
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

e3: Learning to Explore Enables Extrapolation
of Test-Time Compute for LLMs

Anonymous Authors1

Abstract
Test-time scaling offers a promising path to im-
prove LLM reasoning ; however, the true promise
of this paradigm lies in extrapolation (i.e., to scale
performance as LLMs “think” for longer). We
show that one way to enable extrapolation is by
training the LLM at in-context exploration; that is,
training the LLM to effectively spend its test time
budget by chaining operations (such as genera-
tion, verification, refinement, etc.). To enable in-
context exploration, we identify three key ingredi-
ents as part of our recipe e3: (1) chaining asym-
metries in base LLM competence, e.g., chaining
verification (easy) with generation (hard), as a
way to implement in-context search; (2) leverag-
ing negative gradients from incorrect traces to am-
plify exploration that chains additional asymme-
tries ; and (3) aligning task difficulty with training
token budget to structure in-context exploration.
Our recipe e3 produces the best performing 1.7B
model on AIME/HMMT’25, and can also extrap-
olate compute to 2.5× the model training budget.

1. Introduction
Many recent works post-train LLMs via reinforcement learn-
ing (RL) (DeepSeek-AI et al., 2025; Yu et al., 2025) and
supervised fine-tuning (SFT) (Team, 2025; Muennighoff
et al., 2025) at long context windows. However, it is unclear
whether the models post-trained with current recipes can
truly realize the promise of extrapolation (see App. B): if
we scale the test compute beyond the training budget, would
the LLM be able to continue to solve more problems?

In this paper, we show that the key to enabling extrapolation
is learning to explore in-context: if a model learns to use
compute by searching through multiple reasoning paths or
implementing algorithmic procedures, it can “guide” the

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Under review by the Workshop on Long-Context Foundation Mod-
els (LCFM) at ICML 2025. Do not distribute.

search towards the correct answer, and improve its perfor-
mance with more test compute. To demonstrate this, we
build a recipe e3 based on following ingredients:

1) Asymmetries are critical for learning to explore. In
the absence of external tools, we show that feedback can
emerge from asymmetries, differences in the model’s com-
petence at different procedures that constitute an output
trace. One example is the verification-generation (VG) gap,
where models are more capable of verifying their answers
than generating correct ones. While prior work (Setlur et al.,
2025; Swamy et al., 2025; Song et al., 2024; Kim et al.,
2025; Gandhi et al., 2025) has noticed such asymmetries,
we show that these are critical for extrapolation, meaning
that in their absence, scaling is strikingly hard.

2) Negative gradient in RL amplifies in-context explo-
ration. If asymmetries are a prerequisite for learning to
explore, what enables them to evolve and facilitate learn-
ing useful exploration strategies during RL training? We
show that negative gradients (i.e., gradients on incorrect
traces, see App. B) is a key enabler of in-context exploration,
when the base model presents asymmetries. Negative gra-
dients drive exploration (Tajwar et al., ICML 2024; Ren
and Sutherland, 2024) by moving the probability mass from
shorter failed traces onto longer traces that “chain” new
asymmetries (e.g., verifying a calculation once more).

3) Structured exploration with coupled curriculum.
While negative gradients amplify asymmetries and produce
longer responses, at larger budgets, RL often suffers from
poor training convergence (Agarwal et al., 2021). While one
could train with a smaller budget, we show that training on
hard problems at short budgets often disincentivizes explo-
ration since the model is forced to commit to an answer pre-
maturely. To resolve this, we design a coupled curriculum
over pairs of (data mixture, training budget) that effectively
structures exploration driven by the negative gradient.

The above constitutes our recipe e3, which we use to post-
train Qwen3-1.7B with a training budget of 16k. We achieve
the best performance at <2B scale on AIME’25 and
HMMT’25, and our model’s performance consistently im-
proves as we extrapolate the test-time budget to 40k. Please
refer to Appendix A for a discussion of related works.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Title Suppressed Due to Excessive Size

<eos>

<eos>Iteration 0

Iteration 1

Easy

Medium

Medium

Hard

"!

""

✓
✗

✗<eos>

Chained asymmetries

<eos> ✓

Data & budget curricula
Negative
gradient

Asymmetries

Generation

For example,

Verification

Different budgets
for each stage

<eos> continue

p(
 •

| p
re

fix
)

<eos> continue

p(
 •

| p
re

fix
)Chained asymmetryafter negative gradient

Figure 1: In-context exploration enables extrapolation (e3): (i) chaining asymmetric capabilities in the base model, e.g., reliably
self-verifying responses after generating them; (ii) using negative gradients in RL training to penalize incorrectly terminated model
responses, lengthening them further with more chained asymmetries, until the correct answer is discovered; and (iii) data & budget
curricula for RL training that carefully balances explore-exploit tradeoff by sequentially training models on different datasets and training
compute budgets. Qwen3-1.7B fine-tuned with e3 extrapolates test-time compute outperforming all ≤2B models on AIME’25.

2. Asymmetries in the Base Model: A
Prerequisite for In-Context Exploration

In this section, we demonstrate that when the base model
exhibits asymmetric competence at different skills, RL post-
training prefers to learn solutions that chains asymmetric
skills in ways that improve final performance. We focus on
a key special case when the model is more accurate at veri-
fying its own answers than it is at generating correct ones;
that is, when the model exhibits a verification-generation
gap (VG Gap), on a particular problem domain (Song et al.,
2024). We show that RL training on problem domains with
VG gap (i) encourages chaining asymmetries, (ii) enables in-
context exploration that (iii) discovers new solutions, often
extrapolating to larger budgets and OOD problems.

Definition 2.1 (Chaining asymmetric capabilities p, q in
model π.). Let p, q : S 7→ S be functions over token
sequences S (e.g., p can be generation, q can be veri-
fication), and detect(f, τ) detects number of calls to
function f in a token trace τ . For a reward r, we say that
policy π chains asymmetries p, q if it benefits from calls
to the composition q(p(·)), compared to only p(·):

Eτ∼π [r(τ) | detect(q(p(·)), τ) > 0]

> Eτ∼π [r(τ) | detect(p, τ) > 0] ,

even though there is an optimal policy π⋆
r that never calls

q, i.e., Eτ∼π⋆
r
detect [(q, τ)] = 0.

Setup. We validate the role of asymmetries in learning
to explore by investigating two didactic tasks, on which
Llama3.2-3B admits different VG gaps. First, the Count-
down game (Yao et al., 2023; Gandhi et al., 2024) (CDOWN)
requires converting a set of numbers into an equation that
outputs the desired target. T Second, we study n-digit mul-
tiplication MULT where the base model exhibits limited
verification (see App. E for asymmetry gap on MULT). Ad-
ditionally, we supervise fine-tune Llama3.2-3B on correct n-
digit multiplication traces containing verification to encour-
age more verification attempts (MULT-V). MULT vs. MULT-
V evaluates the presence of asymmetries in base LLM.

100 200 300 400

0.20

0.45

C
ou

nt
do

w
n

(a) Performance on Btr

Btr =512
Btr =1024
Btr =2048

100 200 300 400

0.5k

1k

2k
(b) Response length

Btr =512
Btr =1024
Btr =2048

2k 4k 8k 16k

0.45

0.65

0.85
(c) Extrapolation Acc.

Btr =512
Btr =1024

100 200 300 400
Training iterations

0.20

0.45

M
ul

ti
pl

y
w

/o
ve

ri
fy

Btr =1024
Btr =2048
Btr =4096

100 200 300 400
Training iterations

1k

2k

4k
Btr =1024
Btr =2048
Btr =4096

2k 3k 4k 5k
Test compute (tokens)

0.50

0.54

0.58
Btr =2048
Btr =4096

100 200 300 400
Training iterations

1k

2k

4k

L
en

gt
h

(d) Multiply w. verify

Btr =1024
Btr =2048
Btr =4096

2k 4k 8k 16k
Test compute (tokens)

0.5

0.6

0.7

E
xt

ra
p

ol
at

io
n

A
cc

.

Btr =1024
Btr =2048
Btr =4096

Figure 2: RL training with and w/o. asymmetries in πb. When
asymmetries (e.g., VG gap) are present (e.g., in CDOWN), RL train-
ing amplifies response length by chaining more asymmetries to
explore in-context On the other hand, when VG gap is absent in πb

(e.g., in MULT), increases in length and extrapolation performance
are subdued. When we explicitly train on a base model fine-tuned
to verify MULT (referred to as the MULT-V), we again observe
upward length and extrapolation trends, consistent with CDOWN.

1) Verification-generation asymmetry in πb improves the
performance of RL trained solutions. Fig. 2(a,b) shows
a stark difference in performance and response length as
we vary Btr on CDOWN and MULT . On CDOWN, perfor-
mance consistently increases as Btr increases from 512 →
2048, accompanied by a clear increase in length. On MULT,
where the base model has limited propensity to verify, per-
formance increases when Btr increases from 1024 to 2048,
but plateaus thereon. Contrast this with Fig. 2(d), RL train-
ing on MULT-V , which exhibits longer lengths and stronger
extrapolation performance because it leverages asymme-
tries. Therefore, asymmetries improve performance and
length-utilization in RL post-training.

2) Chaining asymmetries enable extrapolation via in-
context exploration. Interleaving verification and gener-
ation steps chains together asymmetric capabilities of the
base model; we refer to this as chaining asymmetries. In
Fig. 2 (c), we plot the extrapolation performance of the
models trained at two values of Btr. On CDOWN the model
trained with Btr=0.5/1k makes steady progress on problems
in test budgets that are 8-16× Btr itself. On MULT we find
that Btr has no effect on extrapolation performance when
the base LLM does not have asymmetries, but has a substan-
tial effect when asymmetries are present. More importantly,
while the base model without VG asymmetry fails to ex-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Title Suppressed Due to Excessive Size

trapolate and solve unsolved problems, with its accuracy
improving by merely ≤ 2% despite 16x compute scaling,
the base model with VG asymmetry can still extrapolate
well. See App. C for a theoretical model that explains why
asymmetries enable exploration. In App. E, we discuss the
performance impact of chained asymmetries.

3. Negative Gradients Incentivize Exploration
that Chains Asymmetries

Having observed that the presence of asymmetry in the
base model is a prerequisite for in-context exploration, the
next question is: What enables models to exploit these
asymmetries during RL? In this section, we show that a
key ingredient is the negative gradient, the gradient term
multiplied by a negative advantage in the standard GRPO
/ PPO objective (see App. B). Negative gradient drives in-
context exploration via two mechanisms: (i) incentivizing
the sampling of unseen token sequences; (ii) chaining asym-
metries like VG gap (Sec. 2) that rapidly drives up response
length. For brevity, we refer to (i) as “exploration” (Amin
et al., 2021) and (2) as in-context exploration (or “meta-
exploration” (Duan et al., 2016; Gupta et al., 2018)).

0 25 50 75

0.2

0.4

0.6

Co
un

td
ow

n

(a) Accuracy

GRPO
mask neg. grad
extrapolation

0 25 50 75
10

20

30

40

50
(b) Number of verifications

GRPO
mask neg. grad

0 25 50 75

0.5k

1k

1.5k

2k
(c) Response length

GRPO
mask neg. grad

0 25 50 75

0.05

0.10

0.15

(d) Entropy
GRPO
mask neg. grad
mask neg. grad
+ entropy bonus

50 100 150 200

0.1

0.2

0.3

Om
ni

-M
AT

H

50 100 150 200

10

20

30

40

50 100 150 200
2k

4k

6k

0 100 200

0.05

0.10

0.15

Figure 3: RL training with and w/o. negative gradients: When
the base model presents asymmetries, negative gradients promote
in-context exploration by: (i) increasing length (shown in (c)) and
chaining more asymmetries on incorrect responses (shows up as
more verification attempts (b)), and (ii) increasing entropy and
thus esponse diversity (d). This leads to better performance on
both training and extrapolation budgets. In (b, c), ✓ denotes the
statistic computed on correct responses and ✗ on incorrect ones.

