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Abstract
The Conditional Sequence Modeling (CSM)
paradigm, benefiting from the transformer’s
powerful distribution modeling capabilities, has
demonstrated considerable promise in offline Re-
inforcement Learning (RL) tasks. Depending on
the task’s nature, it is crucial to carefully balance
the interplay between inherent local features and
long-term dependencies in Markov decision tra-
jectories to mitigate potential performance degra-
dation and unnecessary computational overhead.
In this paper, we propose Decision Mixer (DM),
which addresses the conflict between features of
different scales in the modeling process from
the perspective of dynamic integration. Draw-
ing inspiration from conditional computation, we
design a plug-and-play dynamic token selection
mechanism to ensure the model can effectively al-
locate attention to different features based on task
characteristics. Additionally, we employ an aux-
iliary predictor to alleviate the short-sightedness
issue in the autoregressive sampling process. DM
achieves state-of-the-art performance on various
standard RL benchmarks while requiring signifi-
cantly fewer computational resources, offering a
viable solution for building efficient and scalable
RL foundation models. Code is available at here.

1. Introduction
Transformer (Vaswani, 2017) is widely regarded for its
capacity to capture complex data distributions and long-
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Figure 1. The evaluation results for DT, DC, and DM in tasks with
standard Markov properties and non-standard Markov properties.
DM consistently secures the top performance across all tested
environments, showcasing its superiority.

term temporal dependencies, becoming a foundational ar-
chitecture in fields such as Natural Language Processing
(NLP) (Brown et al., 2020; Achiam et al., 2023; Xu et al.,
2021) and Computer Vision (CV) (Liu et al., 2021; Si et al.,
2022). Inspired by this success, Decision Transformer
(DT) (Chen et al., 2021; Li et al., 2023) and its variants (Lee
et al., 2022; Xie et al., 2023) introduce the transformer to
the field of offline Reinforcement Learning (RL), demon-
strating its powerful capabilities in Conditional Sequence
Modeling (CSM). Specifically, DT integrates cumulative
rewards, states, and actions into a tuple and trains on of-
fline datasets autoregressively to output appropriate actions.
DT’s limitation lies in overlooking the inherent local as-
sociations between adjacent timestep tokens in offline RL
data, which are crucial for the model’s learning of transition
and reward functions. Decision Convformer (DC) (Kim
et al., 2024) employs causal convolution filters instead of
attention modules for data modelling to address this limi-
tation and outperforms DT on specific tasks. However, its
overemphasis on capturing local features leads to subop-
timal performance on long-term sequence modeling tasks.
Such tasks typically do not adhere to the standard Markov
property indicated by DC but rather follow a non-standard
Markov process (Ching et al., 2013), where the current state
may depend on multiple previous time steps. Consequently,
a fixed convolution range may fail to adapt to the specific
characteristics of different tasks (Figure 1). Furthermore,
existing works rarely consider the presence of suboptimal
segments within trajectories, and trajectory selection and
concatenation would substantially improve the efficiency of
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both attention and convolution operations.

Although increasing the number of parameters in foundation
models has demonstrated success across a broad range of
tasks (Bommasani et al., 2021; Muennighoff et al., 2023),
this scaling law (Kaplan et al., 2020; Ye et al., 2020a;b)
remains insufficiently explored in the context of deep RL.
Blindly expanding the architecture of DT not only escalates
computational demands but may also lead to a decline in
performance. Conditional computation algorithms (Ainslie
et al., 2023; Lei et al., 2023), which statically or dynami-
cally allocate the number of parameters used during model
training, appear promising for achieving computational ef-
ficiency while enhancing model performance. However,
whether such architectures can better capture the inherent
Markov patterns in offline RL datasets while preserving the
ability to learn long-term temporal dependencies remains
unclear.

In this paper, we propose Decision Mixer (DM), a low-
complexity architecture that dynamically balances long-
term dependency features and local Markov features through
a token selection mechanism. For tokens in a given se-
quence, DM dynamically selects whether a token should
participate in the current layer’s attention calculation or be
passed directly to the next layer. Specifically, drawing in-
spiration from the Mixture of Experts (MoE) (Zhou et al.,
2022), DM utilizes a router to assign weights to each to-
ken in the sequence. At the same time, a hypernetwork
determines the number of tokens k to be selected based on
data features. The final selection is achieved by combining
these two components with a weight-based top-k mecha-
nism. This dynamic token selection mechanism ensures that
the model can allocate attention to long-term dependencies
and local features based on the characteristics of the task.
After being selected, tokens are fed into the attention layer
in their original order, which can be viewed as a concatena-
tion mechanism and allows the model to learn features of
optimal trajectories from suboptimal ones. The unselected
tokens are passed through the residual link and then com-
bined with the tokens processed through attention. During
testing, since the entire sequence cannot be obtained at once
in autoregressive sampling, we have designed an auxiliary
network that directly predicts at the token level whether the
token should participate in the attention computation.

The main contributions of this work are as follows:

• We reconsidered the trade-off between capturing long-
term dependencies and extracting local Markov fea-
tures in CSM methods from an experimental perspec-
tive, proposing a selection, stitching, and computation
mechanism.

• Drawing inspiration from MOE architecture, we signif-
icantly reduced the computational burden by dynam-
ically selecting important tokens at each layer of the

transformer, providing a direction for exploring the
scaling law in offline RL.

• We demonstrate the effectiveness of DM through inten-
sive experiments on a broad spectrum of benchmarks,
highlighting its competitive performance in Offline RL
scenarios.

2. Preliminary
2.1. Conditional Computation

The transformer architecture has become a cornerstone in
driving the artificial intelligence revolution, but its high com-
putational cost has sparked significant interest in improving
efficiency. The concept of conditional computation (Bengio
et al., 2015) has been proposed as a promising approach
to address the abovementioned issues, with learned mecha-
nisms determining when and how computation is expended.
Mixture of Experts (MOE) (Zhou et al., 2022) is a represen-
tative method of conditional computation, where tokens are
routed to one of several experts. This sparse activation archi-
tecture maintains a constant total computation cost while ex-
panding the number of parameters (Dai et al., 2024; Raposo
et al., 2024; Zheng et al., 2025). Some other work (Schuster
et al., 2022; Ainslie et al., 2023) focuses on the design of
an early exit mechanism within the transformer, where the
model learns to decide when to terminate the computation
for a given token, allowing the token to skip any remain-
ing transformer layers once the exit decision is made. Our
approach can be viewed as a token-level sparse activation
strategy. In this strategy, a routing mechanism similar to that
in MoE, along with an hypernetwork, determines whether a
specific token should pass through the transformer layers or
skip them.

