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ABSTRACT

Parameter-efficient fine-tuning (PEFT) of large Transformers often struggles to
balance effectiveness with efficiency. Methods based on low-rank adaptation can
be resource-intensive, while representation-editing techniques that apply a sin-
gle, global transformation tend to underfit fine-grained, token-level contexts. The
core challenge is achieving token-aware, fine-grained edits while keeping infer-
ence overhead and the hyperparameter tuning burden negligible. Our work intro-
duce Token-Aware Representation Editing (TARE), a novel PEFT method. Af-
ter each feed-forward network (FFN) block, TARE employs a lightweight se-
lector that scores a small pool of ”editors” for each token’s hidden representa-
tion. It sparsely activates only the top-scoring editors and mixes their element-
wise edits to update the representation. Because the edits are computationally
minimal diagonal operations and are sparsely activated, TARE adds near-zero in-
ference overhead and introduces no rank or scaling hyperparameters. Our work
conduct extensive experiments on LLaMA-3-8B across eight knowledge reason-
ing and seven mathematical reasoning tasks, and on RoBERTa-base/large for the
GLUE benchmark. Compared to strong baselines like LoRA, DoRA, MiLoRA,
LoReFT, and RED, TARE achieves state-of-the-art results. It attains an 86.7% av-
erage on knowledge reasoning tasks, 76.7% on mathematical reasoning tasks, and
88.3% on the GLUE benchmark. These results are achieved while tuning only
0.0392% of the model’s parameters and using approximately 20 GiB of mem-
ory, surpassing prior methods by several percentage points and demonstrating
exceptional resource efficiency. An anonymized implementation is available at:
https://anonymous.4open.science/r/tare-BCF5/.

1 INTRODUCTION

Parameter–efficient fine–tuning (PEFT) has become a central paradigm for adapting large Trans-
formers under tight compute and memory budgets: it aims to reach strong task performance by
training only a tiny fraction of parameters while keeping the backbone frozen. Existing PEFT fami-
lies include weight–space adapters (e.g., LoRA Hu et al. (2021), DoRA Liu et al. (2024), MiLoRA
Wang et al. (2024a)), representation–space editing and gating (e.g., RED Wu et al. (2024a), LoReFT
Wu et al. (2024b), IA3 Liu et al. (2022), BitFit Ben Zaken et al. (2021)). Despite clear efficiency
gains, a key open problem remains: how to attain fine-grained, token-aware adaptation while keep-
ing inference overhead and hyperparameter burden negligible.

Across methods, a common limitation is the tension between expressiveness and efficiency. Low-
rank approaches such as LoRA Hu et al. (2021), DoRA Liu et al. (2024), and MiLoRA Wang et al.
(2024a) require choosing ranks and scaling factors, which can complicate tuning across layers and
tasks. Importantly, in standard single-adapter deployments these low-rank increments are merged
into the base weights, so there is effectively no additional inference overhead. When weight merging
is not desirable—e.g., multi-adapter hot-swap, online mixture/selection, or coexistence with certain
quantization pipelines—one may resort to on-the-fly composition, which re-introduces extra oper-
ators, but this is an engineering choice rather than an inherent property of LoRA-style methods.
Representation-editing methods that are highly efficient at inference often apply a single, shared
transformation to all tokens—e.g., RED Wu et al. (2024a) learns one global per-feature scaling/bias;
IA3 Liu et al. (2022) gates channels uniformly; BitFit Ben Zaken et al. (2021) updates only bi-
ases—thereby limiting capacity to capture fine-grained context. LoReFT Wu et al. (2024b) performs
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Figure 1: Token-wise optimal scaling/bias (Token-optimal) forms a few modes. A single global scal-
ing/bias (Global edit) underfits, a small set of scalings/bias (Editor edits) covers dominant modes.

low-rank projections in representation space but still uses the same projection for every token and
inherits rank-selection overhead. In summary, many methods either impose a uniform editor that un-
derfits token-level variability, or they rely on hyperparameters (e.g., ranks/scales) and deployment
choices (e.g., merging vs. online composition), motivating a token-aware representation editor that
preserves inference efficiency while capturing per-token context.

As shown in Figure 1, for a single layer, the per-dimension scaling (top) and bias (bottom) that would
be individually optimal for different tokens (thin solid curves). Two regularities emerge. First, token
requirements are highly heterogeneous across embedding dimensions: the thin curves span roughly
0.8–1.2 for both scaling and bias and exhibit clear phase shifts, indicating that different tokens prefer
amplifying/suppressing different feature bands. Second, despite this heterogeneity, the thin curves
concentrate around a small number of prototypical shapes (thick solid curves); most token-specific
curves closely follow one of these smooth templates up to modest perturbations. In contrast, the
single global edit (thin dashed) is essentially the per-dimension average; it flattens peaks and valleys
and therefore underfits wherever tokens require opposite adjustments (e.g., around the mid- and
high-dimensional regions where one mode rises while another falls). The same multi-modal pattern
appears simultaneously in both scaling and bias, and the two often exhibit slight phase misalignment,
suggesting that accurate edits must coordinate the pair rather than rely on either alone. This analysis
implies that token-level edits are necessary to capture fine-grained semantics, and only a few hidden
representation editors are sufficient to cover the dominant modes.

Consequently, our work proposed Token-Aware Representation Editing (TARE), which adopts
a token-aware hidden representation editing scheme. TARE inserts a hidden representation edi-
tor module after each block’s FFN: for each token, a lightweight selector produces logits over n
diagonal editors and activates only the Top-k hidden representation editors; each selected hidden
representation editor maintains element-wise scale and bias vectors (γi, bi) to form cansdidate edits
hi = h1 ⊙ γi + bi, which are then linearly mixed by softmax-normalized weights to update the rep-
resentation. Because the operations are diagonal along feature dimensions and selection is sparse,
the inference overhead is nearly unchanged; the backbone network of large Transformer is frozen,
and only (n, k) need to be set—no rank/scale hyperparameters are introduced.

The main contributions of this work are as follows:

• Our work propose Token-Aware Representation Editing (TARE), a new PEFT mech-
anism that replaces one-size-fits-all edits with per-token, per-dimension adjustments. A
lightweight selector scores a small pool of hidden representation editors and mixes only
a few of them for each token, yielding fine-grained context adaptivity while keeping
computation strictly diagonal and sparse. This directly tackles the key challenge raised

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

above—achieving token-level expressiveness without adding inference latency or complex
hyperparameters.

• Our work show that token-optimal edits cluster into a handful of smooth modes; the
proposed TARE method’s selector–template co-design exploits this structure by project-
ing each token onto a local convex combination of learned hidden representation editors.
This design preserves the inference friendliness of representation editing, avoids rank/scale
knobs from low-rank adapters, and provides a simple, robust training recipe with optional
load-balancing regularization.

• The proposed TARE method is evaluated on a decoder model (LLaMA-3-8B) across eight
knowledge reasoning tasks and seven mathematical reasoning tasks, and on encoder models
(RoBERTa-base/large) on GLUE benchmark. It achieves 86.7% average over eight knowl-
edge reasoning tasks (slightly above LoReFT and notably higher than LoRA/RED), 76.7%
average over seven mathematical reasoning tasks and 88.3% on GLUE benchmark, while
tuning only 0.0392% of parameters with ∼20 GiB memory. TARE consistently matches
or surpasses strong PEFT baselines (LoRA, DoRA, MILoRA, RED, LoReFT) under tight
parameter and memory budgets.

2 RELATED WORK (A.2)

3 TOKEN-AWARE REPRESENTATION EDITING

This section introduces the proposed TARE method. Rather than using dense low-rank adapters,
TARE employs a lightweight, token-wise selector. For each token, it activates a small set of hidden
representation editors (per-feature scaling and bias) and mixes their edits with normalized weights.
This token-aware, k-sparse, diagonal adjustment increases expressiveness and captures fine-grained
context. It adds virtually no inference overhead and avoids rank/scale hyperparameters. As a result,
TARE transfers well across diverse tasks while alleviating the extra computation and overfitting
issues of conventional fine-tuning.