Analysis setup. We analyze the evolution of response
length, performance, and the number of chained asymme-
tries of two training algorithms: (i) standard GRPO (Shao
et al., 2024) with token-level normalization (Yu et al., 2025);
(ii) GRPOMask, which zeros out (i.e. masks) the negative
gradient and whilst retaining the positive gradient, resem-
bling online STaR (Zelikman et al., 2022) or RFT (Yuan
et al., 2023). We conduct our experiments on CDOWN and
DMATH reasoning (from the DeepScaleR dataset (Luo et al.,
2025a)). We make the following observations:

1) Negative gradient increases the number of chained
asymmetries, and thereby boosts meta-exploration.
When applied on an incorrect response y with tokens
y1, y2, ..,EOS, negative gradient reduces p(yi|y1:i−1) , in-
cluding p(EOS|y) when the response ends before the train-

ing budget. Fig. 3(b) reveals that the probability mass re-
covered from the negative gradient (note: total probability
is conserved) is repurposed to increase the probability of
chaining new pairs of asymmetric skills to the current trace
(e.g., “Wait, ...” instead of terminating with EOS). When
negative gradients are masked (GRPOMask) in CDOWN, we
see that attempts (b) and length (c) plateau, accompanied
by a decrease in performance. The relative trends between
GRPO and GRPOMask are similar for DMATH, but differ
in absolute terms. We include further discussion in App. F,
where we also demonstrate that MULT (which does not ex-
hibit asymmetries) benefits far less from negative gradients.

2) Negative gradients promote diverse responses dur-
ing RL training, encouraging exploration at two levels: (i)
within a rollout; and (ii) across rollouts. For (i), we observe
that removing the negative gradient results in an entropy col-
lapse over the next-token distribution (Fig. 3 (d)). This leads
to responses with a repeating stream of tokens when extrap-
olating the trained model to larger budgets (see App. F).
For (ii), we measure the cumulative unique attempts on the
CDOWN test set as we train the model (App. F) and find more
unique attempts when training with negative gradients.

3) LLMs trained with negative gradients extrapolate bet-
ter. The bridge between exploration and meta-exploration
lies in the use of asymmetries present in the base model. Ex-
ploration afforded by negative gradients, in the presence of
asymmetries like the VG gap, incentivizes meta-exploration,
because longer responses with more chained asymmetries
(verification-generation steps) discover correct solutions
and get positively rewarded. Recall from Sec. 1 that if a
model has learned to explore in-context (meta-exploration),
it should benefit from additional test compute since under
large VG gaps are present. We confirm this in Fig. 3(a)
(dotted lines), where we see that when testing on hard test
problems in DMATH, on a budget that is 2×Btr, the perfor-
mance gap widens with negative gradients, in comparison
to the masked version. Refer to App. C for an analysis of
negative gradient dynamics in a didactic setting.

4. Coupled Curriculum Training Structures
Exploration in Long Length RL

In the presence of asymmetries, training with negative gra-
dients produces models that can extrapolate beyond their
training budget. However, just negative gradients are not
enough: as we see in Fig. 4(a), different training budgets
Btr lead to different levels of performance on Btr, as well as
extrapolated test compute. So how should we set the budget
Btr to attain strong extrapolation performance? And in
correspondence with token budgets, what prompts should
we be training on for a given budget?

Setup. We evaluate on DMATH, CDOWN, with different train-
ing budgets and data compositions. We split DMATHevenly

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Title Suppressed Due to Excessive Size

4k 8k 16k 24k 32k
Test-time compute (tokens)

0

20

40

A
cc

ur
ac

y
on

 A
IM

E
 '2

5 Fix dataset, vary train budget

Btr(4k), D (all)
Btr(8k), D (all)
Btr(16k), D (all)
extrapolation

(a)

4k 8k 16k 24k 32k
Test-time compute (tokens)

0

20

40

A
cc

ur
ac

y
on

 A
IM

E
 '2

5 Fix train budget, vary dataset

Btr (8k), D (easy)
Btr (8k), D (easy+med)
Btr (8k), D (all)
extrapolation

(b)
Figure 4: RL training on different data and length budgets. (a):
Optimal results come from balancing optimization (better at shorter
budgets) and in-context exploration (better at longer budgets). (b):
Training on hard problems at the 8k budget kills in-context explo-
ration. Refer to App. G for the length distributions.

across three levels of hardness by Qwen-R1-Distilled-32B
accuracy. For CDOWN, we judge problem difficulty based
on the number of terms in the equation. We use the
GRPO (Shao et al., 2024) algorithm to train models on
all compute budgets and datasets (see App. G for details).

Training solely at low or high values of Btr is not desir-
able. We first run RL training for 300 iterations on the
easy DMATH problems at different training budgets Btr= 4k,
8k,16k (see Fig. 4(a)). While training at the short budget
Btr= 4k attains the best performance at the same test budget
of 4k tokens, it “kills” exploration and leads to poor ex-
trapolation performance (no gains from 8k to 40k). On the
other extreme, training at Btr= 16k introduces significant
optimization challenges, typical of long horizons policy gra-
dients suffering from high gradient variance (Agarwal et al.,
2021). We find that Btr= 8k attains the best scaling when
extrapolating test compute, implying that we need to strike
a balance between the length budget available for negative
gradient to encourage chaining asymmetries (infeasible in
≤4k tokens) and mitigating optimization challenges.

Training naïvely on a static data mixture is insufficient.
Having identified a reasonable Btr of 8k, we now turn
to studying the effect of data compositions. We com-
pare the naïve training data mixture with all difficul-
ties (easy+med+hard) against easy, easy+med at Btr= 8k.
Matching train and test composition is ideal for better “in-
distribution” performance, i.e., when evaluating models at
Btr (see App. G). Surprisingly, the same is not true for ex-
trapolation on out-of-distribution (OOD) problems at larger
test-time budgets. As shown in 4(b), the model trained on
only easy problems obtains the best performance on OOD
AIME’25 when extrapolating compute to 40k.

How can we avoid challenges with training on a fixed
dataset and length budget? One approach is to incorporate
a budget curriculum that varies Btr over training. However,
this alone is insufficient because, as shown above, training
on hard problems with short budgets suppresses length and
in-context exploration. On the other hand, we can design
a curriculum over the difficulty level and keep the training
budget fixed at a high enough value. However, this leads to

4k 8k 16k 24k 32k
Test-time compute (tokens)

0

20

40

A
cc

. o
n

A
IM

E
 '2

5

e3 vs. open-source models

agentica-1.5B
qwen3-1.7B
openthinker-7B
s1.1-32B
e3-1.7B

(a)

4k 8k 16k 24k 32k
Test-time compute (tokens)

10

20

A
cc

. o
n

H
M

M
T

'2
5

e3 vs. open-source models

agentica-1.5B
qwen3-1.7B
openthinker-7B
r1-distilled-1.5B
e3-1.7B

(b)
Figure 5: RL training with coupled curricula. In the above figure,
the shaded area indicates the extrapolation regime. e3 achieves
state-of-the-art performance across models < 2B. on (a) AIME
’25 and (b) HMMT ’25

learning over-exploratory traces tailored to easy problems
(see App. G for a detailed study of this on CDOWN). We also
show an experiment comparing our proposed fix below with
only budget or data curricula in Fig. 5(d).

e3: coupled curriculum for test-time extrapolation. Mo-
tivated by our findings above, we propose a coupled cur-
riculum which varies Btr and problem difficulty in a coordi-
nated fashion as training progresses. We refer to our entire
recipe as e3: exploration enables extrapolation. This en-
compasses asymmetries, negative gradients, and a prescrip-
tion for the coupled curriculum. Our recipe e3 fine-tunes
the base model on easy problems in DMATH at a budget
of 8k, and subsequently continues training on medium and
hard problems in DMATH with a budget of 16k. Refer to
App. G for the theoretical motivation behind this curriculum.

8k 16k 24k 32k
Test-time compute (tokens)

20

30

40

A
cc

. o
n

A
IM

E
 '2

5

Learning to explore with e3
extrapolates better than
prompting for
extrapolation
with 'wait'

s1.1-7B+"wait"
agentica+"wait"
Qwen3-1.7B+"wait"
e3-1.7B

Figure 6: e3 (w/o “wait”) is su-
perior when extrapolating to larger
budgets, compared to budget forc-
ing with “wait” prompt 2/4/6/8
times.

Final results with e3.
In Fig. 5(a,b), we com-
pare the performance
of Qwen3-1.7B fine-
tuned using e3 with
open-source models,
including 7B and 32B
models. As shown, e3
achieves state-of-the-art
performance on AIME’
25 and HMMT’ 25,
within a model class of
size <2B. We outper-
form the best model in this class by >10% on AIME ’25
in terms of peak performance, and show that our model,
trained only up to a budget of 16k, extrapolates better
than other models including s1.1-32B (Muennighoff et al.,
2025) and OpenThinker-7B (Team, 2025) when we extend
the compute budget up to 32k. Refer to App. G for more
details. Finally, Fig. 6 shows that compared to budget
forcing, which is a prompting technique introduced in
s1 (Muennighoff et al., 2025) to enable extrapolation, e3
achieves significantly better scaling, even without applying
budget forcing to it. Refer to App. L for a discussion on the
conclusion and limitations.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Title Suppressed Due to Excessive Size

References
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,

Junxiao Song, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capabil-
ity in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xi-
aochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun
Liu, Xin Liu, et al. Dapo: An open-source llm re-
inforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

OpenThoughts Team. Open Thoughts. https://open-
thoughts.ai, February 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa
Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candès, and Tatsunori
Hashimoto. s1: Simple test-time scaling, 2025. URL
https://arxiv.org/abs/2501.19393.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral
Kumar. Scaling test-time compute without verification or
rl is suboptimal. arXiv preprint arXiv:2502.12118, 2025.

Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhi-
wei Steven Wu, and J Andrew Bagnell. All roads lead
to likelihood: The value of reinforcement learning in
fine-tuning. arXiv preprint arXiv:2503.01067, 2025.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade,
Dean Foster, and Udaya Ghai. Mind the gap: Examin-
ing the self-improvement capabilities of large language
models. arXiv preprint arXiv:2412.02674, 2024.

Seungone Kim, Ian Wu, Jinu Lee, Xiang Yue, Seongyun
Lee, Mingyeong Moon, Kiril Gashteovski, Carolin
Lawrence, Julia Hockenmaier, Graham Neubig, et al.
Scaling evaluation-time compute with reasoning models
as process evaluators. arXiv preprint arXiv:2503.19877,
2025.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh,
Nathan Lile, and Noah D. Goodman. Cognitive be-
haviors that enable self-improving reasoners, or, four
habits of highly effective stars, 2025. URL https:
//arxiv.org/abs/2503.01307.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael
Rafailov, Jeff Schneider, Tengyang Xie, Stefano Ermon,
Chelsea Finn, and Aviral Kumar. Preference Fine-Tuning
of LLMs Should Leverage Suboptimal, On-Policy Data,
ICML 2024.

