	BLEU, NIST, METEOR, ROUGE–L, CIDEr
Code Synthesis	HumanEval, MBPP test (90%)	HumanEval, MBPP test (10%)	Pass@1 Rate
Knowledge Completion	WikiFact train	WikiFact test	Accuracy
Closed-Book QA	ScienceQA train	ScienceQA test	Accuracy
Symbolic Reasoning	CoinFlip train	CoinFlip test	Accuracy

 h_1^{new} ; it may be computed on the Top-k subset or on all n hidden representation editors). Our work define the average selection distribution across tokens

$$\bar{p} = \frac{1}{N} \sum_{t=1}^{N} p_t \in \Delta^{n-1},$$
 (17)

and the uniform distribution $U=(\frac{1}{n},\dots,\frac{1}{n})$. The load-balancing regularizer encourages aggregate editor usage to be uniform by minimizing the KL divergence

$$\mathcal{L}_{LB} = \lambda \operatorname{KL}(\bar{p} \| U)$$

$$= \lambda \sum_{i=1}^{n} \bar{p}_{i} \log \frac{\bar{p}_{i}}{1/n}$$

$$= \lambda \left(\sum_{i=1}^{n} \bar{p}_{i} \log \bar{p}_{i} - \log 1/n \right).$$
(18)

where $\lambda > 0$ is a weighting coefficient. This term balances overall hidden representation editor utilization without forcing each token's distribution to be uniform. In practice, for numerical stability our work evaluate the log on $\max(\bar{p}_i, \varepsilon)$ with a small ε . The total objective becomes

$$\mathcal{L}_{total} = \mathcal{L}_{main} + \mathcal{L}_{LB}$$
. (19)

A.5 DATASET

Our work extensively evaluate the proposed TARE method on a suite covering eight capability categories: conditional text generation, code synthesis, knowledge completion, symbolic reasoning, closed-book QA, commonsense reasoning, mathematical reasoning, and the GLUE benchmark. The datasets and metrics for each task are as follows (see Table 7):

• Knowledge Reasoning trains on Commonsense-170K Hu et al. (2023a) and tests on BoolQ Clark et al. (2019), PIQA Bisk et al. (2019), SIQA Sap et al. (2019), HellaSwag Zellers et al. (2019), WinoGrande Sakaguchi et al. (2019), ARC-e/c Clark et al. (2018), and OBQA Mihaylov et al. (2018), reporting accuracy;

- 810 811
- 812 813
- 814 815 816
- 817 818 819
- 820 821 822
- 823 824 825
- 827
- 828 829
- 830
- 831
- 832 833
- 834 835 836 837
- 838 839 840 841
- 842 843
- 844 845 846
- 847 848 849 850
- 851 852 853 854
- 855 856 857
- 858 859 860
- 861 862 863

- Mathematical Reasoning trains on Math-10K Hu et al. (2023b) and tests on MultiArith Roy & Roth (2015), GSM8k Cobbe et al. (2021), SVAMP Patel et al. (2021), MAWPS Koncel-Kedziorski et al. (2016), AddSub Hosseini et al. (2014), AQuA Ling et al. (2017), and SingleEq Koncel-Kedziorski et al. (2015), reporting accuracy;
- GLUE Wang et al. (2019) uses the official train/test splits, evaluating MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, and STS-B with the standard metrics (Matthews correlation, F1, Accuracy, Pearson, and Spearman).
- Conditional Text Generation uses the E2E-Challenge Novikova et al. (2017) train/test split and reports BLEU, NIST, METEOR, ROUGE-L, and CIDEr;
- Code Synthesis is uses HumanEval Chen et al. (2021) and MBPP Austin et al. (2021), training on 90% of the datasets (the remaining 10% as test) and evaluating Pass@1 Rate on the official HumanEval/MBPP test sets;
- **Knowledge Completion** uses WikiFact Goodrich et al. (2019) with accuracy;
- Closed-Book QA uses ScienceQA Saikh et al. (2022) with accuracy;
- **Symbolic Reasoning** uses CoinFlip Wei et al. (2022) with accuracy;

A.6 BASELINE

The following state-of-the-art baselines are used to compare with our proposed TARE method.

- LoRA Hu et al. (2021): injects trainable low-rank matrices AB into the updates of linear layers while keeping the original weights frozen; our work follow the authors' defaults with rank r=32and scaling α =32.
- **DoRA** Liu et al. (2024): decouples the adaptation of direction and radius in weight space, improving optimization stability while maintaining a low update rank.
- MiLoRA Wang et al. (2024): performs SVD on each weight matrix, keeps the principal singular subspace frozen, and attaches LoRA-style low-rank adapters to the minor subspace; during finetuning only these adapters are trained.
- LoReFT Wu et al. (2024b): applies low-rank re-parameterization jointly across layers and transfers features between tasks via a gating mechanism; our work use the public configuration with rank
- RED Wu et al. (2024a): edits hidden representations directly by learning per-feature scaling and bias, without introducing inference-time modules.
- BitFit Ben Zaken et al. (2021): tunes only the bias terms in Transformer layers (e.g., attention and feed-forward blocks) while keeping all other weights frozen; introduces virtually no inference-time overhead.
- IA³ Liu et al. (2022): applies learned per-feature multiplicative gates to key/value and feedforward activations, modulating channels without changing the backbone weights; requires no rank hyperparameters and adds negligible inference cost.
- We confirm that the experimental setup for the baselines, including backbone models, training processes, and data preprocessing, directly matches the conditions used for TARE. Any differences in training conditions between TARE and the baselines will be clearly explained to ensure a fair comparison. For reproducibility, detailed information about the datasets, model configurations, and hyperparameters are provided in A.5 and A.7.
- Regarding the use of load-balancing auxiliary loss in TARE with a value of $\lambda = 0.02$, we clarify that none of the baseline methods use an equivalent loss function. This is because the baselines do not employ a routing mechanism in their architectures. This distinction is critical for evaluating the performance gains attributed to TARE's unique load-balancing approach, and it is addressed in the ablation study to provide clearer insights into the impact of this loss term on model performance.

