
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CYCLICREFLEX: IMPROVING REASONING MODELS VIA
CYCLICAL REFLECTION TOKEN SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs), such as OpenAI’s o1 and DeepSeek-R1, harness
test-time scaling to perform multi-step reasoning for complex problem-solving.
This reasoning process, executed before producing final answers, is often guided
by special juncture tokens that prompt self-evaluative reflection. We refer to
these transition markers and reflective cues as “reflection tokens” (e.g., “wait”,
“but”, “alternatively”). In this work, we treat reflection tokens as a “resource” and
introduce the problem of resource allocation, aimed at improving the test-time
compute performance of LRMs by adaptively regulating the frequency and place-
ment of reflection tokens. Through empirical analysis, we show that both excessive
and insufficient use of reflection tokens, referred to as over-reflection and under-
reflection, can degrade model performance. To better understand this trade-off,
we draw an analogy between reflection token usage and learning rate scheduling
in optimization. Building on this insight, We propose cyclical reflection token
scheduling (termed CyclicReflex), a training-free decoding strategy that dynam-
ically modulates reflection token logits with a bidirectional, position-dependent
triangular waveform, incurring no additional computation cost. Experiments on
MATH500, AIME2024/2025, AMC2023, GPQA Diamond and LiveCodeBench
demonstrate that CyclicReflex consistently improves performance across model
sizes (1.5B–8B), outperforming standard decoding and recent approaches such as
TIP (thought switching penalty) and S1.

1 INTRODUCTION

There has been a recent surge in the development of large reasoning models (LRMs), driven by the
introduction of chain-of-thought (CoT) (Wei et al., 2022). Notable examples include OpenAI’s o1
(OpenAI, 2024), Qwen 2.5 (Yang et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-1.5 (Team
et al., 2025). These models perform multi-step reasoning by generating so-called reflection tokens,
phrases such as “wait”, “but”, “alternatively”, which signal hesitation, reconsideration, alternative
exploration, or intermediate analysis. In parallel, test-time scaling techniques (Snell et al., 2024;
Liu et al., 2025) have emerged as a complementary approach for improving reasoning accuracy by
expanding the breadth or depth of CoT traces during inference.

However, LRMs remain prone to reasoning failures due to mismanagement of reflection tokens, often
resulting in either underthinking or overthinking. Underthinking occurs when the model fails to fully
explore promising reasoning paths for complex problems, often terminating prematurely or switching
strategies too soon (Wang et al., 2025a; Su et al., 2025). In contrast, overthinking arises when the
model generates an excessive number of reflection tokens on simple problems, leading to unnecessary
computational overhead (Chen et al., 2024; Kumar et al., 2025a). These observations show that, as
internal signals for deliberative reasoning, reflection tokens play a critical role in shaping answer
quality. The emerging challenges further underscore the need for a principled mechanism to regulate
reflection token usage during inference.

In this work, we introduce the concept of resource allocation for LRMs, treating reflection tokens
as a valuable resource whose scheduling along the CoT trajectory (a.k.a. reasoning trace) can be
strategically designed to improve reasoning accuracy. The objective is to optimize the quantity and
placement of reflection tokens, adapting dynamically to the reasoning schedule and the difficulty of
the current problem. For instance, some problems exhibit under-reflection, where too few reflection

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tokens result in premature answer generation, while others suffer from over-reflection, where excessive
tokens stall progress by repeatedly looping on phrases like “wait”. This raises a central question:

(Q) How can we achieve effective resource allocation in LRMs to mitigate both
under-reflection and over-reflection?

To answer this, we draw a conceptual analogy between reflection tokens in LRMs and learning
rates in optimization. Leveraging the landscape of thoughts (Zhou et al., 2025), we show that
under-reflection mirrors the effect of an overly small learning rate, leading to premature convergence
to suboptimal solutions, while over-reflection resembles a large learning rate that causes divergence.
We briefly introduce our motivation and the underlying intuition below.

Overview of motivation and rationale: From stepsize hedging to cyclical learning rates. The
critical role of learning rates (also known as stepsizes) in shaping optimization dynamics has been
extensively studied (Nesterov, 1983; Allen-Zhu & Orecchia, 2014; Bubeck et al., 2015). A recent
theoretical advancement, the silver stepsize schedule (Altschuler & Parrilo, 2024; 2025), demonstrates
that replacing a constant learning rate with an approximately periodic, hedging-style schedule can
provably accelerate convergence in gradient descent. This approach is known as stepsize hedging as
it alternates strategically between large and small stepsizes, balancing rapid (but potentially unstable)
exploration with slower, more stable convergence. A similar stepsize hedging idea has been applied to
deep model training through cyclical learning rate schedule (Smith, 2017), which alternates between
large and small learning rates in a triangular waveform. This strategy not only accelerates convergence
but also enhances generalization, often eliminating the need for extensive hyperparameter tuning.

LRM Logi t s Tex t

Or iginal

Cycl i cRef lex

Decode

Ref lect i on tokens

Pr edict

Incor r ect
answer

Cor r ect
answer

vocabular y si ze vocabular y si ze vocabular y si ze

Step 0

......

............

Step T/2 Step T

AIME2024 Resul t s

Figure 1: Schematic overview of our proposed method (CyclicRe-
flex). The rightmost subfigure presents a comparison of final answer
accuracy between CyclicReflex, the original LRM (DeepSeek-R1-
Distill-Llama-8B), and decoding variants using TIP (Wang et al.,
2025a) and S1 (Muennighoff et al., 2025).

Motivated by the principle of stepsize
hedging (Altschuler & Parrilo, 2024;
2025) and the demonstrated effective-
ness of cyclical learning rates in deep
learning (Smith, 2017), we propose
CyclicReflex, a training-free decod-
ing strategy that dynamically modu-
lates the logits of reflection tokens us-
ing a position-dependent, periodic tri-
angular waveform (see Fig. 1). Just
as cyclical learning rates alternate be-
tween aggressive and conservative up-
dates to balance exploration and con-
vergence, CyclicReflex cyclically ad-
justs the sampling likelihood of reflec-
tion tokens to regulate the depth and stability of the reasoning process. Unlike conventional decoding
methods, CyclicReflex is bidirectional, capable of both promoting and suppressing reflection token
usage depending on the stage of generation. This flexibility enables CyclicReflex to address both
under-reflection (insufficient reasoning) and over-reflection (excessive, redundant reasoning), offering
a principled mechanism for reasoning modulation inspired by optimization dynamics.

Contributions. We summarize our main contributions below.

• We introduce and formalize the novel problem of resource allocation in LRMs by treating reflection
tokens as a computational resource, motivated by the dual challenges of under-reflection and over-
reflection in reasoning generation.

• We draw a conceptual analogy between reflection token scheduling and learning rate scheduling
in optimization, and validate it through the landscape of thoughts. Guided by that, we propose
CyclicReflex, a test-time decoding strategy that cyclically modulates reflection token logits to
dynamically balance reflection during generation.

• We conduct comprehensive experiments across six reasoning benchmarks and multiple model
scales (1.5B–8B), demonstrating that CyclicReflex consistently improves both final-answer accuracy
and self-correction capability, outperforming recent test-time decoding strategies such as TIP (Wang
et al., 2025a) and S1 (Muennighoff et al., 2025). Moreover, CyclicReflex integrates seamlessly with
other test-time scaling techniques, yielding additional performance gains.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

LRMs and CoT. CoT (Wei et al., 2022) enables LRMs to solve complex tasks through intermediate
reasoning steps before reaching a final answer. This technique underpins many recent LRMs,
including OpenAI’s o1 (OpenAI, 2024), Qwen 2.5 (Yang et al., 2024), DeepSeek-R1 (Guo et al.,
2025), and Kimi-1.5 (Team et al., 2025), which often employ reinforcement learning to further
improve their reasoning performance. Guo et al. (2025) show that even smaller models benefit
substantially from fine-tuning with CoT-style data. A hallmark of CoT reasoning in these models
is the emergence of reflection tokens (words like “wait” or “but”) that signal deliberation or self-
correction, marking a shift from fast to slow thinking (Kumar et al., 2025b; Li et al., 2025). In this
paper, we show that the reasoning performance of LRMs can be enhanced by applying cyclical logits
manipulation to reflection tokens.

Efficient reasoning. Despite their impressive capabilities, LRMs often exhibit reasoning inefficien-
cies. Overthinking arises when the model generates unnecessarily long reasoning traces, leading
to inflated outputs and increased computational cost (Chen et al., 2024; Kumar et al., 2025a). In
contrast, underthinking occurs when the model halts reasoning too early, failing to adequately explore
promising solution paths (Wang et al., 2025a; Su et al., 2025). Therefore, ensuring both the efficacy
(i.e., answer accuracy) and efficiency (i.e., generation length) of reasoning is crucial. Building on
this line of research, some approaches modify model behavior through post-training interventions.
For instance, Luo et al. (2025); Aggarwal & Welleck (2025); Hou et al. (2025) use fine-tuning or
reinforcement learning to explicitly control reasoning length. There also exist works that adopt
training-free strategies. Wang et al. (2025b) propose guiding smaller models with larger ones at
inference; Wang et al. (2025a) penalize reflection token logits to reduce over-reflection; And Yang
et al. (2025); Muennighoff et al. (2025) develop early-exit mechanisms for efficient decoding. Our
method also falls into the training-free category but differs in its dynamic to adaptively address both
under- and over-reflection without model modification.