Yi Ren and Danica J Sutherland. Learning dynamics of llm
finetuning. arXiv preprint arXiv:2407.10490, 2024.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav
Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. Journal
of Machine Learning Research, 22(98):1–76, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large
language models. arXiv preprint arXiv:2305.10601,
2023.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu,
Winson Cheng, Archit Sharma, and Noah D Goodman.
Stream of search (sos): Learning to search in language.
arXiv preprint arXiv:2404.03683, 2024.

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke
Van Hoof, and Doina Precup. A survey of explo-
ration methods in reinforcement learning. arXiv preprint
arXiv:2109.00157, 2021.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya
Sutskever, and Pieter Abbeel. Rl 2: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine.
Meta-reinforcement learning of structured exploration
strategies. CoRR, abs/1802.07245, 2018.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junx-
iao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman.
Star: Bootstrapping reasoning with reasoning. Advances
in Neural Information Processing Systems, 35:15476–
15488, 2022.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong,
Chuanqi Tan, and Chang Zhou. Scaling relationship
on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Y. Tang, Manan Roongta, Colin Cai, Jef-
frey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada
Popa, and Ion Stoica. DeepScaleR: Surpassing
O1-Preview with a 1.5B Model by Scaling RL.
https://pretty-radio-b75.notion.site/DeepScaleR-
Surpassing-O1-Preview-with-a-1-5B-Model-by-
Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025a. Notion Blog.

5

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Title Suppressed Due to Excessive Size

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng,
Jacob Eisenstein, Rishabh Agarwal, Alekh Agarwal,
Jonathan Berant, and Aviral Kumar. Rewarding progress:
Scaling automated process verifiers for llm reasoning.
arXiv preprint arXiv:2410.08146, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar.
Scaling llm test-time compute optimally can be more
effective than scaling model parameters. arXiv preprint
arXiv:2408.03314, 2024.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar.
Recursive introspection: Teaching language model agents
how to self-improve. arXiv preprint arXiv:2407.18219,
2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D Co-Reyes, Avi Singh, Kate Baumli, Shariq Iqbal,
Colton Bishop, Rebecca Roelofs, et al. Training language
models to self-correct via reinforcement learning. arXiv
preprint arXiv:2409.12917, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu
Jiang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao
Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https:
//arxiv.org/abs/2501.12599.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam
Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Yuchen Zhang, Yunyun
Wang, Zheng Shao, and Zhuohan Li. Openai o1 sys-
tem card, 2024. URL https://arxiv.org/abs/
2412.16720.

Hugging Face. Open r1: A fully open reproduction of
deepseek-r1, January 2025. URL https://github.
com/huggingface/open-r1.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig,
and Xiang Yue. Demystifying long chain-of-thought
reasoning in llms, 2025. URL https://arxiv.org/
abs/2502.03373.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. Simplerl-zoo: In-
vestigating and taming zero reinforcement learning for
open base models in the wild, 2025a. URL https:
//arxiv.org/abs/2503.18892.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing
He, Zejun Ma, and Junxian He. Simplerl-zoo: Investigat-
ing and taming zero reinforcement learning for open base
models in the wild. arXiv preprint arXiv:2503.18892,
2025b.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel,
Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi, Rachel
Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran
Li, Raluca Ada Popa, and Ion Stoica. Deepcoder:
A fully open-source 14b coder at o3-mini level.
https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025b. Notion Blog.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how
long a reasoning model thinks with reinforcement learn-
ing. arXiv preprint arXiv:2503.04697, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu
Pang, Chao Du, Wee Sun Lee, and Min Lin. Understand-
ing r1-zero-like training: A critical perspective. arXiv
preprint arXiv:2503.20783, 2025.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhi-
wei Steven Wu, and Alekh Agarwal. A minimaximalist
approach to reinforcement learning from human feedback.
arXiv preprint arXiv:2401.04056, 2024.

Qiyang Li, Yuexiang Zhai, Yi Ma, and Sergey Levine. Un-
derstanding the complexity gains of single-task rl with a
curriculum. arXiv preprint arXiv:2212.12809, 2022.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lu-
cas Liu, Baolin Peng, Hao Cheng, Xuehai He, Kuan
Wang, Jianfeng Gao, et al. Reinforcement learning for
reasoning in large language models with one training
example. arXiv preprint arXiv:2504.20571, 2025.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian
Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu,
and Chong Luo. Logic-rl: Unleashing llm reasoning
with rule-based reinforcement learning. arXiv preprint
arXiv:2502.14768, 2025.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and
Jieyu Zhao. Efficient reinforcement finetuning via adap-
tive curriculum learning, 2025. URL https://arxiv.
org/abs/2504.05520.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Acemath: Advancing frontier math
reasoning with post-training and reward modeling. arXiv
preprint, 2024.

6

https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2504.05520

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Title Suppressed Due to Excessive Size

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis
Tunstall, Edward Emanuel Beeching, Ruslan Salakhut-
dinov, and Aviral Kumar. Optimizing test-time com-
pute via meta reinforcement fine-tuning. arXiv preprint
arXiv:2503.07572, 2025.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh
Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün,
and Sara Hooker. Back to basics: Revisiting reinforce
style optimization for learning from human feedback in
llms. arXiv preprint arXiv:2402.14740, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu,
Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and
Chuan Wu. Hybridflow: A flexible and efficient rlhf
framework. arXiv preprint arXiv: 2409.19256, 2024.

Yang Gao, Christian M Meyer, Mohsen Mesgar, and Iryna
Gurevych. Reward learning for efficient reinforcement
learning in extractive document summarisation. arXiv
preprint arXiv:1907.12894, 2019.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Title Suppressed Due to Excessive Size

Appendices
A. Additional related work.
B. Optimizing & Extrapolating Test-Time Compute.
C. Analyzing Negative Gradient Dynamics in the pk Model.
D. Testing Extrapolation of Open Source Models.
E. Additional Experiments and Details for Section 2 (Chained Asymmetries).
F. Additional Experiments and Details for Section 3 (Negative Gradient).
G. Additional Experiments and Details for Section 4 (Curricula Training).
H. Omitted Proofs.
I. Broader Impact Statement.
J. Note on Computational Resources Used for e3.
K. Example Traces.
L. Conclusion and Limitations.

A. Related Work
Scaling test-time compute via Long CoT reasoning. Prior work explores a number of avenues for scaling test-time
compute, including majority voting (Wang et al., 2022), best-of-n sampling, and beam search (Setlur et al., 2024; Snell
et al., 2024), as well as sequential self-correction (Qu et al., 2024; Kumar et al., 2024). More recent results indicate that
training models to use test-time compute to generate longer chains of thought (CoT) that combine verification, search, and
self-correction – all in a free-form manner, performs better (DeepSeek-AI et al., 2025; Team et al., 2025; OpenAI et al.,
2024), resulting in widespread open-source reproduction efforts (Face, 2025; Yeo et al., 2025; Zeng et al., 2025a; Luo et al.,
2025a). We situate our work in the paradigm of long CoT reasoning and study the role of algorithms (RL or SFT), data
composition, and design of the training procedure.

Test-time extrapolation. The true benefit of test-time scaling is consistently improving performance as we extrapolate test
compute. While prior work tests the model’s performance on budgets longer than the training budget (Zeng et al., 2025b; Luo
et al., 2025b), they do not explain the relationship between the training recipe and the extrapolation capabilities. In our work,
we provide a clear recipe and explain the mechanism behind why our recipe enables test time extrapolation. Other works
perform extrapolation by explicitly prompting models to generate more tokens when a response terminates (Muennighoff
et al., 2025; Aggarwal and Welleck, 2025). In this work, we show that models that learn to explore in-context extrapolate
test compute better than prompting-based approaches. In particular, we study the role played by the base model, training
algorithm (RL), as well as data mixtures and token budgets, on the ability to extrapolate. Furthermore, prior work (Setlur
et al., 2025) has investigated how performance scales with budgets when train and test budgets are matched, which is
different from the OOD setting this work where test budgets are significantly longer.

Exploration in test-time scaling. Long CoTs allow models to explore various reasoning paths before exploiting and
committing to a final answer. While prior works have shown the importance of the base model’s ability to conduct
exploration (Gandhi et al., 2025; Liu et al., 2025), we discover the crucial enabling factor is the presence of asymmetries in
the model. Next, we show that the negative gradient in RL incentivizes the model to chain together multiple asymmetries,
which in turn leads to an increase in the length of the response. In contrast, SFT alone does not provide this kind of chaining
or exploration benefits. Our analysis is orthogonal to theoretical works Setlur et al. (2025); Swamy et al. (2024), which
shows that RL performs better than SFT, but from a statistical perspective, whereas our argument is more focused on the
learning dynamics. Concurrent work builds techniques to boost exploration during RL via advantage normalization (Li et al.,
2022; Yu et al., 2025) or PPO clipping (Yu et al., 2025), and these techniques can be combined with e3, but they do not
highlight the role of negative gradients in learning to explore. Finally, Wang et al. (2025) briefly remarks about the role of
policy gradient loss and entropy when running RL with only a few examples. Our study formally investigates the underlying
mechanism of negative gradients increasing length and entropy with controlled experiments and thoeretical results.

Data and length curricula. Recent works have also investigated using a curriculum on problem difficulty (Team et al.,
2025; Xie et al., 2025; Shi et al., 2025) and context window length (Luo et al., 2025a; Liu et al., 2024) during RL training.
Their motivation stems primarily from an efficiency standpoint: avoiding zero advantage updates (Shi et al., 2025; Yu et al.,
2025), efficient optimization (Luo et al., 2025a), or efficiency of using test-time compute (Qu et al., 2025). While we do

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Title Suppressed Due to Excessive Size

make similar observations regarding each curriculum individually, perhaps our most interesting finding is that carefully
coupling both data and budget curricula can lead to much better performance and extrapolation, beyond merely some gains
in compute efficiency. We show that training on hard problems with short budgets often yields terse solutions that fail to
extrapolate, while easy problems with long budgets can cause optimization issues or verbose outputs. Thus, curricula must
be carefully designed to support effective extrapolation. Conceptually, our curricula are most related to dense progress
rewards (Qu et al., 2025; Setlur et al., 2024), in the sense that curricula incentivize different degrees of progress for different
questions, at different points in training. We believe this is a good avenue for future work to pursue.

B. Optimizing & Extrapolating Test-Time Compute

4K 8K 16K 32K
Test time compute (token length)

0.15

0.20

0.25

Ac
cu

ra
cy

 o
n

AI
M

E
20

25

R1-1.5B
OpenThinker-7B
DeepScaleR
STILL-3
II-Thought
Open-RS1
SFT
RL

Figure 7: Accuracy on AIME 2025 of vari-
ous open-source models at different test time
compute budgets. Performance gains dimin-
ish as the test-time budget increases, with vir-
tually no gains from 16k to 32k.

Post-training scaling test-time compute. RL and SFT are categories of post-
training algorithms that refine a pre-trained base LLM πb into a reasoning
model, in particular one that utilizes more test-time compute by producing
long chains-of-thought to succeed. Typical outcome-reward RL trains LLM π
(initialized with πb) to maximize performance on outcome 0/1 reward r⋆(x,y),
for inputs x ∼ ρ and response y ∼ π(y | x) restricted to an apriori fixed
maximum token length or training budget Btr (Yu et al., 2025; Luo et al.,
2025a). On the other hand, SFT fine-tunes πb on long thinking traces from
more capable models or humans to distill their reasoning capabilities (Team,
2025; Muennighoff et al., 2025), where the maximum length of the expert
traces also implicitly induces a training budget Btr, similar to RL. Our goal,
is to train models that can improve performance when we extrapolate test-
compute beyond Btr. Even though the true promise of test-time compute is
extrapolation performance, we find that current thinking models fall short
on extrapolation. We evaluate multiple models on a test budget of 32K, ≈1.5-
2×Btr across all models. We plot our results on AIME25 in Fig. 7 (see App. D
for a detailed comparison) and note that most of the performance gains lie in the training budget, and the gains are minuscule
as we test beyond that.

