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ABSTRACT

Large reasoning models (LRMs), such as OpenAI’s ol and DeepSeek-R1, harness
test-time scaling to perform multi-step reasoning for complex problem-solving.
This reasoning process, executed before producing final answers, is often guided
by special juncture tokens that prompt self-evaluative reflection. We refer to
these transition markers and reflective cues as “reflection tokens” (e.g., “wait”,
“but”, “alternatively”). In this work, we treat reflection tokens as a “resource” and
introduce the problem of resource allocation, aimed at improving the test-time
compute performance of LRMs by adaptively regulating the frequency and place-
ment of reflection tokens. Through empirical analysis, we show that both excessive
and insufficient use of reflection tokens, referred to as over-reflection and under-
reflection, can degrade model performance. To better understand this trade-off,
we draw an analogy between reflection token usage and learning rate scheduling
in optimization. Building on this insight, We propose cyclical reflection token
scheduling (termed CyclicReflex), a training-free decoding strategy that dynam-
ically modulates reflection token logits with a bidirectional, position-dependent
triangular waveform, incurring no additional computation cost. Experiments on
MATHS500, AIME2024/2025, AMC2023, GPQA Diamond and LiveCodeBench
demonstrate that CyclicReflex consistently improves performance across model
sizes (1.5B—8B), outperforming standard decoding and recent approaches such as
TIP (thought switching penalty) and S1.

1 INTRODUCTION

There has been a recent surge in the development of large reasoning models (LRMs), driven by the
introduction of chain-of-thought (CoT) (Wei et al., 2022). Notable examples include OpenAl’s ol
(OpenAl, 2024), Qwen 2.5 (Yang et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-1.5 (Team
et al., 2025). These models perform multi-step reasoning by generating so-called reflection tokens,
phrases such as “wait”, “but”, “alternatively”, which signal hesitation, reconsideration, alternative
exploration, or intermediate analysis. In parallel, test-time scaling techniques (Snell et al., 2024;
Liu et al., 2025) have emerged as a complementary approach for improving reasoning accuracy by
expanding the breadth or depth of CoT traces during inference.

However, LRMs remain prone to reasoning failures due to mismanagement of reflection tokens, often
resulting in either underthinking or overthinking. Underthinking occurs when the model fails to fully
explore promising reasoning paths for complex problems, often terminating prematurely or switching
strategies too soon (Wang et al., 2025a; Su et al., 2025). In contrast, overthinking arises when the
model generates an excessive number of reflection tokens on simple problems, leading to unnecessary
computational overhead (Chen et al., 2024; Kumar et al., 2025a). These observations show that, as
internal signals for deliberative reasoning, reflection tokens play a critical role in shaping answer
quality. The emerging challenges further underscore the need for a principled mechanism to regulate
reflection token usage during inference.

In this work, we introduce the concept of resource allocation for LRMs, treating reflection tokens
as a valuable resource whose scheduling along the CoT trajectory (a.k.a. reasoning trace) can be
strategically designed to improve reasoning accuracy. The objective is to optimize the quantity and
placement of reflection tokens, adapting dynamically to the reasoning schedule and the difficulty of
the current problem. For instance, some problems exhibit under-reflection, where too few reflection
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tokens result in premature answer generation, while others suffer from over-reflection, where excessive
tokens stall progress by repeatedly looping on phrases like “wait”. This raises a central question:

(Q) How can we achieve effective resource allocation in LRMs to mitigate both
under-reflection and over-reflection?

To answer this, we draw a conceptual analogy between reflection tokens in LRMs and learning
rates in optimization. Leveraging the landscape of thoughts (Zhou et al., 2025), we show that
under-reflection mirrors the effect of an overly small learning rate, leading to premature convergence
to suboptimal solutions, while over-reflection resembles a large learning rate that causes divergence.
We briefly introduce our motivation and the underlying intuition below.

Overview of motivation and rationale: From stepsize hedging to cyclical learning rates. The
critical role of learning rates (also known as stepsizes) in shaping optimization dynamics has been
extensively studied (Nesterov, 1983; Allen-Zhu & Orecchia, 2014; Bubeck et al., 2015). A recent
theoretical advancement, the silver stepsize schedule (Altschuler & Parrilo, 2024; 2025), demonstrates
that replacing a constant learning rate with an approximately periodic, hedging-style schedule can
provably accelerate convergence in gradient descent. This approach is known as stepsize hedging as
it alternates strategically between large and small stepsizes, balancing rapid (but potentially unstable)
exploration with slower, more stable convergence. A similar stepsize hedging idea has been applied to
deep model training through cyclical learning rate schedule (Smith, 2017), which alternates between
large and small learning rates in a triangular waveform. This strategy not only accelerates convergence
but also enhances generalization, often eliminating the need for extensive hyperparameter tuning.
Motivated by the principle of stepsize Predict ) Decode
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tion tokens to regulate the depth and stability of the reasoning process. Unlike conventional decoding
methods, CyclicReflex is bidirectional, capable of both promoting and suppressing reflection token
usage depending on the stage of generation. This flexibility enables CyclicReflex to address both
under-reflection (insufficient reasoning) and over-reflection (excessive, redundant reasoning), offering
a principled mechanism for reasoning modulation inspired by optimization dynamics.
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Contributions. We summarize our main contributions below.

e We introduce and formalize the novel problem of resource allocation in LRMs by treating reflection
tokens as a computational resource, motivated by the dual challenges of under-reflection and over-
reflection in reasoning generation.

e We draw a conceptual analogy between reflection token scheduling and learning rate scheduling
in optimization, and validate it through the landscape of thoughts. Guided by that, we propose
CyclicReflex, a test-time decoding strategy that cyclically modulates reflection token logits to
dynamically balance reflection during generation.

e We conduct comprehensive experiments across six reasoning benchmarks and multiple model
scales (1.5B—8B), demonstrating that CyclicReflex consistently improves both final-answer accuracy
and self-correction capability, outperforming recent test-time decoding strategies such as TIP (Wang
et al., 2025a) and S1 (Muennighoff et al., 2025). Moreover, CyclicReflex integrates seamlessly with
other test-time scaling techniques, yielding additional performance gains.
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2 RELATED WORK

LRMs and CoT. CoT (Wei et al., 2022) enables LRMs to solve complex tasks through intermediate
reasoning steps before reaching a final answer. This technique underpins many recent LRMs,
including OpenAlI’s ol (OpenAl, 2024), Qwen 2.5 (Yang et al., 2024), DeepSeek-R1 (Guo et al.,
2025), and Kimi-1.5 (Team et al., 2025), which often employ reinforcement learning to further
improve their reasoning performance. Guo et al. (2025) show that even smaller models benefit
substantially from fine-tuning with CoT-style data. A hallmark of CoT reasoning in these models
is the emergence of reflection tokens (words like “wait” or “but”) that signal deliberation or self-
correction, marking a shift from fast to slow thinking (Kumar et al., 2025b; Li et al., 2025). In this
paper, we show that the reasoning performance of LRMs can be enhanced by applying cyclical logits
manipulation to reflection tokens.

Efficient reasoning. Despite their impressive capabilities, LRMs often exhibit reasoning inefficien-
cies. Overthinking arises when the model generates unnecessarily long reasoning traces, leading
to inflated outputs and increased computational cost (Chen et al., 2024; Kumar et al., 2025a). In
contrast, underthinking occurs when the model halts reasoning too early, failing to adequately explore
promising solution paths (Wang et al., 2025a; Su et al., 2025). Therefore, ensuring both the efficacy
(i.e., answer accuracy) and efficiency (i.e., generation length) of reasoning is crucial. Building on
this line of research, some approaches modify model behavior through post-training interventions.
For instance, Luo et al. (2025); Aggarwal & Welleck (2025); Hou et al. (2025) use fine-tuning or
reinforcement learning to explicitly control reasoning length. There also exist works that adopt
training-free strategies. Wang et al. (2025b) propose guiding smaller models with larger ones at
inference; Wang et al. (2025a) penalize reflection token logits to reduce over-reflection; And Yang
et al. (2025); Muennighoff et al. (2025) develop early-exit mechanisms for efficient decoding. Our
method also falls into the training-free category but differs in its dynamic to adaptively address both
under- and over-reflection without model modification.

Test-time scaling. A growing body of work enhances LRM reasoning via test-time scaling. Basic
strategies include manually inserting reflection tokens (e.g., “wait”, “but”) to prompt deeper thinking
(Muennighoff et al., 2025; Jin et al., 2025). More advanced methods such as Best-of-N generation
and self-consistency sampling (Wang et al., 2022; Irvine et al., 2023; Brown et al., 2024) aim to select
the most promising answer among multiple candidates, often guided by reward models. Structured
decoding approaches, such as beam search (Feng et al., 2023), tree-of-thought (ToT) (Yao et al., 2023),
and Monte Carlo tree search (MCTS) (Zhou et al., 2023), further improve answer quality by enabling
the model to reason over multiple candidate paths. In pursuit of controlled reasoning, Wu et al.
(2025) propose thinking intervention, which selectively inserts or edits specific thinking tokens during
generation to tailor LRM behavior for downstream tasks. Recent analyses (Snell et al., 2024; Liu et al.,
2025; Chen et al., 2025b; Zhang et al., 2025) also highlight that the effectiveness of test-time scaling
varies with problem difficulty, motivating strategies that adapt to instance complexity. Sadhukhan et al.
(2025) revisit test-time scaling laws, showing that attention KV-memory bottlenecks alter the trade-off
between compute and model size and proposing a scaling law that favors larger sparse-attention
models under fixed budgets. Kang et al. (2025) introduce self-certainty, a reward-free confidence
metric that enables scalable Best-of-N selection while substantially reducing test-time compute. Chen
et al. (2025¢) propose iterative deepening sampling, which gradually increases sampling depth with
budget-aware control to achieve more compute-efficient test-time scaling without modifying the
underlying model. Our method provides the adaptive test-time compute by dynamically adjusting
the influence of reflection tokens throughout the reasoning trajectory. We show that it consistently
improves accuracy across difficulty levels and can be integrated seamlessly with other test-time
strategies like Best-of-N and beam search.