Test-time scaling. A growing body of work enhances LRM reasoning via test-time scaling. Basic
strategies include manually inserting reflection tokens (e.g., “wait”, “but”) to prompt deeper thinking
(Muennighoff et al., 2025; Jin et al., 2025). More advanced methods such as Best-of-N generation
and self-consistency sampling (Wang et al., 2022; Irvine et al., 2023; Brown et al., 2024) aim to select
the most promising answer among multiple candidates, often guided by reward models. Structured
decoding approaches, such as beam search (Feng et al., 2023), tree-of-thought (ToT) (Yao et al.,
2023), and Monte Carlo tree search (MCTS) (Zhou et al., 2023), further improve answer quality
by enabling the model to reason over multiple candidate paths. In pursuit of controlled reasoning,
Wu et al. (2025) propose thinking intervention, which selectively inserts or edits specific thinking
tokens during generation to tailor LRM behavior for downstream tasks. Recent analyses (Snell et al.,
2024; Liu et al., 2025; Chen et al., 2025b; Zhang et al., 2025) also highlight that the effectiveness of
test-time scaling varies with problem difficulty, motivating strategies that adapt to instance complexity.
Our method provides such adaptivity by dynamically adjusting the influence of reflection tokens
throughout the reasoning trajectory. We show that it consistently improves accuracy across difficulty
levels and can be integrated seamlessly with other test-time strategies like Best-of-N and beam search.

3 RESOURCE ALLOCATION IN LARGE REASONING MODELS

In this section, we begin by introducing preliminaries on LRMs, including their chain-of-thought
trajectories (i.e., reasoning traces) and the use of reflection tokens. We then motivate the problem of
resource allocation over reflection tokens through an existing technique: thought switching penalty
(TIP) test-time compute strategy. This warm-up study illustrates the critical influence and sensitivity
of reflection tokens on the final answers produced by LRMs.

Preliminaries on LRMs, reasoning traces, and reflection tokens. Unlike conventional LLMs,
LRMs can incorporate an explicit thinking stage before arriving at a final answer in response to an
input question (Li et al., 2025; Ding et al., 2025; Chen et al., 2025a). This thinking stage is typically
realized through a CoT trajectory composed of multiple reasoning steps.

To be concrete, let x denote the input question, r the reasoning trace, and y the final answer. The
reasoning trace can be written as r = [r1, r2, . . . , rT], a sequence of T intermediate reasoning steps
(or thoughts) that serve as a precondition for producing the final answer y. These thoughts are often

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: An example from MATH500 answered
by DeepSeek-R1-Distill-Qwen-7B. Reflection to-
kens are highlighted in red.

Generation (r and y) vs. input x

x Compute arcsin
(
− 1

2

)
. Express your answer in radians.

r

<think>Okay, so I need to compute arcsin of -1/2......
But I should make sure I’m thinking about the right
range for arcsin. I think it’s between −π/2 and π/2,
right? So it’s the principal value...... I know that sine is
negative in the third and fourth quadrants, but since
arcsin only gives me angles in [−π/2, π/2], that’s the
fourth quadrant...... Wait, let me double-check. If I take
sin(−π/6), that’s the same as − sin(π/6), which is
-1/2. So the answer should be −π/6 radians.</think>

y The arcsin of -1/2 is −π/6 radians.

connected by lexical cues such as “wait”, “but”, and
“alternatively”. In this work, we collectively refer to
such words as reflection tokens, as they signal the
LRM’s introspective or deliberative thinking during
generation. These tokens typically signal hesitation,
reconsideration or alternative exploration within the
reasoning trace, serving as implicit markers of the
model’s engagement in step-by-step reasoning. For
ease of understanding, Table 1 illustrates an exam-
ple where an LRM tackles a complex math problem
(x), along with its generated reasoning trace (r), fi-
nal answer (y), and the highlighted reflection tokens
embedded within the reasoning process.

Motivation: Influence of reflection tokens on final answer accuracy. Next, we present a warm-up
study to illustrate the critical role of reflection tokens in determining final answer quality, particularly
across varying levels of problem difficulty. Prior work has identified several common issues in
LRM reasoning, including “underthinking” (Wang et al., 2025a; Su et al., 2025)–where the model
prematurely abandons promising lines of thought, resulting in insufficient reasoning depth–and
“overthinking” (Muennighoff et al., 2025; Chen et al., 2024; Kumar et al., 2025a)–where excessive,
unnecessary reasoning steps obscure or derail the correct final answer. These studies have observed
that intervening in the reasoning trace with reflection tokens can help guide the model’s thought
process (Wu et al., 2025). A common approach to controlling and integrating the effect of reflection
tokens in LRM generation is to modify the decoding strategy to account for their occurrence. One
such method is TIP (Wang et al., 2025a), which was proposed to discourage the generation of
reflection tokens and thereby penalize frequent thought switches during the reasoning trace.

Given the set of reflection tokens V̂ , TIP introduces a logit penalty (α) to the predicted score zt,v
when generating a reflection token v ∈ V̂ at reasoning step t, yielding the updated logit

TIP(α) : ẑt,v =

{
zt,v + α, if v ∈ V̂ and t < T0

zt,v, otherwise
(1)

where α controls the strength of the logit intervention, and T0 specifies the time window over which
the adjustment is applied. For ease of presentation, TIP(α) denotes the TIP-based decoding strategy
parameterized by α. It is worth noting that TIP sets α ≤ 0 to penalize frequent thought switches.

0 50 100 150 200
Reflection Count

0

1000

2000

3000

4000

5000

G
en

er
at

io
n

Le
ng

th

Correct
Incorrect
Easy (92%)
Medium (71%)
Hard (21%)

Easy Medium Hard
Difficulty

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.92

0.71

0.21

0.91

0.68

0.40

Original
TIP Q: In how many ways can 8 people be seated around a square table w ith 2 people

on a side? (Two configurations are considered equivalent i f one is a rotation of
another.)

A: <th ink> Okay, so I have this problem: I need to f igure out how many ways 8
people can be seated...... Wai t , no, in cir cular permutations, f ixing one seat.......
Wai t , but is that the case here? Because the table has 8 seats......
</th ink> $\boxed{10800}$.

Input

Or iginal

TIP

A: <th ink> Okay, so I have this problem: I need to f igure out how many ways 8
people can be seated...... Now , I need to f ind one person........
</th ink> $\boxed{5400}$.

Cor r ect !
32 ref lection tokens

Incor r ect !
11 ref lection tokens

(a) Difficulty groups (b) Accuracy (c) Generation examples
Figure 2: (a) Answers from DeepSeek-R1-Distill-Qwen-7B on MATH500 clustered into Easy, Medium, and
Hard using K-means over reflection word count and generation length. Each point represents one answer. (b)
Accuracy of original decoding and TIP across difficulty levels. (c) Generation examples of original decoding
and TIP for a problem from the Medium category.

Despite the heuristic nature of choosing α and T0, the TIP-based decoding strategy (Wang et al.,
2025a) provides useful motivation for studying resource allocation over reflection tokens and its
impact on reasoning effectiveness (e.g., on the MATH500 dataset) across different problem difficulty
levels. Specifically, we categorize MATH500 problems into three difficulty levels–Easy, Medium,
and Hard–based on empirical final-answer accuracies of 92%, 71%, and 21%, respectively, since the
hand-labeled bins in MATH500 are often inaccurate (Snell et al., 2024; Liu et al., 2025). As shown in
Fig. 2(a), these accuracy-based difficulty groups align closely with clusters derived from generation
length and the number of reflection tokens produced. This suggests that for more challenging
problems, LRMs tend to produce longer reasoning trajectories and more reflection tokens, indicating
deeper engagement in problem-solving. Fig. 2(b) next compares the accuracy of the original decoding
strategy and TIP across the difficulty groups in Fig. 2(a). As shown in Fig. 2(a), TIP improves accuracy

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

on Hard problems but reduces accuracy on Easy and Medium problems. This suggests that TIP’s
constant logit manipulation strategy (agnostic to the reasoning step t) does not yield optimal reasoning
control. Furthermore, Fig. 2(c) shows a Medium-level example comparing original decoding with
TIP. The first divergence in reasoning is highlighted in red. Under original decoding, the model
introduces a transitional reflection (“Wait, no, in circular permutations, fixing one seat...”), generating
32 reflection tokens before arriving at the correct answer. In contrast, with a thought-switching
penalty α < 0 in (1), TIP reshapes the trace (“Now, I need to find one person...”), producing only 11
reflection tokens and yielding an incorrect answer. This shows that TIP provides only one-directional
reflection control (penalizing reflection token logits). Hence, a bi-directional, dynamically adaptive
(non-constant) reflection token allocation strategy is needed.

Problem of interest: Resource allocation over reflection tokens. Reflection tokens has a significant
impact on the reasoning capability of LRMs. Therefore, if we view reflection tokens as a “resource”
in LRM reasoning generation, then determining their schedule, including the number of occurrences
and their positions, naturally gives rise to the problem of resource allocation for LRMs.

To the best of our knowledge, the problem of resource allocation over reflection tokens remains largely
unexplored in the existing literature. TIP offers a simple solution by applying a constant logit penalty
to reflection token generation. However, this approach is static and therefore fails to account for both
the number and placement of reflection tokens, which are dynamically determined during reasoning
trace generation. As shown in Fig. 2(b), TIP does not consistently improve performance across
all difficulty levels. This leaves open the question of how to schedule reflection token generation
along the reasoning trajectory, that is, how to allocate these “resources” effectively over time while
accounting for problem difficulty. These underscore the need for more adaptive and fine-grained
strategies to control reflection token usage in order to address the resource allocation more effectively.

4 REFLECTION TOKEN SCHEDULING AS LEARNING RATE SCHEDULING IN
OPTIMIZATION

In this section, we draw a conceptual analogy between reflection token scheduling and learning rate
scheduling in optimization, aimed at deepening our understanding of reflection tokens in reasoning
and enabling more effective resource allocation. Building on this analogy, we propose a new decoding
strategy: cyclical reflection token scheduling (CyclicReflex).