Negative gradient in RL. A key distinction between SFT and RL is the negative gradient, which corresponds to the part of
the policy gradient coming from traces that fail. In Eq. 1 we present a generalized version of the policy gradient adopted by
most RL post-training methods: REINFORCE (Ahmadian et al., 2024), PPO (Schulman et al., 2017), and GRPO (Shao
et al., 2024). From this we note that on a prompt x, RL training observes two types of gradients: (i) the positive gradient
which maximizes the likelihood of a correct responses y with a positive advantage A(x,y), and (ii) the negative gradient
which pushes down the likelihood of an incorrect response with a negative advantage A(x,y). Here, y can be sampled
on-policy π = π̃ or off-policy π ̸= π̃. Thus, we can view SFT as a purely positive gradient method that only maximizes
likelihood on correct reasoning traces. In Sec. 3, we show why the negative gradient is largely responsible for driving up
response lengths and in-context exploration during RL, thereby enabling RL-trained models to explore more at test-time and
extrapolate better compared to SFT-based ones.

Ey∼π̃(·|x) [Ai(x,y) · ∇π log π(y | x)] (general form of policy gradient in RL) (1)

C. Analyzing Negative Gradient Dynamics in the pk Model
We give an informal example of how an LLM can leverage VG gap to improve performance through longer in-context
exploration: the pk-model. We view the LLM as sequentially guessing candidate responses a1, a2, . . . , each with failure
probability p, up to at most terminal k responses. We assume that this model admits perfect verification (perfect VG gap),
which means that the learner can correctly assess whether each subsequent sequential response is correct and decide when to
stop accordingly. In a simplified setting where attempts are independent, failure probability (= pk) decays exponentially as k
increases, as on CDOWN. In contrast, if verification is difficult (i.e., no VG gap), increasing k provides little benefit, since
the model cannot adjudicate whether one guess is any better than another. In extreme scenarios, the only way to improve
performance is by lowering p (better first guesses as seen on MULT).

Analyzing Negative Gradient Dynamics in the pk Model. We introduce a didactic setup where verification is perfect but
attempts are not independent, akin to LLMs we train in practice. We consider a Markov decision process (MDP) with action
space Ā = A ∪ {stop}, where A = [100] are standard actions and stop is an early “stopping” action (like EOS) that
terminates the trace. For simplicity, we consider policies parametrized as a softmax bigram model πM (at+1 | at), with

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Title Suppressed Due to Excessive Size

0 2000 4000
Iterations

0.0

0.3

0.6

0.9

Std. GRPO

reward

0 2000 4000
Iterations

0.0

0.3

0.6

0.9

Mask negative grad

reward

0 2000 4000
Iterations

0.00

0.02

0.04

0.06

0.08

p
(s

to
p)

Prob. of stop & a?

std. GRPO
mask neg. grad

250 1000 2000
Iterations

4.4

4.5

4.6
Avg. token level entropy

std. GRPO
mask neg. grad

0

15

30

45

length

0

15

30

45
length

0.0

0.1

0.2

p
(a
?
)

Figure 8: Negative gradients in a bi-gram model. Negative gradients push down p(stop) during training (c), increasing length (a) and
entropy of the next action distribution (d) to accommodate more in-context exploration, only decreasing them when a⋆ is discovered. In
contrast, positive gradients rarely change p(stop) or entropy.

details deferred to the App. F. In this bi-gram model, the current state st always matches the previous action at−1, and
a⋆ ∈ A denotes the optimal action. In a rollout a1, ..., at, the initial action a1 is sampled from a fixed π0. For t>1, a learner
policy samples an action at∼π(·|a1:t−1) ∈ △(A). The MDP terminates with reward 1 at time t if at = a⋆, and with reward
0 if at = stop (stops too early), or t > Btr (budget is exhausted before a correct response). The model learns to explore
if it learns to never play stop for any t (no early stopping), until a⋆ is observed, i.e., increasing k in pk. Refining the guess
amounts to upweighting π(a⋆ | a1:t−1) without reducing p(stop), i.e., improving p in pk.

1) Negative gradient increases length until p(a⋆) is reasonably high. In Fig. 8(a) standard GRPO (Btr=100)increases
average response length from 15 to 45 at budget, driven by the drop in the marginal probability of stopping early p(stop)
(Fig. 8(c)). After multiple RL iterations with negative gradients, the average number of attempts per trace is sufficiently
large, and the learner can sample a⋆ with non-trivial probability in any given trace. Once this happens (Fig. 8(c)), in our
simple bigram setup, the model rapidly upweights the likelihood of one-step transitions to a⋆, resulting in a phase transition
where reward increases as length drops. In our LLM benchmarks, however, we do not see the same phase transition since
finding “shortcuts” to correct responses is considerably more difficult. In contrast, GRPOMask (Fig 8(b)) fails to improve
reward or increase length.

2) Negative gradient improves coverage by increasing entropy of π(· | a1:t−1). When πM samples a highly likely yet
incorrect action, the negative gradient computed on this sample increases entropy by moving probability mass onto less-seen
modes of the distribution, including a⋆. We show this formally in Theorem C.1 where we prove that upon sampling a highly
likely incorrect action with probability p, GRPO update with a negative gradient results in an entropy increase of ≈ p2 when
all other actions, including a⋆ are highly unlikely. We note this empirically as well in Fig. 8(d), where conditional entropy
increases across states, until a⋆ is discovered, after which it drops sharply as the positive gradient rapidly moves mass onto
a⋆ within a few iterations.

Theorem C.1 (Negative gradient increases entropy when a⋆ is unlikely; formal version of Thm. H.3). At state s, if the most
likely action under π is a1 =: argmaxa′ π(a′|s) ̸= a⋆, then, for any π, a negative stochastic gradient step increases the
entropy of π(·|s) with prob. ≥π(a1|s). Additionally, in a suitable regime of π, the increase >∼ (π(a1|s)− π(a2|s))2, where
a2 is second most likely after a1. In contrast, in the absence of the negative gradient, the entropy is preserved with prob.
1− π(a⋆|s).

D. Testing Extrapolation of Open-Source Models
Extrapolation on AIME 2025 Extrapolation (i.e. the chaining of generation, verification, refinement, etc.) can potentially
extend LLM performance after training, and do so beyond the context length the model was originally trained on. To
evaluate this properly, we need sufficiently challenging problems that allow meaningful expressiveness in reasoning beyond
small context lengths. The math problems associated with AIME align with this, and our evaluations prioritize AIME 2025
to attempt to mitigate any potential data contamination in the models’ training sets from previous years of AIME. The goal
of the experiment is to measure the extent to which test-time compute influences overall model performance as context
length increases, with the expectation that increasing output length allows models to "reason" for longer periods, continuing
the extrapolation process, and ultimately arriving at the correct answer more frequently.

Experiment Setup Inference for every open-source model was performed using Oumi through data-parallel SGLang. All
models had inference run with a max output length of approximately 32k tokens, though some are slightly lower due to this
exceeding their max context length when combined with the prompt. The exact inference hyperparameters are described in

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Title Suppressed Due to Excessive Size

MiniMath-R1-1.5B

DeepSeek-R1-Distil
l-Qwen-1.5B

OpenThinker-7B

DeepSeek-R1-Distil
l-Qwen-7B

s1.1-32B

DeepSeek-R1-Distil
l-Qwen-32B

DeepScaleR-1.5B-Preview

STILL-3-1.5B-preview

II-Thought-1.5B-Preview
Open-RS1

0.0
0.1
0.2
0.3
0.4
0.5
0.6

pa
ss

@
1

Supervised Fine-Tuning Reinforcement Learning
AIME 2025 Performance

test-time budget
4096
8192
16384
32768

Figure 9: Performance (pass@1) on AIME 2025 at different test-time compute budgets across multiple open-source models of different
sizes, trained with SFT or RL.

Table 1. After inference, the model responses were truncated from the right side until the number of remaining tokens present
was equal to the specified test-time budget. 16 responses were collected for every problem in AIME with the specified
inference settings, and the Pass@1 rate was calculated by averaging over these 16 responses. Final answers were extracted
using a regular expression for the boxed portion of the answer, with correct answers marked as passing and incorrect or
incorrectly parsed answers marked as nonpassing. The prompt used is in Box D.1, and the problems were taken from the
FVU AIME 2025 dataset on HuggingFace1.

Box D.1: AIME Evaluation Prompt Template

You will be given a math problem. Solve the problem step by step. Output your final answer in the form of
\\boxed{your answer}. Problem: {problem}

Model Temp. Top p Rollouts Max New
Tokens

Model Max
Length

MiniMath R1-1.5B 0.6 0.95 16 32768 40960
DeepSeek R1-Distill-Qwen-1.5B 0.6 0.95 16 32768 40960
OpenThinker-7B 0.6 0.95 16 31000 32768
DeepSeek-R1-Distill-Qwen-7B 0.6 0.95 16 32768 40960
s1.1-32B 0.6 0.95 16 31000 32768
DeepSeek-R1-Distill-Qwen-32B 0.6 0.95 16 32768 40960
DeepScaleR-1.5B-Preview 0.6 0.95 16 32768 40960
STILL-3-1.5B-preview 0.6 0.95 16 32768 40960
II-Thought-1.5B-Preview 0.6 0.95 16 32768 40960
Open-RS1 0.6 0.95 16 32768 40960

Table 1: Inference parameters used for generating the extrapolation plots in Figure 7.

Results The results in Figure 9 show that as the maximum number of output tokens increases, every model capable of
"reasoning" is able to attain a higher Pass@1 rate, with performance generally saturating at 16k tokens with relatively
minor improvements at 32k. We do not observe this with MiniMath-R1-1.5B, and we suspect this is due to its fine-tuning
focusing solely on smaller math problems trained with supervised fine-tuning, likely resulting in catastrophic forgetting of
the ability to continuously extrapolate. Interestingly, we do not see a strong improvement in extrapolation behavior among
models tuned with reinforcement learning compared to DeepSeek R1-Distill-Qwen-1.5B, which was trained with supervised
fine-tuning. We suspect that this is likely due to the nature of the distillation data from the R1 model, which, if varied

1https://huggingface.co/datasets/FVU/AIME_2025

11

https://huggingface.co/datasets/FVU/AIME_2025

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Title Suppressed Due to Excessive Size

sufficiently in length, could avoid the length bias normally learned from supervised fine-tuning, while still teaching the
model to perform extrapolation.

E. Additional Experiments and Details for Section 2 (Chained Asymmetries)
E.1. Details on MULT and MULT-V

Data collection. Both MULT and MULT-V consist of multiplication traces for solving a 5-digit × 5-digit multiplication
problem. For the MULT task, we use a Llama3.2-3B instruction tuned model where the number of intermediate verification
attempts is much lower in a trace when asked to solve a multiplication problem. In fact, it is not hard to see that, in general,
for multiplication, generation of a trace may be as hard as verifying a generated one, as the only way to verify the entire
trace is to re-attempt the multiplication or carry out a division with the computed target. We contrast this task with the
MULT-V task, where the Llama3.2-3B models are first finetuned on traces from Qwen-32B-R1-Distilled and GPT-4o models.
These traces contain multiple verification attempts that verify intermediate steps solving smaller multiplication problems,
and the steps are part of an entire trace that attempts to solve the main multiplication problem involving two 5-digit numbers.
For collecting data we used the prompt in Box E.1. In App. K Example 2, we also provide an example multiplication trace
with verification attempts sampled by the base model in MULT-V. As we will see in Fig. 14, the absence of asymmetries in
MULT leads to lower accuracy and verifications when compared to MULT-V, where asymmetries are present.