3 RESOURCE ALLOCATION IN LARGE REASONING MODELS

In this section, we begin by introducing preliminaries on LRMs, including their chain-of-thought
trajectories (i.e., reasoning traces) and the use of reflection tokens. We then motivate the problem of
resource allocation over reflection tokens through an existing technique: thought switching penalty
(TIP) test-time compute strategy. This warm-up study illustrates the critical influence and sensitivity
of reflection tokens on the final answers produced by LRMs.
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Preliminaries on LRMs, reasoning traces, and reflection tokens. Unlike conventional LLMs,
LRMs can incorporate an explicit thinking stage before arriving at a final answer in response to an
input question (Li et al., 2025; Ding et al., 2025; Chen et al., 2025a). This thinking stage is typically
realized through a CoT trajectory composed of multiple reasoning steps.

To be concrete, let x denote the input question, r the reasoning trace, and y the final answer. The
reasoning trace can be written as r = [ry, s, ..., r7], a sequence of 7" intermediate reasoning steps
(or thoughts) that serve as a precondition for producing the final answer y. These thoughts are often

connected by lexical cues such as “wait”, “but”, and Table 1: An example from MATH500 answered
“alternatively”. In this work, we collectively refer to by DeepSeek-RI-Distill-Qwen-7B. Reflection to-
such words as reflection tokens, as they signal the kens are highlighted in red.

LRM'’s introspective or deliberative thinking during | Generation (r and y) vs. input x
generation. These tokens typically signal hesitation, ~ x | Compute arcsin (—3) . Express your answer in radians.
reconsideration or alternative exploration within the <think>Okay, so I need to compute arcsin of -1/2......
reasoning trace, serving as implicit markers of the i‘t‘l;?f':ﬁ‘:i:‘:kft;‘:;i'n": thinking ‘f’;’;‘;t::drf;‘;’
model’s engagement in step-by-step reasoning. For right? So it’s the principal value...... | know that sine is
ease of understanding, Table 1 illustrates an exam- r | negative in the third and fourth quadrants, but since

arcsin only gives me angles in [— /2, 7/2], that’s the
ple where an LRM tackles a complex math problem fourth quadrant...... Wait, let me double-check. If I take

th g : _ sin(—/6), that’s the same as — sin(7/6), which is
(X%’ along with its g?}neﬁati(ll I'lelaSOIlllil:lg tI'.aCC (rlz’ fi -1/2. So the answer should be —7 /6 radians.</think>
nal answer (y), and the highlighted reflection tokens ~ — | The arcsin of -1/2 s /6 radians.
embedded within the reasoning process.

Motivation: Influence of reflection tokens on final answer accuracy. Next, we present a warm-up
study to illustrate the critical role of reflection tokens in determining final answer quality, particularly
across varying levels of problem difficulty. Prior work has identified several common issues in
LRM reasoning, including “underthinking” (Wang et al., 2025a; Su et al., 2025)-where the model
prematurely abandons promising lines of thought, resulting in insufficient reasoning depth—and
“overthinking” (Muennighoff et al., 2025; Chen et al., 2024; Kumar et al., 2025a)-where excessive,
unnecessary reasoning steps obscure or derail the correct final answer. These studies have observed
that intervening in the reasoning trace with reflection tokens can help guide the model’s thought
process (Wu et al., 2025). A common approach to controlling and integrating the effect of reflection
tokens in LRM generation is to modify the decoding strategy to account for their occurrence. One
such method is TIP (Wang et al., 2025a), which was proposed to discourage the generation of
reflection tokens and thereby penalize frequent thought switches during the reasoning trace.

Given the set of reflection tokens V, TIP introduces a logit penalty () to the predicted score 2z,
when generating a reflection token v € V' at reasoning step ¢, yielding the updated logit

s ziwta, ifveVandt<Ty,
TIP(a) : 240 = { e otherwise (1)

where « controls the strength of the logit intervention, and Tj specifies the time window over which
the adjustment is applied. For ease of presentation, TIP(«) denotes the TIP-based decoding strategy

parameterized by «. It is worth noting that TIP sets o < 0 to penalize frequent thought switches.
1.0

Original

g 5000 83:4 == TIP : Q: In how many ways can 8 people be seated around a square table with 2 people
2 08 K Iamut | onaside? (Two configurations are considered equivalent if one is a rotation of
S 4000 o ‘ B 071564 P another.)
= g 1959 5
£ 3000 £ 06 9% B3 A [ A: <think> Okay, so T have this problem: I need to figure out how many ways 8
= — o %034 :.:0: people can be seated...... ‘Wait, no, in circular permutations, fixing one seat.......
S 2000 ? 8, Correct 2 b R Original| Wait, but is that the case here? Because the table has 8 seats......
] g8, ° | X ncomrect KX [ 0.40 8 </think> $\boxed{10800}$. Correct!
g X BN Easy (92%) 0.4 6% 9% 32 reflection tokens’
& 1000 — Medium (71%) o%] %% - - -
. Hard (21%) '.0.4 ,0.0‘ 0.21l afe e A: <think> Okay, so I have this problem: I need to figure out how many ways 8
0 2 a9 %% . people can be seated...... Now, I need to find one person........ Incorrect!
TIP

0. | | P
0 50 100 150 200 Easy Medium Hard </think> $iboxed{5400}$. 11 reflection tokens

Reflection Count Difficulty

(a) Difficulty groups (b) Accuracy (c) Generation examples
Figure 2: (a) Answers from DeepSeek-R1-Distill-Qwen-7B on MATH500 clustered into Easy, Medium, and
Hard using K-means over reflection word count and generation length. Each point represents one answer. (b)
Accuracy of original decoding and TIP across difficulty levels. (c) Generation examples of original decoding
and TIP for a problem from the Medium category.

Despite the heuristic nature of choosing « and 7Ty, the TIP-based decoding strategy (Wang et al.,
2025a) provides useful motivation for studying resource allocation over reflection tokens and its
impact on reasoning effectiveness (e.g., on the MATHS500 dataset) across different problem difficulty
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levels. Specifically, we categorize MATHS500 problems into three difficulty levels—Easy, Medium,
and Hard-based on empirical final-answer accuracies of 92%, 71%, and 21%, respectively, since the
hand-labeled bins in MATHS500 are often inaccurate (Snell et al., 2024; Liu et al., 2025). As shown in
Fig. 2(a), these accuracy-based difficulty groups align closely with clusters derived from generation
length and the number of reflection tokens produced. This suggests that for more challenging
problems, LRMs tend to produce longer reasoning trajectories and more reflection tokens, indicating
deeper engagement in problem-solving. Fig. 2(b) next compares the accuracy of the original decoding
strategy and TIP across the difficulty groups in Fig. 2(a). As shown in Fig. 2(a), TIP improves accuracy
on Hard problems but reduces accuracy on Easy and Medium problems. This suggests that TIP’s
constant logit manipulation strategy (agnostic to the reasoning step t) does not yield optimal reasoning
control. Furthermore, Fig. 2(c) shows a Medium-level example comparing original decoding with
TIP. The first divergence in reasoning is highlighted in red. Under original decoding, the model
introduces a transitional reflection (“Wait, no, in circular permutations, fixing one seat...”), generating
32 reflection tokens before arriving at the correct answer. In contrast, with a thought-switching
penalty o < 0 in (1), TIP reshapes the trace (“Now, I need to find one person...””), producing only 11
reflection tokens and yielding an incorrect answer. This shows that TIP provides only one-directional
reflection control (penalizing reflection token logits). Hence, a bi-directional, dynamically adaptive
(non-constant) reflection token allocation strategy is needed.

Problem of interest: Resource allocation over reflection tokens. Reflection tokens has a significant
impact on the reasoning capability of LRMs. Therefore, if we view reflection tokens as a “resource”
in LRM reasoning generation, then determining their schedule, including the number of occurrences
and their positions, naturally gives rise to the problem of resource allocation for LRMs.

To the best of our knowledge, the problem of resource allocation over reflection tokens remains largely
unexplored in the existing literature. TIP offers a simple solution by applying a constant logit penalty
to reflection token generation. However, this approach is static and therefore fails to account for both
the number and placement of reflection tokens, which are dynamically determined during reasoning
trace generation. As shown in Fig. 2(b), TIP does not consistently improve performance across
all difficulty levels. This leaves open the question of how to schedule reflection token generation
along the reasoning trajectory, that is, how to allocate these “resources” effectively over time while
accounting for problem difficulty. These underscore the need for more adaptive and fine-grained
strategies to control reflection token usage in order to address the resource allocation more effectively.

4 REFLECTION TOKEN SCHEDULING AS LEARNING RATE SCHEDULING IN
OPTIMIZATION

In this section, we draw a conceptual analogy between reflection token scheduling and learning rate
scheduling in optimization, aimed at deepening our understanding of reflection tokens in reasoning
and enabling more effective resource allocation. Building on this analogy, we propose a new decoding
strategy: cyclical reflection token scheduling (CyclicReflex).

Reflection tokens in the thought landscape vs. learning rates in the optimization landscape. The
role of reflection tokens in reasoning closely mirrors that of learning rates in optimization. In the
“thought landscape”, a model initiates by interpreting a question and leverages reflection tokens to
modulate its reasoning trajectory: exploring, reconsidering, and refining intermediate steps before
reaching a final answer. Likewise, in the optimization landscape, an optimizer begins from a random
initialization and relies on the learning rate to control the step size of the variable updates, gradually
converging toward an optimal solution. In both cases, a well-tuned control mechanism, reflection
tokens in reasoning or learning rates in optimization, is essential for accurate solution convergence.

