Under review as a conference paper at ICLR 2025

A THEORY OF MULTI-AGENT GENERATIVE FLOW
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative flow networks utilize a flow-matching loss to learn a stochastic pol-
icy for generating objects from a sequence of actions, such that the probability
of generating a pattern can be proportional to the corresponding given reward.
However, a theoretical framework for multi-agent generative flow networks (MA-
GFlowNets) has not yet been proposed. In this paper, we propose the theory
framework of MA-GFlowNets, which can be applied to multiple agents to gen-
erate objects collaboratively through a series of joint actions. We further pro-
pose four algorithms: a centralized flow network for centralized training of MA-
GFlowNets, an independent flow network for decentralized execution, a joint flow
network for achieving centralized training with decentralized execution, and its
updated conditional version. Joint Flow training is based on a local-global princi-
ple allowing to train a collection of (local) GFN as a unique (global) GFN. This
principle provides a loss of reasonable complexity and allows to leverage usual
results on GFN to provide theoretical guarantees that the independent policies
generate samples with probability proportional to the reward function. Experi-
mental results demonstrate the superiority of the proposed framework compared
to reinforcement learning and MCMC-based methods.

1 INTRODUCTION

Generative flow networks (GFlowNets) Bengio et al.|(2023]) can sample a diverse set of candidates in
an active learning setting, where the training objective is to approximate sampling of the candidates
proportionally to a given reward function. Compared to reinforcement learning (RL), where the
learned policy is more inclined to sample action sequences with higher rewards, GFlowNets can
perform exploration tasks better. The goal of GFlowNets is not to generate a single highest-reward
action sequence, but rather is to sample a sequence of actions from the leading modes of the reward
function Bengio et al.| (2021). However, based on current theoretical results, GFlowNets cannot
support multi-agent systems.

A multi-agent system is a set of autonomous interacting entities that share a typical environment,
perceive through sensors, and act in conjunction with actuators [Busoniu et al.| (2008)). Multi-agent
reinforcement learning (MARL), especially cooperative MARL, is widely used in robot teams, dis-
tributed control, resource management, data mining, etc |Zhang et al.| (2021)); |Canese et al.[(2021);
Feriani & Hossain| (2021). There two major challenges for cooperative MARL: scalability and
partial observability |Yang et al.[(2019); |Spaan| (2012)). Since the joint state-action space grows ex-
ponentially with the number of agents, coupled with the environment’s partial observability and
communication constraints, each agent needs to make individual decisions based on the local ac-
tion observation history with guaranteed performance [Sunehag et al.| (2018); Wang et al.| (2020);
Rashid et al.|(2018). In MARL, to address these challenges, a popular centralized training with
decentralized execution (CTDE) paradigm [Oliehoek et al.|(2008); |Oliehoek & Amato|(2016) is pro-
posed, in which the agent’s policy is trained in a centralized manner by accessing global information
and executed in a decentralized manner based only on the local history. However, extending these
techniques to GFlowNets is not straightforward, especially in constructing CTDE-architecture flow
networks and finding IGM conditions for flow networks need investigating.

In this paper, we propose the multi-agent generative flow networks (MA-GFlowNets) framework
for cooperative decision-making tasks. Our framework can generate more diverse patterns through

Under review as a conference paper at ICLR 2025

sequential joint actions with probabilities proportional to the reward function. Unlike vanilla
GFlowNets, the proposed method analyzes the interaction of multiple agent actions and shows how
to sample actions from multi-flow functions. Our approach consists of building a virtual global GFN
capturing the policies of all agents and ensuring consistency of local (agent) policies. Variations of
this approach yield different flow-matching losses and training algorithms.

Furthermore, we propose the Centralized Flow Network (CFN), Independent Flow Network (IFN),
Joint Flow Network (JFN), and Conditioned Joint Flow Network (CJFN) algorithms for multi-agent
GFlowNets framework. CFN considers multi-agent dynamics as a whole for policy optimization
regardless of the combinatorial complexity and demand for independent execution, so it is slower;
while IFN is faster, but suffers from the flow non-stationary problem. In contrast, JFN and CJFN,
which are trained based on the local-global principle, takes full advantage of CFN and IFN. They can
reduce the complexity of flow estimation and support decentralized execution, which are beneficial
to solving practical cooperative decision-making problems.

Main Contributions: 1) We first generalize the measure GFlowNets framework to the multi-agent
setting, and propose a theory of multi-agent generative flow networks for cooperative decision-
making tasks; 2) We propose four algorithms under the measure framework, namely CFN, IFN,
JEN and CJFN, for training multi-agent GFlowNets, which are respectively based on centralized
training, independent execution, and the latter two algorithms are based on the CTDE paradigm; 3)
We propose a local-global principle and then prove that the joint state-action flow function can be
decomposed into the product form of multiple independent flows, and that a unique Markovian flow
can be trained based on the flow matching condition; 4) We conduct experiments based on cooper-
ative control tasks to demonstrate that the proposed algorithms can outperform current cooperative
MARL algorithms, especially in terms of exploration capabilities.

2 PROBLEM FORMULATION

The multi-agent setting formalizes the data of state, actions and transitions for multiple agents.
The state space S as well as the state-dependent action spaces A4 are measurable spaces; for

. . . o T,
each state s € S, the environment comes with a stochastic transition ma A, — S. We for-
malize this dependency on state by bundling (packing) state and action together into a bundle
ST
{(s,a) | s € S,a € A} = A — S where S(s,a) := s and T(s,a) := Ts(a). For graphs, a
bundled action is an edge s — ', the statemap .S returns the origin s while the transition map returns
the destination s’. A policy is then a section of S ie a kernel S = A such that S o7 is identity on S.

Each agent ¢ € [in the finite agent set I has its own observation A
0 in its observation space O?); it depends on the state via the p%« N’

i ™
projection & & O For simplicity sake, we identify S = . ‘
ITier O Each agent has its own action space A and each A® S AW
of the agent observation-dependent action space A4, contains a (i)l p® R P l .
special action STOP; the environment is such that once an agent s s
chooses STOP, it is put on hold until all agents do as well. The oW R, 0w

game finishes when all agent have chosen STOP, a reward is
given based on the last state. The reward received is formalized
by a non-negative function r : S — S. We assume that each agent may freely choose its own action

Figure 1: Multi-agent formalism

independently from the actions chosen by other agents: this is formalized via As = [[;c1 .A((:()) | ~ie
the Cartesian product of agent actions space up to identification of the STOP actions. A trajectory
of the system of agents is a, possibly infinite, sequence of states (s;)¢<r+1 With 7 € NuU {oco} starting
at the source state sp € S and may eventually calling STOP; the space of trajectories is 7. A policy
on S induces a Markov chain hence a distribution on trajectories.

Our objective is to build a policy m so that the induced trajectories are finite and s is distributed
proportionally to R := X\ where X is some fixed measure on S and [, s 7(s)dX\(s) is finite.

"We adopt the naming convention of (2018). The kernel K : X — Y is a stochastic map which
is formalized as follows: for all z € X, K(x — -) is a probability distribution on). In addition, K (z — -)

varies measurably with z in the sense that for all measurable set A c), the real valued map = — K(z — A)
is measurable.

Under review as a conference paper at ICLR 2025

Measurable GFlowNets [Brunswic et al.| (2024); [Lahlou et al.| (2023); [Li et al.| (2023d); |Deleu &
Bengio| (2023)); | Bengio et al.|(2023) are defined in the single-agent setting i.e.

S
AT B R, with|I]= 1.
~_

T

A GFlowNets on (S, A, S, T, R) is a forward policy 7 : S — A together with a non-negative finite
measure Fy,; on S called the outflow or state-flow. The reward is generally non-trainable and
unknown but implicitly a component of F,,,; and 7; since the reward may not be tractable in the
multi-agent setting, we favor a reward-free parameterization of GFlowNets. We thus parameterize
them by triplets (7, F\;, Finit) where 7*(s) = (s | @ # STOP), F},, = Fout — R and Finit =
Fout(s0)m(s0). The =-notations informally mean we restrict the objects to S ~ {sg, sy }. Given a

GFlowNet in *-notations together with a reward, there is a unique GFlowNet in usual notations.

A GFlowNet is trained to satisfy the so-called flow-matching constraint:

Fous = Fin = Finig + Foy ™ T, (1)
as measures on S. In passing we introduce R:= Fin - FJ ., F = Flom™ T and Foction = Four ® 7.
The induced Markov chain starts at sy sampled from the unnormahzed distribution F},;; and then
for every t the policy is applied until the action STOP is picked: a; ~ w(s¢ — -) and if a; # STOP,
st+1 ~ T'(ag — -). Usually we choose Fiyiy o< £(6) with £ a known, easily sampled from, distribution
family. The sampling time 7 is the ¢ such that a; = STOP.

The following Theorem was first proved on DAG in Bengio et al.| (2023) and shows GFlowNets
answer our problem definition.

Theorem 1 ((Brunswic et al.,[2024) Theorem 2) Let F := (7w, E},;, Finit) be a GFlowNets on

out»
(S, A,S,T,R). If the reward R is non-zero and T satisfies the flow-matching constraint, then
its sampling time is almost surely finite and the sampling distribution is proportional to R. More
precisely:

Fout(S) 1
RCLA AN | d s, ~ R
an S R(S)

P(r<soo) =l B(r) gl -1,

2

Flow-matching losses (FM), denoted by Lg);, compare the outflow F,¢ with the inflow Fj, :=
Finit + FoutT'm; They are minimized when Fi, = Fy, so that, surely, a gradient descent on
GFlowNets parameters enforces equation m In the original works Bengio et al.| (2021); Malkin
et al.| (2022)), Bengio et al. used divergence-based FM losses valid as long as the state space does
not have cycle and Brunswic et al.| (2024)) introduced stable FM losses allowing training in presence
of cycles:

dlv (Fa) EsNVstateg IOg ((8)) (3)

sta e dF‘l?l dFOOU
L aF@)E((s) - Lo 4))

dF9

out

4)

where g is some positive function, decreasing on [-o0,0], g(0) = 0 and increasing on [0, +o0]. A
practical stable training loss on graphs can be written as

£E) =E 3 {log[L+ 2| (30 - Fly (0l T (Lo (Bl (s 4 00) '}

where s; are path sampled from any distribution of paths in S, and the parameters satisfy the condi-
tion {e,n, a, 8 > 0}.

