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ABSTRACT

Large Transformer-based Pretrained Language Models (PLMs) dominate almost
all Natural Language Processing (NLP) tasks. Nevertheless, they still make mis-
takes from time to time. For a model deployed in an industrial environment, fixing
these mistakes quickly and robustly is vital to improve user experiences. Previ-
ous works formalize such problems as Model Editing (ME) and mostly focus on
fixing one mistake. However, the one-mistake-fixing scenario is not an accurate
abstraction of the real-world challenge. In the deployment of AI services, there
are ever-emerging mistakes, and the same mistake may recur if not corrected in
time. Thus a preferable solution is to rectify the mistakes as soon as they appear
nonstop. Therefore, we extend the existing ME into Sequential Model Editing
(SME) to help develop more practical editing methods. Our study shows that
most current ME methods could yield unsatisfying results in this scenario. We
then introduce Transformer-Patcher, a novel model editor that can shift the behav-
ior of transformer-based models by simply adding and training a few neurons in
the last Feed-Forward Network layer. Experimental results on both classification
and generation tasks show that Transformer-Patcher can successively correct up
to thousands of errors (Reliability) and generalize to their equivalent inputs (Gen-
erality) while retaining the model’s accuracy on irrelevant inputs (Locality). Our
method outperforms previous fine-tuning and HyperNetwork-based methods and
achieves state-of-the-art performance for Sequential Model Editing (SME). The
code is available at https://github.com/ZeroYuHuang/Transform
er-Patcher.

1 INTRODUCTION

Transformer-based models, particularly large Pretrained Language Models (PLMs) (Devlin et al.,
2019; Brown et al., 2020) have become the backbone model of modern Natural Language Pro-
cessing (NLP) and have enabled promising results in various downstream tasks (Lv et al., 2019;
Budzianowski & Vulic, 2019; Ramnath et al., 2020). However, PLMs still produce undesirable out-
puts occasionally (Zhao et al., 2019; Basta et al., 2021). The cost of such mistakes is non-negligible.
For example, a mistaken automatic translation result could get a person arrested (Hern, 2018). One
of the most usual expedients was using a manual cache (e.g., lookup table) to overrule these problem-
atic predictions (Sinitsin et al., 2020). Though convenient and straightforward, it lacks robustness
and generality because it could be disabled by the slightest change in the input, such as paraphras-
ing in natural language. On the other hand, one can also re-train the model on the original dataset
supplemented with problematic examples. While superior in performance, it is computationally and
temporally expensive to re-train large PLMs with billions or even trillions of parameters.

Previous research formalized such problems as Model Editing (ME) and proposed various methods
to intervene model’s behavior on a specific example while preventing the model from forgetting
other examples. Some straightly finetune the model on the example and used a constraint loss to
maintain the model’s overall performance (Zhu et al., 2020; Sotoudeh & Thakur, 2021). Some edit
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the model through a HyperNetwork, which regards the model and the false predicted example as
inputs and produced a weight update for the model’s parameters (Cao et al., 2021; Sinitsin et al.,
2020; Mitchell et al., 2022a). Despite their impressive progress, they mostly focus on one-step edit-
ing (fixing one mistake), which is not applicable to practical situations. Because models deployed
for real-world applications are expected to face different errors ceaselessly. And the same error may
pop up repeatedly and bother different users. In addition, as illustrated in Figure 1, once a wrong an-
swer appears in an online question-answering (QA) model, leaving it unfixed and waiting for future
corrections could mislead more people. Therefore, an ideal model editor should provide continuous
and promptly fixing of newly emerged mistakes in an effective and efficient manner.
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Figure 1: Once an error occurs in a QA model online, it could bother many users contacting the
model if not fixed in time. Instant correction is a superior choice to improve the user experience,
motivating us to propose a Sequential Model Editing problem.

Thus we extend the ME task into the sequential setting and formalize it as Sequential Model Edit-
ing (SME) task, which requires a model editor to fix a series of mistakes as soon as they appear. The
desiderata of a qualified sequential model editor are three properties (Section 3). For each editing,
the post-edit model should be of 1) Reliability: make the desirable output given the input; 2) Gener-
ality: generalize over other equivalent inputs; 3) Locality: retain its accuracy over irrelevant inputs.
We then propose a standard SME experiment pipeline that is compatible with different tasks and
five evaluation metrics to evaluate the three properties. Experiments show that most existing model
editors could fail to generalize to the sequential editing scenario. Fine-tuning-based methods are
vulnerable to forgetting previous edits. HyperNetwork-based editors are strongly coupled with the
initial model that they are trained with, thus failing to edit the model after several steps (Section 5).

To handle SME, we introduce Transformer-Patcher. Unlike previous methods, Transformer-Patcher
retains all original parameters to prevent harming the model’s overall performance. It only adds
a handful of trainable neurons (patches) to the last Feed-Forward Network (FFN) layer to revise
the model’s behavior on the problematic input and achieve a low editing cost. Furthermore, we
train the patch to only respond to specific inputs with the proposed activation loss and memory
loss. Experimental results on fact-checking (classification) and question answering (auto-regressive
generation) indicated that Transformer-Patcher could rectify a series of mistakes (up to thousands)
while almost perfectly retaining the model’s overall performance.

The main contributions of this work are twofold: 1) We formally propose a sequential model
editing task, as well as its standard experiment pipeline and evaluation metrics. 2) We introduce
Transformer-Patcher, a simple yet effective model editor to revise transformer-based PLMs, achiev-
ing state-of-the-art SME performance.