Additionally, in optimization, an improperly tuned learning rate, either too small or too large, can
hinder convergence, causing the optimizer to either stagnate or diverge. This challenge in scheduling
the learning rate maps naturally onto the difficulty of scheduling reflection tokens in reasoning,
manifesting as under-reflection and over-reflection. (Under-reflection) When the model generates
too few reflection tokens, it often terminates the reasoning process prematurely, resulting in a final
answer that lacks sufficient deliberation. This behavior is analogous to optimization with a learning
rate that is too small, where the model converges too early and becomes trapped in a suboptimal
local minimum. (Over-reflection) Conversely, generating too many reflection tokens can prevent the
model from concluding its reasoning, causing it to loop or stall, e.g., repeatedly producing phrases
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like “wait” without reaching a solution. This resembles optimization with an overly large learning
rate, which leads to instability and divergence rather than convergence.

Ground truth o Reasoning start point W Predicted answer

/ A\ . Alternatively
( |

Wait

?ﬁ‘ "/ | But

-

N N _
Incorrect! Correct! Incorrect!
Under-reflection Desired-reflection Over-reflection

Figure 3: Examples of landscape of thought for under-reflection, desired-reflection, and over-reflection,
generated by DeepSeek-R1-Distill-Qwen-7B with the original decoding strategy. Each point represents a
reasoning step and is connected in the order of generation. Darker regions indicate steps with higher semantic
alignment to the correct answer.

To validate the analogy between reflection tokens and learning rates (too small learning rate vs.
under-reflection, and too large learning rate vs. over-reflection), we utilize the interpretability tool
introduced in (Zhou et al., 2025) to visualize the landscape of thoughts. This tool projects reasoning
step r; into a two-dimensional visual space based on the measured “distance” between each step
r; and the final answer y, providing an interpretable view of the model’s reasoning dynamics. The
distance metric captures the model’s uncertainty by taking the inverse of the probability of generating
the answer y conditioned on the reasoning step r;, normalized by the length of y:

d(ri,y) = pLrm(y | r:) /P, )

where prry denotes the prediction probability assigned by the LRM to the answer y given the
reasoning step r;, and |y| denotes the length of y. Fig. 3 presents a visualized reasoning trajectory
from the initial thought to the final answer under original decoding strategy, across three different
scenarios: (i) under-reflection, where too few reflection tokens lead to a reasoning trace that is
too short and results in an incorrect answer; (ii) desired reflection, which yields a well-structured
reasoning trace and a correct answer; and (iii) over-reflection, where excessive reflection tokens
cause an overly long and off-track reasoning trace, also resulting in an incorrect answer. In the
landscape, darker regions represent intermediate reasoning steps that are semantically closer to the
correct answer. That is, color intensity reflects the relative correctness of each thought along the
trajectory. As we can see, the thought landscape under under-reflection is too conservative to drive
the reasoning process away from the starting point, ultimately failing to converge to the correct final
answer. In contrast, over-reflection could enable the model to reach semantically promising regions
of the landscape, for example, a step like “Alternatively, perhaps the correct answer is ...”, which
is far away from the thinking start point and located in the darker region. However, much like an
excessively large learning rate that fails to properly control the optimization process, this leads the
model to quickly pass through the desirable state without settling there, ultimately leading to an
incorrect answer region. Moreover, we find that reflection tokens are responsible for the sharp turns
in the reasoning trajectory. By examining the sharply turning steps in over-reflection, we observe that
they are consistently initiated by reflection tokens.

i
CyclicReflex: Cyclical logits manipulation for reflection token ©

scheduling. Although reflection tokens are crucial for guiding multi- A[
step reasoning, balancing their use remains challenging. The need

for dynamic modulation of reflection tokens closely mirrors the chal-
lenge of learning rate scheduling in optimization. As introduced
in Sec. 1, the convergence of gradient descent can be provably ac-  Figyre 4: mustrﬁﬁon of Cycli-
celerated by adopting the silver stepsize schedule, which follows  cRefiex ((3)), where ¢ denotes the
the principle of stepsize hedging (Altschuler & Parrilo, 2024; 2025).  token position and §(t) the logit
The key algorithmic insight is to hedge between two individually adjustment on reflection tokens,
suboptimal strategies, small and large stepsizes, since the failure oscillating between —A and A
modes of one are often mitigated by the strengths of the other. In  Wwith amplitude A and period C'.
deep model training, cyclical learning rates (Smith, 2017) exemplify this principle in practice. Rather
than using a fixed learning rate, they employ a triangular waveform to periodically alternate between

b 4
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large and small step sizes. This schedule allows the optimizer to balance global exploration (enabled
by large steps) with local convergence stability (provided by smaller steps), thereby yielding a form
of stepsize hedging.

Inspired by cyclical learning rates, we introduce CyclicReflex. As depicted in Fig. 4, we apply a
periodic triangular waveform to modulate the logits of reflection tokens during generation. The
waveform is governed by two parameters: the amplitude A, which controls the strength of the logit
adjustment, and the period C', which determines the oscillation frequency. This logits manipulation
evolves over time and is both position-dependent (varying with each decoding step) and bidirectional
(allowing for the dynamic promotion or suppression of reflection token sampling based on the current
stage of the reasoning process). More concretely, CyclicReflex can be cast as the following logits
manipulation as the function of the reasoning step ¢

(t—%) mod C
C

where recall that the amplitude A and the period C' have been previously defined as shown in Fig. 4,
mod is the modulo operation, | - | is the absolute value operation, and the other notations follow (1).
In (3), (t — %) mod C' gives the current thought position within the cycle, and it is straightforward
to validate that 6(C/4) = A and §(3C/4) = —A. As shown in Fig. 4, CyclicReflex implements a
representative form of hedging schedule: the increasing phase of the reflection logit adjustment d ()
promotes exploration by encouraging the model to transition away from its current line of thought,
while the decreasing phase fosters convergence by stabilizing the reasoning process, guiding the
model toward producing a coherent and correct final answer.

CyclicReflex : 2, = { o +0(t) ifveV 6(t)=Al4-

Ztw otherwise, 2|-A4 (3)

Compared to TIP (1), which applies a fixed unidirectional penalty, CyclicReflex adaptively modulates
reflection token logits with at no additional computation cost, offering finer control over reasoning.
This unified mechanism balances under- and over-reflection, yielding more robust and flexible
behavior that adapts to the model’s evolving thought process. In Fig. A1, we summarize the sensitivity
of CyclicReflex to its hyperparameters. The period C' has a more pronounced impact on accuracy than
the amplitude A. In particular, when C' = 600, the model achieves the highest accuracy across all
tested amplitudes (A = 5.0, 7.0, and 9.0). Based on our experiments, choosing A = 5.0 and setting
C to approximately 0.8 x the average generation length provides strong performance in practice.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Data-model setups. To evaluate the effectiveness of CyclicReflex, we consider both math and
non-math benchmarks. The math datasets include MATHS00 (Lightman et al., 2023) with 500
multi-step problems, AIME2024/2025 (MAA Committees) with 30 challenging problems each year,
and AMC2023 (AI-MO, 2024) covering diverse competition topics. The non-math datasets include
GPQA Diamond (Rein et al., 2024), a challenging subset of multiple-choice science questions
in biology, chemistry, and physics, and LiveCodeBench (Jain et al., 2024), a coding benchmark
from LeetCode, AtCoder, and Codeforces that evaluates code generation, repair, and execution. Our
experiments are conducted using the publicly available DeepSeek-R1-Distilled-Qwen model family
(Guo et al., 2025), which includes models with 1.5B, 7B. For comparative analysis, we also include
DeepSeek-R1-Distilled-Llama-8B, enabling a broader evaluation across different backbones.

Baseline and evaluation. Our method (CyclicReflex) is compared against two primary baselines:
TIP (Wang et al., 2025a), S1 (Muennighoff et al., 2025). In addition, we assess the compatibility
of CyclicReflex with external test-time scaling techniques, including Best-of-N (Irvine et al., 2023;
Brown et al., 2024) and Beam Search (Feng et al., 2023; Snell et al., 2024), using RLHFlow-
PRM-Deepseek-8B as the preference reward model (PRM) for scoring (Dong et al., 2024). We
use accuracy and generation length as our primary evaluation metrics. Accuracy is obtained by
rule-based extraction of the final answer against the ground truth, while generation length is the total
word count of the response. More implementation details are provided in Appendix A.

5.2 EXPERIMENT RESULTS

Overall Performance of CyclicReflex on the MATH Task. In Table 2, we show the effectiveness of
CyclicReflex across models of varying sizes (1.5B, 7B, and 8B), model families (Qwen and LLaMA),
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and four widely used reasoning benchmarks: MATH500, AIME2024, AIME2025, and AMC2023. As
we can see, CyclicReflex consistently improves performance over the original LRM decoding strategy
across all models and datasets. For example, DeepSeek-R1-Distill-Llama-8B with CyclicReflex
achieves up to a 10% absolute accuracy gain on AIME2024, while DeepSeek-R1-Distill-Qwen
7B with CyclicReflex yields up to a 9% improvement on AMC2023. Additionally, these accuracy
gains are achieved without sacrificing the efficiency of reasoning generation: CyclicReflex produces
comparable reasoning traces relative to the original decoding method.