MA-GFlowNets are tuples ((F());.;,F), where each local GFlowNets F(?) is defined on
(0O, A® s 7@ R for i e I and the global GFlowNets F is defined on (S, A, S, T, R).
In general, some GFlowNets (local or global) may be virtual in the sense that it is not implemented.

Under review as a conference paper at ICLR 2025

3 MULTI-AGENT GFLOWNETS

This section is devoted to details and theory regarding the variations of algorithms for MA-
GFlowNets training. If resources allow, the most direct approach is included in the training of
the global model directly, leading to a centralized training algorithm in which the local GFlowNets
are virtual. As expected, such an algorithm suffers from high computational complexity, hence,
demanding decentralized algorithms. Decentralized algorithms require the agents to collaborate to
some extent. We achieve such a collaboration by enforcing consistency rules between the local and
global GFlowNets. The global GFlowNets is virtual and is used to build a training loss for the local
models ensuring the global model is GFlowNets, so that the sampling Theorem applies. The sam-
pling properties of the MA-GFlowNets are then deduced from the flow-matching property of the
virtual global model.

3.1 CENTRALIZED TRAINING

Centralized training consists in training of the global flow directly. Here, the local flows are virtual
in the sense that they are recovered from the global flow as image by the observation maps. We use
FM-losses as given in equations applied to the flow on (S,.A). See Algorithm [I} Implicitly,
F,,¢ contains a parameterizable component from F_ ., while Fi, contains the parameterization of
7 and Fin;t.

Algorithm 1 Centralized Flow Network Training Algorithm for MA-GFlowNets

Input: A multi-agent environment (S, A, O AD p, ST, R), a parameterized GFlowNets FF :=
(7T» F;utv Finit) on (Sv A)
while not converged do
Sample and add trajectories (s;):»0 € 7 to replay buffer with policy w(s; — a¢).
Generate training distribution vggage.
Apply minimization step of the FM loss £5{2P1e(F?) .
end while

From the algorithmic viewpoint, the CFN algorithm is identical to a single GFlowNets. As a conse-
quence, usual results on the measurable GFlowNets apply as is. There are, however, a number of key
difficulties: 1) even on graphs, the computational complexity increases as O(|4s|") at any given
explored state; 2) centralized training requires all agents to share observations, which is impractical
since in many applications the agents only have access to their own observations.

3.2 LocAL TRAINING: INDEPENDENT

The dual training method is embodied in the training of local GFlowNets instead of the global one.
In this case, the local flows F(*) are parameterized and the global flow is virtual. In the same way,
a local FM loss is used for each client. In order to have well-defined local GFlowNets, we need a
local reward, for which a natural definition is R(i)(oti’)) =]E(R(st)|o§i)). The local training loss
function can be written as:

£ =E Y {log[L+e|Fy (o) - Fli ()] < (10 (R (o) + Foi (o))} ©
t=1

The algorithm [3] in Appendix [B] describes a simplest training
method, which solves the issue of exponential action com-
plexity with an increasing number of agents. In this formula-
tion, however, two issues arise: the evaluation of ingoing flow

100

80

60

Mode Found

Fi(nl) (o) becomes harder as we need to find all transitions
leading to a given local observation (and not to a given global ! . - s .
state). This problem may be non-trivial as it is also related Epochs

to the actions of other agents. More importantly, in this case,

the local reward is intractable so we cannot accurately estimate ~Figure 2: Performance comparison
the reward R (0()) of each node; Falling back to using the ©n Hyper-grid task.

Under review as a conference paper at ICLR 2025

stochastic reward R(V) (0()) := R(st|o§i)) instead leads to transition uncertainty and spurious re-
wards, which can cause non-stationarity and/or mode collapse as shown in Figure

3.3 LoCAL-GLOBAL TRAINING

3.3.1 LOCAL-GLOBAL PRINCIPLE: JOINT FLOW NETWORK

Local-global training is based upon the following local global principle which combined with The-
orem|I]ensures that the MA-GFlowNet have sampling distribution proportional to the reward R.

Theorem 2 (Joint MA-GFlowNets) Given local GFlowNets FY on some environments
((’)(’),A(Z),S(’),T(’)) there exists a global GFlowNets F°™ on a multi-agent environment

(Tie; O, A, S, T) consistent with the local GFlowNets), such that
Fru=TTFW"S Fu=TIFY.)
i€l i€l
Moreover, if '™ satisfies equation 0r a reward R and each R > 0 then R = [Tier RO,
Our Joint Flow Network (JEN) algorithm, leverage Theorem [2] by sampling trajectories with policy
ogi) = pL(,sEZ)) and W(i)(ogi) - aii)), iel (8)

with a; = (agl) ciel)and sgp1 = T'(8¢,a), build formally the (global) joint GFlowNet from local
GFlowNets and train the collection of agent via the FM-loss of the joint GFlowNet. Equation
ensures that the inflow and outflow of the (global) joint GFlowNet are both easily computable from
the local inflows and outflows provided by agents. See algorithm 2]

Algorithm 2 Joint Flow Network Training Algorithm for MA-GFlowNets

Input: Number of agents N, A multi-agent environment (S, A4, 0, A®) p; S T, R).
Input: Local parameterized GFlowNets (7(?)*, Fcfs)t’*, Flgfl)t)ZE I
while not converged do
Sample and add trajectories (s;):»0 € 7 to replay buffer with policy according to equation
Generate training distribution of states vg,te from the replay buffer.
Apply minimization step of the FM loss £5{aP1e(F9:3°1n) for reward R.
end while

This training regiment presents two key advantages: over centralized training, the action complexity
is linear w.r.t. the number of agents and local actions as in the independent training; over independent
training, the reward is not spurious. Indeed, in £5aP!e(F%i°int) by equation[7} the computation of
Fi, and F}, reduces to computing the inflow and star-outflow for each local GFlowNets. Also,
only the global reward R appears. The remaining, possibly difficult, challenge is the estimation of
local ingoing flows from the local observations as it depends on the local transitions 7'(), see first
point below. At this stage, the relations between the global/joint/local flow-matching constraints
are unclear, and furthermore, the induced policy of the local GFlowNets still depends on the yet
undefined local rewards. The following point clarify those links.

First, the collection of local GFlowNets induces local transitions kernels 7O . 06 - 0O
which are not uniquely determined in general by a single GFlowNets. Indeed, the local policies
induce a global policy m(s; — at) = [T;es W(OEZ) - agl)). Then, the (virtual) transition kernel
T® (0" = (T(ar)|al”) of the GFlowNets i depends on the distribution of states and the corre-
sponding actions of all local GFlowNets. See appendix for details. Note that 7(*) are derived
from the actual environment 7" and the joint GFlowNets on the multi-agent environment with the
true transition 7', while the Theorem above ensures splitting of star-inflows and virtual rewards only
for the approximated 7'. Furthermore, local rewards may be formalized as a stochastic reward to
take into account the lack of information of a single agent, but they are never used during training:
the allocation of rewards across agents is irrelevant. Only the virtual rewards R(?) = Fo(fl)t* - Flgf)

are relevant but they are effectively free. As a consequence, Algorithm 2] effectively trains both the

Under review as a conference paper at ICLR 2025

joint flow as well as a product environment model. But since in general 7" # T Algorithmmay fail
to reach satisfactory convergence.

Second, beware that in our construction of the joint MA-GFlowNets, there is no guarantee that the
global initial flow is split as the product of the local initial flows. In fact, we favor a construction in
which Fi,;; is non-trivial to account for the inability of local agents to assess synchronization with
another agent. See Appendix [A.§]for formalization details.

Third, we may partially link local and global flow-matching properties.

Theorem 3 Let (F()),.; be local GFlowNets and let F be their joint GFlowNets. Assume that none
of the local GFlowNets are zero and that each R > 0. IfF satisfies equation|l| then there exists an
“essential” subdomain of each O") on which local GFlowNets satisfy the flow-matching constraint.

The restriction regarding the domain on which local GFlowNets satisfy the flow-matching constraint
is detailed in Appendix[A.8] this sophistication arises because of the stopping condition of the multi-
agent system. The essential domain may be informally formulated as “where the local agent is still
playing”: an agent may decide (or be forced) to stop playing, letting other agents continue playing,
the forfeited player is then on hold until the game stops and rewards are actually awarded.

To conclude, the joint GFlowNets provides an approximation of the target global GFlowNets, this
approximation may fail if the transition kernel 7" is highly coupled or if the reward is not a product.

3.3.2 CONDITIONED JOINT FLOW NETWORK

As discussed training of MA-GFlowNets via training of the virtual joint GFlowNets is an approx-
imation of the centralized training. In fact, the space of joint GFlowNets is smaller than that of
the general MA-GFlowNets, as only rewards that splits into the product R(s) = [I;c; R (o)
may be exactly sampled. If the rewards are not of this form, the training may still be subject
to a spurious reward or mode collapse. For instance, consider the case of S = {1,2}? with two
agents of respective positions sy, s € {1,2}, actions {(0,+1),(+1,0),(0,0),(+1,+1)}, and re-
ward R(s1,82) = 1s,-—s,. In this case, the reward does not split and it is easy to see that inde-
pendent agents cannot sample states proportionally to R. One may easily build more sophisticated
counter-examples based on this one.