3.1 DESIGN PRINCIPLES

Notation and setup. Fix a Transformer layer index ℓ. Let hℓ,t ∈ R1×1×Dℓ denote the hidden
representation of a given token t at layer ℓ. A diagonal hidden representation editor applies a feature-
wise affine transformation

Eθ,ℓ,t(hℓ,t) = hℓ,t ⊙ γℓ + βℓ, θ = (γℓ, βℓ) ∈ R1×1×Dℓ × R1×1×Dℓ , (1)

where ⊙ is the Hadamard product. Let fℓ(·) denote the remainder network from layer ℓ to the task
head, and let L(·) be the task loss. We consider diagonal edits constrained to a feasible set B (e.g.,
∥(γℓ − 1, βℓ)∥2 ≤ ρ or box constraints on γℓ), which makes the optimization and approximation
well-defined. For a codebook of n editors Θ = {θi}ni=1, the token-wise selector returns a Top-k
index set T ⊆ {1, . . . , n}, |T | = k, and nonnegative mixing weights {wi}i∈T with

∑
i∈T wi = 1.

We write Θk = conv{θi : i ∈ T } for the corresponding convex hull. Unless stated otherwise, ∥ · ∥
denotes the Euclidean norm.

Token-optimal diagonal edit. For a fixed token representation hℓ,t, we define the token-optimal
diagonal parameters as

θ⋆(hℓ,t) ∈ argmin
θ∈B

L
(
fℓ(Eθ,ℓ,t(hℓ,t))

)
. (2)

This object serves as the ground-truth reference for our approximation analysis; it is the best diagonal
edit (within B) for the current token at layer ℓ.

Why token-aware edits are necessary. Consider a first–order Taylor expansion of
L(fℓ(Eθ,ℓ,t(hℓ,t))) around the identity edit (γℓ, βℓ) = (1,0):

L
(
fℓ(Eθ,ℓ,t(hℓ,t))

)
≈ L

(
fℓ(hℓ,t)

)
+ gℓ(hℓ,t)

⊤((γℓ − 1)⊙ hℓ,t + βℓ

)︸ ︷︷ ︸
first-order term

+ R2(θ;hℓ,t), (3)
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where gℓ(hℓ,t) = ∇hℓ,t
L(fℓ(hℓ,t)) and R2 collects second-order terms (bounded under standard

smoothness assumptions). Under a norm constraint on (γℓ − 1, βℓ), the first-order decrease aligns
coordinate-wise with −gℓ(hℓ,t), which is token-dependent. Hence a single global edit is generally
suboptimal; edits must be token-aware.

Why a small set of prototypes suffices. Empirically (Fig. 1), θ⋆(hℓ,t) across tokens clusters into
a handful of smooth modes. This invites a codebook view: treat each editor parameter θi = (γi, βi)
as a codeword and the set Θ as a codebook. Classical vector quantization (e.g., Lloyd–Max, k-
means) relates hard assignment (Top-1) error to within-cluster radius/variance; learning Θ reduces
these radii, improving approximation of θ⋆(hℓ,t) by nearby codewords. We operationalize this with
a token-wise selector.

Why Top-k convex mixing is principled. Given the Top-k set T and weights {wi}i∈T , the mixed
parameter is

θ̂ =
∑
i∈T

wi θi ∈ Θk. (4)

Let dist(θ⋆,Θk) = minϑ∈Θk
∥θ⋆ − ϑ∥ be the distance from the token-optimal parameter to the

convex set Θk. Then, by convexity,
dist(θ⋆,Θk) ≤ min

i∈T
∥θ⋆ − θi∥, (5)

so allowing convex combinations (Top-k) is never worse than nearest-neighbor/Top-1 in parameter
space.
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Figure 2: Schematic of the proposed TARE method.

From parameter error to output error. Fix hℓ and two parameter vectors θ, θ′. Since
Eθ,ℓ,t(hℓ,t) = hℓ,t ⊙ γℓ + βℓ is affine in θ, one has

∥Eθ,ℓ,t(hℓ,t)− Eθ′,ℓ,t(hℓ,t)∥2 = ∥hℓ,t ⊙ (γℓ − γ′
ℓ) + (βℓ − β′

ℓ) ∥2 ≤ L(hℓ,t) ∥θ − θ′∥2, (6)

with L(hℓ,t) =
√
∥hℓ,t∥2∞ + 1 (a token-dependent Lipschitz constant; proof in A.3). Combining

equation 5 and equation 6 yields an end-to-end token-level bound:
∥Eθ̂,ℓ,t(hℓ,t)− Eθ⋆,ℓ,t(hℓ,t)∥2 ≤ L(hℓ,t) dist(θ

⋆,Θk) ≤ L(hℓ,t) min
i∈T

∥θ⋆ − θi∥2. (7)
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Thus, learning a small set of diagonal hidden representation editors (a codebook) and performing
token-wise Top-k convex mixing provides a principled approximation of the unknown token-optimal
edit, with guarantees that are never worse than Top-1 and improve as the learned codewords shrink
the cluster radii.

Summary. (1) The first-order analysis equation 3 motivates token-aware diagonal edits. (2) The
clustering of θ⋆(hℓ,t) across tokens justifies a finite codebook of hidden representation editors. (3)
Top-k convex mixing is a principled realization, with the projection bound equation 5 and the Lips-
chitz link equation 7 connecting parameter-space approximation to output-space error. These results
explain why TARE attains fine-grained adaptivity with near-zero inference overhead: hidden repre-
sentation editors are diagonal (cheap) and selection is sparse (Top-k).

3.2 OVERALL DESIGN

The proposed TARE method augments hidden representation editor with a lightweight token-aware
selector, as shown in Figure 2. At each token position, the selector activates a small subset of
hidden representation editors, each providing its own per-feature scaling and bias; they are then
linearly combined with normalized weights. This multi-path yet k-sparse design enables flexible and
efficient token-wise adjustment, enhancing adaptability across heterogeneous tasks while keeping
inference overhead negligible.

For every layer, TARE attach n hidden representation editors, each with an independent parame-
ter set for editing operations (element-wise scaling and bias by default, extensible to other simple
transforms). During the forward pass, a Top-k mechanism selects the k most relevant hidden repre-
sentation editors conditioned on the current activation, and the final representation is obtained by a
weighted combination of their edits.

The proposed TARE method consists of three main steps: Token-Aware Selection, Top-k Activation,
and Hidden Representation Editing and Aggregation.

3.3 TOKEN-AWARE SELECTION

Let the hidden representation of a given token t at layer ℓ be hℓ,t ∈ R1×1×Dℓ . TARE first applies a
token-wise selector: a small feed-forward network that produces a real-valued score for each of the
n candidate diagonal editors. Formally,

hnew
ℓ,t = selector(hℓ,t) ∈ R1×1×n. (8)

The selector uses one linear layer and is kept narrow so its parameter footprint remains negligible.
Intuitively, it scores token–editor compatibility, playing a role analogous to a gating network while
keeping the backbone frozen.

3.4 TOP-k ACTIVATION

To avoid activating all n hidden representation editors and increasing compute, The proposed TARE
method keeps only the k highest-scoring hidden representation editors per token (k≪n, e.g., k = 3):(

topk values, topk indices
)
= TopK

(
hnew
ℓ,t , k

)
. (9)

The selected logits are then normalized with a softmax (along the last dimension) to obtain a proba-
bilistic selection mask:

w = softmax
(
topk values, −1

)
, (10)

so that
∑k

i=1 wℓ,t,i = 1 for every token. This sparse selection keeps inference time virtually un-
changed relative to the original model, because the cost of processing k lightweight hidden rep-
resentation editors is dominated by the backbone’s already-computed attention and feed-forward
layers.

The selector’s Top-k routing can collapse (most tokens routed to a few editors), which hurts both
stability and capacity usage. We add a lightweight auxiliary term on the selector probabilities, which
encourages balanced utilization across editors, stabilizes training, and yields consistent accuracy
gains. A fuller discussion are given in A.4.
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Table 1: Knowledge Reasoning results with LLaMA-3-8B.Results for LoRA, DoRA and LoReFT
follow Wu et al. (2024b). MiLoRA numbers follow Wang et al. (2024a). LIFT numbers follow Liu
et al. (2025). WeGeFT numbers follow Savadikar et al. (2025).