Table 2: Accuracy (Acc) and generation length (Len) comparison on four math reasoning benchmarks
(MATHS500, AIME2024, AIME2025, and AMC2023) using DeepSeek-R1-Distilled Model: Qwen 1.5B, Qwen
7B, and Llama 8B. Each model is evaluated under four decoding strategies: Original, TIP, SI, and CyclicReflex.
The best accuracy in each setting is highlighted in bold, while the second-best is underlined.

‘ MATH500 ‘ AIME2024 ‘ AIME2025 ‘ AMC2023
| Acc Len | Acc Len | Acc Len | Acc Len

DeepSeek-R1-Distill-Qwen-1.5B

Original 0.74 1253.05 | 0.23 358436 | 0.19 3442.07 | 0.63 1855.85
TIP 0.75 120691 | 0.23 3329.17 | 0.20 3825.17 | 0.63 1890.35

S1 0.73 1532.05 | 0.17 4112.07 | 0.20 3867.71 | 0.45 3263.75
CyclicReflex | 0.77 1212.94 | 0.30 3547.10 | 0.23 3467.97 | 0.65 1839.23

DeepSeek-R1-Distill-Qwen-7B

Original 0.86 78525 | 043 2878.39 | 0.31 3192.59 | 0.81 1300.53
TIP 0.87 775777 | 043 2806.53 | 0.30 3107.30 | 0.85 1267.83

S1 0.83 1190.96 | 0.33 3541.10 | 0.33 3455.33 | 0.85 2158.00
CyclicReflex | 0.89 777.93 | 0.50 2868.30 | 0.37 3190.33 | 0.90 1229.25

DeepSeek-R1-Distill-Llama-8B

Original 0.83 119698 | 0.42 3593.73 | 0.30 3922.41 | 0.81 1951.88
TIP 83 1080.62 | 0.47 3572.40 | 0.27 3866.00 | 0.85 1932.63

Method

S1 0.78 1461.93 | 0.43 3742.27 | 0.27 4351.87 | 0.75 2812.75

CyclicReflex | 0.85 1108.30 | 0.53 3454.97 | 0.37 3856.80 | 0.90 1942.40
We further compare CyclicReflex against two @ original A CyclicReflex @ RI1-Qwen-7B
additional baselines: S1 and TIP. While S1 en- | TP ® Ri-Qwenl58 @ Rillama8B|
forces the insertion of “wait” tokens at the end of A A 0.5 24
each reasoning segment, leading to significantly %0'5 oy > EL &
longer outputs, it does not yield corresponding € ° ©0.4
accuracy improvements. On AMC2023, in fact, § 0.4 A § 0.3 R
S1 causes a notable performance drop, suggest- < < .
ing that excessive reflection may lead to over- 03l 4(')00 2 0.2 S
thinking. TIPI, wlgch s%ppressfes reﬂectl(?n token Length Length
usage, can also degrade performance in some . .

g grace p (a) GPQA Diamond (b) LiveCodeBench

cases. For instance, TIP causes a 3% accuracy .
drop on AIME2025 when applied to DeepSeek- Flgure 5: Accuracy vs. generation length on (a).GPQ_A
R1-Distill-Llama-8B, likely because it halts rea- D1amond and (b) LiveCodeBench. The comparison in-

sonine steps that are essential for solvine more cludes the original decoding, TIP, and CyclicReflex on
g step g DeepSeek-R1-Distill-Qwen 1.5B/7B, and Llama 8B.
complex problems.

Effectiveness of CyclicReflex on non-math reasoning. Fig. 5 shows the _, ..« BoN + CyclicReflex
relationship between accuracy and generation length on two non-math - S —% BS+ CyclicReflex

benchmarks, GPQA Diamond and LiveCodeBench. Results are reported for a6
multiple DeepSeek-R1-Distill variants (Qwen-1.5B/7B, and LLaMA-8B) g1
under original decoding, TIP, and CyclicReflex. CyclicReflex consistently 4]

<]
o

improves accuracy while maintaining response lengths comparable to TIP. = so|

3]

In contrast, TIP can even reduce accuracy, as seen in Fig. 5(b) for DeepSeek- < 78]
R1-Distill-Qwen-7B and LLaMA-8B on LiveCodeBench. 761

744

Integration with other test-time scaling methods. In Fig. 6, we further
investigate the integra}tion of CyclicRegiex v&;)ith other test-time scaling r'ne'th— Figure 6: MATHS00
ods across computational budgets (2 to 2°), using DeepSeek-R1-Distill- accuracy of DeepSeek-
Qwen-1.5B on MATHS500. We evaluate both Best-of-N (BoN) and Beam | 55 under BoN/BS w/wo
Search (BS), with generations scored using RLHFlow-PRM-DeepSeek-8B.  cyclicReflex.

Across all budget levels, BoN and Beam Search integrated with ours
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consistently outperform their original counterparts, demonstrating Reasoning trace Answer
the general compatibility and effectiveness of our method. Moreover, 0.20] |
under fixed decoding strategies, BoN achieves higher accuracy than ' i
Beam Search, both with and without CyclicReflex. As the computa-  0.151 i
tional budget increases, the performance gap between CyclicReflex 5 0104 i
and the original decoding narrows, highlighting that CyclicReflex Original
offers the greatest benefit under constrained inference budgets by 0.051 P
. . . . —e— CyclicReflex

enabling more efficient reflection token allocation. 000

. . . . NS P A S A
Reflection token scheduling patterns of CyclicReflex. Fig.7 com- QNN O &

pares reflection token distributions under original decoding, TIP, and Length Range
CyclicReflex, using DeepSeek-R1-Distill-Lla.1ma-8B on A;ME2024. Figure 7: Reflection token dis-
Each.curve shows the proportion qf reflection tokens W}thln CON-  yribution of DeepSeek-R1-Distill-
secutive 1000-token segments relative to the total reflection count. | ]ama-8B on AIME2024 under
Original decoding exhibits a gradual early rise followed by a stable, original decoding, TIP, and Cycli-
evenly spread pattern. TIP follows a similar trajectory but suppresses cReflex. Each curve shows the
reflection in the 0—1k range, reflecting its tendency to inhibit early proportion of reflection tokens
reflection. In contrast, CyclicReflex displays a cyclical hedging pat- Within 1k-token segments relative
tern with alternating peaks and troughs within the reasoning trace, o the total generation, including
allocating more reflection in the 1-2k and 3—4k ranges. This mod- Poth reasoning trace and answer.
ulation avoids both excessive early suppression and late overuse,

leading to stronger performance on AIME2024, improving accuracy from 0.42 (original decoding) to
0.53, demonstrating the benefit of bidirectional, position-dependent reflection scheduling.

Robustness to the reflection-token Table 3: Accuracy of Original, TIP, and CyclicReflex vari-
set. Next, we show that the proposed ants on MATHS500, AIME2024, AIME2025, and AMC2023 with

CyclicReflex is robust to the choice of ~DeepSeek-R1-Distill-Qwen-7B.

reflection tokens and can even operate Method | MATHS500 | AIME2024 | AIME2025 | AMC2023
with a dynamically updated reflection- Original 0.86 0.43 031 0.81
token set. To validate this, we con- TP , 0.87 043 0.30 0.85

. . . . . CyclicReflex w/ dynamic set 0.89 0.50 0.37 0.91
sider a dynamic variant in which the Ours: CyclicReflex 0.89 0.50 037 0.90

reflection-token set is expanded online
during decoding: we start from a small seed set (e.g., “wait”, “but”), and at decoding step ¢, if the
Top-1 token belongs to the current reflection-token set and the logit gap between Top-2 and Top-1
is smaller than the gap between Top-2 and Top-3, we add the Top-2 token to the set. The rationale
is that the model tends to use in contexts similar to existing reflection tokens, gradually enriching
the set and yielding additional reflection-like tokens (e.g., “hmm”, “maybe”, “perhaps”), which are
absent from the original reflection-token set. We evaluate CyclicReflex with both fixed and dynamic
reflection-token sets on DeepSeek-R1-Distill-Qwen-7B across MATH500, AIME2024, AIME2025,
and AMC2023, and compare against the Original decoding and TIP. As shown in Table 3, the two
variants perform comparably across all benchmarks, indicating that CyclicReflex exhibits robustness
to the selection of reflection tokens.

Comparison with approaches us- Taple 4: Performance of Original, TIP, and adjustment-based
ing additional reflection-logit ad- variants on MATH500, AIME2024, AIME2025, and AMC2023
Jjustments. In Table 4, we extend our with DeepSeek-R1-Distill-Qwen-7B.

comparison on DeepSeek-R1-Distill-

. . Method MATHS500 | AIME2024 | AIME2025 | AMC2023

Qwen-7B by adding several additional — | | | |
. . Original 0.86 0.43 0.31 0.81
adjustment-based baselines: (1) TIP TIP 0.87 043 0.30 0.85
w/positive adjustment, which always TIP w/ positive adjustment 0.85 0.40 0.33 0.83
. . Random adjustment 0.82 0.41 0.30 0.79
boosts reflection-token logits rather Linear decay 0.87 0.45 033 0.87
than penalizing them; (2) random Ours: CyclicReflex 0.89 0.50 0.37 0.90

adjustment, which injects zero-mean

noise into the reflection-token logits

at every decoding step; and (3) linear decay, which begins with a strong positive boost that linearly
decreases into a penalty across the generation process. Across MATH500, AIME2024, AIME2025,
and AMC2023, CyclicReflex consistently achieves the highest accuracy. In contrast, both the positive-
adjustment and random-adjustment variants underperform even standard TIP, and the linear-decay
baseline narrows, but does not close, the performance gap relative to our method. These findings
indicate that naive or purely monotonic adjustments to reflection-token logits are insufficient, and
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that the cyclic hedging schedule in CyclicReflex provides a fundamentally more effective mechanism
for balancing exploration and control during reasoning.

