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ABSTRACT

Feedback plays a prominent role in biological vision, where perception is mod-
ulated based on agents’ evolving expectations and world model. We introduce
a novel mechanism which modulates perception based on high level categorical
expectations: Mid-Vision Feedback (MVF). MVF associates high level contexts
with linear transformations. When a context is ”expected” its associated linear
transformation is applied over feature vectors in a mid level of a network. The
result is that mid-level network representations are biased towards conformance
with high level expectations, improving overall accuracy and contextual consis-
tency. Additionally, during training mid-level feature vectors are biased through
introduction of a loss term which increases the distance between feature vectors
associated with different contexts. MVF is agnostic as to the source of contextual
expectations, and can serve as a mechanism for top down integration of symbolic
systems with deep vision architectures. We show the superior performance of
MVF to post-hoc filtering for incorporation of contextual knowledge, and show
superior performance of configurations using predicted context (when no context
is known a priori) over configurations with no context awareness. 1

1 INTRODUCTION

In most contemporary computer vision architectures information flows in a single direction: from
low-level of pixels up to high level abstract concepts (e.g., object categories) - such architectures are
termed feed-forward architectures. In general, each successive layer of the network contains more
abstract representations than the previous, and the representational hierarchy mirrors the architec-
tural hierarchy. It is also possible to introduce top-down connections into the network architecture,
introducing high level information into processes involving lower levels of abstraction in a process
of feedback.

Feedback plays a primary role in biological vision; in fact, the majority of neural connections in the
visual cortex are top-down, rather than bottom-up, connections (Markov et al., 2014). These top-
down connections are thought to convey information of higher level expectation, and neurons of the
visual cortex use both higher level expectation as well as lower level visual information in producing
their representations. Expectations in biological systems arise from continuous engagement with the
environment. In Computer Vision, this is reflected in the paradigm of Active Vision (Bajcsy, 1988;
Fermüller & Aloimonos, 1995), where perception is framed as an active problem involving evolving
world models.

The task of producing mid-level visual representations Teo et al. (2015a;b); Xu et al. (2012); Nishi-
gaki et al. (2012) from low level input is under-constrained - many plausible mid-level interpretations
may be consistent with input. To give an intuition for how understanding of context can impact per-
ception of mid-level features consider Figure 1 - characteristics of shrews and kiwi differ, but may
be similar enough to be confused without context. Top-down feedback - from high level context to
mid-level visual features - provides a “map” for mid-level processes, constraining it towards high
level consistency.

1Code will be available at: https://github.com/maynord/Mid-Vision-Feedback
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Figure 1: Here we illustrate images cropped to exclude context. At first glance, due to similarities
in color, texture, and pattern, images from the top row (animate) may appear to be of the same class
as those of the bottom row (inanimate). With an understanding of the difference of context, upon
closer inspection, it is clear that there are meaningful lower level feature differences.

Introduction of contextual knowledge through feedback is superior to post-hoc application of contex-
tual knowledge, e.g. through discarding interpretations (classifications, here) which are not context
consistent. We demonstrate this point empirically.

Interpretations selected after post-hoc filtering for context consistency will still be built upon under-
constrained mid-level features. Furthermore, in contrast to post-hoc filtering, feedback naturally
allows for detection of out-of-context objects, as feedback functions through biasing of visual rep-
resentations rather than filtering. It is valuable for methods to allow for out-of-context detections,
even when biasing against them, as out-of-context objects on occasion appear (e.g., a tree in an office
setting).

Figure 2: Artist illustration of decoupled repre-
sentations, as may be learned by a CNN. For illus-
tration we annotate characteristics with visually
recognizable categories, though in this work we
exploit the tendency towards decoupled represen-
tations at lower levels. Feature vector angle cor-
responds to characteristic type, while feature vec-
tor magnitude corresponds to within characteristic
variation or degree. (Liu et al., 2018) observe that
CNNs produce decoupled representations, and de-
rive a similar illustration over MNIST by setting a
convolution operator’s dimension to 2.

CNNs have a natural tendency towards decou-
pled representations - representations with a
tendency for feature vector angle to correspond
to characteristic type (e.g., ”fuzzy”), and for
feature vector magnitude to correspond to char-
acteristic variation or degree (Liu et al., 2018)
(e.g., ”very fuzzy” / ”not fuzzy”) (See Figure 2
for an illustration). This opens up a couple of
possibilities in terms of directly manipulating
feature representations: 1) We can differenti-
ate between axes with different associations to
high level contexts, 2) we can control magni-
tudes of characteristics through amplifying and
dampening axes associated with those charac-
teristics. That is, w.r.t. point #1, as CNNs
produce representations which are, to a degree,
separated by angle, certain axes will be more
associated with some higher level contexts over
others. Also, w.r.t. point #2, amplifying char-
acteristics associated with a higher level context
increases the likelihood of interpreting input as
conforming to that context; dampening charac-
teristics associated with that context reduces the
likelihood of interpreting input as conforming
to that context.

We present a principled method to feedback
- Mid-Vision Feedback (MVF), illustrated in
Figure 3 - allowing the biasing of mid-level feature representations in networks such as CNNs to-
wards conformance with high level categorical expectations. This approach is comprised of two
components: 1) linear transforms (affine transformations), and 2) orthogonalization bias.
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Affine transformations enable direct control over the feature vectors at the injection level - the level
into which feedback is being inserted. If these vectors have been trained with a bias towards orthog-
onality w.r.t. contexts, then this allows for affine transformations to manipulate features associated
with context presence or absence with less impact on other features.