Reflection tokens in the thought landscape vs. learning rates in the optimization landscape. The
role of reflection tokens in reasoning closely mirrors that of learning rates in optimization. In the
“thought landscape”, a model initiates by interpreting a question and leverages reflection tokens to
modulate its reasoning trajectory: exploring, reconsidering, and refining intermediate steps before
reaching a final answer. Likewise, in the optimization landscape, an optimizer begins from a random
initialization and relies on the learning rate to control the step size of the variable updates, gradually
converging toward an optimal solution. In both cases, a well-tuned control mechanism, reflection
tokens in reasoning or learning rates in optimization, is essential for accurate solution convergence.

Additionally, in optimization, an improperly tuned learning rate, either too small or too large, can
hinder convergence, causing the optimizer to either stagnate or diverge. This challenge in scheduling
the learning rate maps naturally onto the difficulty of scheduling reflection tokens in reasoning,
manifesting as under-reflection and over-reflection. (Under-reflection) When the model generates
too few reflection tokens, it often terminates the reasoning process prematurely, resulting in a final
answer that lacks sufficient deliberation. This behavior is analogous to optimization with a learning
rate that is too small, where the model converges too early and becomes trapped in a suboptimal
local minimum. (Over-reflection) Conversely, generating too many reflection tokens can prevent the
model from concluding its reasoning, causing it to loop or stall, e.g., repeatedly producing phrases
like “wait” without reaching a solution. This resembles optimization with an overly large learning
rate, which leads to instability and divergence rather than convergence.

To validate the analogy between reflection tokens and learning rates (too small learning rate vs.
under-reflection, and too large learning rate vs. over-reflection), we utilize the interpretability tool
introduced in (Zhou et al., 2025) to visualize the landscape of thoughts. This tool projects reasoning
step ri into a two-dimensional visual space based on the measured “distance” between each step
ri and the final answer y, providing an interpretable view of the model’s reasoning dynamics. The

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Examples of landscape of thought for under-reflection, desired-reflection, and over-reflection,
generated by DeepSeek-R1-Distill-Qwen-7B with the original decoding strategy. Each point represents a
reasoning step and is connected in the order of generation. Darker regions indicate steps with higher semantic
alignment to the correct answer.

distance metric captures the model’s uncertainty by taking the inverse of the probability of generating
the answer y conditioned on the reasoning step ri, normalized by the length of y:

d(ri,y) = pLRM(y | ri)−1/|y|, (2)

where pLRM denotes the prediction probability assigned by the LRM to the answer y given the
reasoning step ri, and |y| denotes the length of y. Fig. 3 presents a visualized reasoning trajectory
from the initial thought to the final answer under original decoding strategy, across three different
scenarios: (i) under-reflection, where too few reflection tokens lead to a reasoning trace that is
too short and results in an incorrect answer; (ii) desired reflection, which yields a well-structured
reasoning trace and a correct answer; and (iii) over-reflection, where excessive reflection tokens
cause an overly long and off-track reasoning trace, also resulting in an incorrect answer. In the
landscape, darker regions represent intermediate reasoning steps that are semantically closer to the
correct answer. That is, color intensity reflects the relative correctness of each thought along the
trajectory. As we can see, the thought landscape under under-reflection is too conservative to drive
the reasoning process away from the starting point, ultimately failing to converge to the correct final
answer. In contrast, over-reflection could enable the model to reach semantically promising regions
of the landscape, for example, a step like “Alternatively, perhaps the correct answer is ...”, which
is far away from the thinking start point and located in the darker region. However, much like an
excessively large learning rate that fails to properly control the optimization process, this leads the
model to quickly pass through the desirable state without settling there, ultimately leading to an
incorrect answer region. Moreover, we find that reflection tokens are responsible for the sharp turns
in the reasoning trajectory. By examining the sharply turning steps in over-reflection, we observe that
they are consistently initiated by reflection tokens.

Figure 4: Illustration of Cycli-
cReflex ((3)), where t denotes the
token position and δ(t) the logit
adjustment on reflection tokens,
oscillating between −A and A
with amplitude A and period C.

CyclicReflex: Cyclical logits manipulation for reflection token
scheduling. Although reflection tokens are crucial for guiding multi-
step reasoning, balancing their use remains challenging. The need
for dynamic modulation of reflection tokens closely mirrors the chal-
lenge of learning rate scheduling in optimization. As introduced
in Sec. 1, the convergence of gradient descent can be provably ac-
celerated by adopting the silver stepsize schedule, which follows
the principle of stepsize hedging (Altschuler & Parrilo, 2024; 2025).
The key algorithmic insight is to hedge between two individually
suboptimal strategies, small and large stepsizes, since the failure
modes of one are often mitigated by the strengths of the other. In
deep model training, cyclical learning rates (Smith, 2017) exemplify
this principle in practice. Rather than using a fixed learning rate, they employ a triangular waveform
to periodically alternate between large and small step sizes. This schedule allows the optimizer to
balance global exploration (enabled by large steps) with local convergence stability (provided by
smaller steps), thereby yielding a form of stepsize hedging.

Inspired by cyclical learning rates, we introduce CyclicReflex. As depicted in Fig. 4, we apply a
periodic triangular waveform to modulate the logits of reflection tokens during generation. The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

waveform is governed by two parameters: the amplitude A, which controls the strength of the logit
adjustment, and the period C, which determines the oscillation frequency. This logits manipulation
evolves over time and is both position-dependent (varying with each decoding step) and bidirectional
(allowing for the dynamic promotion or suppression of reflection token sampling based on the current
stage of the reasoning process). More concretely, CyclicReflex can be cast as the following logits
manipulation as the function of the reasoning step t

CyclicReflex : ẑt,v =

{
zt,v + δ(t) if v ∈ V̂
zt,v otherwise,

δ(t) = A

∣∣∣∣∣4 · (t− C
4
) mod C

C
− 2

∣∣∣∣∣−A (3)

where recall that the amplitude A and the period C have been previously defined as shown in Fig. 4,
mod is the modulo operation, | · | is the absolute value operation, and the other notations follow (1).
In (3), (t− C

4) mod C gives the current thought position within the cycle, and it is straightforward
to validate that δ(C/4) = A and δ(3C/4) = −A. As shown in Fig. 4, CyclicReflex implements a
representative form of hedging schedule: the increasing phase of the reflection logit adjustment δ(t)
promotes exploration by encouraging the model to transition away from its current line of thought,
while the decreasing phase fosters convergence by stabilizing the reasoning process, guiding the
model toward producing a coherent and correct final answer.

Compared to TIP (1), which applies a fixed unidirectional penalty, CyclicReflex adaptively modulates
reflection token logits with at no additional computation cost, offering finer control over reasoning.
This unified mechanism balances under- and over-reflection, yielding more robust and flexible
behavior that adapts to the model’s evolving thought process.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Data-model setups. To evaluate the effectiveness of CyclicReflex, we consider both math and
non-math benchmarks. The math datasets include MATH500 (Lightman et al., 2023) with 500
multi-step problems, AIME2024/2025 (MAA Committees) with 30 challenging problems each year,
and AMC2023 (AI-MO, 2024) covering diverse competition topics. The non-math datasets include
GPQA Diamond (Rein et al., 2024), a challenging subset of multiple-choice science questions
in biology, chemistry, and physics, and LiveCodeBench (Jain et al., 2024), a coding benchmark
from LeetCode, AtCoder, and Codeforces that evaluates code generation, repair, and execution. Our
experiments are conducted using the publicly available DeepSeek-R1-Distilled-Qwen model family
(Guo et al., 2025), which includes models with 1.5B, 7B. For comparative analysis, we also include
DeepSeek-R1-Distilled-Llama-8B, enabling a broader evaluation across different backbones.

Baseline and evaluation. Our method (CyclicReflex) is compared against two primary baselines:
TIP (Wang et al., 2025a), S1 (Muennighoff et al., 2025). In addition, we assess the compatibility
of CyclicReflex with external test-time scaling techniques, including Best-of-N (Irvine et al., 2023;
Brown et al., 2024) and Beam Search (Feng et al., 2023; Snell et al., 2024), using RLHFlow-
PRM-Deepseek-8B as the preference reward model (PRM) for scoring (Dong et al., 2024). We
use accuracy and generation length as our primary evaluation metrics. Accuracy is obtained by
rule-based extraction of the final answer against the ground truth, while generation length is the total
word count of the response. More implementation details are provided in Appendix A.

5.2 EXPERIMENT RESULTS

Overall Performance of CyclicReflex on the MATH Task. In Table 4, we show the effectiveness of
CyclicReflex across models of varying sizes (1.5B, 7B, and 8B), model families (Qwen and LLaMA),
and four widely used reasoning benchmarks: MATH500, AIME2024, AIME2025, and AMC2023. As
we can see, CyclicReflex consistently improves performance over the original LRM decoding strategy
across all models and datasets. For example, DeepSeek-R1-Distill-Llama-8B with CyclicReflex
achieves up to a 10% absolute accuracy gain on AIME2024, while DeepSeek-R1-Distill-Qwen
7B with CyclicReflex yields up to a 9% improvement on AMC2023. Additionally, these accuracy
gains are achieved without sacrificing the efficiency of reasoning generation: CyclicReflex produces
comparable reasoning traces relative to the original decoding method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Accuracy (Acc) and generation length (Len) comparison on four math reasoning benchmarks
(MATH500, AIME2024, AIME2025, and AMC2023) using DeepSeek-R1-Distilled Model: Qwen 1.5B, Qwen
7B, and Llama 8B. Each model is evaluated under four decoding strategies: Original, TIP, S1, and CyclicReflex.
The best accuracy in each setting is highlighted in bold, while the second-best is underlined.

