
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TARE: LIGHTWEIGHT TOKEN-AWARE REPRESENTA-
TION EDITING FOR FINE-TUNING TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) of large Transformers often struggles to
balance effectiveness with efficiency. Methods based on low-rank adaptation can
be resource-intensive, while representation-editing techniques that apply a sin-
gle, global transformation tend to underfit fine-grained, token-level contexts. The
core challenge is achieving token-aware, fine-grained edits while keeping infer-
ence overhead and the hyperparameter tuning burden negligible. Our work intro-
duce Token-Aware Representation Editing (TARE), a novel PEFT method. Af-
ter each feed-forward network (FFN) block, TARE employs a lightweight se-
lector that scores a small pool of ”editors” for each token’s hidden representa-
tion. It sparsely activates only the top-scoring editors and mixes their element-
wise edits to update the representation. Because the edits are computationally
minimal diagonal operations and are sparsely activated, TARE adds near-zero in-
ference overhead and introduces no rank or scaling hyperparameters. Our work
conduct extensive experiments on LLaMA-3-8B across eight knowledge reason-
ing and seven mathematical reasoning tasks, and on RoBERTa-base/large for the
GLUE benchmark. Compared to strong baselines like LoRA, DoRA, MiLoRA,
LoReFT, and RED, TARE achieves state-of-the-art results. It attains an 86.7% av-
erage on knowledge reasoning tasks, 76.7% on mathematical reasoning tasks, and
88.3% on the GLUE benchmark. These results are achieved while tuning only
0.0392% of the model’s parameters and using approximately 20 GiB of mem-
ory, surpassing prior methods by several percentage points and demonstrating
exceptional resource efficiency. An anonymized implementation is available at:
https://anonymous.4open.science/r/tare-BCF5/.

1 INTRODUCTION

Parameter–efficient fine–tuning (PEFT) has become a central paradigm for adapting large Trans-
formers under tight compute and memory budgets: it aims to reach strong task performance by
training only a tiny fraction of parameters while keeping the backbone frozen. Existing PEFT fami-
lies include weight–space adapters (e.g., LoRA Hu et al. (2021), DoRA Liu et al. (2024), MiLoRA
Wang et al. (2024a)), representation–space editing and gating (e.g., RED Wu et al. (2024a), LoReFT
Wu et al. (2024b), IA3 Liu et al. (2022), BitFit Ben Zaken et al. (2021)). Despite clear efficiency
gains, a key open problem remains: how to attain fine-grained, token-aware adaptation while keep-
ing inference overhead and hyperparameter burden negligible.

Across methods, a common limitation is the tension between expressiveness and efficiency. Low-
rank approaches such as LoRA Hu et al. (2021), DoRA Liu et al. (2024), and MiLoRA Wang et al.
(2024a) require choosing ranks and scaling factors, which can complicate tuning across layers and
tasks. Importantly, in standard single-adapter deployments these low-rank increments are merged
into the base weights, so there is effectively no additional inference overhead. When weight merging
is not desirable—e.g., multi-adapter hot-swap, online mixture/selection, or coexistence with certain
quantization pipelines—one may resort to on-the-fly composition, which re-introduces extra oper-
ators, but this is an engineering choice rather than an inherent property of LoRA-style methods.
Representation-editing methods that are highly efficient at inference often apply a single, shared
transformation to all tokens—e.g., RED Wu et al. (2024a) learns one global per-feature scaling/bias;
IA3 Liu et al. (2022) gates channels uniformly; BitFit Ben Zaken et al. (2021) updates only bi-
ases—thereby limiting capacity to capture fine-grained context. LoReFT Wu et al. (2024b) performs

1

https://anonymous.4open.science/r/tare-BCF5/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Token-wise optimal scaling/bias (Token-optimal) forms a few modes. A single global scal-
ing/bias (Global edit) underfits, a small set of scalings/bias (Editor edits) covers dominant modes.

low-rank projections in representation space but still uses the same projection for every token and
inherits rank-selection overhead. In summary, many methods either impose a uniform editor that un-
derfits token-level variability, or they rely on hyperparameters (e.g., ranks/scales) and deployment
choices (e.g., merging vs. online composition), motivating a token-aware representation editor that
preserves inference efficiency while capturing per-token context.

As shown in Figure 1, for a single layer, the per-dimension scaling (top) and bias (bottom) that would
be individually optimal for different tokens (thin solid curves). Two regularities emerge. First, token
requirements are highly heterogeneous across embedding dimensions: the thin curves span roughly
0.8–1.2 for both scaling and bias and exhibit clear phase shifts, indicating that different tokens prefer
amplifying/suppressing different feature bands. Second, despite this heterogeneity, the thin curves
concentrate around a small number of prototypical shapes (thick solid curves); most token-specific
curves closely follow one of these smooth templates up to modest perturbations. In contrast, the
single global edit (thin dashed) is essentially the per-dimension average; it flattens peaks and valleys
and therefore underfits wherever tokens require opposite adjustments (e.g., around the mid- and
high-dimensional regions where one mode rises while another falls). The same multi-modal pattern
appears simultaneously in both scaling and bias, and the two often exhibit slight phase misalignment,
suggesting that accurate edits must coordinate the pair rather than rely on either alone. This analysis
implies that token-level edits are necessary to capture fine-grained semantics, and only a few hidden
representation editors are sufficient to cover the dominant modes.

Consequently, our work proposed Token-Aware Representation Editing (TARE), which adopts
a token-aware hidden representation editing scheme. TARE inserts a hidden representation edi-
tor module after each block’s FFN: for each token, a lightweight selector produces logits over n
diagonal editors and activates only the Top-k hidden representation editors; each selected hidden
representation editor maintains element-wise scale and bias vectors (γi, bi) to form cansdidate edits
hi = h1 ⊙ γi + bi, which are then linearly mixed by softmax-normalized weights to update the rep-
resentation. Because the operations are diagonal along feature dimensions and selection is sparse,
the inference overhead is nearly unchanged; the backbone network of large Transformer is frozen,
and only (n, k) need to be set—no rank/scale hyperparameters are introduced.

The main contributions of this work are as follows:

• Our work propose Token-Aware Representation Editing (TARE), a new PEFT mech-
anism that replaces one-size-fits-all edits with per-token, per-dimension adjustments. A
lightweight selector scores a small pool of hidden representation editors and mixes only
a few of them for each token, yielding fine-grained context adaptivity while keeping
computation strictly diagonal and sparse. This directly tackles the key challenge raised

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

above—achieving token-level expressiveness without adding inference latency or complex
hyperparameters.

• Our work show that token-optimal edits cluster into a handful of smooth modes; the
proposed TARE method’s selector–template co-design exploits this structure by project-
ing each token onto a local convex combination of learned hidden representation editors.
This design preserves the inference friendliness of representation editing, avoids rank/scale
knobs from low-rank adapters, and provides a simple, robust training recipe with optional
load-balancing regularization.

• The proposed TARE method is evaluated on a decoder model (LLaMA-3-8B) across eight
knowledge reasoning tasks and seven mathematical reasoning tasks, and on encoder models
(RoBERTa-base/large) on GLUE benchmark. It achieves 86.7% average over eight knowl-
edge reasoning tasks (slightly above LoReFT and notably higher than LoRA/RED), 76.7%
average over seven mathematical reasoning tasks and 88.3% on GLUE benchmark, while
tuning only 0.0392% of parameters with ∼20 GiB memory. TARE consistently matches
or surpasses strong PEFT baselines (LoRA, DoRA, MILoRA, RED, LoReFT) under tight
parameter and memory budgets.

2 RELATED WORK (A.2)

3 TOKEN-AWARE REPRESENTATION EDITING

This section introduces the proposed TARE method. Rather than using dense low-rank adapters,
TARE employs a lightweight, token-wise selector. For each token, it activates a small set of hidden
representation editors (per-feature scaling and bias) and mixes their edits with normalized weights.
This token-aware, k-sparse, diagonal adjustment increases expressiveness and captures fine-grained
context. It adds virtually no inference overhead and avoids rank/scale hyperparameters. As a result,
TARE transfers well across diverse tasks while alleviating the extra computation and overfitting
issues of conventional fine-tuning.

3.1 DESIGN PRINCIPLES

Notation and setup. Fix a Transformer layer index ℓ. Let hℓ,t ∈ R1×1×Dℓ denote the hidden
representation of a given token t at layer ℓ. A diagonal hidden representation editor applies a feature-
wise affine transformation

Eθ,ℓ,t(hℓ,t) = hℓ,t ⊙ γℓ + βℓ, θ = (γℓ, βℓ) ∈ R1×1×Dℓ × R1×1×Dℓ , (1)

where ⊙ is the Hadamard product. Let fℓ(·) denote the remainder network from layer ℓ to the task
head, and let L(·) be the task loss. We consider diagonal edits constrained to a feasible set B (e.g.,
∥(γℓ − 1, βℓ)∥2 ≤ ρ or box constraints on γℓ), which makes the optimization and approximation
well-defined. For a codebook of n editors Θ = {θi}ni=1, the token-wise selector returns a Top-k
index set T ⊆ {1, . . . , n}, |T | = k, and nonnegative mixing weights {wi}i∈T with

∑
i∈T wi = 1.

We write Θk = conv{θi : i ∈ T } for the corresponding convex hull. Unless stated otherwise, ∥ · ∥
denotes the Euclidean norm.

Token-optimal diagonal edit. For a fixed token representation hℓ,t, we define the token-optimal
diagonal parameters as

θ⋆(hℓ,t) ∈ argmin
θ∈B

L
(
fℓ(Eθ,ℓ,t(hℓ,t))

)
. (2)

This object serves as the ground-truth reference for our approximation analysis; it is the best diagonal
edit (within B) for the current token at layer ℓ.