The orthogonalization bias is introduced to increase the independence between contexts, so they can
be manipulated with less interference. This bias is introduced at the injection level. This does not
negatively impact the representational power or performance of the base network. This orthogonality
bias is introduced across contexts - e.g., mid-level feature vectors associated with animate contexts
can be biased towards orthogonality w.r.t. mid-level features associated with inanimate contexts.
Due to the resulting greater angular separation between features associated with different contexts,
this biasing allows greater control over facets of mid-level representation which are meaningful to
higher level contexts.

MVF then functions as follows. During runtime a high level context expectation is associated with
input. This expectation is used in biasing mid-level visual features through use of an affine trans-
formation associated with the context of that expectation. This selects for characteristics associated
with this context. These affine transformations are better enabled as a consequence of the disentan-
glement of such characteristics at the injection level, effected through introduction of the orthogo-
nalization bias during training.

Feedback then enables a synergy between high level categorical interpretations and mid-level visual
feature representations, bridging the signal-symbol gap in both directions. This approach to incorpo-
ration of context expectations is controlled. This differs from an approach of connecting the upper
level fully connected layers of a network directly to lower level convolutional levels in a scheme
which includes neither categorical representations nor biasing w.r.t. said categorical representations.

Figure 3: MVF structure. As training involves a contrastive loss (LO) between samples belonging
to different contexts, the base network is shown twice in the figure: on the top when fed with a
horse image, and on the bottom when fed with a desk image. Affine transformations (linear transfor-
mations) are inserted into a conventional CNN architecture. These affine transformations modulate
feature representations at injection levels (network levels over which affine transformations are ap-
plied) in accordance with high level context expectations (E). LO is inserted to put pressure on the
network to help separate feature representations at the injection levels according to context, better
enabling manipulation by affine transformation. During training, samples from different contexts
are fed through the network in pairs. The context expectations determine the selection of appropri-
ate affine transformations.

MVF both employs feedback from categorical knowledge and is agnostic w.r.t. the source of that
categorical knowledge - i.e., it is not a requirement that context expectations be produced from the
same network. As a consequence of this, MVF allows for interfacing with larger symbolic systems
- e.g., models of scenes employing graphical models over scene elements and categories. This top-
down synergy across the signal-symbol gap opens up a wide range of applications.

The rest of this paper is structured as follows: In Section 2 we cover related work; in Section 3 we
detail methods; in Section 4 we cover experiments; and, in Section 5 we conclude.
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2 RELATED WORK

2.1 BIOLOGY, FEEDBACK, AND PARALLELS TO COMPUTER VISION

Previous works ( (Markov et al., 2014), (Gilbert & Sigman, 2007), Kreiman & Serre (2020), (Gilbert
& Li, 2013), and (Paneri & Gregoriou, 2017)) have explored the importance of feedback connec-
tions in biological sensory perception. Further work ((Liao & Poggio, 2016) and (van Bergen &
Kriegeskorte, 2020)) draw connections between feedback in computer vision architectures and the
primate visual cortex. (Tang et al., 2018) show that feedforward CNNs are not robust to occlusion,
unlike in human perception, but that adding recurrence improves occlusion robustness. (Lotter et al.,
2016) introduce PredNet, a network based on predictive coding, and demonstrate benefits on the task
of self-supervised frame prediction.

There is good reason to believe that modeling characteristics of biological vision in computer vision
architectures will benefit computer vision (e.g., (Medathati et al., 2016; Teo et al., 2015c)). For
example, (Linsley et al., 2020b) demonstrate a network with top-down connections which aligns
with human perception of visual illusions, where feedback aids in prioritizing object boundary con-
tours over simple edge contours. (Linsley et al., 2020a) shows how recurrent hierarchical feedback
model can improve segmentation. (Konkle & Alvarez, 2020) introduce instance-prototype con-
trastive learning, and show that self-supervised models can learn representations which are more
brain-like than supervised models. (Li et al., 2021) introduce Contrastive Clustering, showing a
benefit to instance- as well as cluster-level contrastive loss in clustering.

(Long et al., 2018) demonstrate large scale organization of the cortex based on mid-level visual fea-
tures (below the level of object recognition), including those associated with animacy vs. inanimacy.
(Jagadeesh & Gardner, 2022) argue that representations in category selective regions of the visual
cortex encode a basis representation for texture, rather than objecthood representations. (Harrington
& Deza, 2021) demonstrate that constraining networks to be robust to adversarial input produces
network representations more in-line with human visual perception, and argue for the use of texture
summary statistic representations.

2.2 FEEDBACK IN EXISTING COMPUTER VISION METHODS

The conventional approach to feedback in computer vision is the use of recurrent connections.
(Caswell et al., 2016) introduce recurrent connections into shallow CNN architecture for image
classification. (Pinheiro & Collobert, 2014) employ recurrency over convolutions for the purpose
of enabling lateral information flow in the task of segmentation. (Zamir et al., 2016) instantiate
feedback through an RNN architecture which iteratively refines prediction categories from coarse to
specific.

Alternatives to conventional recurrent connections for feedback include (Hu & Ramanan, 2016),
which explore convolutions with hierarchical rectified Gaussians to enable top-down as well as
bottom-up information flow, and apply them to the task of keypoint localization under occlusion.
Additionally, (Yao et al., 2012) apply a graphical model over scene representations, allowing higher
and lower level decisions to influence each other.

3 METHODS

With MVF we seek a feedback mechanism which allows us to directly bias lower level feature repre-
sentations based on categorical higher level context expectations. This involves top-down interaction
across two levels of abstraction: 1) high level contexts ci ∈ C, 2) mid-level features fi ∈ F .