Method MATH500 AIME2024 AIME2025 AMC2023
Acc Len Acc Len Acc Len Acc Len

DeepSeek-R1-Distill-Qwen-1.5B
Original 0.74 1253.05 0.23 3584.36 0.19 3442.07 0.63 1855.85

TIP 0.75 1206.91 0.23 3329.17 0.20 3825.17 0.63 1890.35
S1 0.73 1532.05 0.17 4112.07 0.20 3867.71 0.45 3263.75

CyclicReflex 0.77 1212.94 0.30 3547.10 0.23 3467.97 0.65 1839.23

DeepSeek-R1-Distill-Qwen-7B
Original 0.86 785.25 0.43 2878.39 0.31 3192.59 0.81 1300.53

TIP 0.87 775.77 0.43 2806.53 0.30 3107.30 0.85 1267.83
S1 0.83 1190.96 0.33 3541.10 0.33 3455.33 0.85 2158.00

CyclicReflex 0.89 777.93 0.50 2868.30 0.37 3190.33 0.90 1229.25

DeepSeek-R1-Distill-Llama-8B
Original 0.83 1196.98 0.42 3593.73 0.30 3922.41 0.81 1951.88

TIP 0.83 1080.62 0.47 3572.40 0.27 3866.00 0.85 1932.63
S1 0.78 1461.93 0.43 3742.27 0.27 4351.87 0.75 2812.75

CyclicReflex 0.85 1108.30 0.53 3454.97 0.37 3856.80 0.90 1942.40

Original
TIP

CyclicReflex
R1-Qwen-1.5B

R1-Qwen-7B
R1-Llama-8B

3800 4000 4200
Length

0.3

0.4

0.5

Ac
cu

ra
cy

4000 4500
Length

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

(a) GPQA Diamond (b) LiveCodeBench
Figure 5: Accuracy vs. generation length on (a) GPQA
Diamond and (b) LiveCodeBench. The comparison in-
cludes the original decoding, TIP, and CyclicReflex on
DeepSeek-R1-Distill-Qwen 1.5B/7B, and Llama 8B.

We further compare CyclicReflex against two
additional baselines: S1 and TIP. While S1 en-
forces the insertion of “wait” tokens at the end of
each reasoning segment, leading to significantly
longer outputs, it does not yield corresponding
accuracy improvements. On AMC2023, in fact,
S1 causes a notable performance drop, suggest-
ing that excessive reflection may lead to over-
thinking. TIP, which suppresses reflection token
usage, can also degrade performance in some
cases. For instance, TIP causes a 3% accuracy
drop on AIME2025 when applied to DeepSeek-
R1-Distill-Llama-8B, likely because it halts rea-
soning steps that are essential for solving more
complex problems.

Effectiveness of CyclicReflex on non-math
reasoning. Fig. 5 shows the relationship between accuracy and generation length on two non-math
benchmarks, GPQA Diamond and LiveCodeBench. Results are reported for multiple DeepSeek-R1-
Distill variants (Qwen-1.5B/7B, and LLaMA-8B) under original decoding, TIP, and CyclicReflex.
CyclicReflex consistently improves accuracy while maintaining response lengths comparable to TIP.
In contrast, TIP can even reduce accuracy, as seen in Fig. 5(b) for DeepSeek-R1-Distill-Qwen-7B
and LLaMA-8B on LiveCodeBench.

BoN
BS

BoN + CyclicReflex
BS + CyclicReflex

20 21 22 23
74

76

78

80

82

84

86

Ac
cu

ra
cy

Figure 6: MATH500
accuracy of DeepSeek-
1.5B under BoN/BS w/wo
CyclicReflex.

Integration with other test-time scaling methods. In Fig. 6, we further in-
vestigate the integration of CyclicReflex with other test-time scaling meth-
ods across computational budgets (20 to 23), using DeepSeek-R1-Distill-
Qwen-1.5B on MATH500. We evaluate both Best-of-N (BoN) and Beam
Search (BS), with generations scored using RLHFlow-PRM-DeepSeek-8B.
Across all budget levels, BoN and Beam Search integrated with Cycli-
cReflex consistently outperform their original counterparts, demonstrating
the general compatibility and effectiveness of our method. Moreover, un-
der fixed decoding strategies, BoN achieves higher accuracy than Beam
Search, both with and without CyclicReflex. As the computational budget
increases, the performance gap between CyclicReflex and the original
decoding narrows, highlighting that CyclicReflex offers the greatest benefit
under constrained inference budgets by enabling more efficient reflection
token allocation.

Reflection token scheduling patterns of CyclicReflex. Fig. 7 compares reflection token distributions
under original decoding, TIP, and CyclicReflex, using DeepSeek-R1-Distill-Llama-8B on AIME2024.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1k
1 2k

2 3k
3 4k

4 5k
5 6k

6 7k

Length Range

0.00

0.05

0.10

0.15

0.20

R
at

io

Reasoning trace Answer

Original
TIP
CyclicReflex

Figure 7: Reflection token dis-
tribution of DeepSeek-R1-Distill-
Llama-8B on AIME2024 under
original decoding, TIP, and Cycli-
cReflex. Each curve shows the
proportion of reflection tokens
within 1k-token segments relative
to the total generation, including
both reasoning trace and answer.

Each curve shows the proportion of reflection tokens within con-
secutive 1000-token segments relative to the total reflection count.
Original decoding exhibits a gradual early rise followed by a stable,
evenly spread pattern. TIP follows a similar trajectory but suppresses
reflection in the 0–1k range, reflecting its tendency to inhibit early
reflection. In contrast, CyclicReflex displays a cyclical hedging pat-
tern with alternating peaks and troughs within the reasoning trace,
allocating more reflection in the 1–2k and 3–4k ranges. This mod-
ulation avoids both excessive early suppression and late overuse,
leading to stronger performance on AIME2024, improving accuracy
from 0.42 (original decoding) to 0.53, demonstrating the benefit of
bidirectional, position-dependent reflection scheduling.

Visualizing CyclicReflex’s efficacy using the landscape of
thoughts. In Fig. 8, we present the landscape of thoughts generated
by DeepSeek-R1-Distill-Qwen-7B under the original and CyclicRe-
flex decoding strategies. The darkest area in the landscape represents
the correct answer, while other dark regions correspond to mislead-
ing areas that may attract the reasoning trajectory toward alternative
but incorrect answers. As shown in Fig. 8 (a), the landscape pro-
duced by CyclicReflex is more concentrated, with fewer distracting regions. This suggests that the
reasoning trajectory remains focused and is more likely to converge directly to the correct answer.

(a) CyclicReflex (b) Original

Figure 8: Landscape of thought for
DeepSeek-R1-Distill-Qwen-7B with original
and CyclicReflex decoding strategies. The
format follows Fig. 3.

In contrast, the landscape under the original decoding strat-
egy in Fig. 8 (b) is more scattered, making the model more
susceptible to misleading areas and eventually reaching
an incorrect final answer. This comparison demonstrates
that our method enhances reasoning efficiency by reduc-
ing unnecessary detours and guiding the model toward the
correct solution path more effectively.

Difficulty-level accuracies, self-correction, hyperpa-
rameter sensitivity, and examples of CyclicReflex. As
shown in Fig. A1 of Appendix B, unlike TIP, which only
improves accuracy on the Hard problems of MATH500,
CyclicReflex enhances accuracy across all difficulty levels.
Fig. A2 of Appendix B further demonstrates that when pro-
vided with an incorrect reasoning trace as a prompt, CyclicReflex can correct a larger proportion of
erroneous traces than TIP or the original decoding strategy, indicating enhanced self-correction ability.
In Fig. A3 of Appendix B, we summarize the sensitivity of CyclicReflex to key hyperparameters: the
period T has the strongest influence on accuracy, while the amplitude A mainly controls reasoning
length. Table A1 in Appendix B shows that, compared with waveform design, the hedging pattern
plays a more critical role. Finally, Table A2 in Appendix C provides generation examples under both
the original and CyclicReflex decoding.

6 CONCLUSION

We introduce the problem of resource allocation in LRMs, focusing on the challenge of managing
reflection tokens during test-time generation. We show that both under-reflection and over-reflection,
stemming from insufficient or excessive use of reflection tokens, can severely degrade reasoning
performance. To address this, we draw a conceptual analogy between reflection token scheduling and
learning rate control in optimization, and propose CyclicReflex, a training-free decoding strategy that
cyclically modulates reflection token logits using a triangular waveform. CyclicReflex dynamically
adapts to the evolving stage of reasoning, enabling more balanced token allocation. Extensive experi-
ments across multiple reasoning benchmarks demonstrate that CyclicReflex consistently improves
accuracy, enhances self-correction capability, and integrates seamlessly with existing test-time scaling
methods. Our work highlights the critical role of reflection tokens as a valuable resource for LRMs
and opens new avenues for principled, adaptive reasoning control. The use of LLM, limitations and
broader impacts are further discussed in Appendix D, Appendix E and Appendix F.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

AI-MO. Amc 2023, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-amc.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and
mirror descent. arXiv preprint arXiv:1407.1537, 2014.

Jason M Altschuler and Pablo A Parrilo. Acceleration by stepsize hedging: Silver stepsize schedule
for smooth convex optimization. Mathematical Programming, pp. 1–14, 2024.

Jason M Altschuler and Pablo A Parrilo. Acceleration by stepsize hedging: Multi-step descent and
the silver stepsize schedule. Journal of the ACM, 72(2):1–38, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to nesterov’s accelerated
gradient descent. arXiv preprint arXiv:1506.08187, 2015.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-thought for
reasoning large language models. arXiv preprint arXiv:2503.09567, 2025a.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025b.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Vito Ding et al. Llm post-training: A deep dive into reasoning large language models. arXiv preprint
arXiv:2502.21321, 2025.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei
Korshuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, et al. Rewarding chatbots for real-world
engagement with millions of users. arXiv preprint arXiv:2303.06135, 2023.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Hyunbin Jin, Junwoo Yeom, Soobin Bae, and Taesup Kim. “well, keep thinking”: Enhancing llm
reasoning with adaptive injection decoding. arXiv preprint arXiv:2503.10167, 2025.