Our approach is also related to token dropping, which was
initially proposed to reduce BERT inference costs (Press
et al., 2022; Wang et al., 2021) and later adapted to improve
training efficiency (Hou et al., 2022). Random-LTD (Yao
et al., 2022) further advanced this idea by introducing
random-layer token dropping combined with learning rate
scheduling. While prior work focuses on static efficiency
strategies for vision and language tasks (Zhong et al., 2023;
Liu et al., 2024), these approaches often lack dynamic adap-
tation, which can lead to semantic disruption. In contrast,
DM dynamically selects tokens using a router and hyper-
network, aligning with the Markovian nature of offline RL
for improved performance. Its plug-and-play design and
synchronized training offer greater flexibility than existing
methods.

2.2. Conditional Sequence Modeling for Offline RL

In contrast to online RL, offline RL (Agarwal et al., 2020;
Wei et al., 2021; Qu et al., 2023) focuses on training models
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and performing trial-and-error using offline data without
environmental interaction to arrive at appropriate strategies.
Recently, conditional sequence modeling for RL (Hu et al.,
2024b; Brandfonbrener et al., 2022), represented by the
transformer architecture, has further demonstrated the ad-
vantages of data-driven policy learning. DT (Chen et al.,
2021) is trained on an offline dataset of triplets encapsu-
lating return-to-go r̂t, state st, and action at, and outputs
the optimal action. The r̂t token quantifies the cumulative
reward from the current time step to the end of the episode.
During training, DT processes a trajectory sequence τt in an
auto-regressive manner, which encompasses the most recent
K-step historical context:

τt = (r̂t−K+1, st−K+1, at−K+1, . . . , r̂t, st, at) (1)

The prediction head associated with a state token st is
trained to predict the corresponding action at. Subsequent
work has made various improvements to DT, including
prompt tuning (Xu et al., 2022; Zheng et al., 2024), tra-
jectory concatenation (Wu et al., 2024), and value regular-
ization (Chebotar et al., 2023; Hu et al., 2024a). These
approaches often involve more complex modifications of
DT to adapt it to specific tasks.

The most relevant work to ours is Decision Con-
vformer (Kim et al., 2024), which solely utilizes convolu-
tional filters to capture local patterns but shows limitations
in tasks requiring long-term dependencies. Additionally, the
fixed and finite convolution range limits its performance on
tasks with non-standard Markov features. Our approach’s
distinction lies in designing an innovative token selection
mechanism, which dynamically balances the trade-off be-
tween long-term and local features by retaining the attention
mechanism. This innovation addresses the inherent limita-
tions of DT and DC, is orthogonal to previous methods, and
can be seamlessly integrated into existing architectures.

2.3. Rethinking the Trade-offs of Features in CSM

RL tasks with the standard Markov property imply that the
current state contains all the information needed to predict
future states. Therefore, using fixed convolutional kernels to
capture features across adjacent time steps, as exemplified
by DC, has performed well in such tasks. However, in
scenarios where the Markov property is non-standard, the
current state depends not only on the previous state but also
on multiple past states or actions. In such cases, focusing on
the long-term dependencies in the data is crucial for ensuring
the model’s performance. We visualized the attention scores
of the model’s first layer on two tasks: Gym HalfCheetah
(with standard Markov properties) and Maze2D (with non-
standard Markov properties) to show the degree of token
associations across sequences.

As shown in Figure 2, compared to the halfcheetah-medium,

the attention matrices obtained from the maze2d-umaze
dataset exhibited strong correlations between tokens that
are far apart. This observation aligns with our intuition that,
in non-standard Markov tasks, the relationships between
tokens are not strictly local. Additionally, we perform a
visualization analysis on datasets of varying quality from
the same task and discover that the relationships between
tokens in lower-quality data sequences are more chaotic and
unevenly distributed. Therefore, a feasible concatenation
mechanism could help the model capture compelling local
or long-term features from suboptimal data.

Our proposed Decision Mixer aims to use a dynamic token
selection mechanism to concatenate high-quality sequences
from suboptimal trajectory sequences. The sequence’s qual-
ity and length that enter the attention layer reflect a balance
between local and long-term features, and the model can
decide how to select and concatenate tokens based on the
task’s specific characteristics. In cases where the sequence
length is extremely short (only two adjacent time-step to-
kens are selected and concatenated), DM degenerates into a
DC-like architecture that utilizes the attention mechanism
to capture more extreme local features than DC. When the
sequence length matches the original context length, DM
degenerates into DT.
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Figure 2. Visualization of attention scores in the first layer of the
model for Maze2D and HalfCheetah tasks. We visualize the atten-
tion scores for the top 30 tokens, with color depth representing the
correlation between tokens (return-to-go, state, and action). These
scores serve as alignment measures, indicating the strength of as-
sociation between each target token and source token. The Query
index i (or Key index j) is ordered such that i = 1 corresponds to
r̂t−K+1, i = 2 corresponds to state st−K+1, i = 3 corresponds
to action at−K+1, and so on, continuing until the end. Given the
application of causality, the attention matrix is lower-triangular.
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3. Methodology
This section provides a comprehensive description of the
proposed Decision Mixer. We analyze how CSM methods
learn from historical trajectories from the perspective of
reweighting. We integrate our dynamic token selection
mechanism into the mixer layer to reduce computational
burden while ensuring a reasonable trade-off between long-
term dependencies and local features. Considering the short-
sightedness during sampling, we also design an auxiliary
predictor trained in parallel to compensate for this limitation.