Why token-aware edits are necessary. Consider a first–order Taylor expansion of
L(fℓ(Eθ,ℓ,t(hℓ,t))) around the identity edit (γℓ, βℓ) = (1,0):

L
(
fℓ(Eθ,ℓ,t(hℓ,t))

)
≈ L

(
fℓ(hℓ,t)

)
+ gℓ(hℓ,t)

⊤((γℓ − 1)⊙ hℓ,t + βℓ

)︸ ︷︷ ︸
first-order term

+ R2(θ;hℓ,t), (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where gℓ(hℓ,t) = ∇hℓ,t
L(fℓ(hℓ,t)) and R2 collects second-order terms (bounded under standard

smoothness assumptions). Under a norm constraint on (γℓ − 1, βℓ), the first-order decrease aligns
coordinate-wise with −gℓ(hℓ,t), which is token-dependent. Hence a single global edit is generally
suboptimal; edits must be token-aware.

Why a small set of prototypes suffices. Empirically (Fig. 1), θ⋆(hℓ,t) across tokens clusters into
a handful of smooth modes. This invites a codebook view: treat each editor parameter θi = (γi, βi)
as a codeword and the set Θ as a codebook. Classical vector quantization (e.g., Lloyd–Max, k-
means) relates hard assignment (Top-1) error to within-cluster radius/variance; learning Θ reduces
these radii, improving approximation of θ⋆(hℓ,t) by nearby codewords. We operationalize this with
a token-wise selector.

Why Top-k convex mixing is principled. Given the Top-k set T and weights {wi}i∈T , the mixed
parameter is

θ̂ =
∑
i∈T

wi θi ∈ Θk. (4)

Let dist(θ⋆,Θk) = minϑ∈Θk
∥θ⋆ − ϑ∥ be the distance from the token-optimal parameter to the

convex set Θk. Then, by convexity,
dist(θ⋆,Θk) ≤ min

i∈T
∥θ⋆ − θi∥, (5)

so allowing convex combinations (Top-k) is never worse than nearest-neighbor/Top-1 in parameter
space.

hidden(l)

Wq Wv Wk

Attention

VQ K

attention output(l)

2×Feed-forward Layer

hidden

Editor Module

hidden(l+1)

hidden1

scaling1

bias1bias1

scaling1scaling1biasi

bias1scalingiSelector

selected

...

...

hidden2

① Incoming representation hidden1 passes
through Selector that outputs logits ℓ ∈ ℝ ⁿ
over n hidden representation editors

 ②

③

unselected

❄
️

❄
️

❄
️

❄
️

❄
️

�

�

❄
️

unfrozen
frozen

② The Selector keeps only the Top-k
hidden representation editors

③ Each selected hidden representation editor applies
element-wise scaling and bias, hiddeni = hidden1 ⊙ scalingi
+ biasᵢ, softmax weights wᵢ mix the k edited candidates into
hidden₂ = ∑ wᵢ hiddeni

①

Editor Module

Figure 2: Schematic of the proposed TARE method.

From parameter error to output error. Fix hℓ and two parameter vectors θ, θ′. Since
Eθ,ℓ,t(hℓ,t) = hℓ,t ⊙ γℓ + βℓ is affine in θ, one has

∥Eθ,ℓ,t(hℓ,t)− Eθ′,ℓ,t(hℓ,t)∥2 = ∥hℓ,t ⊙ (γℓ − γ′
ℓ) + (βℓ − β′

ℓ) ∥2 ≤ L(hℓ,t) ∥θ − θ′∥2, (6)

with L(hℓ,t) =
√
∥hℓ,t∥2∞ + 1 (a token-dependent Lipschitz constant; proof in A.3). Combining

equation 5 and equation 6 yields an end-to-end token-level bound:
∥Eθ̂,ℓ,t(hℓ,t)− Eθ⋆,ℓ,t(hℓ,t)∥2 ≤ L(hℓ,t) dist(θ

⋆,Θk) ≤ L(hℓ,t) min
i∈T

∥θ⋆ − θi∥2. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Thus, learning a small set of diagonal hidden representation editors (a codebook) and performing
token-wise Top-k convex mixing provides a principled approximation of the unknown token-optimal
edit, with guarantees that are never worse than Top-1 and improve as the learned codewords shrink
the cluster radii.

Summary. (1) The first-order analysis equation 3 motivates token-aware diagonal edits. (2) The
clustering of θ⋆(hℓ,t) across tokens justifies a finite codebook of hidden representation editors. (3)
Top-k convex mixing is a principled realization, with the projection bound equation 5 and the Lips-
chitz link equation 7 connecting parameter-space approximation to output-space error. These results
explain why TARE attains fine-grained adaptivity with near-zero inference overhead: hidden repre-
sentation editors are diagonal (cheap) and selection is sparse (Top-k).

3.2 OVERALL DESIGN

The proposed TARE method augments hidden representation editor with a lightweight token-aware
selector, as shown in Figure 2. At each token position, the selector activates a small subset of
hidden representation editors, each providing its own per-feature scaling and bias; they are then
linearly combined with normalized weights. This multi-path yet k-sparse design enables flexible and
efficient token-wise adjustment, enhancing adaptability across heterogeneous tasks while keeping
inference overhead negligible.

For every layer, TARE attach n hidden representation editors, each with an independent parame-
ter set for editing operations (element-wise scaling and bias by default, extensible to other simple
transforms). During the forward pass, a Top-k mechanism selects the k most relevant hidden repre-
sentation editors conditioned on the current activation, and the final representation is obtained by a
weighted combination of their edits.

The proposed TARE method consists of three main steps: Token-Aware Selection, Top-k Activation,
and Hidden Representation Editing and Aggregation.

3.3 TOKEN-AWARE SELECTION

Let the hidden representation of a given token t at layer ℓ be hℓ,t ∈ R1×1×Dℓ . TARE first applies a
token-wise selector: a small feed-forward network that produces a real-valued score for each of the
n candidate diagonal editors. Formally,

hnew
ℓ,t = selector(hℓ,t) ∈ R1×1×n. (8)

The selector uses one linear layer and is kept narrow so its parameter footprint remains negligible.
Intuitively, it scores token–editor compatibility, playing a role analogous to a gating network while
keeping the backbone frozen.

3.4 TOP-k ACTIVATION

To avoid activating all n hidden representation editors and increasing compute, The proposed TARE
method keeps only the k highest-scoring hidden representation editors per token (k≪n, e.g., k = 3):(

topk values, topk indices
)
= TopK

(
hnew
ℓ,t , k

)
. (9)

The selected logits are then normalized with a softmax (along the last dimension) to obtain a proba-
bilistic selection mask:

w = softmax
(
topk values, −1

)
, (10)

so that
∑k

i=1 wℓ,t,i = 1 for every token. This sparse selection keeps inference time virtually un-
changed relative to the original model, because the cost of processing k lightweight hidden rep-
resentation editors is dominated by the backbone’s already-computed attention and feed-forward
layers.

The selector’s Top-k routing can collapse (most tokens routed to a few editors), which hurts both
stability and capacity usage. We add a lightweight auxiliary term on the selector probabilities, which
encourages balanced utilization across editors, stabilizes training, and yields consistent accuracy
gains. A fuller discussion are given in A.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Knowledge Reasoning results with LLaMA-3-8B.Results for LoRA, DoRA and LoReFT
follow Wu et al. (2024b). MiLoRA numbers follow Wang et al. (2024a). LIFT numbers follow Liu
et al. (2025). WeGeFT numbers follow Savadikar et al. (2025).

PEFT Source Params.(%) VRAM(MiB) BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
LoRA ICLR 21 0.7002 21 828 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA ICML 24 0.7098 41 780 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
MiLoRA NAACL 25 0.7002 21 580 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
LoReFT NeurIPS 24 0.0260 21 050 75.1 90.2 82.0 96.3 87.4 92.4 81.6 87.5 86.6
RED ACL 24 0.0033 20 132 68.0 83.7 79.7 90.0 83.2 85.2 72.8 79.4 80.2
LIFT ICLR 25 5.0000 45 600 75.7 90.5 83.2 96.5 89.4 93.6 83.9 90.2 87.9
WeGeFT ICML 25 0.0130 20 364 75.7 89.9 82.5 96.4 88.7 92.5 82.3 86.3 86.8
PiSSA NeurIPS 24 0.7002 21 004 72.1 89.2 82.7 94.6 89.6 86.8 84.5 85.2 85.6
Spectral Adapter arXiv 0.7002 21 746 72.1 88.3 83.1 94.6 89.3 85.4 82.2 85.2 85.0
LoRA-GA NeurIPS 24 0.7002 21 708 72.5 88.8 82.7 94.4 89.6 91.3 80.4 85.6 85.7
LoRA-One arXiv 0.7002 21 206 72.0 88.9 82.9 94.4 89.8 85.1 82.6 87.6 85.4
TARE (ours) This paper 0.0392 21 724 75.2 90.2 82.5 94.1 88.6 91.3 82.3 88.4 86.7
TARE (all) This paper 0.4097 24 044 76.3 91.6 83.6 95.5 89.8 92.7 83.9 89.2 87.8

3.5 HIDDEN REPRESENTATION EDITING AND AGGREGATION

Each hidden representation editor i maintains its own pair of element-wise scaling and bias vectors
γℓ,i, bℓ,i ∈ R1×1×Dℓ , trained from scratch while the backbone remains frozen. For each selected
hidden representation editor, the proposed TARE method compute a candidate edit

hℓ,t,i = hℓ,t ⊙ γℓ,i + bℓ,i, (11)

where ⊙ denotes the Hadamard (element-wise) product. Because these operations are diagonal in
feature space, they introduce no additional matrix multiplications and can be fused into a single
CUDA kernel in practical implementations. Finally, the k token-specific hidden representation edi-
tors are linearly combined according to their selection weights to yield the updated representation

hupdate
ℓ,t =

k∑
i=1

hℓ,t,i wℓ,t,i. (12)

This convex combination acts as a soft winner-take-all mechanism: hidden representation editors
that the selector deems most relevant contribute the most, while others are softly suppressed.