10

https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
and Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms. arXiv e-prints, pp.
arXiv–2502, 2025a.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr, Salman Khan, and Fahad Shahbaz Khan. Llm
post-training: A deep dive into reasoning large language models. arXiv preprint arXiv:2502.21321,
2025b. URL https://arxiv.org/abs/2502.21321.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhijiang
Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A survey of reasoning large
language models. arXiv preprint arXiv:2502.17419, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

MAA Committees. Aime problems and solutions. https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate o
(1/k2). In Dokl akad nauk Sssr, volume 269, pp. 543, 1983.

OpenAI. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024. URL https://arxiv.
org/abs/2412.16720.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-
thinking: An empirical study of reasoning length and correctness in llms. arXiv preprint
arXiv:2505.00127, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Thoughts are all
over the place: On the underthinking of o1-like llms. arXiv preprint arXiv:2501.18585, 2025a.

11

https://arxiv.org/abs/2502.21321
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuxuan Wang, Kai Zhang, Zhiwei Wang, Juntao Li, Dian Yu, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Speculative thinking: Enhancing small-model reasoning with large model guidance at inference
time. arXiv preprint arXiv:2504.12329, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems (NeurIPS), 2022. URL https:
//arxiv.org/abs/2201.11903.

Tong Wu, Chong Xiang, Jiachen T Wang, and Prateek Mittal. Effectively controlling reasoning
models through thinking intervention. arXiv preprint arXiv:2503.24370, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong
Bai, Jitendra Malik, Saurabh Gupta, et al. Alphaone: Reasoning models thinking slow and fast at
test time. arXiv preprint arXiv:2505.24863, 2025.

Andrew Zhou, Yuxuan Wang, Kai Zhang, Zhiwei Wang, Juntao Li, Dian Yu, Zhaopeng Tu, Haitao
Mi, and Dong Yu. Landscape of thoughts: Visualizing the reasoning process of large language
models. arXiv preprint arXiv:2503.22165, 2025.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

12

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILED EXPERIMENT SETUPS

A.1 COMPUTING RESOURCES

All experiments are conducted on a single node equipped with 8 NVIDIA A6000 GPUs.

A.2 DECODING DETAILS

During generation, we employ the vLLM framework to enable efficient and scalable inference.
The decoding configuration is as follows: the maximum number of new tokens is set to 8192; the
top-p value is set to 0.95; and the temperature is set to 0.6. Top-p sampling selects tokens from the
smallest possible set whose cumulative probability exceeds p, effectively filtering out low-probability
candidates to maintain generation quality while allowing diversity. A temperature of 0.6 sharpens
the token probability distribution, promoting more deterministic and focused outputs by reducing
sampling randomness.

For CyclicReflex on the MATH500 and AMC2023 datasets, we perform a grid search over A ∈ [1, 10]
and C ∈ [200, 1000]. On the AIME2024 and AIME2025 datasets, we perform a grid search over
A ∈ [1, 10] and C ∈ [1000, 2000]. For TIP, we conduct a grid search with A ∈ [−10,−1] and
C0 ∈ [100, 1000]. For S1, we forcefully insert the reflection token “Wait” after the model generates
</think>, prompting continued reasoning. For Silver stepsize schedule, we perform a grid search with
γ ∈ (1, 2].

In the Best-of-N setting, the LRM generates multiple independent candidate answers, and the PRM
selects the most preferred one based on final-answer evaluation. For Beam Search, we perform a
step-by-step search guided by PRM feedback to optimize cumulative reward. Throughout decoding,
we use multiple candidate beams with a fixed beam width of 4.

A.3 PROMPT DETAILS

We present the prompt used to evaluate the reasoning ability of the LRM. For each question, we
replace the {question} placeholder in the User section of the prompt. After the Assistant generates
the reasoning trace and the final answer ({Generation}), we follow the approach of Yang et al.
(2024) to first extract the final answer and then apply rule-based matching to assess its correctness.

Evaluation prompt

System:
You are a helpful AI bot that answers questions for a user. Keep your response short and direct.

User:
Question: {question}
Let’s reason this step by step.

Assistant:
Answer: {generation}

B ADDITIONAL EXPERIMENT RESULTS

Accuracy of CyclicReflex at different difficulty levels on MATH500. In Fig. A1, we categorize
the MATH500 dataset by difficulty level to closely examine where the accuracy improvements from
CyclicReflex are most pronounced. The grouping strategy follows that used in Fig. 2(a), and the
accuracy is reported in a manner consistent with Fig. 2(b). For comparison, we also include TIP as a
baseline. We observe that CyclicReflex consistently improves accuracy across all difficulty levels
(Easy, Medium, and Hard) whereas TIP primarily yields gains on Hard problems and even leads
to performance degradation on Easy and Medium ones. This contrast stems from the bidirectional

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Easy Medium Hard
Difficulty

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.92

0.71

0.21

0.91

0.68

0.40

0.93

0.76

0.50

Original
TIP
CyclicReflex

Figure A1: Improvement of DeepSeek-R1-Distill-Qwen-7B on MATH500 by TIP and CyclicReflex across
difficulty levels (Easy, Medium, Hard), following Fig. 2 (a) and (b).

nature of CyclicReflex, which allows for dynamic promotion or suppression of reflection token
sampling based on the current stage of the reasoning process. Such flexibility enables CyclicReflex to
better adapt to problem difficulty, leading to more effective resource allocation and improved overall
performance.

Improved self-correction with CyclicReflex. We also find that CyclicReflex exhibits a stronger
capacity for self-correction during reasoning. To evaluate this property, we select 50 incorrectly
answered problems from the MATH500 dataset, originally generated by DeepSeek-R1-Distill-Qwen-
7B. For each incorrect case, we extract the model’s reasoning trace and truncate it to three different
lengths (25%, 50%, and 100% of the full trace), which are then reused as misleading prompts to
guide a new round of reasoning.

Under each prompt condition, we prompt the same model (DeepSeek-R1-Distill-Qwen-7B) to re-
answer the question five times and report the average accuracy. As shown in Fig. A2(a), CyclicReflex
significantly outperforms both the original decoding and the TIP baseline across all trace lengths.

0% 25% 50% 100%
Incorrect Trace (%)

0.4

0.5

0.6

Ac
cu

ra
cy

Original
CyclicReflex
TIP

0% 25% 50% 100%
Incorrect Trace (%)

200

400

600

800

1000

G
en

er
at

io
n

Le
ng

th

Original
CyclicReflex
TIP

Q: For how many two-digi t pr imes is the sum of the digi ts equal to 8?
Let's r eason this step by step. Answer : <th ink>Alr ight, I need to f igure out how
many two-digi t pr imes have digi ts that add up to 8...... Wait, but 17 is a
two-digi t pr ime w ith digi ts adding up to 8. So that's one....... So the val id
pr imes are 17, 53, 71, and 97. That makes a total of four two-digi t pr imes
where the sum of the digi ts equals 8.

A: I t h ink I 've got i t r i ght ! </th ink> The f inal answer is \boxed{4}.

Input

Or iginal

Cyclic
Reflex

A: But wai t , let me double-check each number to ensure they'r e pr ime. 17:
Yes, i t 's a pr ime. 53: Yes, i t 's a pr ime. 71: Yes, i t 's a pr ime. 97: Pr im e, digi t s 9 +
7 = 16. Wai t , t hat 's not 8. Wai t , did I m ake a m istake her e?......I think I must
have made a mistake ear l ier by including 97, which actually sums to 16. So the
cor rect count is three. </th ink> The f inal answer is $\boxed{3}$

Quest ion +
Incor r ect

t r ace

Incor r ect !

Cor r ect !

(a) Accuracy (b) Generation length (c) Example

Figure A2: (a)-(b) Accuracy and generation length on MATH500 with DeepSeek-R1-Distill-Qwen-7B using
Original, TIP, and CyclicReflex decoding for questions combined with incorrect reasoning traces of different
lengths. (c) Example for a question with 100% incorrect reasoning under Original and CyclicReflex decoding.

Notably, the performance gap increases with longer misleading traces, indicating that CyclicReflex
enhances the model’s ability to resist and correct earlier reasoning errors. In addition, this improved
self-correction does not come at the cost of generation efficiency. As shown in Fig. A2(b), the
generation lengths under CyclicReflex remain comparable to those of the original decoding strategy.
In contrast, TIP tends to suppress reflection token usage, which hampers the model’s ability to
re-evaluate its own reasoning and results in markedly lower accuracy. Finally, Fig. A2(c) provides
a concrete example. Given a MATH500 question with a 100% incorrect reasoning trace in which
the model incorrectly claims that the digits of 17, 53, 71, and 97 sum to 8, the original decoding
strategy fails to correct the error and outputs the wrong answer, 4. In contrast, CyclicReflex initiates
a double-check, correctly identifies the error (specifically excluding 97), and ultimately outputs the
correct answer, 3.

Ablation study on CyclicReflex’s hyperparameter. In Fig. A3, we analyze the effect of CyclicRe-
flex’s key hyperparameters on final performance. Based on Fig. 4, we focus on three parameters: the
amplitude A, the period C, and an additional controlling factor, the initial phase shift, denoted by ϕ.
As shown in Fig. A3(a), the period C has a more pronounced impact on accuracy than the amplitude

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A. In particular, when C = 600, the model achieves the highest accuracy across all tested amplitudes
(A = 5.0, 7.0, and 9.0). In addition, Fig. A3(b) and (c) show that the amplitude A primarily influ-
ences the number of reflection tokens and the overall generation length. Specifically, increasing A
leads to more frequent reflection token generation and longer output sequences, confirming that A
effectively controls the model’s propensity for extended reasoning. Finally, Fig A3(d) examines the
effect of the initial phase shift ϕ by measuring the number of additional correct answers relative to
the original decoding strategy. We find that ϕ = 0 yields the best performance (i.e., with the pattern
in Fig. 4), indicating that encouraging reflection token generation early in the reasoning process is
beneficial. As reasoning progresses, gradually suppressing reflection token logits helps the model
converge more efficiently.