PEFT Source Params.(%) VRAM(MiB) BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
LoRA ICLR 21 0.7002 21 828 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA ICML 24 0.7098 41 780 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
MiLoRA NAACL 25 0.7002 21 580 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
LoReFT NeurIPS 24 0.0260 21 050 75.1 90.2 82.0 96.3 87.4 92.4 81.6 87.5 86.6
RED ACL 24 0.0033 20 132 68.0 83.7 79.7 90.0 83.2 85.2 72.8 79.4 80.2
LIFT ICLR 25 5.0000 45 600 75.7 90.5 83.2 96.5 89.4 93.6 83.9 90.2 87.9
WeGeFT ICML 25 0.0130 20 364 75.7 89.9 82.5 96.4 88.7 92.5 82.3 86.3 86.8
PiSSA NeurIPS 24 0.7002 21 004 72.1 89.2 82.7 94.6 89.6 86.8 84.5 85.2 85.6
Spectral Adapter arXiv 0.7002 21 746 72.1 88.3 83.1 94.6 89.3 85.4 82.2 85.2 85.0
LoRA-GA NeurIPS 24 0.7002 21 708 72.5 88.8 82.7 94.4 89.6 91.3 80.4 85.6 85.7
LoRA-One arXiv 0.7002 21 206 72.0 88.9 82.9 94.4 89.8 85.1 82.6 87.6 85.4
TARE (ours) This paper 0.0392 21 724 75.2 90.2 82.5 94.1 88.6 91.3 82.3 88.4 86.7
TARE (all) This paper 0.4097 24 044 76.3 91.6 83.6 95.5 89.8 92.7 83.9 89.2 87.8

3.5 HIDDEN REPRESENTATION EDITING AND AGGREGATION

Each hidden representation editor i maintains its own pair of element-wise scaling and bias vectors
γℓ,i, bℓ,i ∈ R1×1×Dℓ , trained from scratch while the backbone remains frozen. For each selected
hidden representation editor, the proposed TARE method compute a candidate edit

hℓ,t,i = hℓ,t ⊙ γℓ,i + bℓ,i, (11)

where ⊙ denotes the Hadamard (element-wise) product. Because these operations are diagonal in
feature space, they introduce no additional matrix multiplications and can be fused into a single
CUDA kernel in practical implementations. Finally, the k token-specific hidden representation edi-
tors are linearly combined according to their selection weights to yield the updated representation

hupdate
ℓ,t =

k∑
i=1

hℓ,t,i wℓ,t,i. (12)

This convex combination acts as a soft winner-take-all mechanism: hidden representation editors
that the selector deems most relevant contribute the most, while others are softly suppressed.

In summary, the proposed TARE method adds a lightweight, token-aware, k-sparse hidden repre-
sentation editor that lifts the representational ceiling of simple scaling/bias edits while keeping the
backbone frozen. By conditionally selecting and mixing a few per-feature edits per token, it attains
high expressiveness and contextual adaptivity with near-zero inference overhead.

4 EXPERIMENT

Our work conduct a comprehensive study on decoder model LLaMA-3-8B and encoder model
RoBERTa-base/large.The evaluation spans nine task families—knowledge reasoning, mathematical
reasoning, GLUE, conditional text generation, code synthesis, knowledge completion, closed-book
QA, symbolic reasoning and instruction following—against strong PEFT baselines (LoRA, DoRA,
MiLoRA, LoReFT, RED; on GLUE our work also include Adapter-FFN, IA3, and BitFit). Ablation
Study isolate scaling vs. bias, and Sensitivity analysis study the number of hidden representation
editors n and the number of selected hidden representation editors k, quantifying the expressive-
ness–efficiency trade-off.In addition, a visualize analysis examines load-balancing behavior at the
layer level, showing how the auxiliary loss equalizes editor utilization and correlates with consistent
accuracy gains.For completeness, an expanded discussion of dataset,baseline and implementation
detail is deferred to A.5, A.6 and A.7.

4.1 OVERALL PERFORMANCE

The proposed TARE method delivers state-of-the-art or competitive results across diverse
tasks—including conditional text generation, code synthesis, knowledge reasoning, mathematical
reasoning, GLUE, knowledge completion, closed-book QA and symbolic reasoning—while training

6
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Table 2: Mathematical Reasoning results with LLaMA-3-8B and Qwen-2.5-7B-Instruct.
PEFT Source Model Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.

LoRA ICLR 21 0.2345 21 070 92.0 61.4 69.8 84.2 85.4 44.7 90.3 75.4
LoRA (all) ICLR 21 1.0338 24 622 95.5 57.5 69.4 86.5 91.2 41.3 93.3 76.4
DoRA ICML 24 0.2361 29 284 91.7 59.0 72.3 82.1 86.1 39.9 89.5 74.4
MiLoRA NAACL 25 LLaMA-3-8B 0.2345 21 520 91.7 59.0 70.5 88.3 86.1 43.4 90.5 75.6
LoReFT NeurIPS 24 0.0260 21 940 89.2 56.2 68.7 80.3 90.1 33.1 90.0 72.5
RED ACL 24 0.0033 19 852 91.0 54.2 66.8 81.1 87.3 34.1 90.9 72.2
TARE (ours) This paper 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
LoRA ICLR 21 0.2643 21 244 94.7 72.8 81.1 89.4 88.4 66.5 91.7 83.5
DoRA ICML 24 0.2657 29 604 93.2 72.1 79.8 88.2 89.7 63.7 92.7 82.8
MiLoRA NAACL 25 Qwen-2.5-7B-Instruct 0.2643 21 518 93.3 72.2 80.8 88.3 89.6 69.6 92.7 83.8
LoReFT NeurIPS 24 0.0218 21 832 92.1 71.7 78.5 86.2 90.0 67.3 90.5 82.3
RED ACL 24 0.0026 20 100 91.3 71.3 77.4 84.1 90.4 70.9 88.2 81.9
TARE (ours) This paper 0.0316 20 624 96.0 75.1 80.3 92.4 90.4 63.6 91.3 84.2

only 0.0392% of parameters and maintaining low VRAM with near-zero inference overhead (e.g.,
E2E best on all metrics; HumanEval/MBPP highest Pass@1 Rate; Commonsense avg. 86.7%; Math-
10K avg. 76.7%; GLUE 88.3%), outperforming or matching LoRA/DoRA/MiLoRA/LoReFT/RED.

4.1.1 KNOWLEDGE REASONING

TARE attains an average accuracy of 86.7 on the eight commonsense-reasoning benchmarks in
Table 1, placing it in the top tier of PEFT methods. Although the heavy LIFT model reaches the
highest average of 87.9, it requires 5.0% trainable parameters and 45,600 MiB VRAM, whereas
TARE is only 0.0392% (∼ 1/128 as many parameters) and 21,724 MiB VRAM, yet trails by just
1.2 points. Compared with other strong PEFT baselines, TARE improves the average accuracy over
LoRA, MiLoRA, RED, DoRA, PiSSA, Spectral Adapter, LoRA-GA, and LoRA-One by +5.9, +4.8,
+6.5, +1.5, +1.1, +1.7, +1.0, and +1.3 points, respectively, and slightly edges out LoReFT by +0.1
and is essentially on par with the recent WeGeFT method (86.8). Across individual datasets, TARE
remains consistently close to the best-performing methods—for example, 90.2 on PIQA, 94.1 on
HellaSwag, 88.6 on WinoGrande, 82.3 on ARC-c, and 88.4 on OBQA—while using two orders
of magnitude fewer trainable parameters than most LoRA-style variants, highlighting a favorable
accuracy–efficiency trade-off. When we allow TARE to adapt all projection matrices q/k/v/o and
up/gate/down (TARE (all) in Table 1), the average accuracy further improves to 87.8, essentially
matching the heavy LIFT model (87.9) while remaining much more efficient. Concretely, TARE
(all) uses only 0.4097% trainable parameters (about 12× fewer than LIFT’s 5.0%) and 24,044 MiB
VRAM (vs. 45,600 MiB for LIFT).