Box E.1: Prompt for generating MULT-V data

Multiply {num1} and {num2}. Please reason step by step, and put your final answer within \\boxed{}. At each step,
try to verify your response if possible and prefix the line with “Check:”. <think>

Hyperparameter Values

train_batch_size 256
ppo_mini_batch_size 64
learning_rate 5.0e-6
kl_loss_coef 0.001
entropy_coeff 0.001
temperature 1.0
rollout.n 16

Table 2: Verl (Sheng et al., 2024) hyperparameters used for MULT and MULT-V.

Training details. Hyperparameters for our experiments on MULT and MULT-V are given in Table 2.

E.2. Details on CDOWN

Training details. Hyperparameters in CDOWN experiments follow the table below unless otherwise specified. In all of our
CDOWN experiments, we take the fine-tuned Llama3.2-3B base model from (Gandhi et al., 2025). For Fig. 2, we trained with
Btr = 512, 1024, 2048 on problems with 3, 4, 5, 6 candidates. The total number of datapoints we used was 40000, which
were evenly split across the four difficulties.

Evolution of chained asymmetries at test time. To measure the benefits of chained asymmetries on CDOWN, we plot the
pass@k accuracy of the base LLM, shown in Figure 10, and observe that performance increases with the chained asymmetries
budget. Moreover, as training progresses, responses with more chained asymmetries enjoy a greater improvement. If we
move across any diagonal parallel to the main diagonal from top left to bottom right, we move across a constant attempt
budget (e.g., moving from 16 chained asymmetries × 1 pass to 8 chained asymmetries × 2 passes). Having sequential
chained asymmetries become increasingly better than parallel rollouts as training progresses, indicating the exploitation of
asymmetries in RL training. See example of chained asymmetry in App. K, Example 1.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Title Suppressed Due to Excessive Size

Hyperparameter Values

train_batch_size 128
ppo_mini_batch_size 32
learning_rate 1.0e-6
kl_loss_coef 0.001
entropy_coeff 0
temperature 0.6
rollout.n 8

Table 3: Verl (Sheng et al., 2024) hyperparameters used for CDOWN.

1 2 4 8 16

16

8

4

2

ch

ai
ne

d
as

ym
m

et
rie

s

0.06 0.10 0.16 0.23 0.28

0.04 0.07 0.12 0.17 0.22

0.02 0.03 0.05 0.08 0.11

0.01 0.02 0.03 0.05 0.07

Gradient step 0

1 2 4 8 16
k

16

8

4

2

0.37 0.47 0.55 0.61 0.65

0.19 0.27 0.36 0.44 0.49

0.04 0.07 0.12 0.17 0.23

0.01 0.02 0.03 0.05 0.08

Gradient step 30

1 2 4 8 16

16

8

4

2

0.47 0.55 0.62 0.67 0.69

0.19 0.28 0.36 0.43 0.47

0.05 0.09 0.14 0.21 0.27

0.01 0.02 0.04 0.06 0.09

Gradient step 60

0.2

0.4

0.6

Pa
ss

@
k

ac
cu

ra
cy

Figure 10: Evolution of asymmetries during training on CDOWN: More chained asymmetries lead to a greater improvement in pass@k
performance across gradient steps.

100 200 300 400

0.20

0.45

0.70

K
L

D
iv

er
ge

nc
e

Countdown

512
1024
2048

100 200 300 400

0.20

0.45

0.70

K
L

D
iv

er
ge

nc
e

Multiply (No verification)

1024
2048
4096

Figure 11: KL-divergence with base LLM on CDOWN and MULT: When running RL training on CDOWN and MULT with multiple
training budgets (512, 1024, 2048 on CDOWN and 1024, 2048, 4096 on MULT) we note that the KL divergence

E.3. In the Presence of Asymmetries, KL Divergence with Base LLM Reduces as Training Budget Increases

In Fig. 11, we also interestingly observe that training with higher Btr results in a smaller token KL-divergence from πb all
throughout training on countdown. On multiplication in the absence of asymmetries, the KL-divergence values are roughly
similar for all Btr. This means that when the verification-generation asymmetry is present, the training process deviates less
from πb at each token, but is able to “chain” multiple verification and generation attempts together to improve accuracy, by
learning to explore over the space of basic skills. Prior work argues that a model that deviates less from the base pre-trained
model generalizes better on unseen prompts (Gao et al., 2019). If we were to apply this argument in our case, this means
that models that are able to use asymmetries better should result in better performance on unseen prompts, especially when
operating at higher test compute.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Title Suppressed Due to Excessive Size

F. Additional Experiments and Details for Section 3 (Negative Gradient)
F.1. Details for CDOWN

We trained models for 90 steps on problems with 5 candidate numbers with a training budget of 2k.

500 1000
0

10

20

30

Pe
rc

en
t o

f p
ro

bl
em

s Cumulative unique attempts
GRPO
mask neg. grad

GRPO Mask neg. grad
0.00

0.05

0.10

0.15

0.04

0.17

Fraction of
rollouts with

repeating tokens

Figure 12: Negative gradients encourage distinct re-
sponses: they increase the cumulative number of unique
attempts on CDOWN (left) and reduce responses that end
with a repeating stream of tokens on DMATH (right).

Cumulative unique attempts plot. Fig. 12 (left) was filtered on
incorrect traces on problems with < 50% success across gradient steps.
We select only incorrect traces to capture the ability of the model
to explore for the correct trace, rather than to output diverse correct
traces once one is found. We filter for problems with < 50% success
across training for GRPO and GRPOMask because otherwise the
algorithm with better rewards would see more problems with lower
cumulative unique attempts, as the correct traces are discovered early
and subsequently reinforced.

Conditional distribution given past attempts. We run ablations on
the conditional distribution of a new attempt given past attempts in
three different settings, shown in Fig. 13. In (a), we plot log p(ak|a1:k−1) − log p(ak|a1:k−2), which should average to
roughly 0 if the attempts are independent. As training progresses, this quantity grows, indicating a correlation between
attempts, especially with larger k (potentially because the new attempt can attend to more previous attempts, and thus
becomes more dependent on them). In (b), we plot log p(ak|a1:k−1) − log p(ak−1|a1:k−2), which also grows over time.
This indicates that the conditional distribution p(new attempt|past attempts) as the number of past attempts grows, aligning
with the higher dependency on past attempts at larger k in (a). In (c), we plot log p(ak−1|a1:k−1) to check whether the
model would repeat its latest attempt. We observe that as training progresses, the model learns not to repeat itself.

2 3 4 5 6 7 8 9 10
Attempts

0.00

0.05

0.10

0.15

lo
g(

p
(a

k
|a 1

:k
−

1
))

−
lo

g(
p

(a
k
|a 1

:k
−

2
))

Learning to sample an unseen attempt

iter 0

iter 200

iter 400

(a)

2 3 4 5 6 7 8 9 10
Attempts

−0.025

0.000

0.025

0.050

lo
g(

p
(a

k
|a 1

:k
−

1
))

−
lo

g(
p

(a
k
−

1
|a 1

:k
−

2
))

Conditional distribution sharpens

iter 0

iter 200

iter 400

(b)

2 3 4 5 6 7 8 9 10
Attempts

−0.20

−0.15

−0.10

−0.05

0.00

lo
g(

p
(a

k
−

1
|a 1

:k
−

1
))

Learning not to repeat

iter 0

iter 200

iter 400

(c)
Figure 13: Probing the conditional distributions conditioned on past attempts in CDOWN. (a): New attempts are not independent of past
attempts (b): Model becomes more certain of what to try next given more past attempts (c): Model learns not to repeat past attempts

F.2. Additional Experiments with MULT

In Section 3 we saw that training with the negative gradient leads to more exploration during RL training, which in turn leads
to the amplification of any chained asymmetries that may be present in the base model, e.g., more generation-verification
steps. In particular, we noted the increase in the number of verification steps in Fig. 3(b). To see how negative gradients
affect the dynamics of response length and number of chained asymmetries in the absence of a strong VG gap, we compare
running GRPO with and without negative gradients on our multiplication task MULT where the VG gap is weaker in the base
model.

We plot results in Fig. 14, where we note two trends when running RL training with and without negative gradients on
MULT(without VG gap), and MULT-V(with VG gap) using a training budget of 4096 tokens. First, we note that the number
of verifications is higher when we use negative gradients in a setting with a large VG gap. When the VG gap is absent, the
number of chained asymmetries (verification-generation steps) are roughly the same with and without masking the negative
gradient. Second, we note that the accuracy is much higher with negative gradients in the presence of VG gap (MULT-V),
and comparable to a run where we mask the negative gradients in the setting where the VG gap is poor (MULT). Together,
this tells us that the boost in exploration driven by negative gradients leads to more chained asymmetries when the base
model presents some of them, like a large VG gap.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Title Suppressed Due to Excessive Size

100 200 300 400

0

10

20

30
#

V
er

ifi
ca

ti
on

s
MULT-V

mask neg. grad
GRPO

100 200 300 400

0

10

20

30
MULT

mask neg. grad
GRPO

100 200 300 400

0.25

0.40

0.55

0.70

A
cc

ur
ac

y

MULT-V

mask neg. grad
GRPO

100 200 300 400

0.25

0.40

0.55

0.70
MULT

mask neg. grad
GRPO

Figure 14: Negative gradient amplifies verification when VG gap is large. While utilizing the negative gradient amplifies the number of
calls to verification in MULT-V, the number of verification calls does not grow over training in MULT. Interestingly, though, we find that
when negative gradient is masked out on MULT-V, the number of verification calls is still very low and does not increase, corroborating
our findings that exploration driven by negative gradients results in in-context exploration only in the presence of asymmetries in the base
model. A similar trend is also observed in terms of the raw accuracy.

F.3. Additional Details for the Didactic Setting in Sec. 3

First, we comment on exploration and meta-exploration in RL, and how negative gradients can connnect one to the other
in the presence of asymmetries. Second, we introduce some relevant notations, and provide a high-level proof overview.
Finally, we provide the full proof.

Negative gradients boost exploration, which in the presence of asymmetries incentivizes in-context exploration. In
Sec. 3 we showed how negative gradients can boost exploration in RL, and in the presence of asymmetries in the base
model, lead to more chained asymmetries and longer responses – a phenomenon we call in-context exploration. Here, we
present a theoretical result that explains why negative gradient can incentivize the more “traditional exploration” in RL, in
our didactic bi-gram model. Since verification is perfect in our bi-gram model, any policy in our policy class always stops at
the stop token. Thus, an increase in exploration leads to longer traces, and more chained asymmetries. As a result, in this
setting, we can view an improvement in exploration as an improvement in meta-exploration (or in-context exploration),
driven by negative gradients.

Parameterization of the policy class. We parameterize the policy class as a softmax policy, where the probability of next
action at+1, at state current at (in a bi-gram model current state is equivalent to the previous action) is parameterized with
the vector of logits [M(a | at)]a∈Ā, i.e.:

πM (at+1 | at) =
eM(at+1|at)∑
a′∈Ā eM(a′|at)

, at+1 ∈ Ā, a ∈ A (2)

where M = [M(a+ | a)]a+∈Ā,A∈A can be expressed as a matrix in R(K+1)×K . Note that the current state can never be the
stop action, since a stop always terminates the MDP.