200 400 600 800 1000
C

1.
0

3.
0

5.
0

7.
0

9.
0

A

88.6 87.2 87.0 88.4 88.4

87.8 87.8 87.6 87.8 88.2

88.2 87.6 89.2 87.6 87.6

87.0 86.8 89.2 87.2 87.0

86.6 86.2 89.2 86.6 86.4

200 400 600 800 1000
C

1.
0

3.
0

5.
0

7.
0

9.
0

A
767 795 810 803 807

794 799 811 785 808

803 794 778 825 802

805 784 850 860 820

832 827 872 846 850

200 400 600 800 1000
C

1.
0

3.
0

5.
0

7.
0

9.
0

A

13 15 14 15 14

13 14 14 13 14

14 14 14 16 15

15 15 17 17 17

19 18 18 22 24

0 1
4

1
2

3
4

5.0

7.5

10.0

12.5

Im
pr

ov
em

en
t

(a) Accuracy (b) Reflection token count (c) Generation length (d) Shift

Figure A3: (a)–(c) Accuracy, reflection token count, and generation length heatmaps of DeepSeek-R1-
Distill-Qwen-7B on MATH500 under different amplitude values A and period values C. (d) Improvement of
CyclicReflex over the original decoding strategy under different initial phase shifts ϕ, measured as the number
of additional correct answers.

Table A1: Performance of Orig-
inal, TIP, Sin, and CyclicReflex
on AIME2024 with DeepSeek-
R1-Distill-Llama-8B. Format fol-
lows Table,4.

Method Acc Len
Origin 0.42 3593.73

TIP 0.45 3872.93
Sin 0.51 3628.37

CyclicReflex 0.53 3454.97

Impact of waveform design and hedging schedule. In Table A1,
we investigate the impact of different waveform choices in reflection
token scheduling. Specifically, we replace the triangular wave in
Eq. (3) with a sine function (Sin), which also satisfies the hedging
schedule property, and evaluate the performance on AIME2024
using DeepSeek-R1-Distill-Llama-8B. The results show that both
the sine schedule and CyclicReflex outperform TIP and the original
decoding strategy, with the two achieving comparable performance.
This suggests that while the exact waveform design has only a minor
effect, adopting a hedging schedule yields substantial improvements
in accuracy and efficiency.

C GENERATION EXAMPLES

In Table A2-A5, we present the answers generated for questions in MATH500 under both the original
decoding strategy and CyclicReflex. For better comparison, we also include the ground truth labels.
Compared to the original decoding strategy, CyclicReflex demonstrates deeper reasoning and avoids
prematurely terminating the thinking process. For instance, in Q1, the original answer is given as(
14
5

)
−
(
8
5

)
−
(
6
5

)
, whereas CyclicReflex continues simplifying the expression to arrive at the final

result. Moreover, CyclicReflex exhibits a better understanding of the problem semantics. In Q2, for
example, the original decoding misinterprets the notion of projection, leading to an incorrect answer.
Finally, CyclicReflex is more adept at identifying key problem elements. In Q3, the original response
overlooks the trap involving x = 9, while CyclicReflex correctly accounts for this subtlety.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table A2: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

Q1: A Senate committee has 8 Republicans and 6 Democrats. In how many ways
can we form a subcommittee of 5 members that has at least one member from each party?

Label: 1940
Original: <think> Okay, so I have this problem where there’s a Senate committee with 8 Republicans and 6 Democrats. I need to figure out

how many ways we can form a subcommittee of 5 members that has at least one member from each party. Hmm, let’s break this
down.
First, I know that the total number of people on the committee is 8 + 6, which is 14. If I were to form a subcommittee of 5 without
any restrictions, the number of ways would just be the combination of 14 taken 5 at a time, right? So that’s C(14,5). But the
problem says there has to be at least one from each party, so I can’t have all Republicans or all Democrats in the subcommittee.
So, I think I need to subtract the cases where the subcommittee is all Republicans or all Democrats. Let me calculate those
separately. For all Republicans, it’s C(8,5) because there are 8 Republicans. For all Democrats, it’s C(6,5) since there are 6
Democrats.
Putting it all together, the total number of valid subcommittees should be C(14,5) minus C(8,5) minus C(6,5). Let me make sure
that makes sense. By subtracting the all-Republican and all-Democrat cases from the total, I’m left with only those subcommittees
that have at least one from each party. Yeah, that seems right.
I should probably calculate these values to get the exact number, but I think the reasoning is solid. So the formula is C(14,5) -
C(8,5) - C(6,5). I’ll go with that.
</think>
The number of ways is calculated by subtracting the all-Republican and all-Democrat subcommittees from the total.
Total ways:

(
14
5

)
−
(
8
5

)
−
(
6
5

)
Answer:

(
14

5

)
−
(
8

5

)
−
(
6

5

)
CyclicReflex: <think> Okay, so I have this problem where there’s a Senate committee with 8 Republicans and 6 Democrats. I need to figure out

how many ways we can form a subcommittee of 5 members that has at least one member from each party. Hmm, let’s break this
down.
First, I know that the total number of people on the committee is 8 + 6, which is 14. If I were to form a subcommittee of 5 without
any restrictions, the number of ways would just be the combination of 14 taken 5 at a time, right? So that’s C(14,5). But the
problem says there has to be at least one from each party, so I can’t have all Republicans or all Democrats in the subcommittee.
So, I think I need to subtract the cases where the subcommittee is all Republicans or all Democrats. Let me calculate those
separately. For all Republicans, it’s C(8,5) because there are 8 Republicans. For all Democrats, it’s C(6,5) since there are 6
Democrats.
But hold on, I should make sure these numbers are correct. C(8,5) is the number of ways to choose 5 Republicans out of 8, and
C(6,5) is choosing 5 Democrats out of 6. I think that’s right.
So, the total number of valid subcommittees would be C(14,5) minus C(8,5) minus C(6,5). Let me compute those values.
C(14,5) is 2002, C(8,5) is 56, and C(6,5) is 6. So, 2002 - 56 - 6 equals 1940. That should be the number of ways to form the
subcommittee with at least one from each party.
</think>
The number of ways to form a subcommittee of 5 members with at least one member from each party is calculated by subtracting
the all-Republican and all-Democrat subcommittees from the total number of possible subcommittees.
- Total subcommittees:

(
14
5

)
= 2002

- All-Republican subcommittees:
(
8
5

)
= 56

- All-Democrat subcommittees:
(
6
5

)
= 6

Thus, the number of valid subcommittees is 2002− 56− 6 = 1940.
Answer: 1940

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A3: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

Q2: Find the projection of a onto b =


2

6

3

, if a · b = 8.

Label:



16

49

48

49

24

49


Original: <think> Okay, so I need to find the projection of vector a onto vector b. I remember that the formula for the projection of a onto

b is (a · b) divided by the magnitude of b squared, and then multiplied by vector b. But wait, in this case, they only gave me that
the dot product of a and b is 8. Hmm, so maybe I don’t need the entire vector b, just the scalar projection?
Let me think. The formula for the scalar projection is (a · b divided by the magnitude of b. Since they already gave me a · b = 8,
I just need to find the magnitude of b. The vector b is [2, 6, 3], so its magnitude is the square root of (22 + 62 + 32). Calculating
that, 22 = 4, 62 = 36, and 32 = 9. Adding those up gives 4+ 36+ 9 = 49. The square root of 49 is 7. So the magnitude of b is 7.
Therefore, the scalar projection of a onto b is 8 divided by 7, which is 8/7. I think that’s it. The problem didn’t specify whether
they wanted the vector projection or just the scalar, but since they only gave me a scalar product, I guess it’s the scalar projection
they’re asking for. So the answer should be 8/7.
</think>
The projection of a onto b is given by a·b

∥b∥ . Since a · b = 8 and ∥b∥ = 7, the projection is 8
7 .

Answer:
8

7
CyclicReflex: <think> Okay, so I need to find the projection of vector a onto vector b. I remember that the formula for the projection of a onto

b is a·b
∥b∥2 multiplied by vector b. But wait, in this case, they only gave me that the dot product of a and b is 8. Hmm, so maybe I

don’t need the entire vector b, just the scalar projection?
Wait, no, the question says “find the projection of a onto b,” which usually refers to the vector projection. The formula for the
vector projection is

(
a·b
∥b∥2

)
b. But since I don’t have ∥b∥, maybe I can just express it in terms of the given dot product and the

magnitude of b.
Alternatively, maybe the question is asking for the scalar projection, which is just a·b

∥b∥ . But they gave me a · b = 8, but I don’t

have ∥b∥. Let me calculate ∥b∥ first. The magnitude of b is
√
22 + 62 + 32 =

√
4 + 36 + 9 =

√
49 = 7. Oh, that’s nice, it’s 7.

So if I need the vector projection, it’s
(
8/72

)
b, which is (8/49)[2, 6, 3]. That would give me [16/49, 48/49, 24/49]. Alternatively,

if it’s the scalar projection, it’s 8/7. But the question says “projection,” not specifying vector or scalar, but since they gave the
vector b, I think they want the vector projection. So the answer should be [16/49, 48/49, 24/49].
</think>
The projection of vector a onto b is given by: projba =

(
a·b
∥b∥2

)
b

Given:
- a · b = 8

- b =

(
2
6
3

)
First, calculate ∥b∥: ∥b∥ =

√
22 + 62 + 32 =

√
4 + 36 + 9 =

√
49 = 7

Then, ∥b∥2 = 72 = 49

Now substitute: projba =
(

8
49

)(2
6
3

)
=


16
49
48
49
24
49



Answer:


16
49
48
49
24
49



17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table A4: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

Q3: Solve
|x2 − 81|
x2 − 36x

< 0

Label: (0, 9) ∪ (9, 36)

Original: <think> Okay, so I have this inequality to solve: |x2−81|
x2−36x < 0. Hmm, let me try to figure this out step by step.