Our proposed solution is to build a conditioned JFN inspired by augmented flows Dupont et al.
(2019); Huang et al.| (2020) methods, which allow the bypass of architectural constraints for Nor-
malization flows [Papamakarios et al.| (2021). The trick is to add a shared “hidden” state to the joint
MA-GFlowNets allowing the agent to synchronize. This hidden state is constant across a given
episode and may be understood as a cooperative strategy chosen beforehand by the agents. The
size of this hidden parameterization is a tradeoff: it should be large enough to allow the proper
parameterization of the target reward and transition but the larger the size the harder the training.
Formally, this simply consist in augmenting the state space and the observation spaces by a strat-
egy space Qto get S = S x Q and OO = OO x Q, F,;; is augmented by a distribution P on €,
the observation projections as well as transition kernel act trivially on Q ie T'(s;w) = T'(s) and
p@(s;w) = (pP(s),w). The joint MA-GFlowNets theorem applies the same way, beware that
the observation part of T® now have a dependency on €2 even though 7" does not. In theory, €
may be big enough to parameterize the whole trajectory space 7, in which case it is possible to
have decoupled conditioned local transition kernels 7(Y) (:;w) so that T = T on a relevant domain.
Furthermore, the limitation on the reward is also lifted if the flow-matching property is enforced on
the expected joint flow E, ™, Two possible losses may be considered: [, £iable(F0:ioint (.))
or Luble(| oot (.. ,)). The former, which we use in our experiments, is simpler to implement
but does not a priori lift the constraint on the reward.

The training phase of Conditioned Joint Flow Network (CJEN) is shown in Algorithm [4] in the
appendix. We first sample trajectories with policy

ol = pi(s) and 7P (0 > alV), el ®)

with a; = (agi) 14 eI)and s;11 = T(s¢,ar). Then we train the sampling policy by minimizing the
FM loss E,, £jiable (R0:joint (..),

Under review as a conference paper at ICLR 2025

Discussion: Finally, we discuss the connection between MA-GFlowNets and multi-agent RL in
Appendix C and prove some related properties.

4 RELATED WORKS

Generative Flow Networks: GFlowNets is an emerging generative model that could learn a pol-
icy to generate the objects with a probability proportional to a given reward function. Nowadays,
GFlowNets has achieved promising performance in many fields, such as molecule generation Ben-
gio et al.[(2021); Malkin et al.| (2022); Jain et al.| (2022)), discrete probabilistic modeling|Zhang et al.
(2022), structure learning [Deleu et al.| (2022), domain adaptation Zhu et al.| (2023), graph neural
networks training |L1 et al.[(2023bza), and large language model training |Li et al.| (2023c)); [Hu et al.
(2023); [Zhang et al.| (2024). This network could sample the distribution of trajectories with high
rewards and can be useful in tasks where the reward distribution is more diverse.

GFlowNets is similar to reinforcement learning (RL) Sutton & Barto| (2018)). However, RL aims to
maximize the expected reward and often only generates the single action sequence with the highest
reward. Conversely, the learned policies of GFlowNets can ensure that the sampled actions are
proportional to the reward, making them more suitable for exploration. This exploration ability
makes GFlowNet promising as a new paradigm for policy optimization in the RL field, but there are
many problems, such as solving multi-agent collaborative tasks. Previously, the meta GFlowNets
algorithmJi et al.{(2024) was proposed to solve the problem of GFlowNets training under distributed
conditions, but it requires the observation state and task objectives of each agent to be the same,
which is not suitable for multi-agent problems. Later, a multi-agent GFlowNets algorithm was
proposed in [Luo et al.| (2024), but this algorithm is an approximate algorithm without theoretical
support and is difficult to converge when solving large-scale multi-agent problems. In contrast, we
established the theory of multi-agent GFlowNets in measure space, and our algorithm can support
large-scale multi-agent environments, such as StarCraft missions.

Cooperative Multi-agent Reinforcement Learning: There exist many MARL algorithms to solve
collaborative tasks. Two extreme algorithms for thus purpose are independent learning [Tan| (1993)
and centralized training. Independent training methods regard the influence of other agents as part
of the environment, but the team reward function often has difficulty to measure the contribution of
each agent, resulting in the agent facing a non-stationary environment |[Sunehag et al.| (2018)); [Yang
et al.| (2020).

On the contrary, centralized training treats the multi-agent problem as a single-agent counterpart.
However, this method has high combinatorial complexity and is difficult to scale beyond dozens
of agents [Yang et al.| (2019). Therefore, the most popular paradigm is centralized training and
decentralized execution (CTDE), including value-based |Sunehag et al.|(2018)); [Rashid et al.| (2018));
Son et al.| (2019); [Wang et al.[| (2020) and policy-based |[Lowe et al.| (2017); |Yu et al|(2022); Kuba
et al.| (2022) methods. The goal of value-based methods is to decompose the joint value function
among the agents for decentralized execution. This requires satisfying the condition that the local
maximum of each agent’s value function should be equal to the global maximum of the joint value
function. The methods, VDN |Sunehag et al.| (2018) and QMIX |Rashid et al.| (2018)) employ two
classic and efficient factorization structures, additivity and monotonicity, respectively, despite their
strict factorization method.

In QTRAN |Son et al.| (2019) and QPLEX Wang et al.| (2020), extra design features are introduced
for decomposition, such as the factorization structure and advantage function. The policy-based
methods extend the single-agent TRPO |Schulman et al.|(2015)) and PPO|Schulman et al.|(2017)) into
the multi-agent setting, such as MAPPO |Yu et al.| (2022)), which has shown surprising effectiveness
in cooperative multi-agent games. The goal of these algorithms is to find the policy that maximizes
the long-term reward. However, it is difficult for them to learn more diverse policies in order to
generate more promising results.

5 EXPERIMENTS

We first verify the performance of CFN on a multi-agent hyper-grid domain where partition func-
tions can be accurately computed. We then compare the performance of CFN and CJFN with stan-

Under review as a conference paper at ICLR 2025

—— MAPPO 250 —— MAPPO — MAPPO
MASAC N— N\~ MASAC MASAC
80 — MCMC —~—~— —— McMC —— MCMC
e — CFN 9200 gy lﬁi: '3300 — CFN
360 — N —— =" — 3 — JFN 3 — JFN
S o e TN V| T 200 — oy
3 40 T 3 g /_/,A
= =100 = —
20 100
b~ 50
0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Epochs Epochs Epochs

Lot

N ®» ©

or

l Lo S

o © ©
N O N
o o u
[
o ©
IS,

R
w (o))
383
Zg£

o83
L1E
R
e} ©o
~ o
w o
0=2z2x2
;o)»,
=92 3/
080
|
|
|
(
|
L1 Error
- -
o [oe]
o v
NI
2{'}))
223
L)

L1 Error
=
>
3
3
o
rr

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Epochs Epochs Epochs

Figure 3: Mode Found and L1 error performance of different algorithms on various hyper-grid
environments. Top and bottom are respectively Mode Found (higher is better) and L1 Error (lower
is better). Left: Hyper-Grid v1, Middle: Hyper-Grid v2, Right: Hyper-Grid v3.

dard MCMC and some RL methods to show that our proposed sampling distributions better match
normalized rewards. All our code is done using the PyTorch [Paszke et al.| (2019) library. We re-
implemented the multi-agent RL algorithms and other baselines.

5.1 HYPER-GRID ENVIRONMENT

We consider a multi-agent MDP where states are the cells of a NV-dimensional hypercubic grid of
side length H. In this environment, all agents start from the initialization point = = (0,0, ---), and
are only allowed to increase coordinate ¢ with action a;. In addition, each agent has a stop action.
When all agents choose the stop action or reach the maximum H of the episode length, the entire
system resets for the next round of sampling. The reward function is designed as

R(z)=Ro+ Ry []1(0.25 <|x;/H - 0.5)) + Ry [[1(0.3 < |&;/H - 0.5/ < 0.4), (10)

where x = [x1,--, 2] includes all agent states and the reward term 0 < Ry << Ry < Rj leads a
distribution of modes.

By changing R, and setting it closer to 0, this environment becomes harder to solve, creating an
unexplored region of state space due to the sparse reward setting. We conducted experiments in
Hyper-grid environments with different numbers of agents and different dimensions. We used dif-
ferent version numbers to differentiate these environments, where the higher the number is, the
more the number of dimensions and proxies are. The specific details about the environments and
experiments can be found in the appendix.

We compare CFN and CJFN with a modified MCMC and RL methods. In the modified MCMC
method Xie et al.| (2021), we allow iterative reduction of coordinates on the basis of joint action
space and cancel the setting of stop actions to form a ergodic chain. As for the RL methods, we
consider the maximum entropy algorithm, i.e., multi-agent SAC Haarnoja et al.| (2018)), and a pre-
vious cooperative multi-agent algorithm, i.e., MAPPO, |Yu et al.|(2022). Note that the maximum
entropy method uses the Softmax policy of the value function to make decision, so as to explore the
state of other reward, which is related to our proposed algorithm. To measure the performance of
these methods, we use the normalized L1 error as E[|p(s;) — 7(sy)| x N| with p(sy) = R(sy)/Z
being the sample distribution computed by the true reward, where N is cardinality of the space of
5. Moreover, we can consider the mode found theme to demonstrate the superiority of the proposed
algorithm.