In summary, the proposed TARE method adds a lightweight, token-aware, k-sparse hidden repre-
sentation editor that lifts the representational ceiling of simple scaling/bias edits while keeping the
backbone frozen. By conditionally selecting and mixing a few per-feature edits per token, it attains
high expressiveness and contextual adaptivity with near-zero inference overhead.

4 EXPERIMENT

Our work conduct a comprehensive study on decoder model LLaMA-3-8B and encoder model
RoBERTa-base/large.The evaluation spans nine task families—knowledge reasoning, mathematical
reasoning, GLUE, conditional text generation, code synthesis, knowledge completion, closed-book
QA, symbolic reasoning and instruction following—against strong PEFT baselines (LoRA, DoRA,
MiLoRA, LoReFT, RED; on GLUE our work also include Adapter-FFN, IA3, and BitFit). Ablation
Study isolate scaling vs. bias, and Sensitivity analysis study the number of hidden representation
editors n and the number of selected hidden representation editors k, quantifying the expressive-
ness–efficiency trade-off.In addition, a visualize analysis examines load-balancing behavior at the
layer level, showing how the auxiliary loss equalizes editor utilization and correlates with consistent
accuracy gains.For completeness, an expanded discussion of dataset,baseline and implementation
detail is deferred to A.5, A.6 and A.7.

4.1 OVERALL PERFORMANCE

The proposed TARE method delivers state-of-the-art or competitive results across diverse
tasks—including conditional text generation, code synthesis, knowledge reasoning, mathematical
reasoning, GLUE, knowledge completion, closed-book QA and symbolic reasoning—while training

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Mathematical Reasoning results with LLaMA-3-8B and Qwen-2.5-7B-Instruct.
PEFT Source Model Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.

LoRA ICLR 21 0.2345 21 070 92.0 61.4 69.8 84.2 85.4 44.7 90.3 75.4
LoRA (all) ICLR 21 1.0338 24 622 95.5 57.5 69.4 86.5 91.2 41.3 93.3 76.4
DoRA ICML 24 0.2361 29 284 91.7 59.0 72.3 82.1 86.1 39.9 89.5 74.4
MiLoRA NAACL 25 LLaMA-3-8B 0.2345 21 520 91.7 59.0 70.5 88.3 86.1 43.4 90.5 75.6
LoReFT NeurIPS 24 0.0260 21 940 89.2 56.2 68.7 80.3 90.1 33.1 90.0 72.5
RED ACL 24 0.0033 19 852 91.0 54.2 66.8 81.1 87.3 34.1 90.9 72.2
TARE (ours) This paper 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
LoRA ICLR 21 0.2643 21 244 94.7 72.8 81.1 89.4 88.4 66.5 91.7 83.5
DoRA ICML 24 0.2657 29 604 93.2 72.1 79.8 88.2 89.7 63.7 92.7 82.8
MiLoRA NAACL 25 Qwen-2.5-7B-Instruct 0.2643 21 518 93.3 72.2 80.8 88.3 89.6 69.6 92.7 83.8
LoReFT NeurIPS 24 0.0218 21 832 92.1 71.7 78.5 86.2 90.0 67.3 90.5 82.3
RED ACL 24 0.0026 20 100 91.3 71.3 77.4 84.1 90.4 70.9 88.2 81.9
TARE (ours) This paper 0.0316 20 624 96.0 75.1 80.3 92.4 90.4 63.6 91.3 84.2

only 0.0392% of parameters and maintaining low VRAM with near-zero inference overhead (e.g.,
E2E best on all metrics; HumanEval/MBPP highest Pass@1 Rate; Commonsense avg. 86.7%; Math-
10K avg. 76.7%; GLUE 88.3%), outperforming or matching LoRA/DoRA/MiLoRA/LoReFT/RED.

4.1.1 KNOWLEDGE REASONING

TARE attains an average accuracy of 86.7 on the eight commonsense-reasoning benchmarks in
Table 1, placing it in the top tier of PEFT methods. Although the heavy LIFT model reaches the
highest average of 87.9, it requires 5.0% trainable parameters and 45,600 MiB VRAM, whereas
TARE is only 0.0392% (∼ 1/128 as many parameters) and 21,724 MiB VRAM, yet trails by just
1.2 points. Compared with other strong PEFT baselines, TARE improves the average accuracy over
LoRA, MiLoRA, RED, DoRA, PiSSA, Spectral Adapter, LoRA-GA, and LoRA-One by +5.9, +4.8,
+6.5, +1.5, +1.1, +1.7, +1.0, and +1.3 points, respectively, and slightly edges out LoReFT by +0.1
and is essentially on par with the recent WeGeFT method (86.8). Across individual datasets, TARE
remains consistently close to the best-performing methods—for example, 90.2 on PIQA, 94.1 on
HellaSwag, 88.6 on WinoGrande, 82.3 on ARC-c, and 88.4 on OBQA—while using two orders
of magnitude fewer trainable parameters than most LoRA-style variants, highlighting a favorable
accuracy–efficiency trade-off. When we allow TARE to adapt all projection matrices q/k/v/o and
up/gate/down (TARE (all) in Table 1), the average accuracy further improves to 87.8, essentially
matching the heavy LIFT model (87.9) while remaining much more efficient. Concretely, TARE
(all) uses only 0.4097% trainable parameters (about 12× fewer than LIFT’s 5.0%) and 24,044 MiB
VRAM (vs. 45,600 MiB for LIFT).

4.1.2 MATHEMATICAL REASONING

TARE consistently attains the highest average accuracy on the seven math-reasoning benchmarks
in Table 2 for both backbones. On LLaMA-3-8B, it reaches an average accuracy of 76.7 with only
0.0392% trainable parameters and 20,900 MiB peak VRAM, achieving the best results on MultiArith
(95.8), SVAMP (72.9), AddSub (90.9), and SingleEq (92.1), and remaining competitive on GSM8k
(57.3), MAWPS (86.1), and AQuA (41.4). Even compared with the much heavier LoRA (all), which
applies LoRA to all seven projection matrices with 1.0338% trainable parameters and 24,622 MiB
VRAM, TARE attains a higher average accuracy (76.7 vs. 76.4), and on average improves over
LoRA / LoRA (all) / MiLoRA / DoRA / RED / LoReFT by (+1.3 / +0.3 / +1.1 / +2.3 / +4.5 /
+4.2) points while being far more parameter-efficient than all low-rank baselines. On Qwen-2.5-
7B-Instruct, TARE further achieves the best average accuracy of 84.2 with only 0.0316% trainable
parameters and 20,624 MiB peak VRAM, obtaining the highest or tied-highest scores on MultiArith
(96.0), GSM8k (75.1), MAWPS (92.4), and AddSub (90.4), and improving over LoRA / MiLoRA /
DoRA / RED / LoReFT by (+0.7 / +0.4 / +1.4 / +2.3 / +1.9) points on average. For a fair comparison,
all PEFT methods except LoRA (all) are applied only to the projection layer of the MLP blocks.

4.1.3 GLUE (A.8)

4.1.4 CONDITIONAL TEXT GENERATION

TARE achieves the best E2E conditional generation with LLaMA-3-8B, reaching BLEU 0.6333,
NIST 8.3105, METEOR 0.4456, ROUGE–L 0.6758, and CIDEr 2.2027 in Table 3. It surpasses

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Conditional Text Generation results with LLaMA-3-8B.

PEFT Source Params.(%) VRAM(MiB) BLEU↑ NIST↑ METEOR↑ ROUGE–L↑ CIDEr↑
LoRA ICLR 21 0.2345 39 166 0.6255 8.2791 0.4404 0.6661 2.1524
DoRA ICML 24 0.2361 45 326 0.6201 8.1455 0.4367 0.6617 2.1578
MiLoRA NAACL 25 0.2345 39 590 0.6244 8.2652 0.4283 0.6606 2.1845
LoReFT NeurIPS 24 0.0260 32 502 0.5719 7.5671 0.4304 0.6431 1.6881
RED ACL 24 0.0033 29 492 0.5994 7.9229 0.4401 0.6692 2.1958
TARE (ours) This paper 0.0392 34 626 0.6333 8.3105 0.4456 0.6758 2.2027

Table 4: Instruction Following results with LLaMA-2-7B. Results for LoRA, PiSSA, rsLoRA and
LoRA+ follow Wang et al. (2024c).

PEFT Source Params.(%) First Turn Score
LoRA ICLR 21 0.2970 5.61± 0.10
PiSSA NeurIPS 24 0.2970 5.30± 0.02
rsLoRA arXiv 0.2970 5.25± 0.03
LoRA+ ICML 24 0.2970 5.71± 0.08
TARE (ours) This paper 0.0467 5.73± 0.05

the strongest baselines on each metric, for example by about +0.008 BLEU over LoRA (0.6255),
+0.031 NIST over LoRA (8.2791), +0.005 METEOR over LoRA (0.4404), +0.0066 ROUGE–L
over RED (0.6692), and +0.0069 CIDEr over RED (2.1958). The method trains only 0.0392% of
parameters and uses 34,626 MiB peak VRAM, thus delivering higher text quality while remaining
highly parameter efficient and lighter than LoRA and DoRA in memory usage. All PEFT methods
are applied to the projection layer of the MLP blocks in the backbone language model.