3.1. A Reweighting Perspective

We let the et be the set of the history of states, actions and
rewards up to step t along with st. When the trajectory is
evident from the context, we use e to refer to a generic set,
with a as a generic action. The essence of CSM is to learn a
distribution Pβ(a | e), where β is the behavior policy that
generated the data, and Pβ refers to the joint distribution
over states, actions, and rewards induced by β. Here, f(e)
is the conditioning function used during sampling to adjust
the policy. It is often chosen to be constant at the initial state
and decrease with the observed reward along the trajectory.
By factoring this distribution, we can express the optimal
policy πCSM

f for a specific conditioning function f(e) as:

πCSM
f (a | e) = Pβ(a | e, f(e)) = Pβ(a | e)Pβ(f(e) | e, a)

Pβ(f(e) | e)

= Pβ(a | e)Pβ(f(e) | e, a)
Pβ(f(e) | e)

.

(2)

CSM thus can be viewed as reweighting the behavior based
on the distribution of future returns. DT directly uses the
attention mechanism to learn the internal weighting rela-
tionships in the data. However, the absence of explicit
constraints means that suboptimal data can still disrupt the
model’s final decision. Filtering the data before the attention
mechanism could better guide the model’s learning, which
motivates the design of the token selection mechanism.

3.2. Mixer Layer

We draw inspiration from the expert routing mechanism
in the MOE architecture. Given the input X l of length
S = 3K at the current mixer layer l, the router Rl assigns
a weight wl

i = Rl(x
l
i) to each token xl

i in X l. We also
design a hypernetwork Hl, which takes X l as input and
generates a threshold k = Hl(X

l). We use simple MLPs to
construct Rl and Hl, with the detailed architecture shown
in Table B. Rl and Hl enable the model to adaptively de-
sign the threshold based on the data characteristics. This
allows the model to select the top-k tokens for the attention
mechanism based on the weights output by the router while
skipping the unselected tokens in the current layer. The

selected tokens are arranged in the original order to form
X̂ l, which is then passed through the first subblock, con-
sisting of layer normalization LNl

1 and an attention layer
Attl, yielding Zl

1. Zl
1 is subsequently passed through the

second subblock, comprising layer normalization LNl
2 and

a feed-forward network FFNl, to produce Zl
2 in Equation 3.

Zl
1 = Attl(LNl

1(X̂
l))+X̂ l, Zl

2 = FFNl(LNl
2(Z

l
1)). (3)

In the specific implementation, we multiply Zl
2 by the router

weights and perform a generalized residual connection with
the unselected tokens from X l, preserving the original order.
By placing the router weights along the gradient path, we
enable the router to receive feedback from gradient descent
during training, which allows for updates. The token se-
lection mechanism allows the DM to use the subsequent
attention module to further mine the relationships between
relatively important tokens, avoiding interference from irrel-
evant or suboptimal tokens. Meanwhile, the re-connection
of Zl

2 with the unselected tokens in X l ensures that usable
information continues to be passed to the next layer, fur-
ther guaranteeing the retention of important context. We
integrate the dynamic selection mechanism, attention mech-
anism, and forward network into a single layer, referred
to as the mixer layer, and show the data flow through it in
Equation 4.

X l+1
i = (wl

iZ
l
2,i)·I(wl

i ∈ top-k)+X l
i ·I(wl

i /∈ top-k), (4)

where Zl
2,i represents the token at the i-th position in Zl

2.

From a computational burden perspective, if we reduce the
length of the token sequence entering the attention layer
to half of the original, the FLOP consumption during the
key and value matrix multiplication process is reduced to
25% of the original. Similar calculations can determine the
FLOP savings for the MLP.

3.3. Sampling Process

The token selection mechanism significantly reduces com-
putational costs while enabling dynamic feature balancing.
However, the generation of threshold k depends on the in-
formation from the entire sequence, meaning that both past
and future tokens influence the selection of a specific token.
While this is straightforward during training, the autore-
gressive sampling, which generates tokens step by step, ob-
structs the implementation of the token selection mechanism.
To overcome this issue, we introduce an auxiliary predic-
tor θlaux that receives a single token as input and directly
predicts whether the current token will be selected for the
attention mechanism layer at the token level. Specifically,
the auxiliary predictor outputs logits ŷi ∈ R2, represent-
ing the probabilities for token selection and non-selection,
respectively. The auxiliary predictor is trained separately
and in parallel with the primary model training, using the
token selection results from each round in real time. The
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Figure 3. The architecture of Decision Mixer. During the training phase, the input sequence Xl = (Xl
i , . . . , X

l
j) undergoes token

selection based on the router Rl and the hypernetwork Hl for a specific mixer layer l. During sampling, DM selects tokens from the Xl

based on the auxiliary predictor θlaux. Each mixer layer independently trains its own Rl, Hl, and θlaux.

loss function for training is cross-entropy loss, applied to
the predicted logits and the corresponding binary labels:

Laux = − 1

S

S∑
i=1

[zi log (σ (ŷi)) + (1− zi) log (1− σ (ŷi))] ,

(5)

where σ(ŷi) is the sigmoid function that converts the logits
ŷi into probabilities. zi is the binary label for each token
in the mask, where zi = 1 indicates the selected token and
zi = 0 indicates the unselected token. We concisely outline
the pipeline of DM in Alg 1, 2.

3.4. Model Architecture

We adopt the same data format as DT in Equation 1 to maxi-
mize the algorithm’s feasibility and highlight the advantages
of our designed components. The input data τt is processed
by a structure formed by alternating mixer layers and stan-
dard transformer layers, with the final layer incorporating
a state-based prediction head to generate feasible actions.
The purpose of alternating layers is to ensure model sta-
bility. Our ablation experiments observe that using only
mixer layers as the main structure led to significant fluc-
tuations during training despite achieving similar overall
performance. A potential explanation is that the dynamic to-
ken selection mechanism prunes the entire sequence, which
may cause parameter distribution to fluctuate. Intermittently
deploying attention mechanisms over the entire sequence
helps the model retain comprehensive input information and
accelerates convergence. The loss function LDM is shown
in Equation 6.

LDM = Eτ∼D[
1

K

t∑
i=t−K+1

(at − (πθ(τt))i)
2]. (6)

4. Experiment
In this section, we extensively evaluate our proposed De-
cision Mixer using the widely recognized D4RL bench-
mark (Fu et al., 2020). Our main objective is to assess the
effectiveness of DM across various domains. Additionally,
we execute empirical ablation studies to dissect and under-
stand the individual contributions of the core components
of our method.