Training details. We set the initial distribution π0 to be the uniform distribution over all actions except a⋆, i.e., π0(a
⋆) = 0.

For each state s, the policy is initialized with random values of M(· | s) in [−3.0, 3.0], and set M(stop | s) = 4.0 and
M(a⋆ | s) = −4.0, which mimics the setting where the probability of sampling the stop action is higher than any random
action, and the probability of sampling a⋆ is lower than any random action. We train with a learning rate of 1e − 2 and
use stochastic gradient descent to update the policy where a single update samples a random trajectory τ , starting from a
random state sampled from the initial state distribution π0, until completion and then computes the policy gradient term, by
averaging the policy gradient loss over the tokens in the trajectory τ : 1/|τ | ·∑i∈|τ | log πM (ai | a1:i−1) ·A(ai, a1:i−1).

G. Additional Experiments and Details for Section 4 (Curricula Training)
G.1. Response length distributions of different models.

In Fig. 15, we plot the response length distributions of different trained models from section 4 on the hard test set. As shown
in (c), training with a low budget can kill exploration on difficult problems, and in (d), training on harder problems can also
kill exploration.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Title Suppressed Due to Excessive Size

8k 16k 32k
Length

0

50

100

Fr
eq

ue
nc

y
on

 h
ar

d

Fix dataset, vary train budget
Btr (4k), D (all)
Btr (8k), D (all)
Btr (16k), D (all)

(c)

8k 16k 32k
Length

0

20

40

60

Fr
eq

ue
nc

y
on

 h
ar

d

Fix train budget, vary dataset
base
Btr (8k), D (easy)
Btr (8k), D (easy+med)

(d)
Figure 15: Length histograms of RL training on different data and length budgets. (c): training on small budgets kills exploration under
extrapolation ((d): training on harder problems kills exploration under extrapolation

0 250 500
Iterations

0.4

0.5

0.6

0.7

Te
st

 a
cc

. (
m

ed
+h

ar
d) e3 across RL iterations

Btr (8k), D (easy)
Btr (16k), D (med+hard)

(a)

4k 8k 16k 24k 32k
Test-time compute (tokens)

10

20

30

Te
st

 a
cc

. (
ha

rd
) Extrapolation

regime for

e3 vs. budget & data curricula

Btr (8k 16k), D (all)
Btr (16k), D (easy med+hard)
e3: (easy, 8k) (med+hard, 16k)

(b)
Figure 16: RL training with coupled curricula. In the above figure, the shaded area indicates the extrapolation regime. (a): extrapolation
gain from switching to a longer budget during training (b): coupled curriculum outperforms data and budget curricula

G.2. Additional details on e3

Theoretical motivation for coupled curriculum design. We simplify curriculum design by first fixing the dataset at each
stage: moving from easy to hard. Now, the key question is to select the appropriate budget for dataset Di at stage i of the
curriculum. Intuitively, we want a budget Btr,i such that training on Btr,i positively rewards in-context exploration, which
will in turn improve extrapolation performance and provide a good initialization for the next stage i+ 1. At the same time,
to be optimization friendly, we want Btr,i to be minimal while being large enough to accommodate most responses from the
given model πi. Encoding these conditions on Btri, we propose the following optimization problem.

B⋆
tr,i(Di) = argmin

B
B s.t. J(πi;Di, 2 ·B) ≥ κ · J(πi;Di, B) and B ≥ Ex∼Di,τ∼πi(·|x)|τ |, (3)

where J(πb;D,Btr) denotes the performance of the base model πb at budget Btr on dataset D, and |τ | denotes token count.
In practice, we solve the above problem over a fixed set of training budgets: 4k, 8k, 16k, and find this to be a useful heuristic
to greedily choose Btr,i in a way that incentivizes in-context exploration at stage i, since it is hard to jointly optimize the
budgets across all stages. E.g., setting κ = 1.2, we find 8k to be the optimal choice for training on easy problems (note that
the trained model also satisfies the condition in Eq. 3 at κ = 1.2, see Fig. 4(a)). Following this, our recipe e3 fine-tunes the
base model on easy problems in DMATH at a training budget of 8k, and subsequently continues training on medium and hard
problems in DMATH with a budget of 16k.

In Fig. 16(c), we show that the model already learns to extrapolate at a point during training when we move from the 8k
budget to the 16k budget, where there is a >10% performance gain. In (b), we show that a coupled curriculum leads to better
(extrapolation) performance compared to solely a length or data curriculum.

G.3. Training Details and In-distribution Performance on Training Budget

We present our hyperparameters for e3 training runs in Table 4.

Note on in-distribution performance. In Sec. 4 we note that for best extrapolation performance, it is important to vary the
mixture of tasks in the dataset, as well as the training budget (max token length) in a a coupled way, over the course of RL
training. Here, we note that if we were to only care about in-distribution performance, i.e., performance on a fixed task
mixture (of equally proportioned easy, medium, and hard questions in DMATH), then the best way to train is to match the test
token budget and prompt mixture with training. In particular, training only on easy problems and a budget of 8k yields a
performance of 54.3% on a test dataset consisting of all tasks (from easy, medium and hard splits). But, if we match the test
mixture with train, and train on all difficulties, then on the same 8k test budget, we note a performance of 58.9%. Note that
the exptrapolation performance (on hard, out-of-distribution AIME ’25 questions) of the same models is flipped in Fig. 4.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Title Suppressed Due to Excessive Size

Hyperparameter Values (Btr = 8k) Values (Btr = 16k)

train_batch_size 128 128
ppo_mini_batch_size 32 64
learning_rate 1.0e-6 1.0e-6
kl_loss_coef 0.001 0.001
entropy_coeff 0.002 0.001
temperature 0.6 0.6
rollout.n 8 16

Table 4: Verl (Sheng et al., 2024) hyperparameters used for e3.

G.4. Fixed train budget, vary dataset curriculum on CDOWN

In this subsection, we demonstrate that training with a data curriculum based on difficulty with a fixed train budget can lead
to over-exploratory output traces, on the example task of CDOWN. With the data curriculum (i.e., fixed budget, vary data), we
train first on CDOWN problems with 3 candidate numbers (the “easy” problems) for 60 gradient steps, then those with 6
candidate numbers for 60 gradient steps (the “hard” problems), with a 1k budget across all steps. We compare this with the
coupled curriculum in which the first 60 gradient steps are trained with a budget of 256. As shown in Fig. 17, the latter
achieves better reward on “hard problems”.

0 50 100
Gradient steps

0.0

0.2

0.4

re
wa

rd

Curriculum
coupled
data

100 150
Gradient steps

0.0

0.2

0.4

Tr
ai

n
re

wa
rd

Curriculum
coupled
data

0 50 100
Gradient steps

2

3

Eq
ua

tio
ns

 /
at

te
m

pt Curriculum
coupled
data

Figure 17: Coupled vs. data curriculum on CDOWN: training only on easy problems at large budgets leads to overfitting on “over
exploratory” traces, failing to balance explore-exploit tradeoff on harder problems later on. Reward graphs are displayed for hard
problems.

Why is data curriculum worse than the coupled curriculum? We can view the learning of correct traces as largely composed
of two stages: (i) negative gradients encourage exploration, leading to the discovery of correct traces, (ii) positive gradients
reinforce correct traces, once discovered.

For (i), we observe that training on easy problems exacerbates a tendency to perform over-exploratory in-context exploration
(“underthinks”, see Example 3 in App. K), restricting the discovery of solutions to harder problems. When utilizing a
coupled curriculum, this bias propagates to a shorter budget when compared to the data curriculum, since easy problems are
trained on 256 rather than 1K tokens. As shown in Figure 17, the average number of equations per attempt (naïvely, with
3 candidate numbers, 2 equations are required to perform a complete attempt vs. 5 equations for 6 candidates) increases
noticeably for the coupled curriculum in the second stage, but plateaus for the data curriculum, implying overfitting on
“over-exploratory” traces during the first stage.

Furthermore, for (ii), even when nontrivial positive rewards are obtained as we run the data curriculum on hard problems
for 60 additional steps (steps 120 to 180), the training reward curve converges more slowly compared to the coupled
curriculum (steps 60 to 120), implying that the data curriculum is also worse at reinforcing correct traces if the behavior is
over exploratory. While we do not run many controlled experiments to identify why this might be the case, we hypothesize
that this is because of imperfect and noisy credit assignment on over-exploratory traces with outcome rewards. It is unclear
which segments of the trace should be reinforced vs which segments might simply confuse the model.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Title Suppressed Due to Excessive Size

H. Omitted Proofs
In this section, we present the formal version of Theorem C.1, and provide a detailed proof for it. First, we introduce some
notations and provide a proof overview.

Notations. We use the shorthand H(M ; s) to denote the entropy of the conditional distribution over the next action at+1

given the current state s. We also use M (i) to refer to the policy parameters (for the softmax policy in Eq. 2) at iteration i
of RL training, and use the shorthand π(i) to denote the policy induced by the parameter M (i). We use ∇M(i)f(M (i)) to
denote the gradient of function f(M), with respect to M , evaluated at M = M (i). Finally, we use Ms to denote the row of
softmax parameters that model the distribution πM (· | s), i.e., the row of parameters M(· | s) in our parameter matrix M .

Proof overview. Without loss of generality, we fix an arbitrary state s that is different from stop. Given the parameters
M (i) at current RL iterate i, we do a Taylor expansion of H(M (i); s) around M (i), and then show that the gradient
∇M(i)H(M (i); s) is positively correlated with the policy gradient with high probability over the sampling of the action
a ∼ πM(i)(· | s), i.e.:

⟨∇Mi
H(M (i); s) , ∇M(i) log π(a | s) A(s, a)⟩ ≥ 0, (4)

whp. over sampling of action a ∼ πM(i)(a | s)

Before, we prove our result that lower bounds the increase in entropy with negative gradients, we present derivations of the
entropy gradient with respect to the model parameters, as well as the policy gradient, which will simplify some calculations
in the proof.

Lemma H.1 (Entropy gradient for the softmax bi–gram conditional). Fix a previous action (because the bi–gram state is
st = at−1, conditioning on the state is equivalent to conditioning on the last action) a ∈ A. Let the (column-wise) logit
matrix at time t be M ∈ R(K+1)×K , and define the corresponding softmax conditional distribution

πM (a+ | a) =
exp

(
M(a+ | a)

)
Z(a)

, Z(a) =
∑
a′∈Ā

exp
(
M(a′ | a)

)
. (5)

Let the Shannon entropy of this conditional distribution be H
(
πM (· | a)

)
or H(M | a) Then ∇MH(M | a) ∈ RK+1 is

given by:

∇MH(M | a) = = −π ⊙
(
log π +H(π)1

)
= −

[
πi

(
log πi +H(π)

)]
i∈Ā, (6)

Proof. Write pa+ := πM (a+ | a) for brevity. By definition of the entropy,

H = −
∑
a+

pa+ log pa+ . (7)

Insert the softmax expression:

log pa+ = M(a+ | a)− logZ(a). (8)

Hence,

H = −
∑
a+

pa+

[
M(a+ | a)− logZ(a)

]
(9)

= −
∑
a+

pa+M(a+ | a) + logZ(a)
∑
a+

pa+︸ ︷︷ ︸
=1

. (10)

Rearranging yields the following closed form expression:

H = logZ(a)−
∑
a+

pa+M(a+ | a). (11)

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Title Suppressed Due to Excessive Size

Computing the Jacobian of the softmax we get:

∂πi

∂M(j | a) = πi

(
δij − πj

)
, J := ∇M(·|a)π = diag(π)− ππ⊤. (12)

Starting from the definition H = −∑
i πi log πi and using the chain rule,

∂H

∂M(j | a) = −
∑
i

∂πi

∂M(j | a) (1 + log πi) = −
∑
i

πi(δij − πj)(1 + log πi). (13)

Separating the term i = j from the rest:

∂H

∂M(j | a) = −πj(1− πj)(1 + log πj) + πj

∑
i ̸=j

πi(1 + log πi) (14)

= πj

[∑
i

πi(1 + log πi)− (1 + log πj)
]
. (15)

Because
∑

i πi(1 + log πi) = 1 +
∑

i πi log πi = 1−H(π), we obtain

∂H

∂M(j | a) = πj

(
1−H(π)− 1− log πj

)
= −πj

(
log πj +H(π)

)
, (16)

which gives the stated component-wise form. Writing this for every j simultaneously yields the vector expression with the
Hadamard product.