4.1.5 CODE SYNTHESIS (A.9)

4.1.6 KNOWLEDGE COMPLETION (A.10)

4.1.7 CLOSED-BOOK QA AND SYMBOLIC REASONING (A.11)

4.1.8 INSTRUCTION FOLLOWING

From Table 4, under the setting where LLaMA-2-7B is instruction-tuned on WizardLM and eval-
uated on MT-Bench with GPT-4 scoring, TARE achieves the best First Turn Score with extremely
low parameter overhead: LoRA, PiSSA, rsLoRA, and LoRA+ each require (0.297%) trainable pa-
rameters, whereas TARE uses only (0.0467%) yet still attains the highest score of (5.73±0.05), sur-
passing the strongest baseline LoRA+ (5.71±0.08) and clearly outperforming PiSSA (5.30±0.02)
and rsLoRA (5.25± 0.03). This shows that, under identical training data and evaluation protocols,
TARE learns more robust instruction-alignment behaviour within a much smaller update space, mak-
ing first-turn responses to open and complex instructions more aligned with human preferences and
less prone to failure, and providing a stronger basis for context understanding and task decomposi-
tion in subsequent multi-turn interactions. Meanwhile, its tiny parameter ratio reduces deployment
costs and the risk of catastrophic forgetting, making incremental enhancement or domain extension
of deployed dialogue agents safer and more efficient, and highlighting the practicality and robustness
of TARE in long-conversation and online-service settings.

4.2 ABLATION STUDY

Component ablation. TARE attains the best overall result, reaching an average accuracy of 76.7 with
only 0.0392% trainable parameters and about 20,900 MiB peak VRAM (Table 13). It clearly outper-
forms both ablated variants—w/o scaling (50.5) and w/o bias (56.4). On representative datasets, the
full scaling,+,bias edit delivers large gains: MultiArith +35–52,pp, GSM8k +24–29,pp, SVAMP
≈,+17,pp, MAWPS +31–33,pp, AddSub +10–20,pp, AQuA +9–10,pp, and SingleEq +15–23,pp
over the ablations. These improvements match the design intent: per-dimension scaling calibrates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

feature magnitudes, per-dimension bias corrects offsets, and their joint, token-wise adjustment better
aligns hidden representations with task signals.

Table 5: Position ablation of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (q) 0.0392 20 430 86.0 50.4 63.3 74.8 77.5 36.7 86.8 67.9
TARE (k) 0.0098 18 492 78.3 44.7 60.4 73.9 78.2 43.1 85.6 66.3
TARE (v) 0.0098 18 486 91.0 56.0 68.1 79.4 86.1 38.4 90.4 72.8
TARE (o) 0.0392 22 438 92.0 57.9 72.2 85.3 88.6 39.4 92.1 75.4
TARE (up) 0.1369 29 556 91.7 62.2 69.6 88.2 87.3 38.4 92.3 75.7
TARE (gate) 0.1369 29 536 87.0 54.7 67.5 82.8 85.1 32.6 91.7 71.6
TARE (down) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7

Load-balancing ablation. Adding the load-balancing auxiliary loss(A.4) yields a higher average
accuracy of 76.7 vs. 75.8 without it, at the same 0.0392% trainable ratio and nearly unchanged
VRAM (Table 14; a detailed description of this loss is provided in the Appendix). The loss prevents
routing collapse and spreads token traffic across editors: in the 16th block, selection counts move
from highly skewed—one editor rarely chosen and others around 7.3×105–1.16×106—to near-
uniform use of all eight editors (∼ 7.6×105–8.2×105 each), as shown in Fig. 3. This fuller capacity
utilization translates into consistent metric gains, e.g., MultiArith +2.0, AddSub +2.0, and AQuA
+1.6 (Table 14), because more balanced routing exposes diverse tokens to specialized diagonal edits
without adding parameters or inference cost.

Position ablation. Table 5 reports the performance of TARE when inserted at seven locations in
LLaMA-3-8B—self-attention projections q/k/v/o and FFN linear layers up/gate/down—showing
clear differences in effectiveness and cost. Applying TARE to q and k yields very low trainable
parameter ratios (0.0392%/0.0098%) and VRAM (20.4/18.5 GiB), but poor average accuracies
(67.9/66.3). Moving TARE to v improves the average to 72.8, indicating that editing value vectors
is more effective than perturbing queries/keys. Inserting it on o further raises the average to 75.4,
with strong scores on several math datasets, at the cost of higher VRAM (22.4 GiB). For the FFN,
attaching TARE to up attains an average of 75.7 and excels on GSM8k and MAWPS, but requires
0.1369% trainable parameters and about 29.6 GiB VRAM, while gate is weaker overall (average
71.6). In contrast, placing TARE on the FFN down layer (our default) offers the best accuracy–
efficiency trade-off: with only 0.0392% trainable parameters and 20.9 GiB VRAM, it achieves the
highest average accuracy of 76.7 and near-best or best scores on multiple datasets. This shows that
editing the down-projection layer best exploits FFN nonlinearity while preserving excellent param-
eter and memory efficiency, making it the most effective insertion point for TARE.

4.3 SENSITIVITY ANALYSIS

Hyperparameter sensitivity. TARE achieves its best average accuracy of 76.7% with k=3 selected
hidden representation editors (Fig. 4, Table 15). Increasing k from 1 to 3 sharply improves accuracy
(71.2% → 76.7%), while larger k yields diminishing returns and task-specific peaks (e.g., GSM8k
at k=7, AQuA at k=8, SingleEq at k=6), suggesting that too many edits over-average token signals
whereas a small set captures the dominant modes. Memory grows only modestly as k increases
(≈ 20.2 GiB at k=1 to ≈ 22.8 GiB at k=8) with the trainable-parameter ratio fixed at 0.0392%,
so k=3 provides a strong accuracy–efficiency trade-off and is our default choice. We further vary
the total number of editors n with k=3 fixed (Table 16). TARE remains stable for n ∈ 6, 8, 10:
the average accuracy varies within 0.6 points and peaks at 76.7% when n=8, slightly above n=6
(76.5%) and n=10 (76.1%). Different tasks favor slightly different n, but a moderately overcomplete
pool (n=8) already covers diverse reasoning modes: further increasing n offers only marginal gains
while raising the trainable-parameter ratio (0.0294%,→,0.0489%) with nearly unchanged VRAM,
so we adopt n=8 as the default to balance robustness and parameter efficiency.

Sample sensitivity. Table 6 reports TARE on LLaMA-3-8B when fine-tuned on different numbers
of Math-10k training examples (500, 1,000, 2,000, 5,000, 9919 (all)) under the same backbone
and hyperparameter setting (always 0.0392% trainable parameters and about 20 GiB VRAM). We
observe stable and robust performance across supervision scales: even with 500 examples, TARE

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Comparison between LoRA and TARE in terms of parameter ratio, training time, inference
time statistics on LLaMA-3-8B.

PEFT Source Params. (%) Training time (s/epochs) Mean inference time (s)
LoRA ICLR 21 0.2345 1015.56 2.68± 0.43
TARE (ours) This paper 0.0392 837.35 3.20± 0.67

Table 8: Token-wise selection and editing time statistics of TARE on LLaMA-3-8B.

PEFT Mean selection time(s) Mean editing time(s)
TARE (ours) 6.94× 10−5 ± 1.46× 10−8 9.78× 10−5 ± 1.31× 10−10

reaches an average accuracy of 69.8 over seven math benchmarks, and as the sample size increases
to 2,000 and 5,000, the average accuracy rises smoothly to 74.3 and 76.2 (e.g., GSM8k 60.8 at
5,000), without training instability or large fluctuations. Using the full Math-10k further boosts the
average to 76.7 (with strong results on MultiArith, SVAMP, AddSub, etc.), showing that TARE is
already effective in the low-data regime and continues to improve as more data become available,
indicating a stable, well-generalised token-selection and editing strategy rather than reliance on
massive labelled data.

Table 6: Sample Sensitivity Analysis of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (sample=500) 0.0392 20 398 86.3 52.5 64.1 81.1 81.0 36.7 87.0 69.8
TARE (sample=1000) 0.0392 20 406 85.3 51.3 68.6 81.1 85.3 32.8 89.4 70.5
TARE (sample=2000) 0.0392 20 606 89.0 56.6 67.5 84.9 85.1 46.5 90.6 74.3
TARE (sample=5000) 0.0392 20 274 91.8 60.8 68.1 87.4 88.9 41.9 94.3 76.2
TARE (sample=9919) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7

4.4 EFFICIENCY ANALYSIS

From Table 7, under the same backbone (LLaMA-3-8B) and task setup, TARE markedly improves
training and inference efficiency while incurring almost no extra inference cost. In terms of param-
eter scale, TARE uses only 0.0392% trainable parameters, reducing updated weights by about five
sixths compared with LoRA’s 0.2345%, which directly lightens backpropagation and optimization.
On Math-10K, this leads to a shorter per-epoch training time (1015.56 s for LoRA vs. 837.35 s for
TARE, a ∼17% reduction), yielding substantial compute savings for long-horizon fine-tuning. At
inference, although LoRA can merge its low-rank weights and is theoretically zero-overhead, its em-
pirical mean latency on 600 MultiArith examples is 2.68 s (var. 0.43), while TARE—without weight
merging and preserving online editing—achieves a very similar 3.20 s (var. 0.67), only about 19%
higher and well below one extra second per sample. Finer-grained measurements (Table 8) show that
TARE’s token-level selection and editing are almost free: mean selection time 6.94 × 10−5 s (var.
1.46 × 10−8) and mean editing time 9.78 × 10−5 s (var. 1.31 × 10−10), i.e., sub-millisecond over-
head. Overall, TARE offers a smaller parameter footprint, faster training, and near-zero additional
inference cost, demonstrating high efficiency and practicality for real-world deployment.

5 CONCLUSION

Our work presented Token-Aware Representation Editing (TARE), a lightweight PEFT approach
that replaces one-size-fits-all edits with per-token, per-dimension adjustments. Extensive experi-
ments validate TARE’s benefits on both decoder and encoder families, while tuning only 0.0392%
of parameters and using about 20GiB of GPU memory, matching or surpassing LoRA, DoRA,
MiLoRA, LoReFT, and RED across many settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm that all authors have read and will adhere to the ICLR Code of Ethics (https://iclr.
cc/public/CodeOfEthics). The Code applies to every stage of our participation, including
submission, discussion, and (if applicable) reviewing.