The structure of MVF is illustrated in Figure 3, and the loss and training formulation given in Section
3.1. Context expectations sit at a level of abstraction above the classes of network output, and are
used in selecting affine transformations placed above the output of injection levels. When applied to
injection level output, the affine transformations bias injection level feature representations towards
conformance with the associated context expectation, as illustrated in Figure 4. Injection level output
is made more amenable to manipulation according to context through introduction of a contrastive
loss LO, introducing a bias towards orthogonalization across context.
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Figure 4: Illustration of the effect of affine transformation application over injection level features.
Shown are images from two contexts, and the injection level feature representations for those con-
texts. If the dimension of the feature map of the injection level is HxWxC (Height x Width x Chan-
nel), this vector space is C-dimensional. The feature vectors are color coded according to context.
After feature vector modulation through application of an affine transformation, the characteristics
of the context associated with that affine transformation are more prominent. For example, with
reference to Figure 1, if it is known that the context is one involving animals, rather than food, then
characteristics may be biased towards fur interpretations, rather than kiwi fuzz or pastry surfaces.

Affine transformations are applied over the features of the injection level for the purpose of amplify-
ing or dampening certain characteristics. This process aligns mid-level representations towards con-
formance with higher level context expectation. The affine transformations are made more effective
through the disentanglement of characteristics at the injection level produced by the orthogonalizing
bias.

During test time the CNN runs as a single stream (without the connection across the streams of
multiple samples which the contrastive loss introduces), and a context expectation selects the affine
transformation to apply over the feature vectors of the injection level. This expectation can come
from any source - in Section 4 we compare performance across network produced context expecta-
tions and ground truth context expectations.

3.1 LOSS AND TRAINING

Training is broken into two stages, as detailed in Table 1. In the first, the base network is trained
on its own, and features are biased towards orthogonality at the injection levels. In the second
stage, the learning rate for the network parameters is reduced, and affine transformations are added
to the injection levels according to the context categories of input samples, initialized to identity
matrices with added random noise, and given their own optimizers and learning rate. In the first
stage, gradients backpropogate through the base network only, bypassing the affine transformations;
in the second stage gradients pass through both the base network and the affine transformations. In
each stage we employ batches containing equal proportions of samples belonging to each context.

Training is broken into two stages for a few reasons: 1) this division allows the possibility of using
pretrained networks and training affine transformations in injection levels with no modification to
the base network (λ = 0 and η

N2
= 0), 2) allows fine-tuning of pretrained networks (λ > 0 and/or

η
N2

> 0), 3) we find that starting training of affine transformations after the feature representations
have had a chance to converge helps the affine transformations train - intuitively, the affine transfor-
mations have to adapt to less of a moving target. We allow the network parameters to continue to
train after affine transformations have been introduced - at a reduced learning rate - as we find that
this benefits performance.

To illustrate this process, consider a batch containing a horse and a desk image, horse belongs
to animate while desk belongs to inanimate context. Both the images are fed in the same batch
to the network during training. When training is in Stage 1, each image passes through the base
network, sans affine transformations. The feature representations of the injection levels for horse
and desk are then connected to each other via LO, and biased towards orthogonality with respect
to each other. When training progresses to Stage 2, the LO contrastive connection is removed,
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and affine transformations are inserted according to context expectation. Both network and affine
transformation parameters are then updated according to gradients that pass through both affine
transformations and network parameters.

We find that the angles between mid-level features associated with higher level contexts can be
increased to a much greater degree than they would be without this orthogonalizing loss, as measured
by cosine similarity, without appreciable negative impacts on performance. See Figure 6 in the
Appendix for an illustration of the extent to which this cosine loss is reduced when introducing this
orthogonalizing loss.

Stage 1 Stage 2

Loss L1(Y, P, F ) = λ ∗ LO(F, Y ) + CE(Y, P ) L2(Y, P, F ) = CE(Y, P )

Optimizers ON (η
N1

, L1) ON (η
N2

, L2) +
∑|C|

i=0 OAci
(η

C
, L2)

Table 1: Definition of losses ({L1, L2}), and their use in optimizers across Stages 1 and 2 of training.
Y, P, and F correspond to sample labels, predictions, and injection level features, respectively. C is
the context set. LO(F, Y ) is the orthogonalization bias loss described in Equation 1, λ (intermediate
loss scaling) is a scaling term, and CE(Y, P ) is cross entropy loss. Optimizer ON optimizes over
loss Lj according to learning rate η

Nj
for training stage j. Optimizer OAci

is an optimizer applied
over only the parameters of the affine transformation associated with context ci, for network learning
rates η

N1
, η

N2
, affine transformation learning rate η

C
, and losses L1, L2.

LO(F, Y ) =
1

|SF,Y |
∑

(f1,f2)∈SF,Y

max(0,
f1 · f2

∥f1∥∥f2∥
) (1)

Where

SF,Y = {(f1, f2)|fi ∼ U(Fci), YC(f1) ̸= YC(f2), I(f1) = I(f2)} (2)

Where

Fci = {f |YC(f) = ci} (3)

Where |SF,Y | is a method hyper-parameter, YC(f) is the context of the sample from which feature
vector f was produced, I(f) is the injection level from which f was taken, and U(A) is the uniform
probability distribution over elements of A.

With LO we wish to separate the angles of features associated with different contexts, in order to
better enable manipulation through affine transformations. This can be seen as an exacerbation of
CNN’s natural tendency towards decoupled representations - where feature type has a tendency to
group according to feature vector angle - through a structuring of characteristics’ feature vector
angles according to higher level context.