Lemma H.2 (Policy gradient for the conditional distribution). For an action a ∼ πM (· | s), sampled from a policy πM (· | s),
at state s, the policy gradient is given by: ∇Ms log π(a | s) · A(s, a), where A(s, a) is the advantage of action a. The
expression for the bth coordinate of the policy gradient can be written down in closed form as:

[∇Ms log π(a | s) ·A(s, a)]b = (1(b = a)− π(a | s)) ·A(s, a),

where 1(·) is an indicator function.

Proof. Write Z :=
∑

c expM(c | s) and πb := πM (b | s) = expM(b | s)/Z for brevity. By definition

log πM (a | s) = M(a | s) − logZ. (17)

For any coordinate b ∈ Ā,

∂

∂M(b | s) log πM (a | s) = 1(b = a)︸ ︷︷ ︸
derivative of M(a|s)

− 1

Z

∂Z

∂M(b | s)

= 1(b = a)− expM(b | s)
Z

= 1(b = a)− πb. (18)

Multiplying every coordinate by the common scalar A(s, a) produces the stated expression for g(s, a;M).

Theorem H.3 (Negative gradient increases H(M ; s) when p(a⋆|s) is low). For any state s, current parameters M (i),
suppose the most likely action ā is incorrect, i.e., a⋆ ̸= ā =: argmaxb πM(i)(b | s), where the probability of sampling ā | s
is πā, and the second most likely action has probability πā − ε. Then, for a small enough learning rate η > 0 s.t. with
probability ≥ πā, negative gradient produces π(i+1) with entropy H(M (i+1); s) > H(M (i); s). Additionally, there exists a
universal constant c > 0 s.t., H(M (i+1); s)−H(M (i); s) ≥ cη ·Kε2(1− pā) whenever πā ≥ ε+ e−H(M(i);s). In contrast,
without negative gradient the entropy remains same with probability 1− π(a⋆ | s).

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Title Suppressed Due to Excessive Size

Proof. For simplicity let us denote π(i) =
(
π1, . . . , πK+1

)
∈ △(Ā) be the conditional distribution produced by a bi-gram

softmax column πM(i)(· | s), i.e., the proabability of sampling action a at state s, with model parameters given by the
current RL iterate M (i). Let us also denote,

ā = argmax
i

πi, H(M (i); s) =: −
∑
a∈Ā

πa · log πa,

where πa is the probability of sampling action a at state s. Given that the current policy πM samples action a ∼ π(i)(· | s),
the stochastic policy gradient that updates the parameter is given by:

M (i+1)
s = M (i)

s + η∇
M

(i)
s

log(π(i)(a | s)) ·A(s, a), (19)

where η is the learning rate. Note, that the policy parameters would only be updated for the row corresponding to the state s.
For simplicity, let us use the notation g for:

g =: ∇
M

(i)
s

log(π(i)(a | s)) ·A(s, a). (20)

Then, M (i+1)
s −M

(i)
s = η · g. A second–order Taylor expansion of the concave function H(M ; s) gives, for some M̃ on

the segment [M (i),M (i+1)]:

H(M (i+1); s) = H(M (i); s) + η · ⟨∇M(i)H(M (i); s), g⟩
+ η2

2 · (g)⊤ ∇2
M̃s

H(M̃ ; s) (g) . (21)

Let the least eigenvalue of the Hessian of the conditional entropy (note that the entropy is a convae function) with respect to
the logits be ρM̃s

, and |ρs | < ∞, the moment π(i)(a | s) > 0 for all actions a ∈ Ā. This condition is easily satisfied by any
policy in our policy class, with finite values of the parameter matrix M . Thus, whenever ⟨g,∇

M
(i)
s
H(M (i); s)⟩ > 0 there

exists a small enough learning rate η,

η ≤
2⟨g,∇

M
(i)
s
H(M (i); s)⟩

ρ∥g∥22
, (22)

such that H(M (i+1); s)−H(M (i); s) is strictly positive. Thus, we can continue to reduce learning rate η such that we can
ignore O(η2) terms in Eq. 21, to get the bound:

H(M (i+1); s)−H(M (i); s) ≥ η

2
· ⟨∇

M
(i)
s
H(M (i); s),∇

M
(i)
s

log(π(i)(a | s) ·A(s, a))⟩ (23)

Next, it remains to bound the right hand side of Eq. 23 with high probability over the sampling of the action a. For a single
incorrect action draw a ∼ π we set A(s, a) to be −1 and for such an incorrect action we define the alignment scalar:

T (a) =: −
〈
∇

M
(i)
s

log π(i)(a | s) ·A(s, a), ∇
M

(i)
s
H(M (i); s)

〉
(24)

Plugging in the derivation of ∇M(i)H(M (i); s) from Lemma H.1, we compute the closed form expression for T (ai) using
the following definitions:

vi =: πi

(
H(M (i); s) + log πi

)
and, µ =:

∑
a∈Ā

πava (25)

Thus, one has T (a) satisfy:

T (a) = va − µ when, a ∈ Ā, i ̸= a⋆. (26)

Note that vi is an increasing function in πi whenever πi > e−H(M(i);s). Next, we note that vā ≥ 0.

πā ≥ 1

|Ā| =⇒ πā ≥ e−H(M(i);s) since, H(M (i); s) ≤ log |Ā| =⇒ vā ≥ 0. (27)

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Title Suppressed Due to Excessive Size

Finally, since v(x) = xH(M (i); s) + x log x is convex in x:

vā ≥
∑
j

πjvj =⇒ vā − µ ≥ 0 (28)

The above two implications in Eq. 27 and Eq. 28, and the fact that ā ̸= a⋆, together lead us to a deterministic lower bound
on T (ā), implying that it is always positive:

T (ā) ≥ 0. (29)

This completes the derivation for the first part of Theorem H.3, which does not assume anything about the conditional
distribution π((i))(· | s), directly yielding the following result.

Result (i): Under the conditional distribution π(i)(· | s), whenever the most likely action ā ̸= a⋆, then with probability at
least πā, T (a) ≥ 0, for a ∼ π(i)(· | s), and any policy π in our class of softmax policies. Finally, we plug this into Eq. 23 to
conclude that the policy gradient update with probability πā always increases entropy, for a small enough learning rate.

Next, we lower bound T (ā) when the second most likely action under the distribution satisfies an additional condition. For
this, let us fix some ε ≥ 0, such that for q = argmaxb̸=ā π

(i)(b | s), we have πq = πā − ε. Based on our alignment scalar
T (·), we define the function g(x) as follows:

g(x) = x
(
H(M (i); s) + log x

)
, 0 < x ≤ 1, (30)

where H(M (i); s) is the conditional entropy we defined previously. Then, given the most probable action ā, and the runner
up action q, the gap between T (ā) can be lower bounded down as follows when πq ≥ exp(−H(M (i); s)− 1):

T (ā) = g(πā)− πā · g(πā)−
∑
b ̸=ā

πg · g(b)

≥ (1− πā) · g(πā)− (1− πā) · g(q) = (1− πā) · (g(πā)− g(πq)), (31)

where the second equality follows from the fact that g(πq) ≥ g(b) for any b ̸= ā as soon as πq ≥ exp(−H(M (i); s)), which
is implied by the condition on πā, ε in Theorem H.3.

By the mean–value form of Taylor’s theorem there exists a ξ ∈ [πq, πā] such that

g(πā) = g(q) + ε g′(q) +
ε2

2
g′′(ξ). (32)

Because g is convex, g′′(ξ) = 1/ξ > 0 and the linear term εg′(q) is non–negative. The minimum of 1/x on [πq, πā] is
attained at x = pā, whence g′′(ξ) ≥ 1/pā. Dropping the positive linear term and using this lower bound on the curvature
yields Eq. 33.

g(πā)− g(πq) ≥ ε2

2πā
≥ ε2

2
·K, (33)

since πā ≥ 1/K+1. Plugging the above result into Eq. 31 we get the follow result.

Result (ii) Under the conditional distribution, π(i)(· | s) whenever the most likely action ā ̸= a⋆, and when the second most
likely action q has probability πq ≥ exp (−H(M (i); s)), then with probability at least πā, T (a) ≥ c′ ·K(πā−πq)

2(1−πā),
for a ∼ π(i)(· | s), and a universal constant c′ > 0. Finally, we plug this into Eq. 23 to conclude that the policy gradient
update with probability πā always increases entropy by at least cη ·Kε2(1− πā), for a small enough learning rate.

Together, Result (i, ii) complete the proof of Theorem H.3.

I. Broader Impact Statement
This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here. Our findings deepen our understanding
of how to train large language models (LLMs) to reason more effectively under test-time compute constraints, which could

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Title Suppressed Due to Excessive Size

influence the design of future AI systems. Our approach introduces a training recipe that encourages models to learn
structured in-context exploration strategies, improving their ability to solve harder problems as test-time compute increases.
While this has the potential to improve AI reasoning and decision-making across domains, it also raises questions around the
unequal access to models that can leverage such capabilities, especially in settings with limited compute resources. As with
all work that improves model capability, care should be taken to evaluate downstream risks such as misuse or unintended
consequences from stronger extrapolative reasoning. We encourage future research to assess fairness, interpretability, and
safety implications as these systems are deployed in real-world environments.

J. Note on Computational Resources Used for e3
For our experiments with CDOWN, MULT, MULT-v, we used a single node with 8 NVIDIA H100 GPUs. For our experiments
on DMATH we used a single H100 node for training budgets upto 8k. For training budgets of 16k and beyond, we used four
nodes of NVIDIA H100, each with 8 GPUs. Alternatively, we were able to run our experiments on CDOWN, MULT, MULT-v,
and on DMATH (upto a training budget of 8k) using TPUs. In particular, we found that v5litepod-128 TPU, which has 32
nodes, 128 total chips (TPU configuration of 32× 4) is sufficient to run our experiments. Our experiments on GPUs used
the open-source LLM post-training framework from Sheng et al. (2024) that uses FSDP sharding to parallelize data and split
model parameters across the multiple cards.