Human subjects and privacy. Our work does not involve user studies, human participants, or the
collection of personally identifiable information. All experiments use publicly available datasets un-
der their respective licenses. We do not attempt to deanonymize data or link records across datasets.
When datasets include potentially sensitive content (e.g., natural language containing demographic
references), we use them solely for research benchmarking and follow their intended-use guidelines.

Data governance and licenses. We respect dataset licenses and attribution requirements. Any
data filtering or preprocessing is documented in the paper or appendix to support transparency and
reproducibility. We do not redistribute third-party datasets; readers should obtain them from the
original sources under the original terms.

Safety, misuse, and downstream impacts. The proposed TARE method is a generic fine-tuning
technique that can improve model adaptability. Like other PEFT methods, it could be applied to
harmful tasks if misused. We do not target such applications and discourage any use that violates
the Code of Ethics or applicable laws. If we release code and scripts, we will include a model card
and usage guidelines clarifying intended use, out-of-scope use cases, and safety considerations. We
also encourage practitioners to implement content filtering and abuse monitoring when deploying
fine-tuned models.

Bias, fairness, and representational harms. Large language models can reflect and amplify bi-
ases present in training data. While our work focuses on parameter efficiency rather than content
shaping, improved adaptation can inadvertently strengthen biased behaviors inherited from data. We
therefore report results across diverse task families and discuss limitations. We recommend addi-
tional fairness evaluations and domain-specific audits before deployment, especially in high-stakes
settings.

Security and legal compliance. We do not circumvent access controls or use prohibited sources.
All experiments comply with the terms of service of data and model providers and with applicable
intellectual-property and data-protection laws.

Reproducibility and transparency. We describe datasets, model backbones, hyperparameters,
and compute settings in the paper or appendix. Upon acceptance, we plan to release code, con-
figuration files, and instructions to reproduce the main results, subject to license constraints of any
third-party assets.

Conflicts of interest and sponsorship. The authors disclose no conflicts of interest beyond those
stated in the metadata of the submission. No external sponsorship influenced the results or their
presentation beyond acknowledged funding (if any) in the paper.

Environmental considerations. To reduce computational footprint, we use parameter-efficient
fine-tuning and bfloat16 precision. We encourage practitioners to reuse our released checkpoints
and scripts, and to select smaller backbones when appropriate.

This ethics statement is provided to proactively address potential concerns regarding data practices,
fairness, safety, reproducibility, and compliance. We welcome reviewer feedback on any additional
considerations relevant to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We take several steps to facilitate independent verification of our results. The core algorithmic design
of TARE are specified in §3 (with ablations and sensitivity analyses in §4.2 and §4.3). Datasets,

11

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

splits, and evaluation metrics are summarized in Table 9 and further detailed in A.5. Implementation
particulars (model backbones, precision, optimizer, batch size, and hardware) are provided in A.6
and A.7. Theoretical clarifications and auxiliary loss formulations appear in A.4. Together, these
materials are intended to enable end-to-end replication of our pipelines and numerical results.

REFERENCES

Jacob Austin, Augustus Odena, and et al. Nye, Maxwell. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021. URL
https://arxiv.org/abs/2106.10199.

Yonatan Bisk, Rowan Zellers, and et al. Ronan Le Bras. Piqa: Reasoning about physical com-
monsense in natural language. In AAAI Conference on Artificial Intelligence, 2019. URL
https://api.semanticscholar.org/CorpusID:208290939.

Mark Chen, Jerry Tworek, and et al. Heewoo Jun. Evaluating large language models trained
on code. ArXiv, abs/2107.03374, 2021. URL https://api.semanticscholar.org/
CorpusID:235755472.

Christopher Clark, Kenton Lee, and et al. Ming-Wei Chang. Boolq: Exploring the surprising
difficulty of natural yes/no questions. ArXiv, abs/1905.10044, 2019. URL https://api.
semanticscholar.org/CorpusID:165163607.

Peter Clark, Isaac Cowhey, and et al. Oren Etzioni. Think you have solved question answer-
ing? try arc, the ai2 reasoning challenge. ArXiv, abs/1803.05457, 2018. URL https:
//api.semanticscholar.org/CorpusID:3922816.

Karl Cobbe, Vineet Kosaraju, and et al. Bavarian, Mohammad. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168, 2021. doi: 10.48550/arXiv.2110.14168. URL
https://arxiv.org/abs/2110.14168. Introduces the GSM8K dataset.

Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey. The llama 3 herd of mod-
els. ArXiv, abs/2407.21783, 2024. URL https://api.semanticscholar.org/
CorpusID:271571434.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Ben Goodrich, Vinay Rao, and et al. Liu, Peter J. Assessing the factual accuracy of generated text.
In proceedings of the 25th ACM SIGKDD international conference on knowledge discovery &
data mining, pp. 166–175, 2019.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, and et al. Etzioni, Oren. Learning to solve arith-
metic word problems with verb categorization. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 523–533, Doha, Qatar, 2014. doi:
10.3115/v1/D14-1058. URL https://aclanthology.org/D14-1058/. Introduces the
AddSub dataset.

J. Edward Hu, Yelong Shen, and et al. Phillip Wallis. Lora: Low-rank adaptation of large lan-
guage models. ArXiv, abs/2106.09685, 2021. URL https://api.semanticscholar.
org/CorpusID:235458009.

Zhiqiang Hu, Yihuai Lan, and et al. Lei Wang. Llm-adapters: An adapter family for parameter-
efficient fine-tuning of large language models. ArXiv, abs/2304.01933, 2023a. URL https:
//api.semanticscholar.org/CorpusID:257921386.

12

https://arxiv.org/abs/2106.10199
https://api.semanticscholar.org/CorpusID:208290939
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:165163607
https://api.semanticscholar.org/CorpusID:165163607
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://aclanthology.org/D14-1058/
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:257921386
https://api.semanticscholar.org/CorpusID:257921386

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhiqiang Hu, Lei Wang, and et al. Lan, Yihuai. Llm-adapters: An adapter family for parameter-
efficient fine-tuning of large language models. In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 5254–5276, Singapore, 2023b. doi: 10.18653/
v1/2023.emnlp-main.319. URL https://aclanthology.org/2023.emnlp-main.
319/. Introduces the Math10K dataset.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, and et al. Sabharwal, Ashish. Parsing algebraic word
problems into equations. Transactions of the Association for Computational Linguistics, 3:585–
597, 2015. doi: 10.1162/tacl a 00160. URL https://aclanthology.org/Q15-1042/.
Introduces the SingleEq dataset.

Rik Koncel-Kedziorski, Subhro Roy, and et al. Amini, Aida. Mawps: A math word problem
repository. In Proceedings of the 2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pp. 1152–1157, San
Diego, California, 2016. doi: 10.18653/v1/N16-1136. URL https://aclanthology.
org/N16-1136/.

Wang Ling, Dani Yogatama, and et al. Dyer, Chris. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167,
Vancouver, Canada, 2017. doi: 10.18653/v1/P17-1015. URL https://aclanthology.
org/P17-1015/. Introduces the AQuA-RAT dataset.

Haokun Liu, Derek Tam, and et al. Muqeeth, Mohammed. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Advances in Neural Information Processing Sys-
tems, 35:1950–1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, and et al. Hongxu Yin. Dora: Weight-decomposed low-rank
adaptation. ArXiv, abs/2402.09353, 2024. URL https://api.semanticscholar.org/
CorpusID:267657886.

Yinhan Liu, Myle Ott, and et al. Goyal, Naman. Roberta: A robustly optimized bert pretrain-
ing approach. arXiv preprint arXiv:1907.11692, 2019. doi: 10.48550/arXiv.1907.11692. URL
https://arxiv.org/abs/1907.11692.

Zihang Liu, Tianyu Pang, and et al. Oleg Balabanov. Lift the veil for the truth: Principal weights
emerge after rank reduction for reasoning-focused supervised fine-tuning. In ICML, 2025. URL
https://arxiv.org/abs/2506.00772.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems (NeurIPS), 2024. URL https://openreview.net/
forum?id=6ZBHIEtdP4.

Todor Mihaylov, Peter Clark, and et al. Tushar Khot. Can a suit of armor conduct electricity? a
new dataset for open book question answering. In Conference on Empirical Methods in Natural
Language Processing, 2018. URL https://api.semanticscholar.org/CorpusID:
52183757.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. ArXiv, abs/1706.09254, 2017. URL https://api.semanticscholar.
org/CorpusID:19662556.

OpenAI, Josh Achiam, and et al. Steven Adler. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023. URL https://arxiv.org/abs/2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–
2094, 2021. doi: 10.18653/v1/2021.naacl-main.168. URL https://aclanthology.org/
2021.naacl-main.168/. Introduces the SVAMP dataset.

13

https://aclanthology.org/2023.emnlp-main.319/
https://aclanthology.org/2023.emnlp-main.319/
https://aclanthology.org/Q15-1042/
https://aclanthology.org/N16-1136/
https://aclanthology.org/N16-1136/
https://aclanthology.org/P17-1015/
https://aclanthology.org/P17-1015/
https://api.semanticscholar.org/CorpusID:267657886
https://api.semanticscholar.org/CorpusID:267657886
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2506.00772
https://openreview.net/forum?id=6ZBHIEtdP4
https://openreview.net/forum?id=6ZBHIEtdP4
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:19662556
https://api.semanticscholar.org/CorpusID:19662556
https://arxiv.org/abs/2303.08774
https://aclanthology.org/2021.naacl-main.168/
https://aclanthology.org/2021.naacl-main.168/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pp. 1743–1752, Lis-
bon, Portugal, 2015. doi: 10.18653/v1/D15-1202. URL https://aclanthology.org/
D15-1202/.

Tanik Saikh, Tirthankar Ghosal, and et al. Amish Mittal. Scienceqa: a novel resource for question
answering on scholarly articles. International Journal on Digital Libraries, 23:289 – 301, 2022.
URL https://api.semanticscholar.org/CorpusID:250729995.