First, I know that for a fraction to be less than zero, the numerator and denominator must have opposite signs. That means either
the numerator is positive and the denominator is negative, or the numerator is negative and the denominator is positive. But wait,
the numerator here is an absolute value, right? So |x2 − 81| is always non-negative, meaning it’s either positive or zero. That
means the numerator can’t be negative. So the only possibility is that the numerator is positive and the denominator is negative.
Wait, but the numerator is |x2 − 81|, which is zero when x2 = 81, so x = 9 or x = −9. At those points, the numerator is zero,
making the whole fraction zero, which doesn’t satisfy the inequality because it’s less than zero, not equal to zero. So we can ignore
those points for now.
So, focusing on when the denominator is negative. The denominator is x2 − 36x, which I can factor as x(x − 36). So, the
denominator is negative when x(x− 36) < 0. Let’s solve that inequality.
To find where x(x− 36) < 0, I can consider the critical points where the expression equals zero, which are x = 0 and x = 36.
These points divide the number line into intervals. I’ll test each interval:
1. When x < 0, say x = −1: (−1)(−1 − 36) = (−1)(−37) = 37, which is positive. 2. When 0 < x < 36, say x = 18:
18(18− 36) = 18(−18) = −324, which is negative. 3. When x > 36, say x = 37: 37(37− 36) = 37(1) = 37, which is positive.
So, the denominator is negative only when 0 < x < 36.
But wait, I also need to make sure that the denominator isn’t zero because division by zero is undefined. So x can’t be 0 or 36.
Now, going back to the original inequality, since the numerator is always non-negative, the fraction will be negative only when
the denominator is negative. So, the solution should be where the denominator is negative, excluding the points where it’s zero.
Therefore, the solution is 0 < x < 36, excluding x = 0 and x = 36. But wait, x = 0 is already excluded because the interval
starts at 0, but not including 0. Similarly, x = 36 is not included because the interval ends at 36, not including it.
Wait, but I should also check if there are any other restrictions. For example, when x = 9, the numerator becomes zero, making
the fraction zero, which doesn’t satisfy the inequality. Similarly, when x = −9, but that’s outside the interval we found, so it’s not
part of the solution.
So, putting it all together, the solution to the inequality is all real numbers x such that 0 < x < 36, excluding x = 0 and x = 36,
but since those points are already excluded from the interval, the solution is simply 0 < x < 36.
</think>
The solution to the inequality |x2−81|

x2−36x < 0 is x in the interval (0, 36).
Answer: (0, 36)

CyclicReflex: <think> Okay, so I have this inequality to solve: |x2−81|
x2−36x < 0. Hmm, let me try to figure this out step by step.

First, I know that for a fraction to be less than zero, the numerator and denominator must have opposite signs. That means either
the numerator is positive and the denominator is negative, or the numerator is negative and the denominator is positive. But wait,
the numerator here is an absolute value, right? So |x2 − 81| is always non-negative, meaning it’s either positive or zero. That
means the numerator can’t be negative. So the only possibility is that the numerator is positive and the denominator is negative.
Wait, but the numerator is |x2 − 81|, which is zero when x2 = 81, so x = 9 or x = −9. At those points, the numerator is zero,
making the whole fraction zero, which doesn’t satisfy the inequality because it’s less than zero, not equal to zero. So we can ignore
those points for now.
So, focusing on when the denominator is negative. The denominator is x2 − 36x, which I can factor as x(x − 36). So, the
denominator is negative when x(x− 36) < 0. Let’s solve that inequality.
To find where x(x− 36) < 0, I can consider the critical points where the expression equals zero, which are x = 0 and x = 36.
These points divide the number line into intervals. I’ll test each interval:
1. When x < 0, say x = −1: (−1)(−1 − 36) = (−1)(−37) = 37, which is positive. 2. When 0 < x < 36, say x = 18:
18(18− 36) = 18(−18) = −324, which is negative. 3. When x > 36, say x = 37: 37(37− 36) = 37(1) = 37, which is positive.
So, the denominator is negative only when 0 < x < 36.
Now, I also need to make sure that the denominator isn’t zero, so x ̸= 0 and x ̸= 36. So, the solution so far is 0 < x < 36. But
wait, I should also consider the numerator |x2 − 81|. Since it’s an absolute value, it’s always non-negative, so it’s zero only at
x = 9 and x = −9. But in the interval 0 < x < 36, x = 9 is within this interval, so at x = 9, the numerator is zero, making the
entire fraction zero, which doesn’t satisfy the inequality. So, I need to exclude x = 9 from the solution.
Wait, but let me double-check. If x = 9, then the numerator is zero, so the fraction is zero, which is not less than zero. So, x = 9
should not be included. But in the interval 0 < x < 36, excluding x = 9, the fraction is negative everywhere else because the
numerator is positive and the denominator is negative.
Wait, but hold on, when x is between 0 and 9, let’s pick x = 1, then |12−81| = 80, and the denominator 12−36·1 = 1−36 = −35,
so 80/(−35) is negative. Similarly, between 9 and 36, say x = 18, |182 − 81| = |324 − 81| = 243, and denominator
182 − 36 · 18 = 324− 648 = −324, so 243/(−324) is negative. So, in both sub-intervals, the fraction is negative.
So, the solution is 0 < x < 36, excluding x = 9. But wait, at x = 9, the numerator is zero, so the fraction is zero, which is not
less than zero. So, we exclude x = 9. Therefore, the solution is 0 < x < 9 or 9 < x < 36.
Let me just make sure there are no other points where the denominator is zero or the numerator is zero. The denominator is zero at
x = 0 and x = 36, which we’ve already excluded. The numerator is zero at x = 9 and x = −9. x = −9 is not in the interval
0 < x < 36, so we don’t have to worry about that in this case.
So, putting it all together, the solution to the inequality is x in the interval (0, 9) ∪ (9, 36).
</think>
The solution set is x in the interval (0, 9) ∪ (9, 36).
Answer: (0, 9) ∪ (9, 36)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table A5: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

Q4: Find sin 20◦ sin 40◦ sin 60◦ sin 80◦ sin 100◦ sin 120◦ sin 140◦ sin 160◦.

Label: 9
256

Original: <think> Okay, so I have this problem where I need to find the product of several sine terms: sin 20◦, sin 40◦, sin 60◦, sin 80◦,
sin 100◦, sin 120◦, sin 140◦, and sin 160◦. Hmm, that’s a lot of sines multiplied together. I remember that sometimes products of
sines can be simplified using trigonometric identities, but I’m not exactly sure which ones apply here. Let me think.
First, I notice that some of these angles are related. For example, sin 100◦ is the same as sin(180◦ − 80◦), which is sin 80◦.
Similarly, sin 120◦ is sin(180◦ − 60◦), so that’s sin 60◦. Wait, but sin 60◦ is already in the list, so maybe that’s not helpful. Let
me list all the angles: 20◦, 40◦, 60◦, 80◦, 100◦, 120◦, 140◦, 160◦.
I can pair some of these. For instance, sin 100◦ is sin 80◦, as I thought, and sin 160◦ is sin 20◦. Similarly, sin 140◦ is sin 40◦, and
sin 120◦ is sin 60◦. So, actually, each of these angles from 20◦ up to 80◦ has a corresponding angle from 100◦ up to 160◦ that is
supplementary, meaning their sines are equal. So, the product is actually (sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦)2 because each term
from 20◦ to 80◦ is squared when considering their supplementary counterparts.
Wait, no, let me check. The original list has eight terms, but when pairing, each pair gives the same sine value, so it’s
like (sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦)2. But let me confirm: sin 100◦ = sin 80◦, sin 120◦ = sin 60◦, sin 140◦ = sin 40◦,
sin 160◦ = sin 20◦. So, yes, the product becomes (sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦)2.
Now, I can compute this product step by step. First, let’s compute sin 60◦, which is a known value:

√
3/2. So, that’s straightforward.

Now, the remaining terms are sin 20◦, sin 40◦, and sin 80◦. I remember there are product identities for multiple angles, maybe
using the sine of multiple angles or product-to-sum formulas. Alternatively, perhaps using complex numbers or roots of unity.
Wait, maybe there’s a formula for the product of sines of angles in arithmetic progression.
I recall that for n terms, the product of sin

(
kπ/(2n)

)
for k = 1 to n− 1 is

√
n/2n−1. But I’m not sure if that applies here. Let

me think. Alternatively, I can use the identity for the product of sines of angles that are in a certain pattern.
Wait, another approach: using the identity that sin θ = cos(90◦− θ). So, sin 80◦ = cos 10◦, sin 40◦ = cos 50◦, sin 20◦ = cos 70◦.
Hmm, not sure if that helps directly.
Alternatively, perhaps using the multiple-angle formula for sine. Let’s consider sin 5θ or something. Wait, maybe using the
identity for sin 5θ in terms of sin θ. But that might be complicated.
Wait, maybe using the identity that the product of sines can be expressed as a fraction involving powers of 2 and products of
cosines. Alternatively, perhaps I can use the identity that the product of sin θ for θ = 20◦, 40◦, 60◦, 80◦ is equal to something
specific.
Wait, I think I remember that the product sin 20◦ sin 40◦ sin 60◦ sin 80◦ is equal to

√
3/16. Let me check that. If that’s the case,

then the square of that would be (
√
3/16)2 = 3/256. But I’m not entirely sure. Let me try to compute it step by step.

Alternatively, perhaps using the identity that the product of sines can be expressed as a sum, but that might not be straightforward.
Wait, another approach: using the identity that the product sinA sinB = [cos(A−B)− cos(A+B)]/2. Maybe I can apply this
iteratively.
Let me try to compute sin 20◦ sin 40◦ first. Using the identity, that’s [cos(20◦)− cos(60◦)]/2. cos 20◦ is approximately 0.9397,
and cos 60◦ is 0.5, so [0.9397− 0.5]/2 ≈ 0.21985.
Now, multiply this by sin 60◦, which is

√
3/2 ≈ 0.8660. So, 0.21985 · 0.8660 ≈ 0.1902.