Under review as a conference paper at ICLR 2025

Figure [3] illustrates the perfor-
mance superiority of our pro-
posed algorithm compared to
other methods in the L1 er-
ror and Mode Found. We
find that on small-scale environ-
ments shown in Figure [3}Left,
CFN can achieve the best perfor- 0 * eeens 20 0 S e 20
mance because CFN can accu-

rately estimate the flow of joint Figure 4: Comparison results of JEN and Conditional JFN.
actions when the joint action

space dimension is small. There

are two main reasons for the large 11-error index. First, we normalized the standard L1-error and
multiplied it by a constant to avoid the inconvenience of visualization of smaller magnitude. Sec-
ondly, when evaluating L1-error, we only sampled 20 rounds for calculation, and with the increase
of the number of samples, L1-error will further decrease. As the complexity of the joint action
flow that needs to be estimated increases, we find that the performance of CFN degrades. However,
the joint-flow based methods still achieve good estimation and maintain the speed of convergence,
as shown in Figure 3}Middle. Note that the RL-based methods do not achieve the expected per-
formance. Their performance curves first rise and then fall, because as training progresses, these
methods tend to find the highest rewarding nodes rather than finding more patterns. Figure [shows
the performance superiority of the CJFN. When the algorithm introduces conditions to coordinate
multiple agents, the performance is closer to the optimal.

—— w.o. Condition
—— with Condition

®
=]

I

©

o
S
=
~

Mode Found

o
o

L1 Error

g
o

—— w.o. Condition
—— with Condition

-
v

N
o

5.2 STARCRAFT

Figure [5] shows the performance of the proposed algorithm on the StarCraft 3m map, where (a)
shows the win rate comparison with different algorithms, and (b) and (c) show the decision results
sampled using the proposed algorithm. In the experiment, the outflow flow is calculated when the
flow function is large, and the maximum flow is used to calculate the win rate when sampling. It
can be found that since the experimental environment is not a sampling environment with diversi-
fied rewards, although the proposed algorithm is not significantly better than other algorithms, it
still illustrates its potential in large-scale decision-making. In addition, the proposed algorithm can
sample results with more diverse rewards, such as (b) and (c), and the number of units left implies
the trajectory reward. More detailed results are given in the Appendix. One thing to note is that the
task of the benchmark is to achieve as high a win rate as possible, which is somewhat different from
the goal of GFLowNets, but it can be used to verify the effectiveness of the algorithm.

Win Rate

o
=

— QL

) amix

02 QTRAN
VDN

— UFN

0.0 0.1 02 03 04 05
Million Steps

(a) Win Rate (b) Episode 1 (c) Episode 2

Figure 5: The performance comparison results on the 3m map of StarCraft

6 CONCLUSION

In this paper, we discussed the policy optimization problem when GFlowNets meets the multi-agent
systems. Different from RL, the goal of MA-GFlowNets is to find diverse samples with probability
proportional to the reward function. Since the joint flow is equivalent to the product of independent
flow of each agent, we designed a CTDE method to avoid the flow estimation complexity prob-

Under review as a conference paper at ICLR 2025

lem in a fully centralized algorithm and the non-stationary environment in the independent learn-
ing process, simultaneously. Experimental results on Hyper-Grid environments and StarCraft task
demonstrated the superiority of the proposed algorithms.

Limitation and Future Work: Our theory is incomplete as it does not apply to non-cooperative
agents and has limited support of different game/agent terminations or initialization. A local-global
principle beyond independent agent policies would also be particularly interesting. Our experiments
do not cover the whole range of the theory in particular regarding continuous tasks and CJFN loss
on projected GFN. An ablation study analyzing the tradeoff of small versus big condition space {2
would enlighten its importance. Finally, a metrization of the space of global GFlowNet would allow
a more precise functional and optimization analysis of JEN/CJFN and their limitations.

REFERENCES

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In NeurlPS,
2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J] Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. JMLR, 24(1):10006—-10060, 2023.

Leo Brunswic, Yinchuan Li, Yushun Xu, Yijun Feng, Shangling Jui, and Lizhuang Ma. A theory of
non-acyclic generative flow networks. In AAAI Conference on Artificial Intelligence, 2024.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156-172, 2008.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spano. Multi-agent reinforcement learning: A review of challenges and applica-
tions. Applied Sciences, 11(11):4948, 2021.

Tristan Deleu and Yoshua Bengio. Generative flow networks: a markov chain perspective. arXiv
preprint arXiv:2307.01422, 2023.

Tristan Deleu, Anténio Géis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, 2022.

Randal Douc, Eric Moulines, Pierre Priouret, Philippe Soulier, Randal Douc, Eric Moulines, Pierre
Priouret, and Philippe Soulier. Markov chains: Basic definitions. Springer, 2018.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in neural
information processing systems, 32, 2019.

Amal Feriani and Ekram Hossain. Single and multi-agent deep reinforcement learning for ai-enabled
wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 23(2):1226—1252,
2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging the
gap between generative flows and latent variable models. arXiv preprint arXiv:2002.07101, 2020.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In ICML, 2022.

10

Under review as a conference paper at ICLR 2025

Xinyuan Ji, Xu Zhang, Wei Xi, Haozhi Wang, Olga Gadyatskaya, and Yinchuan Li. Meta genera-
tive flow networks with personalization for task-specific adaptation. Information Sciences, 672:
120569, 2024.

Olav Kallenberg et al. Random measures, theory and applications, volume 1. Springer, 2017.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and
Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learning. In /CLR,
2022.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernandez-Garcia, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In ICML, 2023.

Wengian Li, Yinchuan Li, Zhigang Li, Jianye Hao, and Yan Pang. Dag matters! gflownets enhanced
explainer for graph neural networks. arXiv preprint arXiv:2303.02448, 2023a.

Yinchuan Li, Zhigang Li, Wengian Li, Yunfeng Shao, Yan Zheng, and Jianye Hao. Generative flow
networks for precise reward-oriented active learning on graphs. arXiv preprint arXiv:2304.11989,
2023b.

Yinchuan Li, Shuang Luo, Yunfeng Shao, and Jianye Hao. Gflownets with human feedback. arXiv
preprint arXiv:2305.07036, 2023c.

Yinchuan Li, Shuang Luo, Haozhi Wang, and Jianye Hao. Cflownets: Continuous control with
generative flow networks. In ICLR, 2023d.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In NeurIPS, 2017.

Shuang Luo, Yinchuan Li, Shunyu Liu, Xu Zhang, Yunfeng Shao, and Chao Wu. Multi-agent
continuous control with generative flow networks. Neural Networks, 174:106243, 2024.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. In NeurIPS, 2022.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value func-
tions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289-353, 2008.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1-64, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In ICML, 2018.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In ICML, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

Under review as a conference paper at ICLR 2025

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In ICML,
2019.

Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforcement Learning, pp.
387—-414. Springer, 2012.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. In AAMAS, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In ICML, 1993.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. In NeurIPS, 2019.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}:
Markov molecular sampling for multi-objective drug discovery. In ICLR, 2021.

Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, Haitham Bou Ammar, and Jun Wang. a®-rank:
Scalable multi-agent evaluation through evolution. 2019.

Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David Mguni, and Weinan Zhang.
Multi-agent determinantal g-learning. In ICML, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. In NeurlPS, 2022.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In ICML, 2022.

Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Josh Susskind, Navdeep Jaitly, and
Shuangfei Zhai. Improving gflownets for text-to-image diffusion alignment. arXiv preprint
arXiv:2406.00633, 2024.

Kaiqing Zhang, Zhuoran Yang, and Tamer Bagar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321-384, 2021.

Didi Zhu, Yinchuan Li, Yunfeng Shao, Jianye Hao, Fei Wu, Kun Kuang, Jun Xiao, and Chao Wu.
Generalized universal domain adaptation with generative flow networks. In Proceedings of the
31st ACM International Conference on Multimedia, pp. 8304-8315, 2023.

12

Under review as a conference paper at ICLR 2025

A JOINT FLOW THEORY

The goal of this section is to lay down so elementary points on the measurable theory of MA-
GFlowNets as well as prove the main theorem on the joint GFlowNet.

A.1 NOTATIONS ON MEASURES AND KERNELS

We mostly use notations from [Douc et al| (2018) regarding kernels and measures. In the whole
section, since we deal with technicalities, we use kernel type notations for image by kernels and
maps (seen as deterministic kernels). So that for a kernel K : X — Y and a measure p on X
we denote by pK the measure on Y defined by uK(B) = [. K(z - B)du(z) for B c Y
measurable and ;1 ® K is the measure on X x Y so that 4 ® K(Ax B) = [, _, K(z - B)du(z).
Recall that a measure v dominates a measure i which is denoted i << v, if for all measurable A,
v(A) =0 = p(A) = 0. The Radon-Nykodim Theorem ensures that if ;1 << v and p, v are finite then
there exists ¢ € L1 (v) so that y = v. This function ¢ is called the Radon-Nykodim derivative and
is denoted Z—’;. We favor notations p(A — B) when p is ameasure on X xY and Ac X and Bc Y,
also p(A — -) means the measure B — p(A > B).

A.2 AN INTRODUCTION FOR NOTATIONS

We understand that our formalism is abstract, this section is devoted justifying our choices and
providing examples.

A.2.1 MOTIVATIONS

To begin with, our motivation to formalize the action space as a measurable bundle A := {(s,a) | s €
S,ae A} 2, S is three fold:

1. The available actions from a state may depend on the state itself: on a grid, the actions
available while on the boundary of the grid are certainly more limited than while in the

middle. More generally, on a graph, actions are typically formalized by edges s L ¢ of
the graph, the data of an edge contains both the origin s and the destination s’. In other
words, on graphs, actions are bundled with an origin state. It is thus natural to consider the
actions as bundled with the origin state. When an agent is transiting from a state to another
via an action, the state map tells where it comes from while the transition map tells where
it is going.

2. We want our formalism to cover as many cases as possible in a unified way: Graphs,
vector spaces with linear group actions or mixture of discrete and continuous state spaces.
Measures and measurable spaces provide a nice formalism to capture the quantity of reward
on a given set or a probability distribution.