We do this through a cosine loss ( A·B
∥A∥∥B∥ ) applied to the features of the injection level. As we

wish to control the network representation in terms of context expectation, we apply this loss across
context. Figure 7 in the Appendix illustrates the behavior produced by the orthogonalizing bias.

4 EXPERIMENTS

Here we cover experiments demonstrating the utility of our feedback method. We perform eval-
uations over CIFAR100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and the Caltech
UCSD Birds Data set (Birds) (Wah et al., 2011), all with multiple context splits - these datasets are
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CIFAR ImageNet Birds
1 2 3 4 Full 1 2 3 1 2 3

VGG 87.5 75.5 87.1 88.7 72.64 88.51 86.5 88.2 70.37 71.02 71.80
VGG (PF) 89.1 76.8 88.9 89 74.32 90 88.17 89.1 71.25 76.6 74.7

ViT 81.77 70.8 75.32 81.1 71.1 73.66 76.03 79.92 70.25 69.5 71
ViT (PF) 83.17 76.97 78.0 81.9 74.29 74.0 79.75 80.24 70.3 69.1 71.2

CNN 71.6 57.1 70.34 71.3 52 57.8 70.23 64.8 x x x
CNN (PF) 74.1 59.5 71.91 74 59.8 58.06 70.6 66 x x x

Table 2: Object classification accuracies (shown in percentages) across model and dataset splits.
Comparison between base model and feedback based on Predicted Feedback (PF) context, where
the context fed down the network is first predicted by the same network (accuracies for context
prediction are given in Table 6 in the Appendix). The simple CNN was not applied over Birds data
as its expected input resolution is small.

CIFAR ImageNet Birds
1 2 3 4 Full 1 2 3 1 2 3

VGG 87.5 75.5 87.1 88.7 72.64 88.51 86.5 88.2 70.37 71.02 71.80
VGG (GTM) 92.8 81.2 89.8 93.4 74.2 89.6 89.4 90.44 75.32 77.26 74.82
VGG (GTF) 93.4 81.4 88.8 93.8 74 89.8 89.07 91.36 78.77 79.23 76.17

ViT 81.77 70.8 75.32 81.1 71.1 73.66 76.03 79.92 70.25 69.5 71
ViT (GTM) 89.8 78.1 79.3 87.8 73 76.5 79.81 83.91 - - -
ViT (GTF) 90.22 78.4 79.2 89.9 73.1 76.6 77.66 80 - - -

CNN 71.6 57.1 70.34 74 52 57.8 70.23 64.8 x x x
CNN (GTM) 81.3 64.4 71.37 79.5 55.7 61.95 71.45 72.3 x x x
CNN (GTF) 83.2 64.4 71.9 80.7 62.1 62.85 73 71.2 x x x

Table 3: Object classification accuracies across model and dataset splits. Comparison between base
model, Masking based on Ground Truth context (GTM), and Feedback based on Ground Truth
context (GTF). The simple CNN was not applied over Birds data as its expected input resolution is
small.

described in Section B of the Appendix and derived based on the CIFAR-100 superclasses, and the
attribute labels provided in the CUB dataset. We base splits on this information in order to eval-
uate over standard divisions in the data. We evaluate our method using both ground truth context
expectations (GT Feedback), as well as context expectations derived from a network of the same
structure as the base network (Pred Feedback). All experiments are conducted using a 6-layer CNN
base architecture, a VGG-16 network (Simonyan & Zisserman, 2014), and a Transformer model (Tu
et al., 2022), with variants including added affine transformations for feedback runs. The hyperpa-
rameters to the modifications made to each of the base architectures for feedback incorporation are
described briefly in Section H in the Appendix, and described in detail in Section I in the Appendix.
We show confusion matrices for a 10-class context split over CIFAR100 for both ground truth con-
text expectations and network predicted context expectations, in Figures 5a and 5b, respectively. In
Sections 4.1 and 4.2 evaluation involves comparisons to base architectures tuned to maximize base
architecture performance, and Section 4.3 presents an evaluation where both base architecture and
feedback implementation are tuned to maximize the benefit of feedback, giving insight into extent
of potential benefit to feedback.

4.1 ORACLE EVALUATION

The ground truth context model (GT Feedback) assumes access to the ground truth context belong-
ing to each input sample during training and test time, using contextual knowledge to index into the
affine transformations for application over mid-level features as described in Section 3. Here we
evaluate the extent to which our complete framework outperforms 1) a base architecture mirroring
that of our framework, and 2) the same base architecture where a hard masking operation using the
ground truth contextual knowledge is applied over its class-level outputs. The GT Masking baseline
corresponds to the same base architecture where a hard mask of cg ∈ {0, 1}k is applied over the
output of the network, where k corresponds to the number of classes and cg takes on a value of 1 for
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(a) With orthogonalization bias and affine transforma-
tions.

(b) With neither orthogonalization bias nor affine trans-
formations.

Figure 5: Confusion matrices for a our simple architecture (see Appendix ) with and without feed-
back (orthogonalization bias and with application of affine transformations) - subfigure a and b
respectively - over the vehicles 1 vs vehicles 2 split of CIFAR100. The first 5 rows correspond to the
first context, and the next 5 rows correspond to the second context. Note that cross context confusion
(quadrants 1 and 3 of the confusion matrices) is significantly reduced with feedback.

within-context classes and 0 for out-of-context classes. Results for ground truth context evaluation
are shown in Figure 3.