K. Example Traces

Example 1: Chained Asymmetries in Countdown

<think> Let me analyze this step by step:
1. First, let’s try to get close to 466 with simple operations: 65 + 56 = 121 (too
small) 65 - 56 = 9 (too small) 65 * 56 = way too large 56 * 65 = way too large
2. Let’s try working backwards from 466: 466 is much larger than any of the given
numbers, so multiplication will likely be needed. We need to get from 37 to 466,
which means we need to multiply by 12.5. But we don’t have 12.5, so we’ll need to
create it through division.
3. Let’s try: 37 * 14 = 518 (too large) 37 - 14 = 23 (too small) 37 + 14 = 51 (too
small)
4. Let’s try a different approach: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219
(getting closer)
5. Let’s try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 + 14 = 233 (still
too small)
6. Let’s try one more approach: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 +
14 = 233 (still not 466)
7. Let’s try: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 + 14 = 233 (still
not 466)
8. One more attempt: 65 + 61 = 126 126 + 37 = 163 163 + 56 = 219 219 + 14 = 233
(still not 466)
9. Final try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)
10. Let’s try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 + 14 = 233 (still
not 466)
11. New approach: 65 + 61 = 126 126 + 56 = 182 182 - 37 = 145 145 + 14 = 159 (not
quite there)
12. Final attempt: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)
13. Let’s try: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)
14. One last try: 65 + 37 = 102 102 + 61 = 163 163 + 56 = 219 219 + 14 = 233 (not
quite there)
15. Final attempt: 56 + 14 = 70 70 + 65 = 135 135 + 37 = 172 172 + 61 = 233 (not
quite there)
16. New approach: 37 * 14 = 518 518 - 65 = 453 453 + 61 = 514 514 - 56 = 458 (not
quite there)
17. Final try: 61 * 14 = 854 854 - 65 = 789 789 - 56 = 733 733 - 37 = 696 (not
quite there)

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Title Suppressed Due to Excessive Size

18. Let’s try: 37 * 14 = 518 518 - 65 = 453 453 + 61 = 514 514 - 56 = 458 (not
quite there)
19. New approach: 56 * 37 = 2,052 2,052 / 65 approx. 31.5 (not helpful)
20. Final attempt: 65 * 14 = 910 910 - 61 = 849 849 - 56 = 793 793 + 37 = 830 (not
quite there)
21. New approach: 61 * 37 = 2,237 2,237 - 65 = 1,172 1,172 - 56 = 1,116 1,116 + 14
= 1,130 (not quite there)
22. New approach: 37 * 14 = 518 518 + 65 = 583 583 - 61 = 522 522 + 56 = 578 (not
quite there)
23. Final attempt: 65 * 14 = 910 910 - 61 = 849 849 + 56 = 905 905 - 37 = 868 (not
quite there)
24. New approach: 37 * 14 = 518 518 - 56 = 462 462 + 65 = 527 527 - 61 = 466 (This
works!) </think> <answer> (37 * 14 - 56 + 65) - 61 </answer>

Example 2: Multiplication with verification

Okay, so I need to multiply 347 by 583. Hmm, let me think about how to approach
this. I guess I can use the standard multiplication algorithm where you break it
down by each digit. Let me start by writing both numbers down:
347
× 583

First, I’ll multiply 347 by each digit of 583 starting from the rightmost
digit, which is 3 in this case. Then move to the next digit (8) and finally the
leftmost digit (5), remembering to add the appropriate zeros for each subsequent
multiplication. After that, I’ll sum all the results together. Let me start with
the rightmost digit.
Starting with the units place: 3 × 347. Let me compute that:
3 × 7 = 21. I write down 1 and carry over 2.
3 × 4 = 12, plus the carried over 2 makes 14. Write down 4 and carry over 1.
3 × 3 = 9, plus the carried over 1 makes 10. Write down 10.
So, 3 × 347 = 1041. Let me check that again:
3 × 7 = 21 (correct), 3 × 4 = 12 + 2 = 14 (correct), 3 × 3 = 9 + 1 = 10 (correct).
So that’s 1041. Alright.
Check: 3 × 347 = 1041. Correct.
Next, the tens place. The digit here is 8, but since it’s in the tens place, it’s
actually 80. So, we’ll multiply 347 by 80. To make it easier, I can multiply 347
by 8 and then add a zero at the end.
8 × 347:
8 × 7 = 56. Write down 6, carry over 5.
8 × 4 = 32, plus the carried over 5 makes 37. Write down 7, carry over 3.
8 × 3 = 24, plus the carried over 3 makes 27. Write down 27.
So, 8 × 347 = 2776. Then add the zero for the tens place, making it 27760. Let me
verify:
8 × 347. 8×300=2400, 8×40=320, 8×7=56. 2400+320=2720, 2720+56=2776. Then adding
the zero gives 27760. Correct.
Check: 8 × 347 = 2776, so 2776 × 10 = 27760. Correct.
Now, the hundreds place. The digit here is 5, but it’s in the hundreds place, so
it’s 500. So, multiply 347 by 500. Again, multiply 347 by 5 and add two zeros.
5 × 347:
5 × 7 = 35. Write down 5, carry over 3.
5 × 4 = 20, plus the carried over 3 makes 23. Write down 3, carry over 2.
5 × 3 = 15, plus the carried over 2 makes 17. Write down 17.
So, 5 × 347 = 1735. Then add two zeros, making it 173500. Let me verify:
5 × 347. 5×300=1500, 5×40=200, 5×7=35. 1500+200=1700, 1700+35=1735. Then adding
two zeros gives 173500. Correct.
Check: 5 × 347 = 1735, so 1735 × 100 = 173500. Correct.
Now, add all three results together: 1041 + 27760 + 173500.
Let me do this step by step. First, add 1041 and 27760:
1041 + 27760. Let me line them up:
1041
+27760

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Title Suppressed Due to Excessive Size

28801
Wait, 1041 + 27760: 1000 + 27760 = 28760, then +41 = 28801. Let me check with
another method:
20000 + 7000 = 27000, 700 + 60 = 760, 27000 + 760 = 27760. Then 27760 + 1000 =
28760, +41 = 28801. Correct.
Check: 1041 + 27760 = 28801. Correct.
Now add this result to 173500:
28801 + 173500. Let me line them up:
28801
+173500

202301
Wait, 28000 + 173500 = 201500, then 801 + 0 = 801, so total 201500 + 801 = 202301.
Let me verify another way:
28801 + 173500. Break down 173500 into 170000 + 3500. Then 28801 + 170000 = 198801.
Then 198801 + 3500 = 202301. Correct.
Check: 28801 + 173500 = 202301. Correct.
So, putting all together, the final result is 202,301. Let me just cross-verify
using another method to ensure I didn’t make any mistakes in the addition.
</think>
The product of 347 and 583 is 202301 .

Example 3: Over-exploration in Countdown (after training only on easy problems with 3 candidates, each attempt
contains at most 3 equations when 5 is needed)

<think> Let me try to find a way to get to 66. First, let me look for numbers close
to 66 or factors/multiples that might be useful.
66 is close to 70, which is one of our numbers. Maybe we can suBtract or add to get
to 66. 70 - 4 = 66, so maybe we can create 4 somewhere.
Looking at the other numbers: 77 - 70 = 7 97 - 73 = 24 (interesting, we already
have 24) 24 + 24 = 48 (not helpful) 24 * 24 = 576 (too large)
Let me try a different approach: 77 - 70 = 7 97 - 73 = 24 24 + 7 = 31 (not helpful)
New approach: 97 - 73 = 24 24 + 70 = 94 (too far)
Let’s try: 77 - 70 = 7 7 * 24 = 168 (too far)
One more attempt: 70 + 24 = 94 94 - 97 = -3 -3 * 77 = -231 (too far)
Final attempt: 97 - 24 = 73 73 - 70 = 3 3 * 77 = 231 (too far)
Let’s try: 70 + 24 = 94 94 - 77 = 17 17 + 65 = 82 (too far)
Wait: 24 * 73 = 1748 1748 - 77 = 1671 (too far)
Last try: 77 + 24 = 101 101 - 70 = 31 31 - 97 = -66 (not what we want)
Let’s try: 97 - 73 = 24 24 + 70 = 94 94 - 24 = 70 (not helpful)
Final attempt: 70 * 24 = 1680 1680 / 77 = 21.9 (not valid)
Last try: 73 - 65 = 8 8 * 24 = 192 192 / 97 = 1.98 (not valid)
I need to keep trying different combinations. What if: 24 / 3 = 8 So: 97 - 73 =
24 24 / 24 = 1 (not helpful)
Final attempt: 77 - 97 = -20 -20 * 24 = -480 -480 + 70 = -410 (too far)
Last try: 70 * 24 = 1680 1680 / 77 = 21.9
So the most promising path seems to be: 97 - 73 = 24 24 + 70 = 94 94 - 77 = 17 This
gets us too far from 66.
Let’s try: 77 - 70 = 7 7 * 24 = 168 168 - 97 = 171 (too far)
Final attempt: 97 + 70 = 167 167 - 24 = 143 143 / 73 = 1.97
Wait: 24 * 65 = 1560 1560 / 77 = 20.26
Last try: 77 - 65 = 12 12 * 24 = 288 288 / 97 = 3
I need to keep trying different combinations. What if: 97 - 70 = 27 27 / 24 =
1.125
Wait: 24 + 97 = 121 121 - 73 = 48 48 + 77 = 125 (too far)
Last attempt: 70 + 24 = 94 94 - 77 = 17 17 + 65 = 82
One final try: 24 * 65 = 1560 1560 / 97 = 16.06
Final solution: 97 - 73 = 24 24 * 65 = 1560 1560 / 77 = 20.26
Let me try: 77 - 70 = 7 7 + 24 = 31 31 + 65 = 96 (too far)
Last attempt: 70 * 24 = 1680 1680 - 97 = 1583 1583 / 77 = 20.59
I need to keep trying. What if: 97 + 24 = 121 121 - 73 = 48 48 + 65 = 113

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Title Suppressed Due to Excessive Size

Wait: 65 - 24 = 41 41 + 77 = 118 118 - 70 = 48
Final try: 24 * 65 = 1560 1560 + 70 = 1630 1630 / 77 = 21.16
One last attempt: 77 * 24 = 1848 1848 / 65 = 28.46
Last try: 70 * 24 =

L. Conclusion and Limitations
We introduce in-context exploration as a core capability to enable extrapolation of test compute in reasoning models, beyond
the token budget they are trained for. Our proposed recipe, e3, leverages (1) asymmetries in the base model, (2) negative
gradients in RL, and (3) a coupled curriculum over data and token budget to train a model that can perform in-context
exploration. Applied to Qwen3-1.7B model, our method achieves state-of-the-art performance on the AIME/HMMT’25
benchmarks, with particularly strong gains in the extrapolation regime. Despite these, our study is limited in terms of model
scale and domain. Future work should explore how e3 generalizes to larger model scales and other reasoning domains. For
a brief statement on broader statement please see App. I.

25

	Introduction
	Asymmetries in the Base Model: A Prerequisite for In-Context Exploration
	Negative Gradients Incentivize Exploration that Chains Asymmetries
	Coupled Curriculum Training Structures Exploration in Long Length RL
	Related Work
	Optimizing & Extrapolating Test-Time Compute
	Analyzing Negative Gradient Dynamics in the pk Model
	Testing Extrapolation of Open-Source Models
	Additional Experiments and Details for Section 2 (Chained Asymmetries)
	Details on Mult and Mult-V
	Details on CDown
	In the Presence of Asymmetries, KL Divergence with Base LLM Reduces as Training Budget Increases

	Additional Experiments and Details for Section 3 (Negative Gradient)
	Details for CDown
	Additional Experiments with Mult
	Additional Details for the Didactic Setting in Sec. 3

	Additional Experiments and Details for Section 4 (Curricula Training)
	Response length distributions of different models.
	Additional details on e3
	Training Details and In-distribution Performance on Training Budget
	Fixed train budget, vary dataset curriculum on CDown

	Omitted Proofs
	Broader Impact Statement
	Note on Computational Resources Used for e3
	Example Traces
	Conclusion and Limitations