3. We want a well-founded and possibly standardized mathematical formalism. In particular,
the policy takes as input a state and returns a distribution of actions. the actions should
correspond to the input state. To avoid having a cumbersome notion of policy as a family
of distributions 75 each on A, we prefer to consider the union of the state-dependent action
spaces A := Uges As and define the policy as Markov kernel S — A. However, we still
need to satisfy the constraint that the distribution 7(s) is supported by .A,. Bundles are
usual mathemcatical objects formalizing such situations and constraints and are thus well
suited for this purpose and the constraint is easily expressed as S om(s) = s,Vs e S.

Our synthetic formalism comes with a few drawbacks due to the level of abstraction:

1. The notation 7(s) differs from the more common notation 7(s,a) as the action already
contains s implicitly.

2. We need to use Radon-Nikodym derivative. At a given state, on a graph, a GFlowNets has
a probability to stop
R(s)

Fout(s) '

P(STOP|s) =

13

Under review as a conference paper at ICLR 2025

On a continuous statespace with reference measure A, the stop probability is

r(s)
P(STOP|s) =
| f out (S)
where r(s) is the density of reward at s and f,t () is the density of outflow at s. A natural
measure-theoretic way of writing these equations as one is via Radon-Nikodym derivation:
given two measures ju, v; if u(X) = 0 = v(X) = 0 for any measurable X c S then p is
said to dominate v and, by Radon-Nikodym Theorem, there exists a measurable function
¢ € L*(p) such that v(X) = [. p(z)dv(z) for all measurable X c S. This ¢ is the
Radon-Nikodym derivative g—;.
If one has a measure \ dominating both R and Fi; and if Fj,,+ dominated R then
dR) dR) (dFout)-1
s)=—(s) x .
dFous dA A
When S is discrete, we choose A as the counting measure and we recover the graph formula

above. When § is continuous, we choose A as the Lebesgue measure and we recover the
second formula.

P(STOP|s) :=

A.2.2 EXAMPLE

Consider the D-dimensional W -width hypergrid case with agent set I, see Figure[6] The state space
is the finite set S = ({1, WP)I, say each agent only observes its own position on the grid so
that O = {1,.-., W }P. the observation-dependent action space of the i-th agent .Af:()) is a subset
of H := {+1;,: 1 < k < W} where 1 is the hot-one array (0,--,0,1,0,---,0) with a one at the k-th
coordinate. The set A((f()) depends on s: if 1 < s < W then .A(()?) ={z1;:1 <k <W}u{STOP}
butif s, =1 then -1, ¢ Agl()) and similarly if s; = W. The local total action space is then

Aff()) ={(s,a) |1 <sp <Wand 1 < s, +ap <W}Uu{STOP} ¢ {1,--,W}” x Hu {STOP}.

The local state maps S is S (0(), a) = o). Since each agent may choose its action freely, for
any s € S, As = [1;e; A)/ ~ however, since A,) depends on ¢ and s then A # [T;c; Ay)/ ~.

The local transition kernel 7" depends both on the global transition kernel and the policies of all
the agents. Two possible choices of transitions depend on whether the agent interacts or not. In the
non-interacting case 71 (s,a) = s +a. If agents may not occupy the same position then the transition
rejects the action if the agent moving would put them in the same position; so T>(s,a) = s + a if

s+ a is legal, otherwise p(*) o Ty (s, a) = 0(*) for some . The simplest 7% is to choose Th(s,a) = s
if s + a is illegal. In this case

Téi)(o(i),a(i)) =P(s +aislegal|o™, aD)8,),) + P(s + ais illegal|o®, a(D) 8,).

Clearly, P(s + a is legal\o(i), a(i)) depends on the policies and positions of all the agents, then so
does the local transition kernels Tz(z).

A non-negative measure . on S is any function of the form u(X) = Y, .x f(x) with f : S — R, any
function. Defining the counting measure A\(X) := ¥ .x 1 = Card(X) we have = f\ as measures
on S, or equivalently, % = f. We may thus translate any reward or probability distribution on such

a hypergrid as a measure.

A policy is a Markov kernel S — A such that S o 7 = Identity. More concretely, it means we have
a function that associates to any state s a probability distribution on A with support on elements of
the form (s,a) with a € A,. From the description of measures, such a policy is fully described by a
function ¢ : A — R, such that

VseS, > q(s,a)=1.

acA,
The policy is then 7(s) = ¥ ,c4, 4(8,a)d(s,0)-

A GFlowNet on this hypergrid in reward-less notations is given by (Finit, 7, Fi5yp). Now, Finit is
any measure on S, it may be given by a pre-chosen family of categorical distribution of the finite set

14

Under review as a conference paper at ICLR 2025

A
y) 3
N N 4 L4
S L 2
¢ ?

Figure 6: 2 agents on the 2D6W grid with available moves depicted.

S. For big W, D and I, since Fi,;; have limited number of parameters, we may choose Finit = C'ds,
for some s;, and some trainable constant C'. The star-policy is similar to 7 except that the STOP
action is absent:

7*(s) = Z q*(s,a), Z(s) = Z q(s,a’).
ae A NSTOP a’e A,NSTOP
Finally, F, is measure and is thus of the form
F;ut(X) = Z f;ut(w)
xeX

for some function :S > R,

out

Standard notation GFlowNet is then recovered, given a reward 7 : S - R, via:
* R(X) = Xoexr(2);
° out(X) = ZmeX fout(w) Wlth VS € S fout(s) = f;ut(s) + 71(8)
° q(s,a) = qui(g q*(s,a) if a + STOP and ¢(s,STOP) =

out ()

A.3 ENVIRONMENT STRUCTURES

We introduce first a hierarchy of single-agent environment structures.

* An action environment is a triplet (S,.4,5) with A 2, § a measurable map between
measurable space is called of state space S, action space A and State map S. We denote
As:={aecAlaS =s}.

* An interactive environment is a quadruple (S, A, S,T) where (S, .4, .S) is an action envi-
ronment and 7" : A — S is a quasi-Markov kernel.

* A Game environment is a quintuple (S, A, S, T, R) where (S,.A,S,T) is an interactive
environment and R is a finite non-negative non-zero measure on S. We may allow the
reward to be stochastic so formally, R is allowed to be random measure instead (Kallenberg

2017).

For multi-agent environment, we have a similar hierarchy:

« A multi-agent action environment is a tuple (S,.A,S,O® A® SO (), with
(S,A,S) and each (O™, A® S being mono-agent action environments. Further-
more, we assume S = [[;c; O and p® : S - O are the natural projection maps.
Also

\ {STOP}).

VseS, AsN{STOP}= H (-’4(<)>()

15

Under review as a conference paper at ICLR 2025

A multi-agent interactive environment is a tuple (S, A,S,T,0® A SO p®)Y,
where (S, A4,5,00, A® S0 ;) 1 is a multi-agent action environment and
(S, A, S,T) is a mono-agent interactive environment.

« A multi-agent game environment is a tuple (S,A,S,T,R,0W A® SO p®)Y,
such that (S, A, S, 7,0 A® SO p®)Y, ; is multi-agent interactive environment and
(S,A,S,T, R) is a mono-agent game environment.

A.4 GFLOWNET IN A GAME ENVIRONMENT

A generative flow networks may be formally defined on an action environment (S, A, S), as a triple
(m*, F}yts Finit) where 7% : S — A is a Markov kernel such that 7S = Idg, FJ,; and Fi,;; are a
finite non-negative measures on S. Furthermore, we assume that for all s € S, 7* (s — STOP,) = 0.

On an interactive environment (S, A, S,T), given a GFlowNet (7%, F.* ;, Finit), we define the on-

out»
going flow as Fiy, := F 7" T + Finit and the GFlowNet induces an virtual reward R := Fi, — F;

out*
Note that the virtual reward is always finite as the star-outflow and the initial flow are both finite and

7* and T are Markovian.

Definition 1 (Weak Flow-Matching Constraint) The weak flow-matching constraint is defined as

R>0 (11)

If the GFlowNet satisfies the weak flow-matching constraint, we may define a virtual GFlowNet
policy as
dF?.,

= ¥ 12

TR, " (12
where dstop is the deterministic Markov kernel sending any s to STOP;. The virtual action and edge
flows are: .

Faction = -Fin®7?r€M+(SXA); (13)

Fedge = F‘ln®(ﬁ'T)EM+(SXS) (14)

In a game environment, a GFlowNet comes with an outgoing flow, a natural policy, a natural action
flow and a natural edge flow

Fout :=F}+R (15)
dF>.
= Qb g 16
i dFoutﬂ- ()
Fedge = Loyt ® (WT) € M+(‘S X S) an
Fiaction = Fout®7T€M+(SXA)- (18)

By abuse of notation we also write Fyction (T€Sp. Faction) for Foym (resp. Finm). and the flow-
matching property may be rewritten as follows.

Definition 2 (Flow-Matching Constraint) The flow-matching constraint on a Game environment
(S, A, S, T, R) is defined as
R=E(R). (19)

Remark 1 In an interactive environment (S, A, S, T, 0 AD SO p(1)Y, 1 a GFlowNet satisfy-
ing the weak flow-matching constraint satisfies the (strong) flow-matching constraint on the Game
environment (S, A, S, T, R,O® A S0 p)y), .

We may recover part of the GFlowNets (7*, F. ;. , Finit) from any of Fyction, Fiction as in general:

ut?

dFyction(- > ANSTOP) dFycpion(- — A\ STOP)
dFyction(- = ANSTOP) dE,ion(- ~ A~ STOP)

(x> A) = (20)
R= Faction(' - STOP) R = Faction(' - STOP) 210

16

Under review as a conference paper at ICLR 2025

;ut = Faction(' - A) -R-= Faction(' - A) - R (22)
Fuie = F2 T+ R (23)

If the flow-matching constraint is satisfied, then

*
Finie = F4¢

T+R. 24)

Before going further, the presence densities.