4.2 PREDICTED CONTEXT EVALUATION

Table 2 shows performance of base architectures with and without feedback, when context is pre-
dicted rather than provided. Context prediction is performed through the addition of a second logits
classification head to the base networks. This head is trained in conjunction with the object classifi-
cation head using ground truth context labels. Performance for context prediction is shown in Table
6 in the Appendix.

4.3 MAXIMIZING FEEDBACK GAIN

We here present an evaluation where we tune for maximizing margins of feedback performance
over base model performance, tuning both base model and feedback parameters. This evaluation
provides insight into the degree to which feedback is capable of improving performance. We tune
over the following hyperparameters to maximize the margins between feedback models relying on
ground truth and the base models without feedback: first stage learning rate, weight decay, second
stage learning rate, and affine learning rate. See the Appendix for precise values.

4.4 DISCUSSION

We evaluate the utility of feedback under two scenarios: 1) where context is known (Table 3), 2)
where context is not known (Table 2). This provides insight both on the performance of the feed-
back mechanism in ideal cases (providing an upper bound on the utility of feedback), as well as
realistic cases with imperfect information derived from the same network. We observe consistently
positive results in each case. We also compare feedback to a strong alternative of masking out (ex-
cluding) predictions not associated with the ground truth context. Consistent with Figure 5 superior
performance of feedback over masking demonstrates that it improves modeling beyond simply re-
moving context inconsistent predictions. Results were presented both in comparisons where base
architectures were tuned to maximize accuracy, and comparisons where base and feedback models
were tuned to maximize the benefit of feedback. Margins are much higher when tuning to maximize
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CIFAR ImageNet Birds
1 2 3 4 Full 1 2 3 1 2 3

VGG 87.1 70.4 83.8 85.9 70.5 85.3 85.0 85.4 70.0 72.8 68.4
VGG (PF) 89.9 77.4 85.8 88.2 77.0 88.9 86.1 89.5 75.6 77.4 77.8

ViT 82.1 56.8 78.7 82.4 65.4 74.0 77.0 78.6 66.6 54.2 52.7
ViT (PF) 86.9 59.0 82.6 85.7 68.0 76.0 79.2 83.9 69.9 65.1 64.3

CNN 67.5 55.9 66.1 63.2 49.9 53.6 55.9 58.4 x x x
CNN (PF) 77.1 60.3 70.6 71.3 52.9 58.0 61.9 63.9 x x x

Table 4: Results where we Maximize Feedback Gain (see Subsection 4.3). Object classification
accuracies across model and dataset splits, where comparisons are between base models and feed-
back based on Predicted Feedback (PF) context, where the context fed down the network is first
predicted by the same network. The simple CNN was not applied over Birds data as its expected
input resolution is small.

CIFAR ImageNet Birds
1 2 3 4 Full 1 2 3 1 2 3

VGG 87.1 70.4 83.8 85.9 70.5 85.3 85.0 85.4 70.0 72.8 68.4
VGG (GTM) 91.7 75.4 88.2 90.0 72.2 86.6 87.3 88.6 76.9 77.3 74.6
VGG (GTF) 93.3 81.5 88.4 91.9 76.4 88.8 87.5 91.1 80.2 79.1 80.4

ViT 82.1 56.8 78.7 82.4 65.4 74.0 77.0 78.6 66.6 54.2 52.7
ViT (GTM) 87.2 64.0 82.5 86.3 68.1 77.5 80.0 82.2 70.0 61.8 61.8
ViT (GTF) 91.1 66.2 85.7 90.5 71.9 79.5 81.7 86.0 73.9 65.1 65.6

CNN 67.5 55.9 66.1 63.2 49.9 53.6 55.9 58.4 x x x
CNN (GTM) 79.3 64.8 73.5 74.5 51.4 59.6 62.9 66.6 x x x
CNN (GTF) 82.4 69.0 75.6 76.9 56.0 62.2 64.7 69.8 x x x

Table 5: Results where we Maximize Feedback Gain (see Subsection 4.3). Object classification
accuracies across model and dataset splits, where comparisons are between base models, Masking
based on Ground Truth context (GTM) and Feedback based on Ground Truth context (GTF). The
simple CNN was not applied over Birds data as its expected input resolution is small.

the benefit of feedback, and give insight into the extent to which feedback is capable of providing
benefits in the best case.

5 CONCLUSION

We have presented an argument for the utility of feedback in vision. Feedback is 1) prominent
in biological vision, with the majority of neural connections in the cortex consisting of feedback
connections, 2) allows better constraining of under-constrained processes of abstraction, 3) allows
for the online adaptation of vision systems towards alignment with high level understanding of
the world. We leverage the fact that CNNs have a tendency towards decoupled representations,
exacerbating the separation of mid-level features associated with different higher level contexts. This
allows better direct manipulation of the level at which feedback is introduced, minimizing collateral
effects on characteristics not being selected for. In contrast to post-hoc filtering of interpretations for
consistency with context expectations, MVF allows for cross-context detections and produces higher
accuracies. MVF involves a top-down bridging of the signal-symbol gap, making it applicable to a
range of applications. In the future this work will be extended to localization, e.g. object detection
or semantic segmentation, as well as used in embodied contexts Fermüller & Maynord (2022) with
an active agent.
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CIFAR ImageNet Birds
1 2 3 4 Full 1 2 3 1 2 3

VGG 91.65 95.34 94.62 95.11 96.43 98 97.9 97.8 81.19 90.3 75.3
ViT 90.32 96.17 93.46 94.17 96.2 98.5 94.3 97 80.4 87.19 80.29

CNN 82.9 85.5 88.24 85.5 87.25 89.33 90 92.46 x x x

Table 6: Context classification accuracies (shown as percentages, and used in Section 4.2) across
model and dataset splits. The simple CNN was not applied over Birds data as its expected input
resolution is small.