4.1.2 MATHEMATICAL REASONING

TARE consistently attains the highest average accuracy on the seven math-reasoning benchmarks
in Table 2 for both backbones. On LLaMA-3-8B, it reaches an average accuracy of 76.7 with only
0.0392% trainable parameters and 20,900 MiB peak VRAM, achieving the best results on MultiArith
(95.8), SVAMP (72.9), AddSub (90.9), and SingleEq (92.1), and remaining competitive on GSM8k
(57.3), MAWPS (86.1), and AQuA (41.4). Even compared with the much heavier LoRA (all), which
applies LoRA to all seven projection matrices with 1.0338% trainable parameters and 24,622 MiB
VRAM, TARE attains a higher average accuracy (76.7 vs. 76.4), and on average improves over
LoRA / LoRA (all) / MiLoRA / DoRA / RED / LoReFT by (+1.3 / +0.3 / +1.1 / +2.3 / +4.5 /
+4.2) points while being far more parameter-efficient than all low-rank baselines. On Qwen-2.5-
7B-Instruct, TARE further achieves the best average accuracy of 84.2 with only 0.0316% trainable
parameters and 20,624 MiB peak VRAM, obtaining the highest or tied-highest scores on MultiArith
(96.0), GSM8k (75.1), MAWPS (92.4), and AddSub (90.4), and improving over LoRA / MiLoRA /
DoRA / RED / LoReFT by (+0.7 / +0.4 / +1.4 / +2.3 / +1.9) points on average. For a fair comparison,
all PEFT methods except LoRA (all) are applied only to the projection layer of the MLP blocks.

4.1.3 GLUE (A.8)

4.1.4 CONDITIONAL TEXT GENERATION

TARE achieves the best E2E conditional generation with LLaMA-3-8B, reaching BLEU 0.6333,
NIST 8.3105, METEOR 0.4456, ROUGE–L 0.6758, and CIDEr 2.2027 in Table 3. It surpasses
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Table 3: Conditional Text Generation results with LLaMA-3-8B.

PEFT Source Params.(%) VRAM(MiB) BLEU↑ NIST↑ METEOR↑ ROUGE–L↑ CIDEr↑
LoRA ICLR 21 0.2345 39 166 0.6255 8.2791 0.4404 0.6661 2.1524
DoRA ICML 24 0.2361 45 326 0.6201 8.1455 0.4367 0.6617 2.1578
MiLoRA NAACL 25 0.2345 39 590 0.6244 8.2652 0.4283 0.6606 2.1845
LoReFT NeurIPS 24 0.0260 32 502 0.5719 7.5671 0.4304 0.6431 1.6881
RED ACL 24 0.0033 29 492 0.5994 7.9229 0.4401 0.6692 2.1958
TARE (ours) This paper 0.0392 34 626 0.6333 8.3105 0.4456 0.6758 2.2027

Table 4: Instruction Following results with LLaMA-2-7B. Results for LoRA, PiSSA, rsLoRA and
LoRA+ follow Wang et al. (2024c).

PEFT Source Params.(%) First Turn Score
LoRA ICLR 21 0.2970 5.61± 0.10
PiSSA NeurIPS 24 0.2970 5.30± 0.02
rsLoRA arXiv 0.2970 5.25± 0.03
LoRA+ ICML 24 0.2970 5.71± 0.08
TARE (ours) This paper 0.0467 5.73± 0.05

the strongest baselines on each metric, for example by about +0.008 BLEU over LoRA (0.6255),
+0.031 NIST over LoRA (8.2791), +0.005 METEOR over LoRA (0.4404), +0.0066 ROUGE–L
over RED (0.6692), and +0.0069 CIDEr over RED (2.1958). The method trains only 0.0392% of
parameters and uses 34,626 MiB peak VRAM, thus delivering higher text quality while remaining
highly parameter efficient and lighter than LoRA and DoRA in memory usage. All PEFT methods
are applied to the projection layer of the MLP blocks in the backbone language model.

4.1.5 CODE SYNTHESIS (A.9)

4.1.6 KNOWLEDGE COMPLETION (A.10)

4.1.7 CLOSED-BOOK QA AND SYMBOLIC REASONING (A.11)

4.1.8 INSTRUCTION FOLLOWING

From Table 4, under the setting where LLaMA-2-7B is instruction-tuned on WizardLM and eval-
uated on MT-Bench with GPT-4 scoring, TARE achieves the best First Turn Score with extremely
low parameter overhead: LoRA, PiSSA, rsLoRA, and LoRA+ each require (0.297%) trainable pa-
rameters, whereas TARE uses only (0.0467%) yet still attains the highest score of (5.73±0.05), sur-
passing the strongest baseline LoRA+ (5.71±0.08) and clearly outperforming PiSSA (5.30±0.02)
and rsLoRA (5.25± 0.03). This shows that, under identical training data and evaluation protocols,
TARE learns more robust instruction-alignment behaviour within a much smaller update space, mak-
ing first-turn responses to open and complex instructions more aligned with human preferences and
less prone to failure, and providing a stronger basis for context understanding and task decomposi-
tion in subsequent multi-turn interactions. Meanwhile, its tiny parameter ratio reduces deployment
costs and the risk of catastrophic forgetting, making incremental enhancement or domain extension
of deployed dialogue agents safer and more efficient, and highlighting the practicality and robustness
of TARE in long-conversation and online-service settings.

4.2 ABLATION STUDY

Component ablation. TARE attains the best overall result, reaching an average accuracy of 76.7 with
only 0.0392% trainable parameters and about 20,900 MiB peak VRAM (Table 13). It clearly outper-
forms both ablated variants—w/o scaling (50.5) and w/o bias (56.4). On representative datasets, the
full scaling,+,bias edit delivers large gains: MultiArith +35–52,pp, GSM8k +24–29,pp, SVAMP
≈,+17,pp, MAWPS +31–33,pp, AddSub +10–20,pp, AQuA +9–10,pp, and SingleEq +15–23,pp
over the ablations. These improvements match the design intent: per-dimension scaling calibrates
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feature magnitudes, per-dimension bias corrects offsets, and their joint, token-wise adjustment better
aligns hidden representations with task signals.

Table 5: Position ablation of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (q) 0.0392 20 430 86.0 50.4 63.3 74.8 77.5 36.7 86.8 67.9
TARE (k) 0.0098 18 492 78.3 44.7 60.4 73.9 78.2 43.1 85.6 66.3
TARE (v) 0.0098 18 486 91.0 56.0 68.1 79.4 86.1 38.4 90.4 72.8
TARE (o) 0.0392 22 438 92.0 57.9 72.2 85.3 88.6 39.4 92.1 75.4
TARE (up) 0.1369 29 556 91.7 62.2 69.6 88.2 87.3 38.4 92.3 75.7
TARE (gate) 0.1369 29 536 87.0 54.7 67.5 82.8 85.1 32.6 91.7 71.6
TARE (down) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7

Load-balancing ablation. Adding the load-balancing auxiliary loss(A.4) yields a higher average
accuracy of 76.7 vs. 75.8 without it, at the same 0.0392% trainable ratio and nearly unchanged
VRAM (Table 14; a detailed description of this loss is provided in the Appendix). The loss prevents
routing collapse and spreads token traffic across editors: in the 16th block, selection counts move
from highly skewed—one editor rarely chosen and others around 7.3×105–1.16×106—to near-
uniform use of all eight editors (∼ 7.6×105–8.2×105 each), as shown in Fig. 3. This fuller capacity
utilization translates into consistent metric gains, e.g., MultiArith +2.0, AddSub +2.0, and AQuA
+1.6 (Table 14), because more balanced routing exposes diverse tokens to specialized diagonal edits
without adding parameters or inference cost.

Position ablation. Table 5 reports the performance of TARE when inserted at seven locations in
LLaMA-3-8B—self-attention projections q/k/v/o and FFN linear layers up/gate/down—showing
clear differences in effectiveness and cost. Applying TARE to q and k yields very low trainable
parameter ratios (0.0392%/0.0098%) and VRAM (20.4/18.5 GiB), but poor average accuracies
(67.9/66.3). Moving TARE to v improves the average to 72.8, indicating that editing value vectors
is more effective than perturbing queries/keys. Inserting it on o further raises the average to 75.4,
with strong scores on several math datasets, at the cost of higher VRAM (22.4 GiB). For the FFN,
attaching TARE to up attains an average of 75.7 and excels on GSM8k and MAWPS, but requires
0.1369% trainable parameters and about 29.6 GiB VRAM, while gate is weaker overall (average
71.6). In contrast, placing TARE on the FFN down layer (our default) offers the best accuracy–
efficiency trade-off: with only 0.0392% trainable parameters and 20.9 GiB VRAM, it achieves the
highest average accuracy of 76.7 and near-best or best scores on multiple datasets. This shows that
editing the down-projection layer best exploits FFN nonlinearity while preserving excellent param-
eter and memory efficiency, making it the most effective insertion point for TARE.