Definition3 Ler F = (7%, Fout, Finit) be a GFlowNet in an interactive environment
(SﬂAvsaT»O(l)vA(l)aS(Z)vp(l))lel

The initial density of F is the probability distribution

1

init = o Fini
VF, ‘ —Finit(’S) ’

The virtual presence density of I is the probability distribution Uy defined by

oo
N At
Dp o<) VR init 7
t=0

The anticipated presence density of F is the probability distribution vy defined by

1
Vg = ———Fin.
Y Fa(S)

In a game environment, the presence density of IF is the probability distribution vy defined by

oo

t

VR <) VR init T
=0

Lemma 1 Let F be a GFlowNet in an interactive environment satisfying the weak flow-matching
constraint. If Uy > Uy, then g = Uy.

Proof 1 Let (S, A,S,T,00, A® SO ().} be the interactive environment and let F =
(7*, Fout, Finit)- To begin with, F' := (7*, Finit (S)0r — R, Finit) is a GFlowNet satisfying the
strong flow-matching constraint for reward R, its edgeflow Fe'dge may be compared to the edgeflow

Feage of F: by Proposition 2 of |Brunswic et al.|(2024), we have Foqge > F, édge, and the difference

Feqge = F, édge is a O-flow in the sense this same article. Also, the domination hypothesis implies that
FC’dgC > Fogge > FCOdgc = Fodge — Fc'dgc. Since the edge-policy of Feqge is the same as that ofFC’Olgc

. . t—>+o0
we deduce that it is also the same as FC, .. By the same Proposition 2, we have F! w' —— 0,

edge*

t— . . .
therefore, ' ——=> 0 for any p < F!. Again by domination, F', > Feodge we deduce that

out* edge
t—+o0 . . .
F! . > FO .. Therefore, Fc?u,twt — 9 Finally, since ° is a O-flow, F°,,m = FC,., we deduce that
F5. = 0and thus Feqge = chgc ie Up = Up.

Remark 2 As long as the GFlowNets considered are trained using an FM-loss on a training train-
ing distribution vgiate extracted from trajectory distributions Uy or v of the GFlowNets themselves,
we may assume that Up > Uy as flows are only evaluated on a distribution dominated by vr. The
singular part with respect to vr is irrelevant for training purposes as well as inference purposes.
Therefore, we may generally assume that U = U

Remark 3 The main interest of the virtual reward Ris for cases where the reward is not accessible
or expensive to compute. Since a GFlowNet satisfying the weak flow-matching property always
satisfies the strong flow-matching property for the reward R, the sampling Theorem usually applies
to R. Therefore, R may be used as a reward during inference instead of the true reward R so that
we actually sample using the policy 7 instead of .

17

Under review as a conference paper at ICLR 2025

A.5 MA-GFLOWNETS IN MULTI-AGENT ENVIRONMENTS (I): PRELIMINARIES

To begin with, let us define a MA-GFlowNet on a multi-agent environment.

Definition 4 An MA-GFlowNet on a multi-agent action environment is the data of a global
GFlowNet F on (S, A, S) and a collection of local GFlowNets F®) on (O™, A® SO forie .

We give ourselves a multi-agent interactive environment (S, A, S, T, 0™ A® O 5@ We
wish to clarify the links between local and global GFlowNet.

* A priori, there the local GFlowNets are merely defined on an action environment, they lack
both the local transition kernel 7*) and the reward R(*).

* Given a global GFlowNet, we wish to define local GFlowNets.
* Given a family of local GFlowNets, we wish to define a global GFlowNet.

For simplicity sake, for any GFlowNet [F defined on an interactive environment satisfying the weak
flow-matching constraint, we set R = R and apply remarkassume that p = Uy = vp.

Definition 5 Let (S, A, 5, 7,00, AD SO (D) be a multi-agent interactive environment and let
F = (n*, F} ., Finit) be a GFlowNet on (S, A) satisfying the weak flow-matching constraint. We
introduce the following:

* the local presence probability distribution VE(-i) = vpp®);

« the measure map o'") — Vp|oti) as the disintegration of vy by p®
e the Markov kernel # : 00 5 A by 50(7:)7?(") = VRlo() T

* the Markov kernel 7 : O() - A®) by 7@ = 7D p).

e the Markov kernel T : A®) — O py T = O 7O TP .

The situation may be summarized by the following diagram:

(S,vr) <_/S (A, vpm)

p(7)

o)
((’)(i)’y]g‘i)) <;S(i) * (A(i)7yé1)7r(z‘))
7@

Before going further, we need to check that these definitions are somewhat consistent.

Lemma 2 The following diagrams are commutative in the category of probability spaces.

—_—
(S,vr) s (A, vpm) S,y (Awpm)
T
p® i p(i) p® (i)
o)
(00, ,,Hgi)) ﬁ:} (A(i)ﬂjﬂfj)ﬁ(i)) ((Q(i)’,/]gﬂﬂ(i):p(i)) (A(i)ﬂjéi)ﬁ(i))
7

18

Under review as a conference paper at ICLR 2025

Proof 2 For the left diagram, with the definition chosen, we only need to check that yI(Fi)fr(i) = UpT.
For all p € L*(A, vp) we have

[e@dwm@ = [[o(@dn(s.a)dve(s)
fou)eom [se(pu))*l(om) faeA playdn(s, a)dVFl"(i)(s)dyg)(O(i))

= ~ (1) (%) ¢ .(4)
fo<i>eo(i) faeA p(a)dw® (a)dvg " (0™)
faeA (‘O(a)d(l’éi)ﬁ(i))(a).

For the right diagram, we need to check that verpD = v D7) and that vernTp™® = Vﬁ(“i)ﬂ(i)T(i).
We already proved the first equality for the left diagram and for the second:

VFﬂp(i)T(i) = g 71-p(i)S(i) ﬁ(i)Tp(i) _ VFp(i) ﬁ-(i)Tp(i) _ VI(Fi)ﬂ(i)T(i)
—_— —_——

=p(i) (i)
D Vg

We see that from a global GFlowNet, we may build local policies as well as local transition kernels.
These policies and transitions are natural in the sense that of local the induced local agent policy an
transition are exactly the one wed would have if the observations of the other agents were provided
as a random external parameter. The local rewards are then stochastics depending on the state of the
global GFlowNet.

A.6 MA-GFLOWNETS IN MULTI-AGENT ENVIRONMENTS (II): FROM LOCAL TO GLOBAL
We would like to settle construction of global GFlowNet from local ones, key difficulties arise:

* the global distributions induce local ones but the coupling of the local distributions may be
non trivial;

* the defining the star-outflow and initial flow requires to find proportionality constants
Fin(O(i)) < V]p(‘i) Fl(nll)t € VR(4) init}
* The coupling of the local transition kernels 7(*) and the global one is in general non-trivial.

We try to solve these issues by looking at the simplest coupling: independent local agents. Recall
that A = [T,c; A" therefore, independent coupling means that 7* (s — -) = [T;e; 7" (0 —
-). We may generalize this relation to a coupling of GFlowNets writing Faction([Tief O —
[Ties AD) = [1e; Fa(égion(O(i) - A(M). We are led to following the definition:

Definition 6 Ler (S, A,S,T,00, A® SO (D) be a multi-agent interactive environment and let
F = (7, F., Finit) be a global GFlowNet on it satisfying the weak flow-matching constraint. The
GFlowNet I is said to be

o star-split if for some local GFlowNets F®) and ¥ A®) ¢ A® < STOP we have:

Faction(H A(Z)) = H széglon(A(l)) (25)

iel i€l
o strongly star-split if for some local GFlowNets F®) and Y A® | B® ¢ O we have:

Feage(JTA® > T] B®) = [T (A > BD). (26)
i€l i€l iel

The local GFlowNets F) are called the components of the global GFlowNet F.

However we encounter an additional difficulty: what happens when an agent decides to stop the
game ? Indeed, local agents have their own STOP action, we then have at least three behaviors.

19

Under review as a conference paper at ICLR 2025

1. Unilateral Stop: if any agent decides to stop, the game stops and reward is awarded.

2. Asynchronous Unanimous Stop: if an agent decides to stop, it does not act anymore, waits
for the other to leave the game and then reward is awarded only when all agents stopped.

3. Synchronous Unanimous Stop: if an agent decides to stop but some other does not, then
the stop action is rejected and the agent plays a non-stopping action.
Similar variations may be considered for how the initialization of agents:
1. Asynchronous Start: the game has a free number of player, agents may enter the game
while other are already playing.
2. Synchronous Start: the game has a fixed number of players, and agents all start at the same

time.

These 6 possible combinaisons leads to slight variations on the formalization of MA-GFlowNets
from local GFlowNets.

A.7 INITIAL LOCAL-GLOBAL CONSISTENCIES

Let us formalize Asynchronous and Synchronous starts. In synchronous case, the agents are ini-
tially distributed according to their own initial distributions and independently. Therefore, v,;¢ is a
product and

(4) (4)
Flinig o< Vinit = H Vinit &< H Finit'
iel el

Also, by strong star-splitting property, Fi;, = [T;es Figf)’*. By Fin = Finit + F};, we obtain the
definition below.