Keisuke Sakaguchi, Ronan Le Bras, and et al. Chandra Bhagavatula. An adversarial wino-
grad schema challenge at scale. 2019. URL https://api.semanticscholar.org/
CorpusID:199370376.

Maarten Sap, Hannah Rashkin, and et al. Chen, Derek. Socialiqa: Commonsense reasoning about
social interactions. arXiv preprint arXiv:1904.09728, 2019.

Chinmay Savadikar, Xi Song, and Tianfu Wu. Wegeft: Weight-generative fine-tuning for multi-
faceted efficient adaptation of large models. In ICML, 2025. URL https://savadikarc.
github.io/wegeft.

Alex Wang, Amanpreet Singh, and et al. Michael, Julian. Glue: A multi-task benchmark and analy-
sis platform for natural language understanding. In Proceedings of the International Conference
on Learning Representations (ICLR), 2019. URL https://openreview.net/forum?
id=rJ4km2R5t7.

Hanqing Wang, Zeguan Xiao, and et al. Yixia Li. Milora: Harnessing minor singular components
for parameter-efficient llm finetuning. In North American Chapter of the Association for Compu-
tational Linguistics, 2024a. URL https://api.semanticscholar.org/CorpusID:
270440848.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approxima-
tion. In NeurIPS, 2024b. URL https://api.semanticscholar.org/CorpusID:
271050755.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approxi-
mation. ArXiv, abs/2407.05000, 2024c. URL https://api.semanticscholar.org/
CorpusID:271050755.

Jason Wei, Xuezhi Wang, and et al. Dale Schuurmans. Chain of thought prompting elicits
reasoning in large language models. ArXiv, abs/2201.11903, 2022. URL https://api.
semanticscholar.org/CorpusID:246411621.

Muling Wu, Wenhao Liu, and et al. Xiaohua Wang. Advancing parameter efficiency in fine-
tuning via representation editing. ArXiv, abs/2402.15179, 2024a. URL https://api.
semanticscholar.org/CorpusID:267897732.

Zhengxuan Wu, Aryaman Arora, and et al. Zheng Wang. Reft: Representation finetuning for lan-
guage models. ArXiv, abs/2404.03592, 2024b. URL https://api.semanticscholar.
org/CorpusID:268889731.

Can Xu, Qingfeng Sun, and et al. Kai Zheng. Wizardlm: Empowering large pre-trained language
models to follow complex instructions. In ICLR, 2024. URL https://arxiv.org/abs/
2304.12244.

Rowan Zellers, Ari Holtzman, and et al. Yonatan Bisk. Hellaswag: Can a machine really finish
your sentence? In Annual Meeting of the Association for Computational Linguistics, 2019. URL
https://api.semanticscholar.org/CorpusID:159041722.

Fangzhao Zhang and Mert Pilanci. Spectral adapter: Fine-tuning in spectral space. ArXiv,
abs/2405.13952, 2024. URL https://arxiv.org/abs/2405.13952.

Yuanhe Zhang, Fanghui Liu, and Yudong Chen. Lora-one: One-step full gradient could suffice for
fine-tuning large language models, provably and efficiently. arXiv, abs/2502.01235, 2025. URL
https://arxiv.org/abs/2502.01235.

14

https://aclanthology.org/D15-1202/
https://aclanthology.org/D15-1202/
https://api.semanticscholar.org/CorpusID:250729995
https://api.semanticscholar.org/CorpusID:199370376
https://api.semanticscholar.org/CorpusID:199370376
https://savadikarc.github.io/wegeft
https://savadikarc.github.io/wegeft
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://api.semanticscholar.org/CorpusID:270440848
https://api.semanticscholar.org/CorpusID:270440848
https://api.semanticscholar.org/CorpusID:271050755
https://api.semanticscholar.org/CorpusID:271050755
https://api.semanticscholar.org/CorpusID:271050755
https://api.semanticscholar.org/CorpusID:271050755
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:267897732
https://api.semanticscholar.org/CorpusID:267897732
https://api.semanticscholar.org/CorpusID:268889731
https://api.semanticscholar.org/CorpusID:268889731
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://api.semanticscholar.org/CorpusID:159041722
https://arxiv.org/abs/2405.13952
https://arxiv.org/abs/2502.01235

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lianmin Zheng, Wei-Lin Chiang, and et al. Ying Sheng. Judging llm-as-a-judge with mt-bench and
chatbot arena. 2023. URL https://arxiv.org/abs/2306.05685.

A APPENDIX

A.1 USE OF LLMS

We used large language models strictly for editorial assistance, including spell checking, grammar
polishing, and minor wording suggestions for the paper text. No model outputs were used to create,
modify, or label datasets, implement algorithms, tune hyperparameters, or select results. All tech-
nical content (methods, proofs, experiments, and numbers) was written and verified by the authors,
and every LLM-suggested edit was reviewed manually for accuracy and clarity.

A.2 RELATED WORK

Parameter-Efficient Fine-Tuning and Representation Editing PEFT aims to adapt large Trans-
formers by training only a tiny fraction of parameters while freezing the backbone. Low-rank
adapters such as LoRA Hu et al. (2021) inject rank-r updates into weight matrices; in standard
single-adapter deployments these increments are merged into the base weights, so there is effec-
tively no additional inference overhead. They still require nontrivial choices of rank and scaling,
which can complicate tuning across layers and tasks. When merging is not desirable (e.g., multi-
adapter hot-swap, online mixture/selection, or coexistence with certain quantization pipelines), one
may resort to on-the-fly composition that re-introduces extra operators, but this is an engineering
choice rather than an inherent property of LoRA-style methods. DoRA Liu et al. (2024) decouples
direction and magnitude to stabilize optimization while remaining low-rank; MiLoRA Wang et al.
(2024a) modifies singular subspaces to reduce redundancy in LoRA updates. A complementary line
edits hidden representations directly: RED Wu et al. (2024a) learns a single global diagonal scal-
ing/bias with near-zero inference cost but limited contextual adaptivity; LoReFT Wu et al. (2024b)
performs low-rank projections in representation space but applies the same projection to every token
and inherits rank selection. Our work follows representation editing but replaces one-size-fits-all ed-
its with token-aware diagonal modulation, retaining the efficiency of feature-wise operations while
addressing the lack of per-token expressiveness observed in global edits and uniform low-rank map-
pings.

Token-Aware Conditional Modulation and Dynamic Editing For encoder models, widely used
PEFT baselines include LoRA and RED as above, together with IA3 Liu et al. (2022) and BitFit
Ben Zaken et al. (2021). IA3 gates attention/FFN channels via learned per-feature multipliers, and
BitFit updates only biases; both are extremely lightweight but share a uniform modulation across
tokens, limiting fine-grained adaptivity. RED is inference-friendly but globally shared. In contrast,
the proposed TARE method performs token-aware, diagonal representation editing: for each to-
ken it mixes a few learned diagonal templates to yield per-token, per-dimension adjustments while
preserving near-zero inference overhead. This design directly targets the expressiveness–efficiency
tension highlighted by these baselines. You may include other additional sections here.

Relation to Mixture-of-Experts (MoE) Similarities. TARE borrows two well-established ideas
from the MoE literature Fedus et al. (2022): (i) token-wise sparse routing, where each token is
routed to a small subset (Top-k) of candidates; and (ii) an auxiliary load-balancing loss that encour-
ages the average routing distribution to be close to uniform, preventing collapse of routing to only
a few choices. In our implementation the selector produces token-level scores over n candidates
and activates k of them, and we use a KL-to-uniform load-balancing term (weight λ=0.02) to dis-
tribute traffic across candidates. Key differences. Despite these conceptual overlaps, TARE is not an
MoE replacement of FFN layers. In classic MoE, each “expert” is a full (or sizable) feed-forward
subnetwork that replaces the FFN block for routed tokens, incurring additional matmuls, parame-
ters, capacity management, and dispatch overhead at inference. By contrast, TARE’s “experts” are
lightweight diagonal hidden representation editors—per-dimension scale and bias applied after the
FFN within a PEFT regime. The backbone remains frozen; no FFN is duplicated or replaced. Com-
putation stays strictly diagonal and sparse, yielding near-zero inference overhead and a parameter

15

https://arxiv.org/abs/2306.05685

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

footprint (≪ 1%) in line with PEFT goals. Practically, TARE performs a convex mixture of a few
diagonal edits for each token rather than switching among large FFN experts, so there is no capacity
factor tuning or expert-capacity drop, and routing latency is negligible. Positioning and intent. We
intentionally reuse MoE’s load-balancing principle to stabilize token-wise routing and improve uti-
lization, while introducing a new application of these principles to efficient representation editing.
This framing positions TARE as a creative specialization of MoE-style routing for PEFT: it preserves
the benefits of token-level adaptivity, but delivers them through tiny diagonal hidden representation
editors that are computationally frugal and architecturally compatible with frozen backbones and
low-overhead fine-tuning.

A.3 LIPSCHITZ CONTINUITY OF THE EDITOR’S PARAMETERS

Fix a layer ℓ and a token t’s hidden representation hℓ,t ∈ R1×1×Dℓ . For diagonal hidden represen-
tation editors Eθ(hℓ,t) = hℓ,t⊙ γℓ+βℓ with θ = (γℓ, βℓ) ∈ R1×1×Dℓ ×R1×1×Dℓ , we have for any
θ, θ′:∥∥Eθ,ℓ,t(hℓ,t)− Eθ′,ℓ,t(hℓ,t)

∥∥
2

≤ L(hℓ,t) ∥θ − θ′∥2, L(hℓ,t) :=
√
∥hℓ,t∥2∞ + 1. (13)

Let ∆γℓ := γℓ − γ′
ℓ and ∆βℓ := βℓ − β′

ℓ, and write ∆θ := (∆γℓ,∆βℓ). By definition,

Eθ,ℓ,t(hℓ,t)− Eθ′,ℓ,t(hℓ,t) = hℓ,t ⊙∆γℓ +∆βℓ. (14)

Using the triangle inequality and Hölder/Cauchy–Schwarz,∥∥hℓ,t ⊙∆γℓ +∆βℓ

∥∥
2

≤ ∥hℓ,t ⊙∆γℓ∥2 + ∥∆βℓ∥2 ≤ ∥hℓ,t∥∞ ∥∆γℓ∥2 + ∥∆βℓ∥2. (15)

Define u := (∥hℓ,t∥∞, 1) ∈ R2 and v := (∥∆γℓ∥2, ∥∆βℓ∥2) ∈ R2. Then the previous line is u⊤v
and, by Cauchy–Schwarz,

u⊤v ≤ ∥u∥2 ∥v∥2 =
√
∥hℓ,t∥2∞ + 1

√
∥∆γℓ∥22 + ∥∆βℓ∥22 = L(hℓ,t) ∥∆θ∥2. (16)

This proves the claim.