4.3 SENSITIVITY ANALYSIS

Hyperparameter sensitivity. TARE achieves its best average accuracy of 76.7% with k=3 selected
hidden representation editors (Fig. 4, Table 15). Increasing k from 1 to 3 sharply improves accuracy
(71.2% → 76.7%), while larger k yields diminishing returns and task-specific peaks (e.g., GSM8k
at k=7, AQuA at k=8, SingleEq at k=6), suggesting that too many edits over-average token signals
whereas a small set captures the dominant modes. Memory grows only modestly as k increases
(≈ 20.2 GiB at k=1 to ≈ 22.8 GiB at k=8) with the trainable-parameter ratio fixed at 0.0392%,
so k=3 provides a strong accuracy–efficiency trade-off and is our default choice. We further vary
the total number of editors n with k=3 fixed (Table 16). TARE remains stable for n ∈ 6, 8, 10:
the average accuracy varies within 0.6 points and peaks at 76.7% when n=8, slightly above n=6
(76.5%) and n=10 (76.1%). Different tasks favor slightly different n, but a moderately overcomplete
pool (n=8) already covers diverse reasoning modes: further increasing n offers only marginal gains
while raising the trainable-parameter ratio (0.0294%,→,0.0489%) with nearly unchanged VRAM,
so we adopt n=8 as the default to balance robustness and parameter efficiency.

Sample sensitivity. Table 6 reports TARE on LLaMA-3-8B when fine-tuned on different numbers
of Math-10k training examples (500, 1,000, 2,000, 5,000, 9919 (all)) under the same backbone
and hyperparameter setting (always 0.0392% trainable parameters and about 20 GiB VRAM). We
observe stable and robust performance across supervision scales: even with 500 examples, TARE
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Table 7: Comparison between LoRA and TARE in terms of parameter ratio, training time, inference
time statistics on LLaMA-3-8B.

PEFT Source Params. (%) Training time (s/epochs) Mean inference time (s)
LoRA ICLR 21 0.2345 1015.56 2.68± 0.43
TARE (ours) This paper 0.0392 837.35 3.20± 0.67

Table 8: Token-wise selection and editing time statistics of TARE on LLaMA-3-8B.

PEFT Mean selection time(s) Mean editing time(s)
TARE (ours) 6.94× 10−5 ± 1.46× 10−8 9.78× 10−5 ± 1.31× 10−10

reaches an average accuracy of 69.8 over seven math benchmarks, and as the sample size increases
to 2,000 and 5,000, the average accuracy rises smoothly to 74.3 and 76.2 (e.g., GSM8k 60.8 at
5,000), without training instability or large fluctuations. Using the full Math-10k further boosts the
average to 76.7 (with strong results on MultiArith, SVAMP, AddSub, etc.), showing that TARE is
already effective in the low-data regime and continues to improve as more data become available,
indicating a stable, well-generalised token-selection and editing strategy rather than reliance on
massive labelled data.

Table 6: Sample Sensitivity Analysis of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (sample=500) 0.0392 20 398 86.3 52.5 64.1 81.1 81.0 36.7 87.0 69.8
TARE (sample=1000) 0.0392 20 406 85.3 51.3 68.6 81.1 85.3 32.8 89.4 70.5
TARE (sample=2000) 0.0392 20 606 89.0 56.6 67.5 84.9 85.1 46.5 90.6 74.3
TARE (sample=5000) 0.0392 20 274 91.8 60.8 68.1 87.4 88.9 41.9 94.3 76.2
TARE (sample=9919) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7

4.4 EFFICIENCY ANALYSIS

From Table 7, under the same backbone (LLaMA-3-8B) and task setup, TARE markedly improves
training and inference efficiency while incurring almost no extra inference cost. In terms of param-
eter scale, TARE uses only 0.0392% trainable parameters, reducing updated weights by about five
sixths compared with LoRA’s 0.2345%, which directly lightens backpropagation and optimization.
On Math-10K, this leads to a shorter per-epoch training time (1015.56 s for LoRA vs. 837.35 s for
TARE, a ∼17% reduction), yielding substantial compute savings for long-horizon fine-tuning. At
inference, although LoRA can merge its low-rank weights and is theoretically zero-overhead, its em-
pirical mean latency on 600 MultiArith examples is 2.68 s (var. 0.43), while TARE—without weight
merging and preserving online editing—achieves a very similar 3.20 s (var. 0.67), only about 19%
higher and well below one extra second per sample. Finer-grained measurements (Table 8) show that
TARE’s token-level selection and editing are almost free: mean selection time 6.94 × 10−5 s (var.
1.46 × 10−8) and mean editing time 9.78 × 10−5 s (var. 1.31 × 10−10), i.e., sub-millisecond over-
head. Overall, TARE offers a smaller parameter footprint, faster training, and near-zero additional
inference cost, demonstrating high efficiency and practicality for real-world deployment.

5 CONCLUSION

Our work presented Token-Aware Representation Editing (TARE), a lightweight PEFT approach
that replaces one-size-fits-all edits with per-token, per-dimension adjustments. Extensive experi-
ments validate TARE’s benefits on both decoder and encoder families, while tuning only 0.0392%
of parameters and using about 20GiB of GPU memory, matching or surpassing LoRA, DoRA,
MiLoRA, LoReFT, and RED across many settings.
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Human subjects and privacy. Our work does not involve user studies, human participants, or the
collection of personally identifiable information. All experiments use publicly available datasets un-
der their respective licenses. We do not attempt to deanonymize data or link records across datasets.
When datasets include potentially sensitive content (e.g., natural language containing demographic
references), we use them solely for research benchmarking and follow their intended-use guidelines.

Data governance and licenses. We respect dataset licenses and attribution requirements. Any
data filtering or preprocessing is documented in the paper or appendix to support transparency and
reproducibility. We do not redistribute third-party datasets; readers should obtain them from the
original sources under the original terms.

Safety, misuse, and downstream impacts. The proposed TARE method is a generic fine-tuning
technique that can improve model adaptability. Like other PEFT methods, it could be applied to
harmful tasks if misused. We do not target such applications and discourage any use that violates
the Code of Ethics or applicable laws. If we release code and scripts, we will include a model card
and usage guidelines clarifying intended use, out-of-scope use cases, and safety considerations. We
also encourage practitioners to implement content filtering and abuse monitoring when deploying
fine-tuned models.

Bias, fairness, and representational harms. Large language models can reflect and amplify bi-
ases present in training data. While our work focuses on parameter efficiency rather than content
shaping, improved adaptation can inadvertently strengthen biased behaviors inherited from data. We
therefore report results across diverse task families and discuss limitations. We recommend addi-
tional fairness evaluations and domain-specific audits before deployment, especially in high-stakes
settings.

Security and legal compliance. We do not circumvent access controls or use prohibited sources.
All experiments comply with the terms of service of data and model providers and with applicable
intellectual-property and data-protection laws.

Reproducibility and transparency. We describe datasets, model backbones, hyperparameters,
and compute settings in the paper or appendix. Upon acceptance, we plan to release code, con-
figuration files, and instructions to reproduce the main results, subject to license constraints of any
third-party assets.

Conflicts of interest and sponsorship. The authors disclose no conflicts of interest beyond those
stated in the metadata of the submission. No external sponsorship influenced the results or their
presentation beyond acknowledged funding (if any) in the paper.

Environmental considerations. To reduce computational footprint, we use parameter-efficient
fine-tuning and bfloat16 precision. We encourage practitioners to reuse our released checkpoints
and scripts, and to select smaller backbones when appropriate.

This ethics statement is provided to proactively address potential concerns regarding data practices,
fairness, safety, reproducibility, and compliance. We welcome reviewer feedback on any additional
considerations relevant to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We take several steps to facilitate independent verification of our results. The core algorithmic design
of TARE are specified in §3 (with ablations and sensitivity analyses in §4.2 and §4.3). Datasets,
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splits, and evaluation metrics are summarized in Table 9 and further detailed in A.5. Implementation
particulars (model backbones, precision, optimizer, batch size, and hardware) are provided in A.6
and A.7. Theoretical clarifications and auxiliary loss formulations appear in A.4. Together, these
materials are intended to enable end-to-end replication of our pipelines and numerical results.
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A APPENDIX

A.1 USE OF LLMS

We used large language models strictly for editorial assistance, including spell checking, grammar
polishing, and minor wording suggestions for the paper text. No model outputs were used to create,
modify, or label datasets, implement algorithms, tune hyperparameters, or select results. All tech-
nical content (methods, proofs, experiments, and numbers) was written and verified by the authors,
and every LLM-suggested edit was reviewed manually for accuracy and clarity.