A APPENDIX

ABSTRACT

We here present Appendix. Section B describes datasets; Section D presents the
base CNN architecture used in experiments; Section I details tuned parameters;
and, Section K presents data splits.

B DATASETS

B.1 CIFAR100

We adopt CIFAR100 for the 1) high-levels of visual ambiguity due to low resolution, 2) existence
of several distinct ”superclasses” consisting of a roughly equal number of classes, and 3) the cross-
context confusion across classes highly similar in appearance (e.g., sharks and dolphins). We adopt
the official training and test split for the CIFAR100 dataset. Each class contains exactly 500 training
images and 100 testing images, with each superclass consisting of 5000 training images and 1000
testing images. We use the CIFAR100 superclasses in constructing context splits. Split 1: Vehicles
1 vs. Vehicles 2, Split 2: Household Devices vs. Furniture, Split 3: Aquatic Mammals vs. Fish. For
full class breakdown see Appendix Section K.

B.2 IMAGENET

We adopt ImageNet for several of the aforementioned reasons above, as well as its generality in that
it spans 1000 unique classes. Each class contains variable number of images - we designate 80% of
the images in each class for training, but only 2% for testing due to the computational cost incurred
by the high number of images and the need for frequent testing.

We employ the following context split over ImageNet, designed to be similar to CIFAR100 splits,
the full class breakdown of which is given in Appendix: Split 1: Household Devices vs. Furniture,
Split 2: Aquatic Mammals vs. Fish, Split 3: Vehicles 1 vs. Vehicles 2.

C BASE CNN

Figure 8 illustrates the base CNN model (apart from VGG and ViT), for which performance is
reported in Tables in the main paper.

D CONTEXT PREDICTION

See Table 6 for accuracy on context prediction used in Section 4.2 and Table 2; see Table 7 for
accuracy on context prediction used in Section 4.2 and Table 2.

E IMAGENET-C EVALUATION

Table 8 provides accuracy of testing on ImageNet-C, with models trained for Maximizing Feedback
Gain over standard ImageNet. Accuracy trends are consistent with trends presented in Section 4.3.
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CIFAR ImageNet Birds
1 2 3 4 Full 1 2 3 1 2 3

VGG 93.7 91.9 89.6 90.4 96.1 97.8 95.9 97.6 79.0 89.4 80.3
ViT 90.32 96.17 93.46 94.17 96.2 98.5 94.3 97 80.4 87.19 80.29

CNN 82.3 86.1 88.8 81.0 90.2 85.6 87.6 90.6 x x x

Table 7: Context classification results of the runs Maximizing Feedback Gain (see Subsection 4.3
across model and dataset splits. The simple CNN was not applied over Birds data as its expected
input resolution is small.

ImageNet
1 2 3

CNN 39.5 41.8 42.8
CNN PF 42.3 47.6 48.0

CNN GTM 45.5 48.7 52.4
CNN GTF 47.7 50.1 53.9

ViT 58.3 61.7 64.1
ViT PF 61.3 64.8 69.5

ViT GTM 62.1 64.6 66.5
ViT GTF 64.4 66.4 68.5

VGG 69.7 69.3 69.8
VGG PF 74.5 71.8 75.3

VGG GTM 70.9 72.3 73.2
VGG GTF 73.3 71.9 75.2

Table 8: Object classification accuracies across ImageNet-C, where the training set is unmodified
and various corruptions are applied over the test set. Comparison between base model, Masking
based on Ground Truth context (GTM), feedback based on Predicted Feedback (PF) context, and
Feedback based on Ground Truth context (GTF).

ImageNet-C consists of 75 common corruptions applied over ImageNet images with the intent of
degrading classifier performance. We observe that drops in accuracy with respect to the original
ImageNet dataset range between values of 14% and 18%. However, performance margins between
feedback and base models are overall maintained when testing over ImageNet-C.

F DECOUPLED REPRESENTATIONS

CNNs have a natural tendency towards decoupled representations. These are representations where
characteristics have a tendency to be represented in such a way that feature vector angle corresponds
to characteristic type, while feature vector magnitude corresponds to characteristic variation or de-
gree (Liu et al., 2018).

G ORTHOGONALIZING LOSS

Figure 7 illustrates feature vector projections of the injection level under different degrees of orthog-
onalizing loss.
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Figure 6: Shown above is a convergence plot of orthogonality loss LO over several λ (intermediate
loss scaling) values of {0, 0.075, 1, 5}.

(a) PCA Projection, λ = 0 (b) PCA Projection, λ = 2 (c) PCA Projection, λ = 50

Figure 7: Illustrations of the effect of different levels of λ, the scaling term applied to orthogonal-
ization bias LO, applied to an injection level of the second to last conv op of the architecture given
in the Appendix. Feature vectors of size 64 for the (animate) / (inanimate) split (see Appendix)
of CIFAR100 are projected into 2 dimensions through Principal Component Analysis (PCA). Blue
points correspond to features produced from animate images, and red points correspond to features
produced by inanimate classes. Subfigure a illustrates context distribution when no orthogonalizing
bias is used (λ = 0) - there is some degree of context separation, but it is not significant. A moderate
degree of orthogonalizing bias (λ = 2) in subfigure 2 separates animate from inanimate features in
the injection level. A significant degree of orthogonalizing bias (λ = 50) results in poor separation
and degraded performance. See Appendix for more details, including UMAP projections.