Generalization to other model families and Table 5: Accuracy comparison on five benchmarks
scales. We further extend CyclicReflex to a dif- (MATH500, AIME2024, AIME2025, AMC2023, and
ferent model family by evaluating Qwen3-4B, LiveCodeBench) using Qwen3-4B, Qwen3-8B, and
Owen3-8B and Qwen3—14B on MATH500, Qwen3-14B upder three decoding strategies: Original,
AIME2024, AIME2025, AMC2023 and Live- [!F>and CyclicReflex.

CodeBench, with Original and TIP included as

Method | MATH500 AIME2024 AIME2025 AMC2023 LiveCodeBench

baselines. The results are provided in Table 5. Quen34B
Across all five benchmarks, CyclicReflex con- Original 0.60 0.13 0.03 047 0.58
. 4 TIP 0.63 0.17 0.07 0.49 0.59
sistently outperforms both baselines, even as the — cyclicRefiex | 0.8 023 0.10 053 061

underlying model scale increases and the fam- - Qen3-88
. . .. . Original 0.83 0.37 0.27 0.79 0.59
ily differs from the DeepSeek-distilled lineage. TIP 0384 040 023 080 060
. . CyclicReflex 0.86 0.43 0.33 0.84 0.63

This demonstrates that our method generalizes Qwens-14B
beyond a single family of reasoning models and Original 088 043 033 083 063
TIP 0.88 0.47 0.33 0.82 0.63

remains robust and effective for a larger model  cycticreex
with an alternative architecture.

0.90 0.50 0.40 0.88 0.67

Evaluation under pass@N and Table 6: pass@N and cons@N of Original, TIP, and CyclicReflex
cons@N. In Table6, we evaluate on MATHS500 with DeepSeek-R1-Distill-Qwen-7B.

CyclicReflex on MATHS500 using

pass@N cons@N

. . M h
DeepSeek-R1-Distill-Qwen-7B under ethod ‘ 1 2 4 8 16 ‘ 1 2 4 8 16
both pass@N and cons @N, with Orig- Original | 074 0.82 088 091 093|074 075 079 082 085
nal and TIP baseli Cveli TIP 075 083 087 090 091|075 076 079 082 0.84
inal an as baselines. YClI-  cyclicReflex | 0.77 084 089 093 095|077 078 0.80 083 0.86

cReflex consistently outperforms both
baselines across all values of NV, show-
ing that our approach improves standard test-time scaling metrics rather than only single-sample
accuracy. While TIP provides modest gains over Original for small N (e.g., pass@1 and pass@2),
these improvements diminish or even reverse as IV increases. This is likely because aggressively
suppressing reflection tokens reduces sampling diversity, limiting the benefit of drawing more trajec-
tories. In contrast, CyclicReflex maintains a more stable advantage as IV increases, highlighting its
better balance between control and exploration.

Difficulty-level accuracies, self-correction and examples of CyclicReflex. As shown in Fig. A2
of Appendix B, unlike TIP, which only improves accuracy on the Hard problems of MATH500,
CyclicReflex enhances accuracy across all difficulty levels. Fig. A3 of Appendix B further demon-
strates that when provided with an incorrect reasoning trace as a prompt, CyclicReflex can correct a
larger proportion of erroneous traces than TIP or the original decoding strategy, indicating enhanced
self-correction ability. Table A1 in Appendix B shows that, compared with waveform design, the
hedging pattern plays a more critical role. Finally, Table A2 in Appendix C provides generation
examples under both the original and CyclicReflex decoding.

6 CONCLUSION

We introduce the problem of resource allocation in LRMs, focusing on the challenge of managing
reflection tokens during test-time generation. We show that both under-reflection and over-reflection,
stemming from insufficient or excessive use of reflection tokens, can severely degrade reasoning
performance. To address this, we draw a conceptual analogy between reflection token scheduling and
learning rate control in optimization, and propose CyclicReflex, a training-free decoding strategy that
cyclically modulates reflection token logits using a triangular waveform. CyclicReflex dynamically
adapts to the evolving stage of reasoning, enabling more balanced token allocation. Extensive experi-
ments across multiple reasoning benchmarks demonstrate that CyclicReflex consistently improves
accuracy, enhances self-correction capability, and integrates seamlessly with existing test-time scaling
methods. Our work highlights the critical role of reflection tokens as a valuable resource for LRMs
and opens new avenues for principled, adaptive reasoning control. The use of LLM, limitations and
broader impacts are further discussed in Appendix D, Appendix E and Appendix F.

10
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APPENDIX

A DETAILED EXPERIMENT SETUPS

A.1 COMPUTING RESOURCES

All experiments are conducted on a single node equipped with 8§ NVIDIA A6000 GPUs.

A.2 DECODING DETAILS

During generation, we employ the vVLLM framework to enable efficient and scalable inference.
The decoding configuration is as follows: the maximum number of new tokens is set to 8192; the
top-p value is set to 0.95; and the temperature is set to 0.6. Top-p sampling selects tokens from the
smallest possible set whose cumulative probability exceeds p, effectively filtering out low-probability
candidates to maintain generation quality while allowing diversity. A temperature of 0.6 sharpens
the token probability distribution, promoting more deterministic and focused outputs by reducing
sampling randomness.

For CyclicReflex on the MATH500 and AMC2023 datasets, we perform a grid search over A € [1, 10]
and C € [200, 1000]. On the AIME2024 and AIME2025 datasets, we perform a grid search over
A € [1,10] and C' € [1000,2000]. For TIP, we conduct a grid search with o € [—10,—1] and
Ty € [100,1000]. For S1, we forcefully insert the reflection token “Wait” after the model generates
</think>, prompting continued reasoning.

In the Best-of-N setting, the LRM generates multiple independent candidate answers, and the PRM
selects the most preferred one based on final-answer evaluation. For Beam Search, we perform a
step-by-step search guided by PRM feedback to optimize cumulative reward. Throughout decoding,
we use multiple candidate beams with a fixed beam width of 4.

A.3 PROMPT DETAILS

We present the prompt used to evaluate the reasoning ability of the LRM. For each question, we
replace the { question} placeholder in the User section of the prompt. After the Assistant generates
the reasoning trace and the final answer ({generation}), we follow the approach of Yang et al.
(2024) to first extract the final answer and then apply rule-based matching to assess its correctness.

Evaluation prompt

System:
You are a helpful Al bot that answers questions for a user. Keep your response short and direct.

User:
Question: {question}
Let’s reason this step by step.

Assistant:
Answer: {generation}

B ADDITIONAL EXPERIMENT RESULTS

Ablation study on CyclicReflex’s hyperparameter. In Fig. A1, we analyze the effect of CyclicRe-
flex’s key hyperparameters on final performance. Based on Fig. 4, we focus on three parameters: the
amplitude A, the period C, and an additional controlling factor, the initial phase shift, denoted by ¢.
As shown in Fig. A1(a), the period C has a more pronounced impact on accuracy than the amplitude
A. In particular, when C' = 600, the model achieves the highest accuracy across all tested amplitudes
(A =5.0,7.0, and 9.0).

14



Under review as a conference paper at ICLR 2026

In addition, Fig. A1(b) and (c) show that the amplitude A primarily influences the number of reflection
tokens and the overall generation length. Specifically, increasing A leads to more frequent reflection
token generation and longer output sequences, confirming that A effectively controls the model’s
propensity for extended reasoning.

Finally, Fig A1(d) examines the effect of the initial phase shift ¢ by measuring the number of
additional correct answers relative to the original decoding strategy. We find that ¢ = 0 yields
the best performance (i.e., with the pattern in Fig. 4), indicating that encouraging reflection token
generation early in the reasoning process is beneficial. As reasoning progresses, gradually suppressing
reflection token logits helps the model converge more efficiently.
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5 12,
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Figure Al: (a)-(c) Accuracy, reflection token count, and generation length heatmaps of DeepSeek-R1-
Distill-Qwen-7B on MATHS500 under different amplitude values A and period values C'. (d) Improvement of
CyclicReflex over the original decoding strategy under different initial phase shifts ¢, measured as the number
of additional correct answers.

Accuracy of CyclicReflex at different difficulty levels on MATHS500. In Fig. A2, we categorize
the MATHS500 dataset by difficulty level to closely examine where the accuracy improvements from
CyclicReflex are most pronounced. The grouping strategy follows that used in Fig. 2(a), and the
accuracy is reported in a manner consistent with Fig. 2(b). For comparison, we also include TIP as a
baseline. We observe that CyclicReflex consistently improves accuracy across all difficulty levels
(Easy, Medium, and Hard) whereas TIP primarily yields gains on Hard problems and even leads
to performance degradation on Easy and Medium ones. This contrast stems from the bidirectional
nature of CyclicReflex, which allows for dynamic promotion or suppression of reflection token
sampling based on the current stage of the reasoning process. Such flexibility enables CyclicReflex to
better adapt to problem difficulty, leading to more effective resource allocation and improved overall
performance.
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Figure A2: Improvement of DeepSeek-R1-Distill-Qwen-7B on MATHS00 by TIP and CyclicReflex across
difficulty levels (Easy, Medium, Hard), following Fig. 2 (a) and (b).

Improved self-correction with CyclicReflex. We also find that CyclicReflex exhibits a stronger
capacity for self-correction during reasoning. To evaluate this property, we select 50 incorrectly
answered problems from the MATHS00 dataset, originally generated by DeepSeek-R 1-Distill-Qwen-
7B. For each incorrect case, we extract the model’s reasoning trace and truncate it to three different
lengths (25%, 50%, and 100% of the full trace), which are then reused as misleading prompts to
guide a new round of reasoning.
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Under each prompt condition, we prompt the same model (DeepSeek-R1-Distill-Qwen-7B) to re-
answer the question five times and report the average accuracy. As shown in Fig. A3(a), CyclicReflex
significantly outperforms both the original decoding and the TIP baseline across all trace lengths.