A.2 RELATED WORK

Parameter-Efficient Fine-Tuning and Representation Editing PEFT aims to adapt large Trans-
formers by training only a tiny fraction of parameters while freezing the backbone. Low-rank
adapters such as LoRA Hu et al. (2021) inject rank-r updates into weight matrices; in standard
single-adapter deployments these increments are merged into the base weights, so there is effec-
tively no additional inference overhead. They still require nontrivial choices of rank and scaling,
which can complicate tuning across layers and tasks. When merging is not desirable (e.g., multi-
adapter hot-swap, online mixture/selection, or coexistence with certain quantization pipelines), one
may resort to on-the-fly composition that re-introduces extra operators, but this is an engineering
choice rather than an inherent property of LoRA-style methods. DoRA Liu et al. (2024) decouples
direction and magnitude to stabilize optimization while remaining low-rank; MiLoRA Wang et al.
(2024a) modifies singular subspaces to reduce redundancy in LoRA updates. A complementary line
edits hidden representations directly: RED Wu et al. (2024a) learns a single global diagonal scal-
ing/bias with near-zero inference cost but limited contextual adaptivity; LoReFT Wu et al. (2024b)
performs low-rank projections in representation space but applies the same projection to every token
and inherits rank selection. Our work follows representation editing but replaces one-size-fits-all ed-
its with token-aware diagonal modulation, retaining the efficiency of feature-wise operations while
addressing the lack of per-token expressiveness observed in global edits and uniform low-rank map-
pings.

Token-Aware Conditional Modulation and Dynamic Editing For encoder models, widely used
PEFT baselines include LoRA and RED as above, together with IA3 Liu et al. (2022) and BitFit
Ben Zaken et al. (2021). IA3 gates attention/FFN channels via learned per-feature multipliers, and
BitFit updates only biases; both are extremely lightweight but share a uniform modulation across
tokens, limiting fine-grained adaptivity. RED is inference-friendly but globally shared. In contrast,
the proposed TARE method performs token-aware, diagonal representation editing: for each to-
ken it mixes a few learned diagonal templates to yield per-token, per-dimension adjustments while
preserving near-zero inference overhead. This design directly targets the expressiveness–efficiency
tension highlighted by these baselines. You may include other additional sections here.

Relation to Mixture-of-Experts (MoE) Similarities. TARE borrows two well-established ideas
from the MoE literature Fedus et al. (2022): (i) token-wise sparse routing, where each token is
routed to a small subset (Top-k) of candidates; and (ii) an auxiliary load-balancing loss that encour-
ages the average routing distribution to be close to uniform, preventing collapse of routing to only
a few choices. In our implementation the selector produces token-level scores over n candidates
and activates k of them, and we use a KL-to-uniform load-balancing term (weight λ=0.02) to dis-
tribute traffic across candidates. Key differences. Despite these conceptual overlaps, TARE is not an
MoE replacement of FFN layers. In classic MoE, each “expert” is a full (or sizable) feed-forward
subnetwork that replaces the FFN block for routed tokens, incurring additional matmuls, parame-
ters, capacity management, and dispatch overhead at inference. By contrast, TARE’s “experts” are
lightweight diagonal hidden representation editors—per-dimension scale and bias applied after the
FFN within a PEFT regime. The backbone remains frozen; no FFN is duplicated or replaced. Com-
putation stays strictly diagonal and sparse, yielding near-zero inference overhead and a parameter
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footprint (≪ 1%) in line with PEFT goals. Practically, TARE performs a convex mixture of a few
diagonal edits for each token rather than switching among large FFN experts, so there is no capacity
factor tuning or expert-capacity drop, and routing latency is negligible. Positioning and intent. We
intentionally reuse MoE’s load-balancing principle to stabilize token-wise routing and improve uti-
lization, while introducing a new application of these principles to efficient representation editing.
This framing positions TARE as a creative specialization of MoE-style routing for PEFT: it preserves
the benefits of token-level adaptivity, but delivers them through tiny diagonal hidden representation
editors that are computationally frugal and architecturally compatible with frozen backbones and
low-overhead fine-tuning.

A.3 LIPSCHITZ CONTINUITY OF THE EDITOR’S PARAMETERS

Fix a layer ℓ and a token t’s hidden representation hℓ,t ∈ R1×1×Dℓ . For diagonal hidden represen-
tation editors Eθ(hℓ,t) = hℓ,t⊙ γℓ+βℓ with θ = (γℓ, βℓ) ∈ R1×1×Dℓ ×R1×1×Dℓ , we have for any
θ, θ′:∥∥Eθ,ℓ,t(hℓ,t)− Eθ′,ℓ,t(hℓ,t)

∥∥
2

≤ L(hℓ,t) ∥θ − θ′∥2, L(hℓ,t) :=
√
∥hℓ,t∥2∞ + 1. (13)

Let ∆γℓ := γℓ − γ′
ℓ and ∆βℓ := βℓ − β′

ℓ, and write ∆θ := (∆γℓ,∆βℓ). By definition,

Eθ,ℓ,t(hℓ,t)− Eθ′,ℓ,t(hℓ,t) = hℓ,t ⊙∆γℓ +∆βℓ. (14)

Using the triangle inequality and Hölder/Cauchy–Schwarz,∥∥hℓ,t ⊙∆γℓ +∆βℓ

∥∥
2

≤ ∥hℓ,t ⊙∆γℓ∥2 + ∥∆βℓ∥2 ≤ ∥hℓ,t∥∞ ∥∆γℓ∥2 + ∥∆βℓ∥2. (15)

Define u := (∥hℓ,t∥∞, 1) ∈ R2 and v := (∥∆γℓ∥2, ∥∆βℓ∥2) ∈ R2. Then the previous line is u⊤v
and, by Cauchy–Schwarz,

u⊤v ≤ ∥u∥2 ∥v∥2 =
√
∥hℓ,t∥2∞ + 1

√
∥∆γℓ∥22 + ∥∆βℓ∥22 = L(hℓ,t) ∥∆θ∥2. (16)

This proves the claim.

A.4 LOAD-BALANCING AUXILIARY LOSS

Let N=B×L be the number of tokens in a batch, and let pt ∈ ∆n−1 denote the token-wise selection
distribution over the n hidden representation editors (e.g., the softmax over the last dimension of
hnew
1 ; it may be computed on the Top-k subset or on all n hidden representation editors). Our work

define the average selection distribution across tokens

p̄ =
1

N

N∑
t=1

pt ∈ ∆n−1, (17)

and the uniform distribution U = ( 1n , . . . ,
1
n ). The load-balancing regularizer encourages aggregate

editor usage to be uniform by minimizing the KL divergence

LLB = λKL
(
p̄ ∥U

)
= λ

n∑
i=1

p̄i log
p̄i
1/n

= λ
( n∑
i=1

p̄i log p̄i − log 1/n
)
.