A.4 LOAD-BALANCING AUXILIARY LOSS

Let N=B×L be the number of tokens in a batch, and let pt ∈ ∆n−1 denote the token-wise selection
distribution over the n hidden representation editors (e.g., the softmax over the last dimension of
hnew
1 ; it may be computed on the Top-k subset or on all n hidden representation editors). Our work

define the average selection distribution across tokens

p̄ =
1

N

N∑
t=1

pt ∈ ∆n−1, (17)

and the uniform distribution U = (1n , . . . ,
1
n). The load-balancing regularizer encourages aggregate

editor usage to be uniform by minimizing the KL divergence

LLB = λKL
(
p̄ ∥U

)
= λ

n∑
i=1

p̄i log
p̄i
1/n

= λ
(n∑
i=1

p̄i log p̄i − log 1/n
)
.

(18)

where λ>0 is a weighting coefficient. This term balances overall hidden representation editor uti-
lization without forcing each token’s distribution to be uniform. In practice, for numerical stability
our work evaluate the log on max(p̄i, ε) with a small ε. The total objective becomes

Ltotal = Lmain + LLB . (19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Datasets and metrics used.
task training set test set metrics

Knowledge Reasoning Commonsense-170K BoolQ, PIQA, SIQA Accuracy
HellaSwag, WinoGrande
ARC-e/c, OBQA

Mathematical Reasoning Math-10K MultiArith, GSM8k, Accuracy
SVAMP, MAWPS, AddSub,
AQuA, SingleEq

GLUE MNLI, SST-2, MRPC, MNLI, SST-2, MRPC, Matthews Correlation
CoLA, QNLI, QQP, CoLA, QNLI, QQP, F1, Accuracy
RTE, STS-B train RTE, STS-B test Pearson, Spearmanr

Conditional Text Generation E2E-Challenge train E2E-Challenge test BLEU, NIST,
METEOR,
ROUGE–L, CIDEr

Code Synthesis HumanEval, HumanEval, Pass@1 Rate
MBPP test (90%) MBPP test (10%)

Knowledge Completion WikiFact train WikiFact test Accuracy

Closed-Book QA ScienceQA train ScienceQA test Accuracy

Symbolic Reasoning CoinFlip train CoinFlip test Accuracy

Instruction Following WizardLM MT-Bench First Turn Score

A.5 DATASET

Our work extensively evaluate the proposed TARE method on a suite covering nine capability cat-
egories: conditional text generation, code synthesis, knowledge completion, symbolic reasoning,
closed-book QA, commonsense reasoning, mathematical reasoning, instruction following, and the
GLUE benchmark. The datasets and metrics for each task are as follows (see Table 9):

• Knowledge Reasoning trains on Commonsense-170K Hu et al. (2023a) and tests on BoolQ
Clark et al. (2019), PIQA Bisk et al. (2019), SIQA Sap et al. (2019), HellaSwag Zellers
et al. (2019), WinoGrande Sakaguchi et al. (2019), ARC-e/c Clark et al. (2018), and OBQA
Mihaylov et al. (2018), reporting accuracy;

• Mathematical Reasoning trains on Math-10K Hu et al. (2023b) and tests on MultiArith
Roy & Roth (2015), GSM8k Cobbe et al. (2021), SVAMP Patel et al. (2021), MAWPS
Koncel-Kedziorski et al. (2016), AddSub Hosseini et al. (2014), AQuA Ling et al. (2017),
and SingleEq Koncel-Kedziorski et al. (2015), reporting accuracy;

• GLUE Wang et al. (2019) uses the official train/test splits, evaluating MNLI, SST-2,
MRPC, CoLA, QNLI, QQP, RTE, and STS-B with the standard metrics (Matthews cor-
relation, F1, Accuracy, Pearson, and Spearman).

• Conditional Text Generation uses the E2E-Challenge Novikova et al. (2017) train/test
split and reports BLEU, NIST, METEOR, ROUGE-L, and CIDEr;

• Code Synthesis is uses HumanEval Chen et al. (2021) and MBPP Austin et al. (2021),
training on 90% of the datasets (the remaining 10% as test) and evaluating Pass@1 Rate on
the official HumanEval/MBPP test sets;

• Knowledge Completion uses WikiFact Goodrich et al. (2019) with accuracy;

• Closed-Book QA uses ScienceQA Saikh et al. (2022) with accuracy;

• Symbolic Reasoning uses CoinFlip Wei et al. (2022) with accuracy;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Instruction Following trains on WizardLM Xu et al. (2024) and tests on MT-Bench Zheng
et al. (2023), reporting First Turn Score judged by GPT-4 OpenAI et al. (2023).

A.6 BASELINE

The following state-of-the-art baselines are used to compare with our proposed TARE method.

• LoRA Hu et al. (2021): injects trainable low-rank matrices AB⊤ into the updates of linear layers
while keeping the original weights frozen; our work follow the authors’ defaults with rank r=32
and scaling α=32.

• DoRA Liu et al. (2024): decouples the adaptation of direction and radius in weight space, improv-
ing optimization stability while maintaining a low update rank.

• MiLoRA Wang et al. (2024a): performs SVD on each weight matrix, keeps the principal singular
subspace frozen, and attaches LoRA-style low-rank adapters to the minor subspace; during fine-
tuning only these adapters are trained.

• LoReFT Wu et al. (2024b): applies low-rank re-parameterization jointly across layers and trans-
fers features between tasks via a gating mechanism; our work use the public configuration with rank
8.

• RED Wu et al. (2024a): edits hidden representations directly by learning per-feature scaling and
bias, without introducing inference-time modules.

• BitFit Ben Zaken et al. (2021): tunes only the bias terms in Transformer layers (e.g., attention and
feed-forward blocks) while keeping all other weights frozen; introduces virtually no inference-time
overhead.

• IA3 Liu et al. (2022): applies learned per-feature multiplicative gates to key/value and feed-
forward activations, modulating channels without changing the backbone weights; requires no rank
hyperparameters and adds negligible inference cost.

• LIFT Liu et al. (2025): proposes Low-rank Informed Sparse Fine-Tuning, where each weight
matrix is first approximated by a rank-r SVD and then only the top-k largest-magnitude entries of
this low-rank approximation (Principal Weights) are selected as trainable parameters; during SFT,
gradients and optimizer states are stored only for these Principal Weights.

• WeGeFT Savadikar et al. (2025): learns to generate weight-aware low-rank residuals directly
from the frozen pretrained weights using shared low-rank matrices ϕ and ψ, so that each selected
layer is updated as Ŵℓ = Wℓ(I+ ϕψ).

• PiSSA Meng et al. (2024): computes the singular value decomposition of each weight matrix
and uses the top-r singular values and singular vectors to initialize a low-rank adapter AB⊤ while
freezing the residual matrix.

• Spectral Adapter Zhang & Pilanci (2024): first performs SVD W = USV ⊤ for each pretrained
weight matrix and then fine-tunes only the top-r singular directions, either by additive updates to the
leading singular vectors (Spectral AdapterA) or by orthogonal rotations parameterized via Cayley
transforms (Spectral AdapterR).

• LoRA-GA Wang et al. (2024b): proposes a gradient-aware initialization for LoRA, where the
low-rank adapters BA are initialized from the singular vectors of the full gradient matrix so that the
first-step update ∆(ηBA) closely aligns with the full fine-tuning gradient ∆W.

• LoRA-One Zhang et al. (2025): computes the one-step full fine-tuning gradient and performs
an SVD-based spectral initialization so that the LoRA adapters AB⊤ are aligned with the top-r
singular subspaces of this gradient, already providing a close low-rank approximation to the target
update.

We confirm that the experimental setup for the baselines, including backbone models, training pro-
cesses, and data preprocessing, directly matches the conditions used for TARE. Any differences
in training conditions between TARE and the baselines will be clearly explained to ensure a fair
comparison. For reproducibility, detailed information about the datasets, model configurations, and
hyperparameters are provided in A.5 and A.7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Regarding the use of load-balancing auxiliary loss in TARE with a value of λ = 0.02, we clarify
that none of the baseline methods use an equivalent loss function. This is because the baselines do
not employ a routing mechanism in their architectures. This distinction is critical for evaluating the
performance gains attributed to TARE’s unique load-balancing approach, and it is addressed in the
ablation study to provide clearer insights into the impact of this loss term on model performance.

A.7 IMPLEMENTATION DETAIL

To cover both major Transformer branches, our work fine-tune and evaluate TARE on a decoder-
only backbone (LLaMA-3-8B Dubey et al. (2024)) and an encoder backbone (RoBERTa-base/large
Liu et al. (2019)). Unless otherwise noted, our work set the number of hidden representation editors
to n = 8 and select k = 3 editors per token via the token-aware selector; the load-balancing auxiliary
loss is used with coefficient λ = 0.02. All experiments are implemented in PyTorch 2.4.1 and run
on NVIDIA A100 (80 GB) GPUs. Our work use AdamW with learning rate 9 × 10−4 and batch
size 32, and load base language models in bfloat16 to reduce memory usage. The datasets and
task-specific evaluation metrics are summarized in Table 9.