Definition 7 A strongly star-split global GFlowNet is said to have Synchronous start if

- ©) (@)%
En— L IFinit+nEn

On the other hand, in the asynchronous case, an incoming agent may “bind” to agent arriving at the
same time and other already there hence, the initial flow is a combination of any of the products

Fax=Y [1 FS T1 EQ =TIED +FP -TIED".

ie{incoming} je{already in} i€l iel
Definition 8 A strongly star-split global GFlowNet is said to have Asynchronous start if

Fin = [T(F + FD).

iel
A.8 TERMINAL LOCAL-GLOBAL CONSISTENCIES

We focus on terminal behaviors 1 and 2 which we formalize as follows. Local-global consistency
consists in describing the formal structure linking local environments with global ones. The product
structure of the action space is slightly different depending on the terminal behavior. It happens that
we may up to formalization, we may cast Asynchronous Unanimous STOP as a particular case of
Unilateral STOP local-global consistency. More precisely:

Definition 9 (Unilateral STOP Local-Global Consistency) With the same notations as above, we
say that a multi-agent action environment has unilateral STOP if

A, = (H Ao<,i>)/~ ay ~ay < 3i,j e I,al? =STOPW o{) =sTOPY. (27
el

Definition 10 (Asynchronous Unanimous STOP Local-Global Consistency) With the same no-
tations as above, we say that a multi-agent game environment has Asynchronous Unanimous

20

Under review as a conference paper at ICLR 2025

STOP if is has Unilateral STOP and the observation space O may be decomposed into O =

(’),(l}e) (’),ﬁf,lgam and for any observation o) € (9(D we have some 6 ¢ Op(Lrga,O,y such that :
g
m R(i)(a(i))
o® 5 : sf
STOP()
0
STOP

where the value on top of arrows are constrained flow values.

The formal definition of Unilateral STOP is straightforward as any local STOP activates the global
STOP so that any combination of local actions that contains at least one STOP is actually a global
STOP. The quotient by the equivalence relation formalizes this property. Regarding Asynchronous
Unanimous STOP, the chosen formalization allows to store the last observation of an agent while it
is put on hold until global STOP. Indeed, a standard action (# STOP) is invoked to enter purgatory,
the reward is supported on purgatory and as long as all the agent are not in purgatory its value is zero
(recall that from the viewpoint of a given agent, R(") is stochastic but in fact depends on the whole
global state). The local STOP action is then never technically called on an “alive” observation, once
in purgatory the e self-transition is called by default as long as the reward is non zero, hence until
all agents are in purgatory. When the reward is activated, the policy at a purgatory state 5(*) is then
R

Ty 00 + ity
else WAIT”. This behavior is exactly the informal description of Asynchronous Unanimous STOP,
the formalization is rather arbitrary and does not limit the applicability as it simply helps deriving
formulas more easily.

dsTop. As e — 0%, the policy becomes equivalent to ”if reward then STOP,

We now prove Theorem 2]

Theorem 4 Let (S, A, S,T,0W, A SO ()Y be a multi-agent interactive environment. Let
F*) be non-zero GFlowNets on (OW AW SO for i e I satisfying the weak flow-
matching constraint, then there exists a transition kernel T and a star-split GFlowNet on
(S,A, S, 7,00, A0, SO pW)Y whose components are the F®,

Furthermore,

* if the multi-agent environment is a game environment with Asynchronous Unanimous STOP
and if the global GFlowNet satisfies the strong flow-matching constraint on [];cr Ol(ilfl then

each local GFlowNet satisfies the strong flow-matching constraint on Ol(izfi;

* ifthe multi-agent environment is a game environment with Asynchronous Unanimous STOP
and if each local GFlowNets satisfy the strong flow-matching constraint on Ol(ilf?e then R =

Hie] R(l)

Proof 3 We simply define F = (* FO*ut7 Finit) by 7 () i= ([Liey 7% (D)) ~ ie the projection
on A of the policy toward T];. I.A , then FJ . as the product of the measures F(l)’*. Then we
define T = T1;e; T® so thatF*(nmA()) = [ies O (AD) and Fpyy = HM(F(De i)y

init

i FY () 45 the product measure of the F: @) By construction this GFlowNet is star-split.

in init*

Assume that F satisfies the strong flow-matching constraint. It follows that for any A® c (’)1((s We

have

[TF2(AD) = [TFRAD) =TT (AD).

i€l i€l i€l
Since, by assumption, all local GFlowNets satisfy the weak flow-matching constraint, all terms in
the left-hand side product are bigger than those in the right-hand side product. Equality may only

occur if some term is zero on both sides or if for all i € I, Flgl) F, O(U)t Since we assume that the

F, o(u% * + 0 we may take all the A®) = (’)(if) except one to ensure we are in the later case We conclude

that the strong flow-matching constraint is satisfied for all local GFlowNets on (91 for

21

Under review as a conference paper at ICLR 2025

If the strong flow-matching constraint is satisfied on Ol(iif)e , then R® = R = 0 on (’)l(l?e By

construction, FOx 2 O _ g o o) Therefore, on purgatory, we have

out init purgatory*
R= By = Fow = Fy = B = [T - TTR =TT =TT R,
iel iel el el

B ALGORITHMS

Algorithm [3] shows the training phase of the independent flow network (IFN). In the each round of
IFN, the agents first sample trajectories with policy

oy’) = pi(sgi)) and W(i)(ogi) - agi)), el (28)
with a; = (agi) 24 €T)and s;11 = T(s¢,a¢). Then we train the sampling policy by minimizing the
FM loss L3te(F(D-9) for i € I.

Algorithm 3 Independent Flow Network Training Algorithm for MA-GFlowNets

Input: Number of agents N, A multi-agent environment (S, 4, O, A® p; S T, R).

Input: Local GFlowNets (w(?*, () gl
while not converged do

Sample and add trajectories (s;):>0 € T to replay buffer with policy according to equation

Generate training distribution of observations us(;‘;te for ¢ € I from train buffer

Apply minimization step of FM-loss £jiable(F7 ;Zgi’gn, R®) foriel.
end while

)ies parameterized by 0.

Algorithm[dshows the training phase of Conditioned Joint Flow Network (CJEN). In the each round
of CJFN, we first sample sample trajectories with policy

of ! =pi(s{”) and 7 (of” > af”), i€l (29)
with a; = (agi) 24 €I)and s;11 = T(8¢,a¢). Then we train the sampling policy by minimizing the

FM loss E,, £3@ble(pfioimnt .) R).

action

Algorithm 4 Conditioned Joint Flow Network Training Algorithm for MA-GFlowNets

Input: Number of agents N, A multi-agent environment (S, 4,0, A®) p; S T R).
Input: Simple Random distribution (2, P)
Input: Local GFlowNets (= (), F)* F()
while not converged do
Sample w1, -+, w;, ~ P and then trajectories (s)+0 € 7 to replay buffer with policy according
to equation29]for w € {wy, -+, wp}
Generate training distribution of states/omega v/{{,,., from the train buffer
Apply minimization step of the FM loss E,, L' (F%-°int (..)) under the constraint of Weak
flow-matching.
end while

)icr parameterized by 6 and w € Q.

C DISCUSSION: RELATIONSHIP WITH MARL

Interestingly, there are similar independent execution algorithms in the multi-agent reinforcement
learning scheme. Therefore, in this subsection, we discuss the relationship between flow conser-
vation networks and multi-agent RL. The value decomposition approach has been widely used in
multi-agent RL based on IGM conditions, such as VDN and QMIX. For a given global state s
and joint action a, the IGM condition asserts the consistency between joint and local greedy action
selections in the joint action-value Qo (s, @) and individual action values [Q;(0;,a;)]%;:

argmax Qo (s,a) = (arg max @1 (01,a1), -+, arg max Qk(ok7ak)) ,VseS. (30)
acA a1eAq apeAy

22

Under review as a conference paper at ICLR 2025

Assumption 1 For any complete trajectory in an MADAG T = (so,...,sf), we assume that
Qb (s7-1.a) = R(s7) [(s7-1) with f(sn) = [.

Remark 1 Although Assumption |l|is a strong assumption that does not always hold in practical
environments. Here we only use this assumption for discussion analysis, which does not affect the
performance of the proposed algorithms. A scenario where the assumption directly holds is that we
sample actions according to a uniform distribution in a tree structure, i.e., u(als) = 1/|A(s)|. The
uniform policy is also used as an assumption in|Bengio et al.|(2021).

Lemma 3 Suppose Assumption 1 holds and the environment has a tree structure, based on Theo-
rem[2 and IGM conditions we have:

1) Qio(s,0) = F(s,a) f(s);

2) (argmax,, Qi(oi,ai))f:l = (argmax,, Fi(oi,ai))le.

Based on AssumptionI} we have Lemma [3] which shows the connection between Theorem [2] and
the IGM condition. This action-value function equivalence property helps us better understand the
multi-flow network algorithms, especially showing the rationality of Theorem 2]

C.1 PROOF OF LEMMA[3]

Proof 4 The proof is an extension of that of Proposition 4 in|Bengio et al.| (2021). For any (s,a)
satisfies sy = T'(s,a), we have Ql,,(s,a) = R(sy)f(s) and F(s,a) = R(sy). Therefore, we have
Qh(s,a) = F(s,a)f(s). Then, for each non-final node s', based on the action-value function in
terms of the action-value at the next step, we have by induction:

Q;t(sva) = R(sl) + N(a|51) Z Qgt(slv as R)

a’eA(s")

@ plals’)y > F(s',d';R)f(s"),
a’eA(s")

€2y

where R(s') is the reward of Q",(s,a) and (a) is due to that R(s') = 0 if s’ is not a final state.
Since the environment has a tree structure, we have

F(s,a)= 3, F(s',a"), (32)
a’eA(s")
which yields
1
Qlor(s,a) = p(als")F'(s,a) f(s) = p(als")F(s,a) f(s) Gl F(s,a)f(s).
According to Theorem we have F(s¢,a;) = [1; F; (o}, al), yielding
argmax Q(s,a) @ argmax log F'(s,a) f(s)
®) &
= argmax y log F;(0;, a;) (33)
@ =1

© (arg max Fi(o01,a1), -, arg max Fk(ok’ak)) ’
A aké-Ak

a1€A;

where (a) is based on the fact F and f(s) are positive, (b) is due to Theorem[2} Combining with
the IGM condition

argmax Qr,(s,a) = (arg max @1(01,a1), -, arg max Qk(ok,ak)) ,VseS. (34)
acA areA; apeAy

we can conclude that
k k
(arg max F;(o;, ai)) = (arg max Qi(oi,ai))
A i=1 ar1eAq

a;€A;

i=1

Then we complete the proof.