(18)

where λ>0 is a weighting coefficient. This term balances overall hidden representation editor uti-
lization without forcing each token’s distribution to be uniform. In practice, for numerical stability
our work evaluate the log on max(p̄i, ε) with a small ε. The total objective becomes

Ltotal = Lmain + LLB . (19)
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Table 9: Datasets and metrics used.
task training set test set metrics

Knowledge Reasoning Commonsense-170K BoolQ, PIQA, SIQA Accuracy
HellaSwag, WinoGrande
ARC-e/c, OBQA

Mathematical Reasoning Math-10K MultiArith, GSM8k, Accuracy
SVAMP, MAWPS, AddSub,
AQuA, SingleEq

GLUE MNLI, SST-2, MRPC, MNLI, SST-2, MRPC, Matthews Correlation
CoLA, QNLI, QQP, CoLA, QNLI, QQP, F1, Accuracy
RTE, STS-B train RTE, STS-B test Pearson, Spearmanr

Conditional Text Generation E2E-Challenge train E2E-Challenge test BLEU, NIST,
METEOR,
ROUGE–L, CIDEr

Code Synthesis HumanEval, HumanEval, Pass@1 Rate
MBPP test (90%) MBPP test (10%)

Knowledge Completion WikiFact train WikiFact test Accuracy

Closed-Book QA ScienceQA train ScienceQA test Accuracy

Symbolic Reasoning CoinFlip train CoinFlip test Accuracy

Instruction Following WizardLM MT-Bench First Turn Score

A.5 DATASET

Our work extensively evaluate the proposed TARE method on a suite covering nine capability cat-
egories: conditional text generation, code synthesis, knowledge completion, symbolic reasoning,
closed-book QA, commonsense reasoning, mathematical reasoning, instruction following, and the
GLUE benchmark. The datasets and metrics for each task are as follows (see Table 9):

• Knowledge Reasoning trains on Commonsense-170K Hu et al. (2023a) and tests on BoolQ
Clark et al. (2019), PIQA Bisk et al. (2019), SIQA Sap et al. (2019), HellaSwag Zellers
et al. (2019), WinoGrande Sakaguchi et al. (2019), ARC-e/c Clark et al. (2018), and OBQA
Mihaylov et al. (2018), reporting accuracy;

• Mathematical Reasoning trains on Math-10K Hu et al. (2023b) and tests on MultiArith
Roy & Roth (2015), GSM8k Cobbe et al. (2021), SVAMP Patel et al. (2021), MAWPS
Koncel-Kedziorski et al. (2016), AddSub Hosseini et al. (2014), AQuA Ling et al. (2017),
and SingleEq Koncel-Kedziorski et al. (2015), reporting accuracy;

• GLUE Wang et al. (2019) uses the official train/test splits, evaluating MNLI, SST-2,
MRPC, CoLA, QNLI, QQP, RTE, and STS-B with the standard metrics (Matthews cor-
relation, F1, Accuracy, Pearson, and Spearman).

• Conditional Text Generation uses the E2E-Challenge Novikova et al. (2017) train/test
split and reports BLEU, NIST, METEOR, ROUGE-L, and CIDEr;

• Code Synthesis is uses HumanEval Chen et al. (2021) and MBPP Austin et al. (2021),
training on 90% of the datasets (the remaining 10% as test) and evaluating Pass@1 Rate on
the official HumanEval/MBPP test sets;

• Knowledge Completion uses WikiFact Goodrich et al. (2019) with accuracy;

• Closed-Book QA uses ScienceQA Saikh et al. (2022) with accuracy;

• Symbolic Reasoning uses CoinFlip Wei et al. (2022) with accuracy;
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• Instruction Following trains on WizardLM Xu et al. (2024) and tests on MT-Bench Zheng
et al. (2023), reporting First Turn Score judged by GPT-4 OpenAI et al. (2023).

A.6 BASELINE

The following state-of-the-art baselines are used to compare with our proposed TARE method.

• LoRA Hu et al. (2021): injects trainable low-rank matrices AB⊤ into the updates of linear layers
while keeping the original weights frozen; our work follow the authors’ defaults with rank r=32
and scaling α=32.

• DoRA Liu et al. (2024): decouples the adaptation of direction and radius in weight space, improv-
ing optimization stability while maintaining a low update rank.

• MiLoRA Wang et al. (2024a): performs SVD on each weight matrix, keeps the principal singular
subspace frozen, and attaches LoRA-style low-rank adapters to the minor subspace; during fine-
tuning only these adapters are trained.

• LoReFT Wu et al. (2024b): applies low-rank re-parameterization jointly across layers and trans-
fers features between tasks via a gating mechanism; our work use the public configuration with rank
8.

• RED Wu et al. (2024a): edits hidden representations directly by learning per-feature scaling and
bias, without introducing inference-time modules.

• BitFit Ben Zaken et al. (2021): tunes only the bias terms in Transformer layers (e.g., attention and
feed-forward blocks) while keeping all other weights frozen; introduces virtually no inference-time
overhead.

• IA3 Liu et al. (2022): applies learned per-feature multiplicative gates to key/value and feed-
forward activations, modulating channels without changing the backbone weights; requires no rank
hyperparameters and adds negligible inference cost.

• LIFT Liu et al. (2025): proposes Low-rank Informed Sparse Fine-Tuning, where each weight
matrix is first approximated by a rank-r SVD and then only the top-k largest-magnitude entries of
this low-rank approximation (Principal Weights) are selected as trainable parameters; during SFT,
gradients and optimizer states are stored only for these Principal Weights.

• WeGeFT Savadikar et al. (2025): learns to generate weight-aware low-rank residuals directly
from the frozen pretrained weights using shared low-rank matrices ϕ and ψ, so that each selected
layer is updated as Ŵℓ = Wℓ(I+ ϕψ).

• PiSSA Meng et al. (2024): computes the singular value decomposition of each weight matrix
and uses the top-r singular values and singular vectors to initialize a low-rank adapter AB⊤ while
freezing the residual matrix.

• Spectral Adapter Zhang & Pilanci (2024): first performs SVD W = USV ⊤ for each pretrained
weight matrix and then fine-tunes only the top-r singular directions, either by additive updates to the
leading singular vectors (Spectral AdapterA) or by orthogonal rotations parameterized via Cayley
transforms (Spectral AdapterR).

• LoRA-GA Wang et al. (2024b): proposes a gradient-aware initialization for LoRA, where the
low-rank adapters BA are initialized from the singular vectors of the full gradient matrix so that the
first-step update ∆(ηBA) closely aligns with the full fine-tuning gradient ∆W.

• LoRA-One Zhang et al. (2025): computes the one-step full fine-tuning gradient and performs
an SVD-based spectral initialization so that the LoRA adapters AB⊤ are aligned with the top-r
singular subspaces of this gradient, already providing a close low-rank approximation to the target
update.

We confirm that the experimental setup for the baselines, including backbone models, training pro-
cesses, and data preprocessing, directly matches the conditions used for TARE. Any differences
in training conditions between TARE and the baselines will be clearly explained to ensure a fair
comparison. For reproducibility, detailed information about the datasets, model configurations, and
hyperparameters are provided in A.5 and A.7.
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Regarding the use of load-balancing auxiliary loss in TARE with a value of λ = 0.02, we clarify
that none of the baseline methods use an equivalent loss function. This is because the baselines do
not employ a routing mechanism in their architectures. This distinction is critical for evaluating the
performance gains attributed to TARE’s unique load-balancing approach, and it is addressed in the
ablation study to provide clearer insights into the impact of this loss term on model performance.

A.7 IMPLEMENTATION DETAIL

To cover both major Transformer branches, our work fine-tune and evaluate TARE on a decoder-
only backbone (LLaMA-3-8B Dubey et al. (2024)) and an encoder backbone (RoBERTa-base/large
Liu et al. (2019)). Unless otherwise noted, our work set the number of hidden representation editors
to n = 8 and select k = 3 editors per token via the token-aware selector; the load-balancing auxiliary
loss is used with coefficient λ = 0.02. All experiments are implemented in PyTorch 2.4.1 and run
on NVIDIA A100 (80 GB) GPUs. Our work use AdamW with learning rate 9 × 10−4 and batch
size 32, and load base language models in bfloat16 to reduce memory usage. The datasets and
task-specific evaluation metrics are summarized in Table 9.

A.8 GLUE

TARE attains the best GLUE averages with 84.8 on RoBERTa-base and 88.3 on RoBERTa-large (Ta-
ble 10). It delivers the top scores on MRPC (91.5/92.3) and STS-B (90.6/92.1), remains competitive
on MNLI and QNLI (base: 86.3/91.7; large: 90.0/94.6), and lags on a few tasks such as CoLA or
QQP. On average, it improves over LoRA and Adapter-FFN by +0.1 points each on RoBERTa-base
and by +0.2/+0.6 points on RoBERTa-large, while exceeding RED by +0.5 (base) and +0.4 (large).
These gains come with modest parameter counts of 0.22M (base) and 0.59M (large), smaller than
LoRA (0.29M/0.79M) and Adapter-FFN (0.30M/0.80M).

Table 10: GLUE results with RoBERTa base and large. Results for LoRA, Adapter-FFN, BitFit,
IA3 and RED follows Wu et al. (2024a).