Datasets. We consider five different domains of tasks in
the widely used D4RL benchmark: Gym, Adroit, Kitchen,
AntMaze and Maze2D. A detailed introduction to these five
environments is presented in the appendix D.

Baselines. We compare our approach with representative
offline RL algorithms from value-based and CSM meth-
ods. Each algorithm excels in specific domains but per-
forms sub-optimal in others. For value-based methods,
including BEAR (Kumar et al., 2019), BCQ (Fujimoto
et al., 2019), CQL (Kumar et al., 2020), IQL (Kostrikov
et al., 2022), TD3+BC (Fujimoto & Gu, 2021), MoRel (Ki-
dambi et al., 2020), O-RL (Brandfonbrener et al., 2021)
and COMBO (Yu et al., 2021). For CSM methods, in-
cluding DT, DC, DD (Ajay et al., 2023), EDAC (An et al.,
2021), D-QL (Wang et al., 2023), MPPI (Pravitra et al.,
2020), StAR (Shang et al., 2022), GDT (Hu et al., 2023),
LSDT (Wang et al., 2025) and CGDT (Wang et al., 2024).
The performance scores for these baseline methods are
sourced from the best results published in their respective
papers or from our runs, ensuring a fair comparison.

Implementation details. All experiments are carried out
on a server with 8 NVIDIA 3090 GPUs, each with 24GB of
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Table 1. The performance of DM and SOTA baselines on D4RL Gym, Adroit, Kitchen, Maze2D, and AntMaze tasks. Results for DM
correspond to the mean and standard errors of normalized scores over 30 random rollouts (3 independently trained models and 10
trajectories per model) for all tasks, which generally exhibit low variance in performance. Our method outperforms all prior methods by a
clear margin in almost all domains, including the conventional value-based and CSM methods.

Dataset Value-Based Methods Conditional Sequence Modeling Methods

Gym Tasks BEAR BCQ CQL IQL TD3+BC MoRel DT StAR GDT CGDT LSDT DC DM

halfcheetah-medium-replay-v2 38.6 34.8 37.5 44.1 44.6 40.2 36.6 36.8 40.5 40.4 42.9 41.3 39.6±0.2

hopper-medium-replay-v2 33.7 31.1 95.0 92.1 60.9 93.6 82.7 29.2 85.3 93.4 93.9 94.2 95.4±0.4

walker2d-medium-replay-v2 19.2 13.7 77.2 73.7 81.8 49.8 79.4 39.8 77.5 78.1 74.7 76.6 85.5±2.1

halfcheetah-medium-v2 41.7 41.5 44.0 47.4 48.3 42.1 42.6 42.9 42.9 43.0 43.6 43.0 43.5±0.7

hopper-medium-v2 52.1 65.1 58.5 63.8 59.3 95.4 67.6 59.5 77.1 96.9 87.2 92.5 98.1±3.6

walker2d-medium-v2 59.1 52.0 72.5 79.9 83.7 77.8 74.0 73.8 76.5 79.1 81.0 79.2 83.8±0.8

halfcheetah-medium-expert-v2 53.4 69.6 91.6 86.7 90.7 53.3 86.8 93.7 93.2 93.6 93.2 93.0 93.9±0.1

hopper-medium-expert-v2 96.3 109.1 105.4 91.5 98.0 108.7 107.6 111.1 111.1 107.6 111.7 110.4 111.8±0.5

walker2d-medium-expert-v2 40.1 67.3 108.8 109.6 110.1 95.6 108.1 109.0 107.7 109.3 109.8 109.6 112.7±1.3

Average 48.2 53.8 77.6 76.5 75.3 72.9 76.2 66.2 79.1 82.4 82.0 82.2 84.7

Adroit Tasks BEAR BCQ CQL IQL O-RL MoRel EDAC BC DT D-QL StAR GDT DM

pen-human-v1 -1.0 66.9 37.5 71.5 90.7 -3.2 52.1 63.9 79.5 72.8 77.9 92.5 125.4±5.1

hammer-human-v1 2.7 0.9 4.4 1.4 0.2 2.3 0.8 1.2 3.7 0.2 3.7 5.5 6.1±0.2

door-human-v1 2.2 -0.05 9.9 4.3 -0.3 2.3 10.7 2.0 14.8 0.0 1.5 20.6 24.0±1.8

pen-cloned-v1 -0.2 50.9 39.2 37.3 60.0 -0.2 68.2 37.0 75.8 57.3 33.1 86.2 117.0±3.1

hammer-cloned-v1 2.3 0.4 2.1 2.1 2.0 2.3 0.3 0.6 3.0 3.1 0.3 8.9 9.5±2.8

door-cloned-v1 2.3 0.01 0.4 1.6 -0.1 2.3 9.6 0.0 16.3 0.0 0.0 19.8 23.7±2.7

Average 1.0 19.8 15.6 19.7 25.5 1.0 23.6 17.5 32.2 22.2 19.4 38.9 51.0

Kitchen Tasks BEAR BCQ CQL IQL O-RL TD3+BC BC DT DD StAR GDT DC DM

kitchen-complete-v0 0.0 8.1 43.8 62.5 2.0 0.0 65.0 50.8 65.0 40.8 43.8 40.9 65.3±0.3

kitchen-partial-v0 13.1 18.9 49.8 46.3 35.5 0.0 33.8 57.9 57.0 12.3 73.3 66.8 75.0±0.2

Average 6.6 13.5 46.8 54.4 18.8 0.0 51.5 54.4 61.0 26.6 58.6 58.7 70.2

Maze2D Tasks BEAR BCQ CQL IQL TD3+BC COMBO BC MPPI DT QDT GDT DC DM

maze2d-umaze-v1 65.7 49.1 86.7 42.1 14.8 76.4 85.7 33.2 31.0 57.3 50.4 20.1 86.9±1.9

maze2d-medium-v1 25.0 17.1 41.8 34.9 62.1 68.5 38.3 10.2 8.2 13.3 7.8 38.2 95.2±7.7

Average 45.35 33.1 64.3 38.5 38.5 72.5 63.6 21.7 19.6 35.3 29.1 57.6 91.1

AntMaze Tasks BEAR BCQ CQL IQL TD3+BC O-RL BC DT RvS StAR GDT DC DM

antmaze-umaze-v0 73.0 78.9 74.0 87.1 78.6 64.3 54.6 59.2 65.4 51.3 76.0 85.0 100.0±0.5

antmaze-umaze-diverse-v0 61.0 55.0 84.0 64.4 71.4 60.7 45.6 66.2 60.9 45.6 69.0 78.5 100.0±0.5

antmaze-medium-diverse-v0 8.0 0.0 53.7 70.0 0.0 0.0 0.0 7.5 67.3 0.0 0.0 0.0 60.0±1.3

Average 47.3 44.6 70.6 73.8 50.0 41.7 33.4 44.3 75.0 32.3 48.3 54.5 86.7

memory. The experimental hyperparameter configurations
of DM are shown in Appendix A.