Accuracy

: Q: For how many two-digit primes is the sum of the digits equal to 8?
1000 Input Let's reason this step by step. Answer: <think>Alright, I need to figure ouf Question +
06 < /\ many two-digit primes have digits that add up to 8...... Wait, but 17isa (" ncorrect
g 800 two-digit prime with digits adding up to 8. So that's one....... So the valid trace
5} primes are 17, 53, 71, and 97. That makes a total of four two-digit primes
— where the sum of the digits equals 8.
0.5 g 600
)3 @: [ A: 1 think I've got it right! </think> The final answer is \boxed{4}. anorrect!
—e— Original 5 4001 —e— Original Original
0.4 CyclicReflex g CyclicReflex g A: B1l1$ wail,.let me douhl.e'-checlf each numbgrl to ensure lhey'rg primg. A17:
@ 200 TIP afF e Yes, it's a prime. 53: Yes, it's a prime. 71: Yes, it's a prime. 97: Prime, digits 9 +
—— TIP - 7 =16. Wait, that's not 8. Wait, did I make a mistake here?......I think I
v - . o T " T ™, Cyclic have made a mistake earlier by including 97, which actually sums to 16.
0% 25%  50%  100% 0% 25%  50% 100% Reflex | correct count is three. </think> The final answer is $iboxed{3}$
Incorrect Trace (%) Incorrect Trace (%)
(a) Accuracy (b) Generation length (c) Example

Figure A3: (a)-(b) Accuracy and generation length on MATH500 with DeepSeek-R1-Distill-Qwen-7B using
Original, TIP, and CyclicReflex decoding for questions combined with incorrect reasoning traces of different
lengths. (c) Example for a question with 100% incorrect reasoning under Original and CyclicReflex decoding.

Notably, the performance gap increases with longer misleading traces, indicating that CyclicReflex
enhances the model’s ability to resist and correct earlier reasoning errors. In addition, this improved
self-correction does not come at the cost of generation efficiency. As shown in Fig. A3(b), the
generation lengths under CyclicReflex remain comparable to those of the original decoding strategy.
In contrast, TIP tends to suppress reflection token usage, which hampers the model’s ability to
re-evaluate its own reasoning and results in markedly lower accuracy. Finally, Fig. A3(c) provides
a concrete example. Given a MATHS500 question with a 100% incorrect reasoning trace in which
the model incorrectly claims that the digits of 17, 53, 71, and 97 sum to 8, the original decoding
strategy fails to correct the error and outputs the wrong answer, 4. In contrast, CyclicReflex initiates
a double-check, correctly identifies the error (specifically excluding 97), and ultimately outputs the
correct answer, 3.

Impact of waveform design and hedging schedule. In Table A1, Table Al: Performance of Orig-
we investigate the impact of different waveform choices in reflection inal, TIP, Sin, and CyclicReflex
token scheduling. Specifically, we replace the triangular wave in on AIME2024 with DeepSeek-
Eq. (3) with a sine function (Sin), which also satisfies the hedging R1-Distill-Llama-8B.

schedule property, and evaluate the performance on AIME2024 Method | Acc | Len

using DeepSeek-R1-Distill-Llama-8B. The results show that both Origin 042 | 3593.73
the sine schedule and CyclicReflex outperform TIP and the original TIP 045 | 3872.93
decoding strategy, with the two achieving comparable performance. Sin 0.51 | 3628.37

This suggests that while the exact waveform design has only a minor ~ CyclicReflex | 0.53 | 3454.97
effect, adopting a hedging schedule yields substantial improvements
in accuracy and efficiency.

C GENERATION EXAMPLES

In Table A2-AS, we present the answers generated for questions in MATHS500 under both the original
decoding strategy and CyclicReflex. For better comparison, we also include the ground truth labels.
Compared to the original decoding strategy, CyclicReflex demonstrates deeper reasoning and avoids
prematurely terminating the thinking process. For instance, in Q1, the original answer is given as
(154) - (g) - (g) , whereas CyclicReflex continues simplifying the expression to arrive at the final
result. Moreover, CyclicReflex exhibits a better understanding of the problem semantics. In Q2, for
example, the original decoding misinterprets the notion of projection, leading to an incorrect answer.
Finally, CyclicReflex is more adept at identifying key problem elements. In Q3, the original response
overlooks the trap involving z = 9, while CyclicReflex correctly accounts for this subtlety.
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Table A2: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

Q1: A Senate committee has 8 Republicans and 6 Democrats. In how many ways
can we form a subcommittee of 5 members that has at least one member from each party?

Label: 1940
Original: <think> Okay, so I have this problem where there’s a Senate committee with 8 Republicans and 6 Democrats. I need to figure out
how many ways we can form a subcommittee of 5 members that has at least one member from each party. Hmm, let’s break this
down.

First, I know that the total number of people on the committee is 8 + 6, which is 14. If I were to form a subcommittee of 5 without
any restrictions, the number of ways would just be the combination of 14 taken 5 at a time, right? So that’s C(14,5). But the
problem says there has to be at least one from each party, so I can’t have all Republicans or all Democrats in the subcommittee.
So, I think I need to subtract the cases where the subcommittee is all Republicans or all Democrats. Let me calculate those
separately. For all Republicans, it’s C(8,5) because there are 8 Republicans. For all Democrats, it’s C(6,5) since there are 6
Democrats.

Putting it all together, the total number of valid subcommittees should be C(14,5) minus C(8,5) minus C(6,5). Let me make sure
that makes sense. By subtracting the all-Republican and all-Democrat cases from the total, I'm left with only those subcommittees
that have at least one from each party. Yeah, that seems right.

I should probably calculate these values to get the exact number, but I think the reasoning is solid. So the formula is C(14,5) -
C(8,5) - C(6,5). I'll go with that.

</think>

The number of ways is calculated by subtracting the all-Republican and all-Democrat subcommittees from the total.

Total ways: (1,4) — (§) — (S)

5 5. 5.

o (8) () ()

CyclicReflex: | <think> Okay, so I have this problem where there’s a Senate committee with 8 Republicans and 6 Democrats. I need to figure out
how many ways we can form a subcommittee of 5 members that has at least one member from each party. Hmm, let’s break this
down.

First, I know that the total number of people on the committee is 8 + 6, which is 14. If I were to form a subcommittee of 5 without
any restrictions, the number of ways would just be the combination of 14 taken 5 at a time, right? So that’s C(14,5). But the
problem says there has to be at least one from each party, so I can’t have all Republicans or all Democrats in the subcommittee.
So, I think I need to subtract the cases where the subcommittee is all Republicans or all Democrats. Let me calculate those
separately. For all Republicans, it’s C(8,5) because there are 8 Republicans. For all Democrats, it’s C(6,5) since there are 6
Democrats.

But hold on, I should make sure these numbers are correct. C(8,5) is the number of ways to choose 5 Republicans out of 8, and
C(6,5) is choosing 5 Democrats out of 6. I think that’s right.

So, the total number of valid subcommittees would be C(14,5) minus C(8,5) minus C(6,5). Let me compute those values.
C(14,5) is 2002, C(8.5) is 56, and C(6,5) is 6. So, 2002 - 56 - 6 equals 1940. That should be the number of ways to form the
subcommittee with at least one from each party.

</think>

The number of ways to form a subcommittee of 5 members with at least one member from each party is calculated by subtracting
the all-Republican and all-Democrat subcommittees from the total number of possible subcommittees.

- Total subcommittees: (') = 2002

- All-Republican subcommittees: (8) =56

\5
- All-Democrat subcommittees: ({) = 6

Thus, the number of valid subcommittees is 2002 — 56 — 6 = 1940.
Answer: 1940
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Table A3: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

2
Q2: Find the projectionof aontob = | 6 |,ifa-b =8.

3

Label: —

Original: <tk§ink> Okay, so I need to find the projection of vector a onto vector b. I remember that the formula for the projection of a onto
b is (a - b) divided by the magnitude of b squared, and then multiplied by vector b. But wait, in this case, they only gave me that
the dot product of a and b is 8. Hmm, so maybe I don’t need the entire vector b, just the scalar projection?

Let me think. The formula for the scalar projection is (a - b divided by the magnitude of b. Since they already gave me a - b = 8,
1 just need to find the magnitude of b. The vector b is [2, 6, 3], so its magnitude is the square root of (22 + 62 + 32). Calculating
that, 22 = 4, 62 = 36, and 32 = 9. Adding those up gives 4 + 36 + 9 = 49. The square root of 49 is 7. So the magnitude of b is 7.
Therefore, the scalar projection of a onto b is 8 divided by 7, which is 8/7. I think that’s it. The problem didn’t specify whether
they wanted the vector projection or just the scalar, but since they only gave me a scalar product, I guess it’s the scalar projection
they’re asking for. So the answer should be 8/7.

</think>

The projection of a onto b is given by ﬁ. Since a- b = 8 and ||b|| = 7, the projection is ?

8
A s
nswer: | -

CyclicReflex: | <think> Okay, so I need to find the projection of vector a onto vector b. I remember that the formula for the projection of a onto
bis ﬁ)’h’z multiplied by vector b. But wait, in this case, they only gave me that the dot product of a and b is 8. Hmm, so maybe I
don’t need the entire vector b, just the scalar projection?

Wait, no, the question says “find the projection of a onto b,” which usually refers to the vector projection. The formula for the
vector projection is (ﬁ) b. But since I don’t have ||b||, maybe I can just express it in terms of the given dot product and the
magnitude of b.