Figure 8: Illustration of the base architecture (SimpleCNN) used in these experiments. The injection
level (circled in red) used in these experiments is after the ReLU of the second to last Conv2D
operator.
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H MODELS

Here we describe the architectures in which we incorporate feedback. Each model consumes 1 GPU
during train and test time. For all feedback experiments we choose a λ (intermediate loss scaling)
of 1.0 (otherwise set to 0.0).

Shallow CNN: This model comprises a 6-layer CNN architecture, shown in Appendix, consisting
of 3 by 3 shaped kernels, max-pooling applied over every other layer, and dropout (p = 0.375,
p = 0.1) applied over the penultimate fully connected layer and after each convolution operation,
respectively. The affine transformation is applied after the second to last convolution operation,
though we observe high performance inserting the affine transformations anywhere throughout the
second half of the architecture. We train the first stage for roughly 5 million iterations for all splits.
A learning rate of 0.001 is chosen for the training of the base network during the first stage, and a
learning rate of 5 ∗ 10−5 is chosen for the learning rate of the base network during the second stage,
whereas the affine transformation learning rate is set to 1 ∗ 10−3.

For the Maximizing Feedback Gain hyperparameters, we adopt a learning rate of 2e− 4, a weight
decay of 0.0, a second stage learning rate of 1e− 6, and an affine learning rate of 0.005.

VGG: Here we adopt a VGG-16 network with pre-trained weights over ImageNet. The VGG net-
work consists of 16 layers consisting of convolution and max-pooling operations. The affine trans-
formation is applied after the eleventh convolution operation, though we observe high performance
inserting the affine transformations anywhere throughout the last six layers. We train the first stage
for roughly 1.5 million iterations for all splits, until smooth convergence. A learning rate of 5∗10−6

is chosen for the training of the base network during the first stage, and a learning rate of 2.5 ∗ 10−6

is chosen for the learning rate of the base network during the second stage, whereas the affine trans-
formation learning rate is set to 2.5 ∗ 10−3.

For the Maximizing Feedback Gain hyperparameters, we adopt a learning rate of 5e− 5, a weight
decay of 0.00075, a second stage learning rate of 5e− 6, and an affine learning rate of 0.0005.

Visual Transformer: Here we adopt a variant of the Visual Transformer models (Tu et al., 2022), a
general-purpose vision transformer that outperforms many related visual transformer architectures
while being easy to train. The affine transformation is applied immediately after the third to last
attention block. We train the first stage for roughly 2.0 million iterations for all splits, until smooth
convergence. A learning rate of 1 ∗ 10−3 is chosen for the training of the base network during the
first stage, and a learning rate of 1.0∗10−6 is chosen for the learning rate of the base network during
the second stage, whereas the affine transformation learning rate is set to 1 ∗ 10−3.

For the Maximizing Feedback Gain hyperparameters, we adopt a learning rate of 2e− 4, a weight
decay of 0.0, a second stage learning rate of 1e− 5 and an affine learning rate of 0.0001.

I PARAMETERS

We here list parameters’ tuned values not introduced in the main paper:

1. Image size: 32× 32 for CIFAR100, 224× 224 for ImageNet.
2. Model input image size: 32× 32 for 6-layer CNN, 224× 224 for VGG16. Images resized

using bilinear interpolation.
3. Size of feature set selected for orthogonalization: 25.
4. Batch size: 256 (CIFAR100 splits), 64 (ImageNet splits).
5. Data augmentations: Random rotations (15 degrees), random resized crops, Random hori-

zontal flips.
6. Feedback Base Model: ADAM’s optimizer, weight decay of 7.5×10−4 for both stages and

both models.
7. Affine Transformation Optimizer: ADAM’s optimizer, affine transformation learning rate

of 0.001 for second stage training of both models.
8. Context Model: ResNet18 model with pretrained weights over ImageNet and learning rate

of 0.001 using SGD optimizer.
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CIFAR ImageNet Birds
1 2 3 4 Full 1 2 3 1 2 3

VGG 87.1 70.4 83.8 85.9 70.5 85.3 85.0 85.4 70.0 72.8 68.4
VGG (*) 87.4 70.8 84.6 87.3 71.7 86.8 85.8 86.0 71.2 73.9 70.0

VGG (**) 87.7 70.4 86.0 87.5 72.0 88.0 85.4 86.7 71.9 74.2 71.3
VGG (Pred Feedback) 89.9 77.4 85.8 88.2 77.0 88.9 86.1 89.5 75.6 77.4 77.8
VGG (GT Feedback) 93.3 81.5 88.4 91.9 76.4 88.8 87.5 91.1 80.2 79.1 80.4

ViT 82.1 56.8 78.7 82.4 65.4 74.0 77.0 78.6 66.6 54.2 52.7
ViT (*) 84.7 56.9 79.8 83.1 65.8 74.6 75.3 79.5 67.0 56.2 56.7

ViT (**) 85.2 57.1 80.0 83.0 67.0 75.9 75.7 80.0 67.8 56.7 57.0
ViT (Pred Feedback) 86.9 59.0 82.6 85.7 68.0 76.0 79.2 83.9 69.9 65.1 64.3
ViT (GT Feedback) 91.1 66.2 85.7 90.5 71.9 79.5 81.7 86.0 73.9 65.1 65.6