PEFT Source RoBERTa Params.(M) MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA ICLR 21 base 0.29 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
Adapter-FFN EMNLP 20 base 0.30 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7
BitFit ACL 22 base 0.10 84.7 94.0 88.1 54.0 91.0 87.3 69.8 89.5 82.3
IA3 NeurIPS 22 base 0.06 85.4 93.4 86.4 57.8 91.1 88.5 73.5 88.5 83.1
RED ACL 24 base 0.02 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
TARE (ours) This paper base 0.22 86.3 93.1 91.5 58.6 91.7 88.6 77.8 90.6 84.8
LoRA ICLR 21 large 0.79 90.2 96.0 89.8 65.5 94.7 90.7 86.3 91.7 88.1
Adapter-FFN EMNLP 20 large 0.80 90.3 96.1 90.5 64.4 94.3 91.3 84.8 90.2 87.7
IA3 NeurIPS 22 large 0.15 90.1 94.5 87.1 63.2 93.9 89.3 85.3 91.5 86.9
RED ACL 24 large 0.05 89.5 96.0 90.3 68.1 93.5 88.8 86.2 91.3 87.9
TARE (ours) This paper large 0.59 90.0 94.5 92.3 67.9 94.6 89.4 85.5 92.1 88.3

A.9 CODE SYNTHESIS

TARE delivers the strongest code synthesis, achieving Pass@1 Rate = 56.3 on HumanEval and 48.0
on MBPP in Table 11. It surpasses the best baseline on HumanEval by +12.5 points over LoReFT
(43.8), and it leads MBPP by +2.0 points over LoRA/RED (46.0). TARE trains only 0.0392% of
parameters and uses 20,008 MiB peak VRAM, which is markedly lower than LoRA (23,038 MiB)
and DoRA (44,382 MiB), indicating superior accuracy with substantially lighter adaptation.
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Table 11: Code Synthesis, Closed-Book QA and Symbolic Reasoning results with LLaMA-3-8B.
HumanEval and MBPP report Pass@1 Rate(%). ScienceQA and CoinFlip report Accuracy(%).

PEFT Source Params.(%) VRAM(MiB) HumanEval MBPP ScienceQA CoinFlip
LoRA ICLR 21 0.7002 23 038 31.3 46.0 92.6 50.8
DoRA ICML 24 0.7098 44 382 25.0 42.0 92.0 55.8
MiLoRA NAACL 25 0.7002 23 478 37.5 40.0 92.9 57.1
LoReFT NeurIPS 24 0.0260 20 116 43.8 42.0 92.4 53.5
RED ACL 24 0.0033 18 762 25.0 46.0 93.4 50.5
TARE (ours) This paper 0.0392 20 008 56.3 48.0 94.5 57.1

A.10 KNOWLEDGE COMPLETION

TARE achieves the highest average accuracy of 67.0 on WikiFact (Table 12). It also attains the best
score on four of five relations—jurisdiction 86.0, country 69.0, capital 55.0, and continent 86.0—and
ties for the top on capital of with 41.0. The average gain is +8.0 over LoRA and DoRA, +7.0 over
MiLoRA, +4.0 over RED, and +2.0 over LoReFT, while training only 0.0392% of parameters. Peak
memory is 16,512,MiB, which is close to the lowest among baselines.

Table 12: Knowledge Completion results with LLaMA-3-8B across five relation domains (jurisdic-
tion, country, capital, capital of, continent). Entries report Accuracy(%).

PEFT Source Params.(%) VRAM(MiB) jurisdiction country capital capital of continent Avg.
LoRA ICLR 21 0.7002 17 676 77.0 58.0 40.0 39.0 82.0 59.0
DoRA ICML 24 0.7098 36 712 75.0 56.0 39.0 41.0 83.0 59.0
MiLoRA NAACL 25 0.7002 18 710 75.0 66.0 39.0 39.0 80.0 60.0
LoReFT NeurIPS 24 0.0260 18 492 83.0 65.0 51.0 39.0 85.0 65.0
RED ACL 24 0.0033 16 352 82.0 62.0 46.0 40.0 83.0 63.0
TARE (ours) This paper 0.0392 16 512 86.0 69.0 55.0 41.0 86.0 67.0

A.11 CLOSED-BOOK QA AND SYMBOLIC REASONING

On Closed-Book QA and Symbolic Reasoning, TARE attains 94.5 on ScienceQA and 57.1 on Coin-
Flip(Table 11). It does so while tuning only 0.0392% of parameters and using about 20 GiB VRAM.
Compared with strong baselines, TARE is +1.1 points over RED on ScienceQA and +6.3 over
LoRA on CoinFlip, and it matches the best CoinFlip score of MiLoRA. We attribute these gains to
token-aware diagonal editing, which lets the model apply per-token, per-dimension adjustments that
sharpen factual recall (ScienceQA) and stabilize discrete rule following (CoinFlip) without adding
inference overhead.

A.12 ABLATION STUDY

Comparison of the full TARE (scaling plus bias) against variants that remove scaling or bias. Entries
report accuracy on seven math reasoning datasets and the average. Params.(%) denotes the percent-
age of trainable parameters. VRAM(MiB) denotes peak GPU memory. The full model attains the
highest average score of 76.7 with 0.0392% trainable parameters. Removing either component de-
grades performance, and the scaling-only variant (56.4) outperforms the bias-only variant (50.5).
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Figure 3: Effect of load balancing on editor utilization.

Table 13: Component ablation of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (ours) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (w/o scaling) 0.0261 19 348 43.7 28.4 56.1 52.9 71.4 31.6 69.5 50.5
TARE (w/o bias) 0.0261 19 112 60.5 33.1 56.0 54.6 81.3 32.1 77.2 56.4

Figure 4: Sensitivity to Number of Selected Editors. Average accuracy on seven math-reasoning
datasets (trained on Math-10K) as our work vary the count of token-wise selected hidden represen-
tation editors from one to eight. Accuracy rises sharply from one to three and peaks at three (76.7%).
Larger selections show diminishing returns and fluctuate within 73.5–75.6%.

Effect of load-balancing auxiliary loss (n=8, k=3). With the loss, TARE attains a higher average
accuracy (76.7 vs. 75.8) while keeping the trainable ratio fixed at 0.0392% and VRAM nearly un-
changed. Improvements are seen on MultiArith (+2.0), GSM8k (+1.0), SVAMP (+0.5), AddSub
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(+2.0), and AQuA (+1.6), with small changes on MAWPS (–0.5) and SingleEq (–0.6). This indi-
cates that load balancing provides consistent gains without additional parameter or memory cost.

Table 14: Load-balancing ablation of TARE on LLaMA-3-8B.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (ours) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (w/o lb loss) 0.0392 20 842 93.8 56.3 72.4 86.6 88.9 39.8 92.7 75.8

A.13 SENSITIVITY ANALYSIS

Table 15: Hyperparameter Sensitivity Analysis of k (selected nums of editors) on TARE.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (k=1) 0.0392 20 196 92.3 47.9 66.0 84.9 88.4 28.0 91.1 71.2
TARE (k=2) 0.0392 20 548 93.2 56.9 71.7 83.6 89.1 40.2 90.9 75.1
TARE (k=3) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (k=4) 0.0392 21 274 92.5 56.4 71.5 82.4 87.6 39.4 92.7 74.6
TARE (k=5) 0.0392 21 652 93.3 57.2 71.3 85.7 90.6 31.1 92.7 74.6
TARE (k=6) 0.0392 22 074 93.5 55.2 73.6 85.7 88.1 36.2 93.5 75.1
TARE (k=7) 0.0392 22 412 95.5 62.2 70.7 87.0 89.6 29.6 93.3 75.4
TARE (k=8) 0.0392 22 784 91.7 56.9 70.1 87.4 88.6 43.0 91.9 75.6

Table 16: Hyperparameter Sensitivity Analysis of n (total nums of editors) on TARE.

PEFT Params.(%) VRAM(MiB) MultiArith GSM8k SVAMP MAWPS AddSub AQuA SingleEq Avg.
TARE (n=6) 0.0294 20 892 92.8 60.4 73.0 88.1 89.1 38.2 93.7 76.5
TARE (n=8) 0.0392 20 900 95.8 57.3 72.9 86.1 90.9 41.4 92.1 76.7
TARE (n=10) 0.0489 20 904 93.7 62.1 74.1 87.7 87.1 35.8 91.9 76.1
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