4.1. Main Results

We compare our DM with the baselines on five domains
of tasks and report the results in Table 1. To ensure fair
comparisons, we normalize the scores according to the pro-
tocol established in D4RL (Fu et al., 2020), where a score of
100 corresponds to an expert policy. We analyze the perfor-
mance of DM on standard Markov tasks and non-standard
Markov tasks separately.

Standard Markov Environment. We evaluate DM in Gym
and Adroit environments with dense rewards. Our DM con-
sistently achieves or approaches sota performance in all

datasets, demonstrating the effectiveness of our architecture.
Although most baseline models demonstrate proficiency in
the Gym environment, DM still exhibits outstanding perfor-
mance on almost all tasks. DM’s slightly lower performance
compared to TD3+BC on certain datasets is primarily due
to CSM’s inability to adapt well to datasets with low quality
or insufficient coverage of the state space in scenarios where
the value function is completely absent. On the other hand,
the Adroit environment is characterized by a limited scope
of human demonstrations, which leads to extrapolation er-
rors that particularly challenge offline RL. It is precisely
for this reason that DM’s excellent performance across all
Adroit tasks can be attributed to its high expressiveness and
more effective token selection mechanism. Both DC and
DM demonstrate that capturing local information can sig-
nificantly enhance DT’s performance in standard Markov
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Table 2. Ablation study on model components. For simplicity, we have removed the version numbers after each task, which does not
affect understanding. All experiments are repeated three times, and the average value is taken.

Dynamic selection Auxiliary predictor hopper-medium walker2d-medium-expert pen-cloned maze2d-medium antmaze-umaze
67.6 108.1 75.8 8.2 32.1

✓ 33.6 70.9 75.3 29.9 59.6
✓ 93.7 109.5 105.4 85.0 88.9
✓ ✓ 98.1 112.7 117.0 95.2 100.0

environments.

Non-standard Markov Environment. We use the Kitchen,
Maze2d, and more complex AntMaze environments to eval-
uate DM’s stitching and long-term credit assignment ca-
pabilities on non-standard Markov datasets. For Kitchen
tasks requiring generalization to unseen states and long-
term value optimization, the DM outperforms the CSM
and Value-Based Methods. These results demonstrate that
DM can learn useful data features from offline trajectories,
enhancing generalization and stability. For the Maze2d envi-
ronment, which serves as a benchmark to evaluate the capac-
ity of offline RL algorithms to stitch segments of disparate
trajectories effectively, the performance of DM significantly
outperforms other methods, demonstrating the advantage
of the token selection mechanism in stitching high-quality
trajectories. The AntMaze environment is characterized
by sparse rewards and many suboptimal trajectories, which
presents an even more significant challenge. In this context,
DC performs poorly due to its neglect of long-term infor-
mation and an overreliance on data quality based on prior
assumptions. The performance results of DM demonstrate
the effectiveness and generalizability of the architecture we
designed, particularly in antmaze-umaze-diverse tasks.

4.2. Ablation Study

Role of Different Components. As shown in Table 2, we
observe a significant decline in the model’s performance
when we do not use the auxiliary predictor. The main reason
is that the autoregressive testing process leads to insufficient
predictive scope for the router, causing biases that are par-
ticularly noticeable in the early stages of testing when the
number of visible tokens is limited. Additionally, increasing
the sequence length of the training data is essential for en-
abling the CSM method to exhibit performance comparable
to that of language or vision foundation models in RL tasks.
The auxiliary predictor compensates for the performance
degradation caused by the shorter data length available dur-
ing sampling compared to the training data length. In the
second row, we remove the dynamic token selection mecha-
nism and fix the number of tokens model can select, setting
it to 50% of the training trajectory length. This change al-
lows the auxiliary predictor to function normally. However,
we observe a significant performance drop, which aligns

with our intuition: the fixed number of token selections pre-
vents the model from adapting well to the varying nature of
tasks and the complex distribution of sample quality.

(a) hopper-medium

(b) walker2d-medium-expert

(c) maze2d-medium

(d) antmaze-umaze

Selected Unselected

Figure 4. The visualization results of the token selection mecha-
nism. The mixer and standard transformer layers are arranged
alternately, from bottom to top, corresponding to the first to the
sixth layer. The input sequence length is S=60, with tokens marked
in blue representing the selected tokens and those marked in beige
representing the unselected tokens.

Visualization of the token selection mechanism. To eval-
uate the performance of the token selection mechanism
across tasks with different properties, we visualized the to-
ken selection at each layer for four tasks: hopper-medium
and walker-medium-expert (with standard Markov proper-
ties), and maze2d-medium and antmaze-umaze (with non-
standard Markov properties). The visualization results in
Figure 4 reveal that the selected tokens exhibit a certain
degree of positional proximity in standard Markov tasks. In
contrast, the positional proximity of selected tokens is lower
in non-standard Markov tasks, which aligns with our moti-
vation, as the spatial relationships between relevant tokens
follow a discrete distribution in these tasks. Interestingly,
selected tokens tend to be picked in multiple mixer layers
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Figure 5. Visualization of loss curves for DT, DC, DM, and DM with all mixer layers (DM-ALL) across four tasks.

across all tasks, while some tokens tend to bypass all layers.
We hypothesize that this phenomenon is closely related to
the varying information quality within the sequence. We
present the average selected token numbers for each mixer
layer across all tasks in Table 10 and Figure 6. The mixer
layer exhibits a disparity in the number of tokens selected
for data of different qualities within the same task, which
validates the potential of our method for high-quality trajec-
tory selection.