A.7 IMPLEMENTATION DETAIL

To cover both major Transformer branches, our work fine-tune and evaluate **TARE** on a decoder-only backbone (LLaMA-3-8B Dubey et al. (2024)) and an encoder backbone (RoBERTa-base/large Liu et al. (2019)). Unless otherwise noted, our work set the number of hidden representation editors to n=8 and select k=3 editors per token via the token-aware selector; the load-balancing auxiliary loss is used with coefficient $\lambda=0.02$. All experiments are implemented in PyTorch 2.4.1 and run on NVIDIA A100 (80 GB) GPUs. Our work use AdamW with learning rate 9×10^{-4} and batch size 32, and load base language models in bfloat16 to reduce memory usage. The datasets and task-specific evaluation metrics are summarized in Table 7.

A.8 ABLATION STUDY

Comparison of the full TARE (scaling plus bias) against variants that remove scaling or bias. Entries report accuracy on seven math reasoning datasets and the average. Params.(%) denotes the percentage of trainable parameters. VRAM(MiB) denotes peak GPU memory. The full model attains the highest average score of 76.7 with 0.0392% trainable parameters. Removing either component degrades performance, and the scaling-only variant (56.4) outperforms the bias-only variant (50.5).

Table 8: Component ablation of TARE on LLaMA-3-8B.

PEFT	Params.(%)	VRAM(MiB)	MultiArith	GSM8k	SVAMP	MAWPS	AddSub	AQuA	SingleEq	Avg.
TARE (ours)	0.0392	20 900	95.8	57.3	72.9	86.1	90.9	41.4	92.1	76.7
TARE (w/o scaling)	0.0261	19 348	43.7	28.4	56.1	52.9	71.4	31.6	69.5	50.5
TARE (w/o bias)	0.0261	19 112	60.5	33.1	56.0	54.6	81.3	32.1	77.2	56.4

Figure 4: Sensitivity to Number of Selected Editors. Average accuracy on seven math-reasoning datasets (trained on Math-10K) as our work vary the count of token-wise selected hidden representation editors from one to eight. Accuracy rises sharply from one to three and peaks at three (76.7%). Larger selections show diminishing returns and fluctuate within 73.5–75.6%.

Effect of load-balancing auxiliary loss (n=8, k=3). With the loss, TARE attains a higher average accuracy (76.7 vs. 75.8) while keeping the trainable ratio fixed at 0.0392% and VRAM nearly unchanged. Improvements are seen on MultiArith (+2.0), GSM8k (+1.0), SVAMP (+0.5), AddSub

(+2.0), and AQuA (+1.6), with small changes on MAWPS (-0.5) and SingleEq (-0.6). This indicates that load balancing provides consistent gains without additional parameter or memory cost.

Table 9: Load-balancing ablation of TARE on LLaMA-3-8B.

PEFT	Params.(%)	VRAM(MiB)	MultiArith	GSM8k	SVAMP	MAWPS	AddSub	AQuA	SingleEq	Avg.
TARE (ours)	0.0392	20 900	95.8	57.3	72.9	86.1	90.9	41.4	92.1	76.7
TARE (w/o lb loss)	0.0392	20 842	93.8	56.3	72.4	86.6	88.9	39.8	92.7	75.8

A.9 SENSITIVITY ANALYSIS

Eight variants (one-eight) are compared under the same trainable-parameter ratio of 0.0392%. Our work report accuracy on seven math-reasoning datasets and the average. VRAM(MiB) denotes peak GPU memory. Variant three attains the best average score (76.7) with competitive memory usage, while other variants reach the highest scores on individual datasets (e.g., GSM8k with seven and AQuA with eight).

Table 10: Sensitivity Analysis of TARE on LLaMA-3-8B.

PEFT	Params.(%)	VRAM(MiB)	MultiArith	GSM8k	SVAMP	MAWPS	AddSub	AQuA	SingleEq	Avg.
TARE (one)	0.0392	20 196	92.3	47.9	66.0	84.9	88.4	28.0	91.1	71.2
TARE (two)	0.0392	20 548	93.2	56.9	71.7	83.6	89.1	40.2	90.9	75.1
TARE (three)	0.0392	20 900	95.8	57.3	72.9	86.1	90.9	41.4	92.1	76.7
TARE (four)	0.0392	21 274	92.5	56.4	71.5	82.4	87.6	39.4	92.7	74.6
TARE (five)	0.0392	21 652	93.3	57.2	71.3	85.7	90.6	31.1	92.7	74.6
TARE (six)	0.0392	22 074	93.5	55.2	73.6	85.7	88.1	36.2	93.5	75.1
TARE (seven)	0.0392	22 412	95.5	62.2	70.7	87.0	89.6	29.6	93.3	75.4
TARE (eight)	0.0392	22 784	91.7	56.9	70.1	87.4	88.6	43.0	91.9	75.6