CNN 67.5 55.9 66.1 63.2 49.9 53.6 55.9 58.4 x x x
CNN (*) 71.3 55.9 67.4 65.3 50.3 55.3 55.2 58.5 x x x
CNN (**) 72.9 57.0 67.8 67.1 50.5 56.2 55.9 59.3 x x x

CNN (Pred Feedback) 77.1 60.3 70.6 71.3 52.9 58.0 61.9 63.9 x x x
CNN (GT Feedback) 82.4 69.0 75.6 76.9 56.0 62.2 64.7 69.8 x x x

Table 9: Object classification accuracies across models (Maximizing Feedback Gain, Section 4.3)
and dataset splits. We additionally report numbers when the context training signal is included in
training (**) vs. when the context signal is excluded from training (*), when the feedback mecha-
nism is not incorporated (neither the affine selection nor the orthogonalization loss). This isolates
the impact of the inclusion of the context label during training while removing the impact of the
feedback mechanism. The difference in performance between (*) and (**) runs is attributable to
the inclusion of the context signal during training. For both runs we use an affine learning rate of 0
and a single affine transformation as opposed to N affine transformations (where N is the number
of context divisions; we use a single affine to avoid introducing a context signal, even when affines
are not trained). A context scaling loss value of 0.0 is used for (*) and a value of 1.0 for (**). The
runs of (**), where the context signal is included but feedback is excluded, underperform w.r.t. runs
where feedback is included.

J CONTEXT LABEL, AFFINE LEARNING RATE, ORTHOGONALIZING LOSS
ABLATION

In Table 9, we evaluate the effect on performance due simply to the introduction of the affine trans-
formation (and the random noise introduced by its introduction), but not due to the context training
labels. We report numbers from experiments where the affine operations are included in the network
but: affine transformations are not trained, the context prediction head is not trained, and orthog-
onalizing loss is not employed. These runs are compared against identical runs where the affine
transformation is not included. We observe that runs with affine transformations outperform the
results of the base models (where no affine transformations are included), for two main possible
reasons: 1) The drop in learning rate during the second stage of training allows accuracy to con-
tinue converging after possible plateauing, and 2) The introduction of a randomly initialized affine
during the second stage introduces stochasticity potentially useful during training. This increase in
performance is small in comparison to the increase due to incorporation of feedback.

K DATA SPLITS

We derive context splits based on the superclass structure provided with CIFAR-100 (over both
CIFAR-100 and ImageNet), and the attribute ontology provided with the CUB dataset. We base
splits on this information in order to evaluate over standard divisions in the data.

K.1 CUB-200-2011

We adopt the Caltech-UCSD-Birds dataset for several of the aformentioned reasons above, in partic-
ular for the high cross-context confusion across different species of birds highly similar in appear-
ance. It consists of 11,788 images with 200 classes corresponding to bird species. Like the Imagenet
dataset, we designate 80% of the dataset for training and 20% for testing.
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We employ the following 3 splits over the CUB dataset, grouping images into contexts based on the
listed attributes provided with the CUB dataset:

1. Migration behavior (1, 2, 3)

2. Trophic level (Carnivore, Herbivore, Omnivore)

3. Primary lifestyle (Aerial, Aquatic, Generalist, Insessorial, Terrestrial)

K.2 SPLITCIFAR

CIFAR100 Dataset Sub-Splits
Split Group Classes

1 Vehicles 1 Bicycle, Bus, Motorcycle, Pickup truck
Vehicles 2 Lawn mower, Rocket, Streetcar, Tank, Tractor

2 Household Devices Clock, Keyboard, Lamp, Telephone, television
Furniture Bed, Chair, Couch, Table, Wardrobe

3 Aquatic mammals Beaver, Dolphin, Otter, Seal, Whale
Fish aquarium fish, flatfish, ray, shark, trout

4 Small animals fox, porcupine, possum, raccoon, skunk
Large animals bear, leopard, lion, tiger, wolf

Full CIFAR100 Split:

animate = beaver, dolphin, otter, seal, whale, aquarium fish, flatfish, ray, shark, trout, bear, leopard,
lion, tiger, wolf, camel, cattle, chimpanzee, elephant, kangaroo, fox, porcupine, possum, raccoon,
skunk, baby, boy, girl, man, woman, crocodile, dinosaur, lizard, snake, turtle, hamster, mouse, rabbit,
shrew, squirrel, bee, beetle, butterfly, caterpillar, cockroach, crab, lobster, snail, spider, worm

inanimate = orchid, poppy, rose, sunflower, tulip, bottle, bowl, can, cup, plate, apple, mush-
room, orange, pear, sweet pepper, clock, keyboard, lamp, telephone, television, bed, chair, couch,
table, wardrobe, bridge, castle, house, road, skyscraper, cloud, forest, mountain, plain, sea,
maple tree, oak tree, palm tree, pine tree, willow tree, bicycle, bus, motorcycle, pickup truck, train,
lawn mower, rocket, streetcar, tank, tractor
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K.3 SPLITIMAGENET

ImageNet Dataset Splits
Split Group Classes

1 Household Devices analog clock, digital clock, wall clock, computer keyboard,
dial telephone, table lamp, television, cellular telephone

Furniture studio couch, dining table, wardrobe, folding chair

2 Aquatic mammals Beaver, Dolphin, Otter, Seal, Whale

Fish barracouta, eel, coho, rock beauty, anemone fish,
sturgeon, gar, puffer, lionfish

3 Devices 1 mountain bike, bicycle-built-for-two,school bus, moped,
tricycle, bullet train, passenger car, pickup

Devices 2 lawn mower, tractor, streetcar, tank
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