Computational complexity. Table 3 shows the memory
usage, parameter size, and FLOPs for several methods in the
hopper-medium task. The FLOPs of DM are nearly halved
compared to the original DT. Although DM has more pa-
rameters than DC, its unique token selection mechanism
results in fewer FLOPs during training. Furthermore, due
to the better alignment of transformers with the scaling law,
DM outperforms the convolution-based DC regarding scala-
bility and generalization. When we replace all transformer
layers with mixer layers (DM-ALL), memory usage and
FLOPs are further reduced. DM adopts a more suitable
approach for offline RL data characteristics, achieving im-
proved performance while reducing computational resource
requirements. Figure 5 presents the training loss curves
for several methods. We observe that DM-ALL exhibits
significant fluctuations during training, which inspires us to
choose alternating layers as the core architecture for DM to
stabilize the training process.

Table 3. Ablation on the computational complexity.

Complexity DT DC DM-ALL DM ∆%

Memory ↓ 7128M 4830 M 3004M 4474M ↓ 37.2%
Params ↑ 43.3M 28.5M 43.6M 43.5M ↑ 0.5%
Flops ↓ 752.5 G 436.9G 330.1G 398.5 G ↓ 47.0%

Ability to unseen tasks. The model’s performance on un-
seen tasks is a key criterion for evaluating its generalization
ability and potential scalability. Inspired by Prompt-DT (Xu
et al., 2022), we conduct experiments in three meta-learning
environments: Cheetah-vel, Antdir, and MetaWorld. After
training on the training tasks, we test the model on tasks
that do not overlap with the training tasks. A description

of the environments and the training/testing task division is
provided in Appendix D. The results in Table 4 affirm DM’s
comprehensive enhancements across test tasks. Further-
more, the transformer architecture ensures that DM exhibits
more substantial generalization capabilities as its parameter
scale increases. We also conducted an ablation study on
the context length K used in DM (Table 11), which shows
performance improvements with an appropriate increase
in context length. However, increasing K beyond a cer-
tain threshold, such as K = 120, may lead to performance
degradation due to the prevalence of suboptimal trajectories.

Table 4. Ablation on the zero-shot generalization ability. We de-
note the model size as having x layers, y attention heads, and an
embedding dimension of z, represented as (x, y, z) in the table.

Model Size Game BC DT DC DM

(3,1,256)

Cheetah-vel -147.41 -138.05 -154.20 -135.62
Ant-dir 171.91 169.64 173.32 166.91

MetaWorld 10 350.36 352.67 339.09 373.53
MetaWorld 50 275.93 280.57 257.91 305.28

(6,4,256)

Cheetah-vel -161.84 -148.24 -146.67 -139.18
Ant-dir 168.33 170.66 142.09 167.73

MetaWorld 10 337.40 343.16 255.21 345.32
MetaWorld 50 297.14 279.70 290.73 319.36

(12,12,768)

Cheetah-vel -140.59 -137.54 -142.30 -134.67
Ant-dir 165.92 169.50 169.73 177.24

MetaWorld 10 327.48 330.25 257.86 365.04
MetaWorld 50 291.07 313.82 308.80 347.53

Combination with Other Methods. DM addresses the in-
herent trade-off problem in CSM methods, enhancing DT’s
performance from a foundational perspective. It is worth
noting that DM is orthogonal to most previous works rather
than conflicting with them and can improve the performance
of past methods in a plug-and-play manner. We select two
methods to demonstrate this. QT (Hu et al., 2024a) intro-
duces Q-value regularization to optimize action selection
on top of DT and excels in handling long time horizons
and sparse reward tasks. We refer to the QT enhanced with
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DM as QDM. ODT (Zheng et al., 2022) combines offline
pretraining with online fine-tuning by introducing entropy
regularization and hindsight experience replay mechanisms,
optimizing the policy to adapt to tasks. We refer to the ODT
enhanced with DM as ODM. As shown in Table 5, the meth-
ods enhanced with DM outperform the original methods
on nearly all tasks, indicating that the DM architecture can
serve as an efficient and feasible auxiliary mechanism to
further improve model performance without compromising
the advantages of the original model.

Table 5. Ablation on the model portability. DT architecture in QT
and ODT is replaced with DM architecture to examine whether
the DM method can enhance other methods in a non-conflicting
manner. For simplicity, we have removed the version numbers
after each task, which does not affect understanding.

Datasets DT DM QT QDM ODT ODM
halfcheetah-medium-replay 36.6 39.1 48.9 49.3 40.4 41.1

hopper-medium-replay 82.7 95.4 102.0 104.5 88.9 95.9
walker2d-medium-replay 79.4 85.5 98.5 90.6 76.9 80.3

halfcheetah-medium 42.6 43.5 51.4 52.9 42.7 43.8
hopper-medium 67.6 98.1 96.9 99.4 97.5 98.3

walker2d-medium 74.0 83.8 88.8 90.8 76.8 81.0
halfcheetah-medium-expert 86.8 93.9 96.1 97.2 87.1 90.7

hopper-medium-expert 107.6 111.8 113.4 113.5 111.0 112.3
walker2d-medium-expert 108.1 112.7 112.6 114.2 109.6 111.0

Average 74.6 84.7 91.4 94.4 82.7 84.7

Training–inference strategy comparison. We designed
three schemes: (1) The hypernetwork uses a single token as
input for training and inference without needing an auxiliary
predictor. (2) The hypernetwork uses a causal sequence as
input for training and inference without needing an auxiliary
predictor. (3) The hypernetwork uses the entire sequence as
input for training, providing data for the binary classifica-
tion training of the auxiliary predictor, which is then used
for inference (adopted by DM). As shown in Table 6, (3)

Table 6. Ablation on training–inference strategies. We compare
three schemes to investigate the impact of consistent or hierarchical
training–inference designs on task performance.