A.8 GLUE

TARE attains the best GLUE averages with 84.8 on RoBERTa-base and 88.3 on RoBERTa-large (Ta-
ble 10). It delivers the top scores on MRPC (91.5/92.3) and STS-B (90.6/92.1), remains competitive
on MNLI and QNLI (base: 86.3/91.7; large: 90.0/94.6), and lags on a few tasks such as CoLA or
QQP. On average, it improves over LoRA and Adapter-FFN by +0.1 points each on RoBERTa-base
and by +0.2/+0.6 points on RoBERTa-large, while exceeding RED by +0.5 (base) and +0.4 (large).
These gains come with modest parameter counts of 0.22M (base) and 0.59M (large), smaller than
LoRA (0.29M/0.79M) and Adapter-FFN (0.30M/0.80M).

Table 10: GLUE results with RoBERTa base and large. Results for LoRA, Adapter-FFN, BitFit,
IA3 and RED follows Wu et al. (2024a).

PEFT Source RoBERTa Params.(M) MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA ICLR 21 base 0.29 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
Adapter-FFN EMNLP 20 base 0.30 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7
BitFit ACL 22 base 0.10 84.7 94.0 88.1 54.0 91.0 87.3 69.8 89.5 82.3
IA3 NeurIPS 22 base 0.06 85.4 93.4 86.4 57.8 91.1 88.5 73.5 88.5 83.1
RED ACL 24 base 0.02 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
TARE (ours) This paper base 0.22 86.3 93.1 91.5 58.6 91.7 88.6 77.8 90.6 84.8
LoRA ICLR 21 large 0.79 90.2 96.0 89.8 65.5 94.7 90.7 86.3 91.7 88.1
Adapter-FFN EMNLP 20 large 0.80 90.3 96.1 90.5 64.4 94.3 91.3 84.8 90.2 87.7
IA3 NeurIPS 22 large 0.15 90.1 94.5 87.1 63.2 93.9 89.3 85.3 91.5 86.9
RED ACL 24 large 0.05 89.5 96.0 90.3 68.1 93.5 88.8 86.2 91.3 87.9
TARE (ours) This paper large 0.59 90.0 94.5 92.3 67.9 94.6 89.4 85.5 92.1 88.3

A.9 CODE SYNTHESIS

TARE delivers the strongest code synthesis, achieving Pass@1 Rate = 56.3 on HumanEval and 48.0
on MBPP in Table 11. It surpasses the best baseline on HumanEval by +12.5 points over LoReFT
(43.8), and it leads MBPP by +2.0 points over LoRA/RED (46.0). TARE trains only 0.0392% of
parameters and uses 20,008 MiB peak VRAM, which is markedly lower than LoRA (23,038 MiB)
and DoRA (44,382 MiB), indicating superior accuracy with substantially lighter adaptation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Code Synthesis, Closed-Book QA and Symbolic Reasoning results with LLaMA-3-8B.
HumanEval and MBPP report Pass@1 Rate(%). ScienceQA and CoinFlip report Accuracy(%).

PEFT Source Params.(%) VRAM(MiB) HumanEval MBPP ScienceQA CoinFlip
LoRA ICLR 21 0.7002 23 038 31.3 46.0 92.6 50.8
DoRA ICML 24 0.7098 44 382 25.0 42.0 92.0 55.8
MiLoRA NAACL 25 0.7002 23 478 37.5 40.0 92.9 57.1
LoReFT NeurIPS 24 0.0260 20 116 43.8 42.0 92.4 53.5
RED ACL 24 0.0033 18 762 25.0 46.0 93.4 50.5
TARE (ours) This paper 0.0392 20 008 56.3 48.0 94.5 57.1

A.10 KNOWLEDGE COMPLETION

TARE achieves the highest average accuracy of 67.0 on WikiFact (Table 12). It also attains the best
score on four of five relations—jurisdiction 86.0, country 69.0, capital 55.0, and continent 86.0—and
ties for the top on capital of with 41.0. The average gain is +8.0 over LoRA and DoRA, +7.0 over
MiLoRA, +4.0 over RED, and +2.0 over LoReFT, while training only 0.0392% of parameters. Peak
memory is 16,512,MiB, which is close to the lowest among baselines.

Table 12: Knowledge Completion results with LLaMA-3-8B across five relation domains (jurisdic-
tion, country, capital, capital of, continent). Entries report Accuracy(%).

PEFT Source Params.(%) VRAM(MiB) jurisdiction country capital capital of continent Avg.
LoRA ICLR 21 0.7002 17 676 77.0 58.0 40.0 39.0 82.0 59.0
DoRA ICML 24 0.7098 36 712 75.0 56.0 39.0 41.0 83.0 59.0
MiLoRA NAACL 25 0.7002 18 710 75.0 66.0 39.0 39.0 80.0 60.0
LoReFT NeurIPS 24 0.0260 18 492 83.0 65.0 51.0 39.0 85.0 65.0
RED ACL 24 0.0033 16 352 82.0 62.0 46.0 40.0 83.0 63.0
TARE (ours) This paper 0.0392 16 512 86.0 69.0 55.0 41.0 86.0 67.0

A.11 CLOSED-BOOK QA AND SYMBOLIC REASONING

On Closed-Book QA and Symbolic Reasoning, TARE attains 94.5 on ScienceQA and 57.1 on Coin-
Flip(Table 11). It does so while tuning only 0.0392% of parameters and using about 20 GiB VRAM.
Compared with strong baselines, TARE is +1.1 points over RED on ScienceQA and +6.3 over
LoRA on CoinFlip, and it matches the best CoinFlip score of MiLoRA. We attribute these gains to
token-aware diagonal editing, which lets the model apply per-token, per-dimension adjustments that
sharpen factual recall (ScienceQA) and stabilize discrete rule following (CoinFlip) without adding
inference overhead.

A.12 ABLATION STUDY

Comparison of the full TARE (scaling plus bias) against variants that remove scaling or bias. Entries
report accuracy on seven math reasoning datasets and the average. Params.(%) denotes the percent-
age of trainable parameters. VRAM(MiB) denotes peak GPU memory. The full model attains the
highest average score of 76.7 with 0.0392% trainable parameters. Removing either component de-
grades performance, and the scaling-only variant (56.4) outperforms the bias-only variant (50.5).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 3: Effect of load balancing on editor utilization.

Table 13: Component ablation of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (ours) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (w/o scaling) 0.0261 19 348 43.7 28.4 56.1 52.9 71.4 31.6 69.5 50.5
TARE (w/o bias) 0.0261 19 112 60.5 33.1 56.0 54.6 81.3 32.1 77.2 56.4

Figure 4: Sensitivity to Number of Selected Editors. Average accuracy on seven math-reasoning
datasets (trained on Math-10K) as our work vary the count of token-wise selected hidden represen-
tation editors from one to eight. Accuracy rises sharply from one to three and peaks at three (76.7%).
Larger selections show diminishing returns and fluctuate within 73.5–75.6%.

Effect of load-balancing auxiliary loss (n=8, k=3). With the loss, TARE attains a higher average
accuracy (76.7 vs. 75.8) while keeping the trainable ratio fixed at 0.0392% and VRAM nearly un-
changed. Improvements are seen on MultiArith (+2.0), GSM8k (+1.0), SVAMP (+0.5), AddSub

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(+2.0), and AQuA (+1.6), with small changes on MAWPS (–0.5) and SingleEq (–0.6). This indi-
cates that load balancing provides consistent gains without additional parameter or memory cost.

Table 14: Load-balancing ablation of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (ours) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (w/o lb loss) 0.0392 20 842 93.8 56.3 72.4 86.6 88.9 39.8 92.7 75.8

A.13 SENSITIVITY ANALYSIS

Table 15: Hyperparameter Sensitivity Analysis of k (selected nums of editors) on TARE.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (k=1) 0.0392 20 196 92.3 47.9 66.0 84.9 88.4 28.0 91.1 71.2
TARE (k=2) 0.0392 20 548 93.2 56.9 71.7 83.6 89.1 40.2 90.9 75.1
TARE (k=3) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (k=4) 0.0392 21 274 92.5 56.4 71.5 82.4 87.6 39.4 92.7 74.6
TARE (k=5) 0.0392 21 652 93.3 57.2 71.3 85.7 90.6 31.1 92.7 74.6
TARE (k=6) 0.0392 22 074 93.5 55.2 73.6 85.7 88.1 36.2 93.5 75.1
TARE (k=7) 0.0392 22 412 95.5 62.2 70.7 87.0 89.6 29.6 93.3 75.4
TARE (k=8) 0.0392 22 784 91.7 56.9 70.1 87.4 88.6 43.0 91.9 75.6

Table 16: Hyperparameter Sensitivity Analysis of n (total nums of editors) on TARE.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (n=6) 0.0294 20 892 92.8 60.4 73.0 88.1 89.1 38.2 93.7 76.5
TARE (n=8) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (n=10) 0.0489 20 904 93.7 62.1 74.1 87.7 87.1 35.8 91.9 76.1

22

	Introduction
	Related Work (A.2)
	Token-Aware Representation Editing
	Design Principles
	Overall Design
	Token-Aware Selection
	Top-k Activation
	Hidden Representation Editing and Aggregation

	Experiment
	Overall Performance
	Knowledge Reasoning
	Mathematical Reasoning
	GLUE (A.8)
	Conditional Text Generation
	Code Synthesis (A.9)
	Knowledge Completion (A.10)
	Closed-Book QA and Symbolic Reasoning (A.11)
	Instruction Following

	Ablation Study
	Sensitivity Analysis
	Efficiency Analysis

	Conclusion
	Appendix
	Use of LLMs
	Related Work
	Lipschitz continuity of the editor's parameters
	Load-balancing auxiliary loss
	Dataset
	Baseline
	Implementation Detail
	GLUE
	Code Synthesis
	Knowledge Completion
	Closed-Book QA and Symbolic Reasoning
	Ablation Study
	Sensitivity Analysis