Alternatively, maybe the question is asking for the scalar projection, which is just ﬁ. But they gave me a - b = 8, but I don’t
have ||b]|. Let me calculate ||b]| first. The magnitude of b is v/22 + 6% + 32 = /4 + 36 + 9 = v/49 = 7. Oh, that’s nice, it’s 7.
So if I need the vector projection, it’s (8/72)b, which is (8/49)[2, 6, 3]. That would give me [16/49, 48/49, 24/49]. Alternatively,
if it’s the scalar projection, it’s 8/7. But the question says “projection,” not specifying vector or scalar, but since they gave the
vector b, I think they want the vector projection. So the answer should be [16/49, 48/49, 24/49).

</think>

The projection of vector a onto b is given by: proj,a = (ﬁ) b

Given:
-a-b=38

=)

First, calculate |[b]|: |b]| = v22+62+32 =4 +36 +9=/49=7
Then, ||b||? = 7% = 49

2 49

Now substitute: projpa = (£) <6> =%
3 24

1

Answer: | | 5
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Table A4: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

|22 — 81|
3: Solve ———— <0
@3: Solve 72 — 36
Label: (0,9) U (9,36)
.2
Original: <think> Okay, so I have this inequality to solve: ‘;2 :3%11‘, < 0. Hmm, let me try to figure this out step by step.

First, I know that for a fraction to be less than zero, the numerator and denominator must have opposite signs. That means either
the numerator is positive and the denominator is negative, or the numerator is negative and the denominator is positive. But wait,
the numerator here is an absolute value, right? So |2? — 81| is always non-negative, meaning it’s either positive or zero. That
means the numerator can’t be negative. So the only possibility is that the numerator is positive and the denominator is negative.
Wait, but the numerator is |1'2 — 81|, which is zero when 22 =81,50z = 9orz = —9. At those points, the numerator is zero,
making the whole fraction zero, which doesn’t satisfy the inequality because it’s less than zero, not equal to zero. So we can ignore
those points for now.

So, focusing on when the denominator is negative. The denominator is 2% — 36z, which I can factor as x(x — 36). So, the
denominator is negative when z(z — 36) < 0. Let’s solve that inequality.

To find where z(z — 36) < 0, I can consider the critical points where the expression equals zero, which are z = 0 and 2 = 36.
These points divide the number line into intervals. I'll test each interval:

1. When z < 0, say ¢ = —1: (—1)(—=1 — 36) = (—1)(—37) = 37, which is positive. 2. When 0 < z < 36, say z = 18:
18(18 — 36) = 18(—18) = —324, which is negative. 3. When 2 > 36, say « = 37: 37(37 — 36) = 37(1) = 37, which is positive.
So, the denominator is negative only when 0 < z < 36.

But wait, I also need to make sure that the denominator isn’t zero because division by zero is undefined. So z can’t be 0 or 36.
Now, going back to the original inequality, since the numerator is always non-negative, the fraction will be negative only when
the denominator is negative. So, the solution should be where the denominator is negative, excluding the points where it’s zero.
Therefore, the solution is 0 < z < 36, excluding z = 0 and = 36. But wait, z = 0 is already excluded because the interval
starts at 0, but not including 0. Similarly, = 36 is not included because the interval ends at 36, not including it.

Wait, but I should also check if there are any other restrictions. For example, when 2 = 9, the numerator becomes zero, making
the fraction zero, which doesn’t satisfy the inequality. Similarly, when = —9, but that’s outside the interval we found, so it’s not
part of the solution.

So, putting it all together, the solution to the inequality is all real numbers x such that 0 < z < 36, excluding = 0 and = = 36,
but since those points are already excluded from the interval, the solution is simply 0 < x < 36.

</think> R

The solution to the inequality % < 01is z in the interval (0, 36).

Answer: (0, 36)

CyclicReflex: | <think> Okay, so I have this inequality to solve: 7!12:38611‘, < 0. Hmm, let me try to figure this out step by step.

First, I know that for a fraction to be less than zero, the numerator and denominator must have opposite signs. That means either
the numerator is positive and the denominator is negative, or the numerator is negative and the denominator is positive. But wait,
the numerator here is an absolute value, right? So |2? — 81| is always non-negative, meaning it’s either positive or zero. That
means the numerator can’t be negative. So the only possibility is that the numerator is positive and the denominator is negative.
Wait, but the numerator is |z2 — 81|, which is zero when 22 =81,50 2 = 9orz = —9. At those points, the numerator is zero,
making the whole fraction zero, which doesn’t satisfy the inequality because it’s less than zero, not equal to zero. So we can ignore
those points for now.

So, focusing on when the denominator is negative. The denominator is 2% — 36z, which I can factor as z(x — 36). So, the
denominator is negative when z(z — 36) < 0. Let’s solve that inequality.

To find where z(z — 36) < 0, I can consider the critical points where the expression equals zero, which are z = 0 and 2 = 36.
These points divide the number line into intervals. I'll test each interval:

1. When z < 0, say ¢ = —1: (—1)(—=1 — 36) = (—1)(—37) = 37, which is positive. 2. When 0 < z < 36, say z = 18:
18(18 — 36) = 18(—18) = —324, which is negative. 3. When 2 > 36, say « = 37: 37(37 — 36) = 37(1) = 37, which is positive.
So, the denominator is negative only when 0 < z < 36.

Now, I also need to make sure that the denominator isn’t zero, so = # 0 and = # 36. So, the solution so far is 0 < z < 36. But
wait, I should also consider the numerator |22 — 81|. Since it’s an absolute value, it’s always non-negative, so it’s zero only at
z =9 and x = —9. Butin the interval 0 < z < 36, x = 9 is within this interval, so at z = 9, the numerator is zero, making the
entire fraction zero, which doesn’t satisfy the inequality. So, I need to exclude x = 9 from the solution.

Wait, but let me double-check. If z = 9, then the numerator is zero, so the fraction is zero, which is not less than zero. So, x = 9
should not be included. But in the interval 0 < < 36, excluding = = 9, the fraction is negative everywhere else because the
numerator is positive and the denominator is negative.

Wait, but hold on, when x is between 0 and 9, let’s pick « = 1, then |12 781\ = 80, and the denominator 12 —36-1 = 1—36 = —35,
so 80/(—35) is negative. Similarly, between 9 and 36, say z = 18, |18% — 81| = [324 — 81| = 243, and denominator
182 — 36 - 18 = 324 — 648 = —324, s0 243/(—324) is negative. So, in both sub-intervals, the fraction is negative.

So, the solution is 0 < = < 36, excluding = 9. But wait, at z = 9, the numerator is zero, so the fraction is zero, which is not
less than zero. So, we exclude x = 9. Therefore, the solutionis 0 < x < 9or 9 < z < 36.

Let me just make sure there are no other points where the denominator is zero or the numerator is zero. The denominator is zero at
z = 0 and = 36, which we’ve already excluded. The numerator is zero at z = 9 and x = —9. = —9 is not in the interval
0 < x < 36, so we don’t have to worry about that in this case.

So, putting it all together, the solution to the inequality is « in the interval (0,9) U (9, 36).

</think>

The solution set is x in the interval (0,9) U (9, 36).

Answer: | (0,9) U (9,36

)
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Table AS5: Examples from DeepSeek-R1-Distill-Qwen-7B on MATH500 under the original decoding strategy
and CyclicReflex. Reflection tokens are highlighted in red.

Q4: Find sin 20° sin 40° sin 60° sin 80° sin 100° sin 120° sin 140° sin 160°.