Next, multiply by sin 80◦, which is approximately 0.9848. So, 0.1902 · 0.9848 ≈ 0.1873.
Wait, but I thought the product sin 20◦ sin 40◦ sin 60◦ sin 80◦ was

√
3/16 ≈ 0.10825. Hmm, my approximate calculation gave

me around 0.1873, which is higher. Maybe my approach is wrong.
Wait, perhaps I should use exact values. Let me try again.
We know that sin 60◦ =

√
3/2. Now, let’s consider the product sin 20◦ sin 40◦ sin 80◦. I remember that sinA sin(60◦ −

A) sin(60◦ +A) = sin 3A
4 . If A = 20◦, then sin 20◦ sin 40◦ sin 80◦ = sin 60◦

4 =
√
3/2
4 =

√
3
8 . Yes, that’s correct.

So, the product sin 20◦ sin 40◦ sin 60◦ sin 80◦ is (sin 20◦ sin 40◦ sin 80◦) sin 60◦ =
√
3
8 ·

√
3
2 = 3

16 .
Wait, that makes sense. So, the product sin 20◦ sin 40◦ sin 60◦ sin 80◦ is 3/16.
Then, since the original problem’s product is (sin 20◦ sin 40◦ sin 60◦ sin 80◦)2, that would be (3

16)
2 = 9

256 .
Wait, but let me make sure. The original product is sin 20◦ sin 40◦ sin 60◦ sin 80◦ sin 100◦ sin 120◦ sin 140◦ sin 160◦, which we
paired as (sin 20◦ sin 40◦ sin 60◦ sin 80◦)2 because each term from 20° to 80° has a supplementary angle equal to another term in
the list. So, the product is indeed (sin 20◦ sin 40◦ sin 60◦ sin 80◦)2 = (3/16)2 = 9/256.
Wait, but when I calculated the approximate product, I got around 0.1873, which is approximately 3/16 ≈ 0.1875. So that
matches. Therefore, the square would be (3/16)2 = 9/256.
So, the final answer should be 9/256.
</think>
The product simplifies by recognizing that each sine term from 20◦ to 80◦ pairs with its supplementary angle, resulting in the
square of the product of these terms. Using known identities, the product of sin 20◦, sin 40◦, sin 60◦, and sin 80◦ is

√
3/8.

Squaring this gives (
√
3/8)2 = 3/16. However, upon re-evaluating, the correct product of all eight terms is actually (

√
3/8)2 =

3/256. However, upon re-evaluating, the correct product of all eight terms is actually (
√
3/16)2 = 3/256.

Answer:
3

256

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

CyclicReflex: <think> Okay, so I have this problem where I need to find the product of several sine terms: sin 20◦, sin 40◦, sin 60◦, sin 80◦,
sin 100◦, sin 120◦, sin 140◦, and sin 160◦. Hmm, that’s a lot of sines multiplied together. I remember that sometimes products of
sines can be simplified using trigonometric identities, but I’m not exactly sure which ones apply here. Let me think.
First, I notice that some of these angles are related. For example, sin 100◦ is the same as sin

(
180◦ − 80◦

)
, which is sin 80◦.

Similarly, sin 120◦ is sin
(
180◦ − 60◦

)
, so that’s sin 60◦. Wait, but sin 60◦ is already in the list, so maybe that’s not helpful. Let

me list all the angles: 20◦, 40◦, 60◦, 80◦, 100◦, 120◦, 140◦, 160◦.
I can pair some of these. For instance, sin 100◦ is sin(80◦), as I thought, and sin 160◦ is sin(20◦). Similarly, sin 140◦ is sin(40◦),
and sin 120◦ is sin(60◦). So, actually, each of these angles from 20◦ up to 80◦ has a corresponding angle from 100◦ up to 160◦

that is supplementary, meaning their sines are equal. So, the product is actually [sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦
]2

because each
term from 20◦ to 80◦ is squared when considering their supplementary counterparts.
So, the original product simplifies to [sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦

]2
. Now, I need to compute this square. Maybe I can

compute the product inside the square first and then square the result.
I remember that sin 60◦ is

√
3
2 , which is approximately 0.866, but I’m not sure if that helps directly. Let me think about other

identities. There’s a product formula for multiple sine terms, but I can’t recall it exactly. Alternatively, I might use complex
numbers or roots of unity, but that might be too advanced for now.
Wait, I think there’s a formula for the product of sines of equally spaced angles. Let me try to recall. For example, the product
sin θ · sin(θ + ϕ) · . . . where ϕ is a common difference. But I’m not sure if that applies here.
Alternatively, I can use the identity that relates the product of sines to a sum, but I’m not sure how to apply that here. Maybe
another approach: using the identity sinA sinB = cos(A−B)−cos(A+B)

2 . But with four terms, that might get complicated.
Wait, perhaps I can pair the terms in a way that makes it easier. Let me pair sin 20◦ with sin 80◦, and sin 40◦ with sin 60◦, leaving
sin 60◦ as is. So, [sin 20◦ sin 80◦] · [sin 40◦ sin 60◦] · sin 60◦. Hmm, but I’m not sure if that helps.
Wait, I think sinA sin(60◦ − A) sin(60◦ + A) = sin 3A

4 . Is that correct? Let me test with A = 20◦. Then,
sin 20◦ sin 40◦ sin 80◦ = sin 20◦ sin(60◦ − 20◦) sin(60◦ + 20◦) = sin 60◦

4 , according to that identity. Since sin 60◦ =
√
3
2 , then

sin 20◦ sin 40◦ sin 80◦ =
√
3
8 .

Wait, but I’m trying to compute sin 20◦ sin 40◦ sin 60◦ sin 80◦, which includes sin 60◦ as well. So, if sin 20◦ sin 40◦ sin 80◦ =
√
3
8 , then multiplying by sin 60◦ =

√
3
2 gives

(√
3
8

)(√
3
2

)
= 3

16 . So, the product inside the square is 3
16 , and then squaring it gives(

3
16

)2
= 9

256 .
Wait, but let me double-check that. If sin 20◦ sin 40◦ sin 80◦ =

√
3
8 , then multiplying by sin 60◦ =

√
3
2 indeed gives (

√
3
8)(

√
3
2) =

3
16 . So, yes, the product inside the square is 3

16 , and squaring it gives 9
256 . So, the final answer should be 9

256 .
Wait, but I’m a bit confused because I thought the product of sin 20◦ sin 40◦ sin 60◦ sin 80◦ would involve more steps. Maybe I
should verify this identity again. Let me consider the identity: sinA sin(60◦ −A) sin(60◦ +A) = sin 3A

4 . So, if I set A = 20◦,

then sin 20◦ sin 40◦ sin 80◦ = sin 60◦

4 =

√
3
2
4 =

√
3
8 . Then, including sin 60◦ =

√
3
2 , the total product becomes

(√
3
8

)(√
3
2

)
= 3

16 .
So, that seems correct.
Alternatively, maybe I can use another approach to confirm. Let’s compute the product step by step. Starting with sin 20◦ ≈
0.3420, sin 40◦ ≈ 0.6428, sin 60◦ ≈ 0.8660, sin 80◦ ≈ 0.9848, sin 100◦ = sin 80◦ ≈ 0.9848, sin 120◦ = sin 60◦ ≈
0.8660, sin 140◦ = sin 40◦ ≈ 0.6428, sin 160◦ = sin 20◦ ≈ 0.3420. Multiplying all these together yields approximately
0.03515625, which matches 9

256 .
Therefore, I’m confident that the product is 9

256 .
</think>
The product simplifies using trigonometric identities and properties of supplementary angles. By recognizing pairs of sines and
applying the identity for the product of sines of angles in arithmetic progression, the result is found to be 9/256.

Answer:
9

256

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D LLM USAGE

GPT-5 was employed to provide writing assistance, particularly in polishing and refining the language,
during the preparation of this manuscript.

E LIMITATIONS

While CyclicReflex effectively mitigates under-reflection and over-reflection by cyclically modulating
reflection token logits, its theoretical foundations remain underexplored. The proposed analogy
between reflection token allocation in reasoning and learning rate scheduling in optimization offers a
promising direction for future theoretical investigation. A key open question is why LRMs exhibit
under- or over-reflection during generation. Understanding the underlying causes of these behaviors is
essential for developing a principled understanding of CyclicReflex. As such, future work should aim
to formalize the generative dynamics of reflection in LRMs and establish a deeper theoretical basis
for the design and improvement of reasoning resource allocation strategies, including CyclicReflex.

F BROADER IMPACTS

On the positive side, our work demonstrates that scheduling reflection token appearance can effectively
address under-reflection and over-reflection, leading to more accurate and effective responses from
LRMs. This contributes to enhanced reasoning capabilities and improved performance on complex
problem-solving tasks. Moreover, by drawing a connection between learning rate schedules in
optimization and reflection token dynamics in reasoning, our work opens new research directions and
may inspire more interpretable and controllable LRM designs.

On the negative side, CyclicReflex could potentially be misused to manipulate reasoning traces. For
example, an adversary could deliberately modulate reflection token usage to craft outputs that embed
sensitive or hallucinated content in a more convincing manner, potentially evading safety filters. To
mitigate such risks, it is crucial that advanced decoding strategies, such as CyclicReflex, are deployed
within robust ethical and safety frameworks, especially in the context of unlearning and high-stakes
applications. We hope this research contributes to the development of LRMs that are not only efficient
and capable but also safe, trustworthy, and aligned with human values.

21

	Introduction
	Related Work
	Resource Allocation in Large Reasoning Models
	Reflection Token Scheduling as Learning Rate Scheduling in Optimization
	Experiments
	Experimental Setup
	Experiment Results

	Conclusion
	Detailed Experiment Setups
	Computing Resources
	Decoding Details
	Prompt Details

	Additional Experiment Results
	Generation Examples
	LLM Usage
	Limitations
	Broader Impacts