Datasets (1) (2) (3)
halfcheetah-medium 27.5 40.9 43.5

hopper-medium 82.7 94.7 98.1

walker2d-medium 55.2 83.4 83.8

maze2d-umaze 59.1 83.2 86.9

antmaze-umaze 80.3 75.0 100.0

Average Score 61.0 75.4 82.5

demonstrated the best performance and stability across all
tasks. Although (1) and (2) maintained consistency between
training and inference, they struggled with convergence due
to insufficient utilization of global information from the
training data. In contrast, (3) adopts a hierarchical task
decomposition strategy for training and inference. The aux-

iliary predictor is updated iteratively using predictions from
the hypernetwork and router, effectively mitigating potential
distribution shifts and ensuring stable performance.

5. Conclusion
In this study, we propose Decision Mixer (DM), a novel
approach that addresses the challenge of modelling both
long-term dependencies and local Markov properties in
offline RL tasks. DM optimizes attention allocation and
significantly reduces computational complexity by dynami-
cally selecting and concatenating tokens at each layer of the
transformer architecture. Extensive experiments on standard
RL benchmarks demonstrate that DM outperforms existing
methods and highlights its ability to effectively balance fea-
ture conflicts, providing a viable path forward for scaling
RL models with reduced computational overhead.

Limitation. Further enhancing DM’s robustness, particu-
larly in incomplete or noisy data scenarios, could improve
its adaptability to diverse situations.
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Appendix
The appendix is organized into several sections, each providing additional insights and details related to different aspects of
the main work.

A Hyperparameters Configuration 13

B Network Architecture Details 13

C Algorithm Pseudocode 14

D Environment Details 14

D.1 Main Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

D.2 Meta-RL Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

E Supplementary Experiment 16

A. Hyperparameters Configuration

Table 7. Common hyperparameters configuration of Decision Mixer.

Hyperparameters Value

K (length of context) 20
training batch size 512
learning rate 1e-3
weight dacay 1e-4
pct traj 1
number of layers 6
number of mixer layers 3
number of transformer layers 3
number of attention heads 4
embedding dimension 256
activation GeLU
dropout 0.1
num workers 64

B. Network Architecture Details

Table 8. Network architecture details.

Network Layer Input Output

R Linear embed dim 1
H Linear context length × embed dim 512

LeakyReLU – –
Linear 512 1

θaux Linear embed dim embed dim//2
SiLU – –
Linear embed dim//2 2
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C. Algorithm Pseudocode

Algorithm 1 Training Process of Decision Mixer

Input: Training data D
Initialize: Model πθ, Router Rl, Hypernetwork Hl, Auxiliary predictor θlaux
for each epoch do

for each batch (Xb, yb) in training data do
Initialize X l = Xb (input sequence)
for each layer l = 1 to L do

Obtain the router weights: wl
i = Rl(x

l
i)

Compute the dynamic threshold:k = Hl(X
l)

Perform token selection:
X̂ l ← Select tokens based on wl

i and k
Apply attention mechanism and Feed-Forward Network by Equation 3
Update token sequence by Equation 4

end for
Train the auxiliary predictor independently:

Compute the Laux by Equation 5
Update θlaux using Laux (independent training, no gradient propagation to πθ)

Compute the LDM by Equation 6
Backpropagation to update πθ

end for
end for

Algorithm 2 Sampling Process of Decision Mixer

1: Initialize: Model πθ, Router Rl, Auxiliary predictor θlaux
2: for each test sample X do
3: Initialize X l = X (input sequence)
4: for each layer l = 1 to L do
5: Obtain the router weights: wl

i = Rl(x
l
i)

6: Use the auxiliary predictor θlaux to decide token selection:
7: Îi ← Auxiliary predictor output (whether token xl

i is selected)
8: Apply token selection based on the predicted Îi
9: Apply attention mechanism and Feed-Forward Network by Equation 3

10: Update token sequence by Equation 4
11: end for
12: Compute predicted action â using XL

13: end for

D. Environment Details
D.1. Main Environment

• Gym tasks: The Gym-MuJoCo tasks (Hopper, HalfCheetah, Walker2d) are popular benchmarks used in offline deep
RL. They are relatively straightforward and characterized by datasets with a significant proportion of near-optimal
trajectories and smooth reward functions.

• Adroit tasks: The Adroit domain involves controlling a 24-DoF simulated Shadow Hand robot to perform tasks such
as hammering a nail, opening a door, twirling a pen, or picking up and moving a ball. This domain is chosen to study
the impact of narrow expert data distributions and human demonstrations on sparse-reward, high-dimensional robotic
manipulation tasks. Since these tasks are primarily derived from human behavior, they exhibit a limited state-action
space, requiring robust policy regularization to ensure consistent agent performance.
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• Kitchen tasks: The Kitchen domain involves controlling a 9-DoF Franka robot in a kitchen environment with everyday
household items such as a microwave, kettle, overhead light, cabinets, and an oven. The goal is to interact with these
items to achieve a desired state configuration. This domain benchmarks the impact of multitasking behaviour in a
realistic, non-navigation environment, where the ”stitching” challenge arises from complex paths through the state
space. Consequently, algorithms must generalize to unseen states rather than rely solely on training trajectories. The
environment requires the agent to complete multiple sequential sub-tasks, further emphasizing the need for robust
generalization.

• Maze2D tasks: The Maze2D domain is a navigation task in which a 2D agent must reach a fixed goal location. It tests
offline RL algorithms’ ability to stitch together previously collected sub-trajectories to find the shortest path to the goal.
Three maze layouts are provided: the ”maze,” ”medium,” and ”large ” mazes. These tasks evaluate the algorithm’s
capability to effectively combine sub-trajectories and identify the shortest path to the set goal.

• AntMaze tasks: The AntMaze domain extends the Maze2D task by replacing the 2D ball with a more complex 8-DoF
“Ant” quadruped robot, presenting a more demanding navigation challenge. This domain is introduced to test the
stitching challenge with a morphologically complex robot, better representing real-world robotic navigation tasks. The
task uses a sparse 0-1 reward, activated upon reaching the goal.

D.2. Meta-RL Environment

• Cheetah-vel: There are 40 tasks in Cheetah-vel with different goal velocities. The target velocities are uniformly
sampled from the interval [0,3]. The agent is penalized with l2 errors to the target velocity. We hold out 5 tasks to
construct the testing set and train with the remaining 35 tasks.

• Ant-dir: There are 50 tasks in Ant-dir with different goal directions uniformly sampled in 2D space. The 8-joints ant is
rewarded with high velocity along the goal direction. We sample 5 tasks for testing and leave the rest for training.