23

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 HYPER-GRID ENVIRONMENT

D.1.1 EFFECT OF SAMPLING METHOD:

We consider two different sampling methods of JEN; the first one is to sample trajectories using the
flow function F; of each agent independently, called JFN (IS), and the other one is to combine the
policies 7; of all agents to obtain a joint policy 7, and then performed centralized sampling, named
JEN (CS). As shown in Figure m we found that the JFN (CS) method has better performance than
JFN (IS) because the error of the policy 7 estimated by the combination method is smaller, and
several better samples can be obtained during the training process. However, the JEN (IS) method
can achieve decentralized sampling, which is more in line with practical applications.

1.9 — JEN (IS)
80 —— JFN (CS)
- S 1.8
560 S
% [0}
3 40 3 1.6
= =
1.5
20 — JEN(IS)
—— JFN (CS) 1.4
0 5 10 15 20 0 5 10 15 20
Epochs Epochs
(a) Mode Found (b) L1-Error

Figure 7: The performance of JEN with different methods.

D.1.2 EFFECT OF DIFFERENT REWARDS:

We study the effect of different rewards in Figure In particular, we set Ry = {1071,1072,1074} for
different task challenge. A smaller value of Ry makes the reward function distribution more sparse,
which makes policy optimization more difficult Bengio et al.| (2021)); [Riedmiller et al.| (2018)); [Trott]
. As shown in Figure [8] we found that our proposed method is robust with the cases
Ry = 107" and Ry = 1072, When the reward distribution becomes sparse, the performance of the
proposed algorithm degrades slightly.

—e— CFNRo=10""!

19 ¢
80 —— CFNRo=10"2
b 1.8 o CFN Ro=107*%
560 5 L —— JFNRo=10""
o | —— CFNRe=10' 277 - e JFN Ry =102
% 40 —v— CFNRgp= 10:j 2 3 Leeme JFN Ro=10"%
2 - CFN Ro =10 —11.6 B S ——
—— JFNRo=10"1
20 —v— JFNRo=1072 1.5 W o Lmeweag
e JENRo=107*
1.4
0 5 10 15 20 0 5 10 15 20
Epochs Epochs

Figure 8: The effect of different reward R on different algorithm.

D.1.3 FLOW MATCH L0OSS FUNCTION:

Figure 0] shows the curve of the flow matching loss function with the number of training steps. The
loss of our proposed algorithm gradually decreases, ensuring the stability of the learning process.

24

Under review as a conference paper at ICLR 2025

For some RL algorithms based on the state-action value function estimation, the loss usually os-
cillates. This may be because RL-based methods use experience replay buffer and the transition
data distribution is not stable enough. The method we propose uses an on-policy based optimization
method, and the data distribution changes with the current sampling policy, hence the loss function
is relatively stable. Then we present the experimental details on the Hyper-Grid environments. We
set the same number of training steps for all algorithms for a fair comparison. Moreover, we list the
key hyperparameters of the different algorithms in Tables [2}j6]

8
—— CFN 10 — CEN
\ — JFN — JFN
6 8
w0
0)
g4 §
4
2
2
0
0 100 200 300 0 100 200 300
Training Steps Training Steps

Figure 9: The flow matching loss of different algorithm.

In addition, as shown in Table[I] both the reinforcement learning methods and our proposed method
can achieve the highest reward, but the average reward of reinforcement learning is slightly better
for all found modes. Our algorithms do not always have higher rewards compared to RL, which is
reasonable since the goal of MA-GFlowNets is not to maximize rewards.

Environment MAPPO MASAC MCMC CFN JFEN

Hyper-Grid v1 2.0 1.84 1.78 2.0 2.0
Hyper-Grid v2 1.90 1.76 1.70 1.85 1.85
Hyper-Grid v3 1.84 1.66 1.62 1.82 1.82

Table 1: The best reward found using different methods.

D.2 STARCRAFT

We present a visual analysis based on 3m with three identical entities attacking to win. All compari-
son experiments adopted PYMARL framework and used default experimental parameters. Figure[I0]
shows the decision results of different algorithms on the 3m map. It can be found that the proposed
algorithm can obtain results under different reward distributions, that is, win at different costs. The
costs of other algorithms are often the same, which shows that the proposed algorithm is suitable
for scenarios with richer rewards. Figure[TT]shows the performance of the different algorithms on
253z, which shows a similar conclusion that the algorithm based on GFlowNets may be difficult
to get the best yield, but the goal is not to do this, but to fit the distribution better. Moreover, on
StarCraft missions, we did not use a clear metric to indicate the diversity of different trajectories,
mainly because the status of each entity includes multiple aspects, its movement range, health, op-
ponent observation, etc., which can easily result in different trajectories, but these differences do not
indicate a good fit for the reward distribution. As a result, it is not presented in the same way as
Hyper-Grid and Simple-Spread. Therefore, we used a visual method to compare the results. The
maximized reward-oriented algorithms such as QMIX will improve the reward by reducing the death
of entities, while the GFlowNets method can better fit the distribution on the basis of guaranteeing
higher rewards.

25

Under review as a conference paper at ICLR 2025

--

Figure 10: The sample results of different algorithm on 3m map. Upper: QMIX, Bottom: JFN

283z

Win Rate

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

Figure 11: Average rate on 253z

D.3 SPARSE-SIMPLE-SPREAD ENVIRONMENT

In order to verify the performance of the CFN and JEN algorithms more extensively, we also con-
ducted experiments on Simple-Spread in the multi-agent particle environment. We compared two
classic Multi-agent RL algorithms, QMIX [Rashid et al.| (2018)) and MAPPO (2022), which
have achieved State-of-the-Art performance in the standard simple-spread environment. Since the
decision-making problems solved by GFlowNets are usually the setting of discrete state-action
space, we modified Simple-Spread to meet the above conditions and named it discrete Sparse-
Simple-Spread. Specifically, we set the reward function such that if the agent arrives at or near
a landmark, the agent will receive the highest or second-highest reward. And this reward is given to
the agent only after each trajectory ends. In addition, we fix the speed of the agent to keep the state
space discrete and all agents start from the origin.

We adopt the average return and the number of distinguishable trajectories as performance metrics.
When calculating the average return, JFN and CFN select the action with the largest flow for testing.
As shown in Figure [I2}Left, although the MAPPO and QMIX algorithms converge faster than the
JEN, the JEN eventually achieves comparable performance. The performance of JEN is better than
that of the CFN algorithm, which also shows that the method of flow decomposition can better learn
the flow F; of each agent. In each test round, we collect 16 trajectories and calculate the number of
trajectories, which can be accumulated for comparison. The number of different trajectories found
by JFN is 4 times that of MAPPO in Figure[T2}Right, which shows that MA-GFlowNets can obtain
more diverse results by sampling with the flow function. Moreover, the performance of JFN is not
as good as that of the RL algorithm. This is because JFN lacks a guarantee for monotonic policy
improvement|Schulman et al.| (2015 [2017). It pays more attention to exploration and does not fully
use the learned policy, resulting in fewer high-return trajectories collected. MAPPO finds more
high-return trajectories in Figure [[2}Right, but it still struggles to generate more diverse results.
In each sampling process, the trajectories found by MAPPO are mostly the same, while JFN does
better.

26

Under review as a conference paper at ICLR 2025

800
— JFN
3 —— MAPPO
5600 QmIx
2 CFN
o
=400
[
=
kst
£
% 200
a
O ([B W=
0 20 40 60 80 100 0 1000 2000 3000
Episodes (x103) Visited Trajectories

Figure 12: Average return and the number of distinctive trajectories performance of different algo-
rithms on Sparse-Simple-Spread environments.

Table 2: Hyper-parameter of MAPPO under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Agent 2 2 3
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Actor Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99
PPO Entropy le-1 le-1 le-1

Table 3: Hyper-parameter of MASAC under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99
SAC Alpha 0.98 0.98 0.98
Target Network Update 0.001 0.001 0.001

Table 4: Hyper-parameter of JEN under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Ro 2 2 2
Ry 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8.,8] [8.,8] [8.,8]
Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005

27

Under review as a conference paper at ICLR 2025

Table 5: Hyper-parameter of CJFN under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Ry 2 2 2
Ry 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005
Number of w 4 4 4

Table 6: Hyper-parameter of CFN under different environments

Hyper-Grid-vl Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Trajectories per steps 16 16 16
Ry 2 2 2
R, 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8.,8]
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005

28

	Introduction
	Problem Formulation
	Multi-Agent GFlowNets
	Centralized Training
	Local Training: Independent
	Local-Global Training
	Local-Global Principle: Joint Flow Network
	Conditioned Joint Flow Network

	Related Works
	Experiments
	Hyper-grid Environment
	StarCraft

	Conclusion
	Joint Flow Theory
	Notations on Measures and Kernels
	An Introduction for Notations
	Motivations
	Example

	Environment structures
	GFlowNet in a Game Environment
	MA-GFlowNets in multi-agent environments (I): Preliminaries
	MA-GFlowNets in multi-agent environments (II): from local to global
	Initial local-global consistencies
	Terminal local-global consistencies

	Algorithms
	Discussion: Relationship with MARL
	Proof of Lemma 3

	Additional Experiments
	Hyper-Grid Environment
	Effect of Sampling Method:
	Effect of Different Rewards:
	Flow Match Loss Function:

	StarCraft
	Sparse-Simple-Spread Environment