Label: | 52
Original: i?ﬁin]o Okay, so I have this problem where I need to find the product of several sine terms: sin 20°, sin40°, sin 60°, sin 80°,
sin 100°, sin 120°, sin 140°, and sin 160°. Hmm, that’s a lot of sines multiplied together. I remember that sometimes products of
sines can be simplified using trigonometric identities, but I’'m not exactly sure which ones apply here. Let me think.
First, I notice that some of these angles are related. For example, sin 100° is the same as sin(180° — 80°), which is sin 80°.
Similarly, sin 120° is sin(180° — 60°), so that’s sin 60°. Wait, but sin 60° is already in the list, so maybe that’s not helpful. Let
me list all the angles: 20°,40°,60°,80°,100°, 120°, 140°, 160°.
I can pair some of these. For instance, sin 100° is sin 80°, as I thought, and sin 160° is sin 20°. Similarly, sin 140° is sin 40°, and
sin 120° is sin 60°. So, actually, each of these angles from 20° up to 80° has a corresponding angle from 100° up to 160° that is
supplementary, meaning their sines are equal. So, the product is actually (sin 20° - sin 40° - sin 60° - sin 80°)? because each term
from 20° to 80° is squared when considering their supplementary counterparts.
Wait, no, let me check. The original list has eight terms, but when pairing, each pair gives the same sine value, so it’s
like (sin20° - sin40° - sin 60° - sin 800)2. But let me confirm: sin 100° = sin80°, sin 120° = sin 60°, sin 140° = sin 40°,
sin 160° = sin 20°. So, yes, the product becomes (sin 20° - sin 40° - sin 60° - sin 80°)2.
Now, I can compute this product step by step. First, let’s compute sin 60°, which is a known value: v/3/2. So, that’s straightforward.
Now, the remaining terms are sin 20°, sin 40°, and sin 80°. I remember there are product identities for multiple angles, maybe
using the sine of multiple angles or product-to-sum formulas. Alternatively, perhaps using complex numbers or roots of unity.
Wait, maybe there’s a formula for the product of sines of angles in arithmetic progression.
I recall that for n terms, the product of sin(kw/(2n)) for k = 1ton — 1is \/n/2"~1. But I'm not sure if that applies here. Let
me think. Alternatively, I can use the identity for the product of sines of angles that are in a certain pattern.
Wait, another approach: using the identity that sin @ = cos(90° — 6). So, sin 80° = cos 10°, sin 40° = cos 50°, sin 20° = cos 70°.
Hmm, not sure if that helps directly.
Alternatively, perhaps using the multiple-angle formula for sine. Let’s consider sin 50 or something. Wait, maybe using the
identity for sin 56 in terms of sin #. But that might be complicated.
Wait, maybe using the identity that the product of sines can be expressed as a fraction involving powers of 2 and products of
cosines. Alternatively, perhaps I can use the identity that the product of sin @ for § = 20°,40°,60°,80° is equal to something
specific.
Wait, I think I remember that the product sin 20° sin 40° sin 60° sin 80° is equal to \/5/16. Let me check that. If that’s the case,
then the square of that would be (v/3/16) = 3/256. But I'm not entirely sure. Let me try to compute it step by step.
Alternatively, perhaps using the identity that the product of sines can be expressed as a sum, but that might not be straightforward.
Wait, another approach: using the identity that the product sin A sin B = [cos(A — B) — cos(A + B)]/2. Maybe I can apply this
iteratively.
Let me try to compute sin 20° sin 40° first. Using the identity, that’s [cos(20°) — cos(60°)]/2. cos 20° is approximately 0.9397,
and cos 60° is 0.5, s0 [0.9397 — 0.5]/2 =~ 0.21985.
Now, multiply this by sin 60°, which is v/3/2 ~ 0.8660. So, 0.21985 - 0.8660 ~ 0.1902.
Next, multiply by sin 80°, which is approximately 0.9848. So, 0.1902 - 0.9848 ~ 0.1873.
Wait, but I thought the product sin 20° sin 40° sin 60° sin 80° was v/3/16 ~ 0.10825. Hmm, my approximate calculation gave
me around 0.1873, which is higher. Maybe my approach is wrong.
Wait, perhaps I should use exact values. Let me try again.
We know that sin 60° = 1/3/2. Now, let’s consider the product sin 20° sin 40° sin 80° I remember that sin A sin(60° —
A) sin(60° + A) = S234_If A = 20°, then sin 20° sin40° sin80° — sn00’ _ ¥3/2 _
So, the product sin 20° sin 40° sin 60° sin 80° is (sin 20° sin 40° sin 80°) sin 60° = % .
Wait, that makes sense. So, the product sin 20° sin 40° sin 60° sin 80° is 3/16
Then, since the original problem’s product is (sin 20° sin 40° sin 60° sin 80°)?2, that would be ( 9
Wait, but let me make sure. The original product is sin 20° sin 40° sin 60° sin 80° sin 100° sin 120o sin 140o sin 160°, which we
paired as (sin 20° sin 40° sin 60° sin 80°)? because each term from 20° to 80° has a supplementary angle equal to another term in
the list. So, the product is indeed (sin 20° sin 40° sin 60° sin 80°)? = (3/16)? = 9/256.
Wait, but when I calculated the approximate product, I got around 0.1873, which is approximately 3/16 ~ 0.1875. So that
matches. Therefore, the square would be (3/16)% = 9/256.
So, the final answer should be 9/256.
</think>
The product simplifies by recognizing that each sine term from 20° to 80° pairs with its supplementary angle, resulting in the
square of the product of these terms. Using known identities, the product of sin 20°, sin 40°, sin 60°, and sin 80° is v/3/8.
Squaring this gives (1/3/8)? = 3/16. However, upon re-evaluating, the correct product of all eight terms is actually (v/3/8) =
3/256. However, upon re-evaluating, the correct product of all eight terms is actually (v/3/16)? = 3/256.

. Yes, that’s correct.
3
16"

"‘\ﬁm\g

Answer:
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CyclicReflex:

<think> Okay, so I have this problem where I need to find the product of several sine terms: sin 20°, sin 40°, sin 60°, sin 80°,
sin 100°, sin 120°, sin 140°, and sin 160°. Hmm, that’s a lot of sines multiplied together. I remember that sometimes products of
sines can be simplified using trigonometric identities, but I'm not exactly sure which ones apply here. Let me think.

First, I notice that some of these angles are related. For example, sin 100° is the same as sin(180° — 80"), which is sin 80°.
Similarly, sin 120° is sin(180° - 60"), so that’s sin 60°. Wait, but sin 60° is already in the list, so maybe that’s not helpful. Let
me list all the angles: 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°.

I can pair some of these. For instance, sin 100° is sin(80°), as I thought, and sin 160° is sin(20°). Similarly, sin 140° is sin(40°),
and sin 120° is sin(60°). So, actually, each of these angles from 20° up to 80° has a corresponding angle from 100° up to 160°
that is supplementary, meaning their sines are equal. So, the product is actually [sin 20° - sin 40° - sin 60° - sin 80"} ? because each
term from 20° to 80° is squared when considering their supplementary counterparts.

So, the original product simplifies to [sin 20° - sin 40° - sin 60° - sin 80"} %, Now, I need to compute this square. Maybe I can
compute the product inside the square first and then square the result.

I remember that sin 60° is ?, which is approximately 0.866, but I'm not sure if that helps directly. Let me think about other
identities. There’s a product formula for multiple sine terms, but I can’t recall it exactly. Alternatively, I might use complex
numbers or roots of unity, but that might be too advanced for now.

‘Wait, I think there’s a formula for the product of sines of equally spaced angles. Let me try to recall. For example, the product
sin@ - sin(f + ¢) - ... where ¢ is a common difference. But I'm not sure if that applies here.

Alternatively, I can use the identity that relates the product of sines to a sum, but I'm not sure how to apply that here. Maybe
another approach: using the identity sin A sin B = cos(A=B)—cos(A+5) By with four terms, that might get complicated.

Wait, perhaps I can pair the terms in a way that makes it easier. Let me pair sin 20° with sin 80°, and sin 40° with sin 60°, leaving
sin 60° as is. So, [sin 20° sin 80°] - [sin 40° sin 60°] - sin 60°. Hmm, but I'm not sure if that helps.

Wait, I think sin A sin(60° — A) sin(60° + A) = 834 [g that correct? Let me test with A = 20°. Then,
sin 20° sin 40° sin 80° = sin 20° sin(60° — 20°) sin(60° + 20°) = w according to that identity. Since sin 60° = ? then
sin 20° sin 40° sin 80° = gA

Wait, but I'm trying to compute sin 20° sin 40° sin 60° sin 80°, which includes sin 60° as well. So, if sin 20° sin40° sin80° =
@, then multiplying by sin 60° = @ gives (g) (@) = 1% So, the product inside the square is 1% and then squaring it gives

3\2

(f6)" = =%

Wait, but let me double-check that. If sin 20° sin 40° sin 80° = %, then multiplying by sin 60° = ? indeed gives (?)(@) =
%4 So, yes, the product inside the square is %, and squaring it gives ﬁ So, the final answer should be 226.

‘Wait, but I'm a bit confused because I thought the product of sin 20° sin 40° sin 60° sin 80° would involve more steps. Maybe I
should verify this identity again. Let me consider the identity: sin A sin(60° — A) sin(60° + A) = % So, if I'set A = 20°

g

3

then sin 20° sin 40° sin 80° = ﬁ =-f= % Then, including sin 60° = ?, the total product becomes (%) (é) =
So, that seems correct.

Alternatively, maybe I can use another approach to confirm. Let’s compute the product step by step. Starting with sin 20°
0.3420, sin40° ~ 0.6428, sin60° ~ 0.8660, sin80° ~ 0.9848, sin 100° = sin80° ~ 0.9848, sin 120° = sin 60°
0.8660, sin140° = sin40° ~ 0.6428, sin160° = sin20° ~ 0.3420. Multiplying all these together yields approximately
0.03515625, which matches 2.

Therefore, I'm confident that the product is %

</think>

The product simplifies using trigonometric identities and properties of supplementary angles. By recognizing pairs of sines and
applying the identity for the product of sines of angles in arithmetic progression, the result is found to be 9/256.

Answer:
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D LLM USAGE

GPT-5 was employed to provide writing assistance, particularly in polishing and refining the language,
during the preparation of this manuscript.

E LIMITATIONS

While CyclicReflex effectively mitigates under-reflection and over-reflection by cyclically modulating
reflection token logits, its theoretical foundations remain underexplored. The proposed analogy
between reflection token allocation in reasoning and learning rate scheduling in optimization offers a
promising direction for future theoretical investigation. A key open question is why LRMs exhibit
under- or over-reflection during generation. Understanding the underlying causes of these behaviors is
essential for developing a principled understanding of CyclicReflex. As such, future work should aim
to formalize the generative dynamics of reflection in LRMs and establish a deeper theoretical basis
for the design and improvement of reasoning resource allocation strategies, including CyclicReflex.

F BROADER IMPACTS

On the positive side, our work demonstrates that scheduling reflection token appearance can effectively
address under-reflection and over-reflection, leading to more accurate and effective responses from
LRMs. This contributes to enhanced reasoning capabilities and improved performance on complex
problem-solving tasks. Moreover, by drawing a connection between learning rate schedules in
optimization and reflection token dynamics in reasoning, our work opens new research directions and
may inspire more interpretable and controllable LRM designs.

On the negative side, CyclicReflex could potentially be misused to manipulate reasoning traces. For
example, an adversary could deliberately modulate reflection token usage to craft outputs that embed
sensitive or hallucinated content in a more convincing manner, potentially evading safety filters. To
mitigate such risks, it is crucial that advanced decoding strategies, such as CyclicReflex, are deployed
within robust ethical and safety frameworks, especially in the context of unlearning and high-stakes
applications. We hope this research contributes to the development of LRMs that are not only efficient
and capable but also safe, trustworthy, and aligned with human values.
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