• Meta-World ML10: In Meta-World ML10, the task is to control a Sawyer robot’s end-effector to reach a target
position in 3D space. The agent directly controls the XYZ location of the end-effector. Each task has a different goal
position. We train in 10 tasks and test in unseen 3 tasks.

• Meta-World ML45: In Meta-World ML45, each task has a different goal position. We train in 45 tasks and test in
unseen 5 tasks.

Table 9. Training and testing task indexes when testing the generalization ability in unseen tasks.

Cheetah-vel

Training set of size 35 [0− 1, 3− 6, 8− 14, 16− 22, 24− 25, 27− 39]

Testing set of size 5 [2, 7, 15, 23, 26]

Ant-dir

Training set of size 45 [0− 5, 7− 16, 18− 22, 24− 29, 31− 40, 42− 49]

Testing set of size 5 [6, 17, 23, 30, 41]

Meta-World ML10

Training set of size 10 [0, 9, 19, 29, 33, 36, 39, 40, 48, 49]

Testing set of size 3 [11, 24, 41]

Meta-World ML45

Training set of size 45 [0− 10, 12− 16, 18− 24, 26− 35, 37− 40, 42− 49]

Testing set of size 5 [11, 17, 25, 36, 41]

15



Decision Mixer: Integrating Long-term and Local Dependencies via Dynamic Token Selection for Decision-Making

E. Supplementary Experiment
Another perspective on the token selection mechanism. It is worth noting that token selection can also be viewed from the
stitching perspective. Existing methods (Wu et al., 2024; Hu et al., 2024a) demonstrate effectiveness in stitching capabilities
but often require additional optimization, such as complex representation learning objectives and statistical measures,
which complicate the training process and increase the computational burden. In contrast, DM employs an intuitive and
straightforward token selection mechanism to reorganize the trajectories, capturing specific features that lead to performance
improvements. Significant inconsistencies in sequence lengths are observed in standard and non-standard Markov task
datasets of the same quality collected under the same policy. This further demonstrates that DM focuses on the internal
features of the data rather than merely the quality of the trajectories themselves.

Table 10. The average number of tokens selected on the three mixer layers by the token selection mechanism when the model size is (6, 4,
256). For simplicity, we have removed the version numbers after each task, which does not affect understanding.

Dataset 1th Mixer Layer 2nd Mixer Layer 3rd Mixer Layer Average

Gym Tasks

halfcheetah-medium-replay 15.07 31.99 37.29 28.12

hopper-medium-replay 40.59 33.60 15.76 29.98

walker2d-medium-replay 37.26 16.10 28.25 27.20

halfcheetah-medium 25.15 34.65 3.47 21.09

hopper-medium 36.54 38.62 6.29 27.15

walker2d-medium 30.48 44.51 5.04 26.68

halfcheetah-medium-expert 37.95 35.36 31.70 34.67

hopper-medium-expert 18.41 10.60 41.66 23.56

walker2d-medium-expert 33.81 23.64 45.49 34.31

Adroit Tasks

pen-human 17.17 34.42 2.83 18.14

hammer-human 40.97 27.43 10.93 26.44

door-human 13.32 44.12 45.03 34.16

pen-cloned 22.04 10.69 9.07 13.93

hammer-cloned 21.18 13.27 26.81 20.42

door-cloned 9.38 53.63 3.88 22.30

Kitchen Tasks
kitchen-complete 33.89 42.88 7.15 27.97

kitchen-partial 29.03 28.55 32.34 29.97

Maze2D Tasks
maze2d-umaze 19.74 19.98 22.67 20.80

maze2d-medium 21.08 32.77 41.23 31.69

AntMaze Tasks
antmaze-umaze 21.36 12.87 30.37 21.53

antmaze-umaze-diverse 21.70 20.27 32.00 24.66

antmaze-medium-diverse 10.56 40.59 57.40 36.18

Impact of context length K As shown in Table 11, we conducted experiments in the Gym environment with DM context
lengths of 8, 20, 60, and 120, keeping the other parameters consistent with those in Table A. We observed that DM
performance improved to varying degrees with increasing context length, indicating that DM, like DT, exhibits excellent
extendability. However, when K was set to 120, the model’s performance decreased compared to K=60. This highlights that
an indiscriminate increase in context length can negatively impact model performance. Therefore, it is important to carefully
analyze the relationship between data scale and data quality and design appropriate hyperparameters and architecture sizes
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Figure 6. Average tokens selected across three mixer layers for token selection mechanism.

Table 11. Experimental results of DM with different context lengths (K) in Gym tasks.

Datasets DT(20) DM (8) DM (20) DM (60) DM(120)
halfcheetah-medium-replay 36.6 36.9 39.6 39.2 39.5

hopper-medium-replay 82.7 95.6 95.4 94.5 96.6

walker2d-medium-replay 79.4 82.4 85.5 87.4 82.9

halfcheetah-medium 42.6 44.2 43.5 43.8 44.0

hopper-medium 67.6 96.0 98.1 99.1 99.7

walker2d-medium 74.0 85.1 83.8 84.1 85.5

halfcheetah-medium-expert 86.8 91.1 93.9 92.4 93.6

hopper-medium-expert 107.6 112.2 111.8 112.4 113.2

walker2d-medium-expert 108.1 114.0 112.7 114.6 110.6

Average 76.2 84.2 84.7 85.3 85.1

to ensure the token selection mechanism can fully function.
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(a) hopper-medium-replay (b) halfcheetah-medium-replay

(c) walker2d-medium-replay (d) halfcheetah-medium

(e) walker2d-medium (f) hopper-medium-expert

(g) halfcheetah-medium-expert (h) pen-human

(i) hammer-human (j) door-human

(k) pen-cloned (l) hammer-cloned

(m) door-cloned (n) kitchen-complete

(o) kitchen-partial (p) mazed2d-umaze

(q) antmaze-umaze-diverse (r) antmaze-medium-diverse

Selected Unselected

Figure 7. The visualization results of the token selection mechanism. The mixer and standard transformer layers are arranged alternately,
from bottom to top, corresponding to the first to the sixth layer. The input sequence length is 60, with tokens marked in blue indicating
those selected and tokens marked in beige indicating those not selected.
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