2 RELATED WORKS

Feed-forward Network Both the Transformer encoder and decoder contain the Feed-Forward
Network (FFN). Recent works (Geva et al., 2021; Dai et al., 2022) analogously observed that FFN
operates as key-value neural memories (Sukhbaatar et al., 2015). They regarded the input of FFN
as a query, the first layer as keys, and the second as values. Thus the intermediate hidden dimension
of FFN can be interpreted as the number of memories in the layer, and the intermediate hidden state
is a vector containing activation values for each memory. Therefore, the final output of FFN can be
viewed as the weighted sum of values activated.

Model editors Existing model editors are mainly separated into two types: fine-tuning-based and
HyperNetwork-based. Fine-tuning-based editors usually straightly tune the model with an extra loss
to eschew over-fitting to edit examples. For instance, Zhu et al. (2020) proposed an extra loss
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to reduce the distance between pre-edit and post-edit parameters. Mitchell et al. (2022a); Meng
et al. (2022) equipped fine-tuning with KL-divergence to restrict the post-edit model’s output space.
For another, HyperNetwork-based editors require additional training phrases. Sinitsin et al. (2020)
proposed a Meta Learning-based (Finn et al., 2017) approach named Editable Training to learn
editable parameters for model modification. Cao et al. (2021) proposed KnowledgeEditor (KE)
trained with constrained optimization to produce weight updates. Mitchell et al. (2022a) proposed
MEND that learns to transform the gradient obtained by standard fine-tuning to edit large language
models (Raffel et al., 2020). In addition, some works only focus on specific tasks, such as masked
language modeling (Dai et al., 2022) and autoregressive language modeling (Meng et al., 2022; Geva
et al., 2022). They require special input other than edit examples to conduct model editing.

Continual Learning The proposed SME task could be regarded as an emergent variant of Con-
tinual Learning (CL) (Mundt et al., 2020). And dynamically expandable networks are employed for
CL as well (Rusu et al., 2016; Li & Hoiem, 2018). But there are some differences in the setting. In
CL, usually, the model is continually trained using different datasets and tasks. But SME deals with
only one example at once and all examples are from the same task. The difference in setting renders
SME an unexplored area with new challenges that may not be properly addressed by general CL
methods. For example, KL divergence loss and L2 normalization are usual methods to address the
catastrophic forgetting in CL (De Lange et al., 2022), but previous works (Cao et al., 2021; Mitchell
et al., 2022a) and our experiments show that they can hardly maintain models accuracy on irrelevant
inputs in ME task. And methods that add task-specific parameters for CL usually need extra train-
ing (Yoon et al., 2018; Wortsman et al., 2020; de Masson d’Autume et al., 2019), thus falling short
of SME’s application efficiency requirement.

3 SEQUENTIAL MODEL EDITING PROBLEM
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Figure 2: The process of sequential model editing task. Given the t-th mistake (xt, yxt
), the editor

takes the model ft−1 and (xt, yxt
) as input, and outputs the revised model ft

.

Following Mitchell et al. (2022a), a model f ∈ F can be defined as a function f : X 7→ Y that maps
an input x to its prediction f(x). Then, given a model f and an edit example pair (xe, yxe

) that
f(xe) ̸= yxe , a model editor ME is to output a post-edit model f ′.

ME : F× X× Y 7→ F
(f, xe, yxe

) → f ′ = ME(f, xe, yxe
)

Given a data stream {(x1, yx1
), · · · , (xs, yxs

)} and an initial model f0, a model editor ME needs to
conduct edits successively when the model makes undesirable output, as shown in Figure 2.

ft =


f0 if t = 0,
ft−1 elif ft−1(xt) = yxt ,
ME(ft−1, xt, yxt

) else.
(1)

And after every edit in SME the post-edit model f ′ should satisfy the following three properties:

Property 1 Reliability: the post-edit model should output the desired prediction:

f ′(xe) = yxe
(2)

Property 2 Generality: given an edit example xe, Exe
= {xj |yxj

= yxe
} is defined as the set of

its equivalent inputs (e.g. rephrased sentences). Then the post-edit model f ′ should satisfy:

∀xj ∈ Exe , f
′(xj) = yxe (3)
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Property 3 Locality: the edit should be implemented locally and precisely, which means the post-
edit model should remain accurate on the irrelevant examples set Ixe

= X\Exe
:

∀xj ∈ Ixe
, f ′(xj) = yxj

(4)

In particular, an edit should not disrupt the results of past edits in SME setting, which means:

ft(xk) = yxk
, for k where fk−1(xk) ̸= yxk

(5)

4 TRANSFORMER-PATCHER
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Figure 3: Transformer-patcher enables efficient correction for classification and generation tasks, it
rectifies the model’s behavior by adding and training several extra neurons in the last FFN layer.

First, we call one misclassification or one wrongly generated token one mistake in the rest of the
paper. Aiming at the SME task for transformer-based models, we propose Transformer-Patcher
shown in Figure 3. It freezes all original parameters and adds one neuron (patch) to the last FFN
layer for one mistake. And we train the patch to take effect only when encountering its correspond-
ing mistake. For classification, we add only one patch to rectify the model. For auto-regressive
generation, we count how many tokens are wrongly generated under the teacher-forcing setting and
add one patch for each of them. This section describes how to add and train one patch. Multiple
patch editing follows exactly the same principle and is formally described in Appendix A.

4.1 WHAT IS A PATCH?

As mentioned in Section 2, FFN operates as key-value neuron memories. Its forward computation
is a process that retrieves values from matrix V by matching keys in matrix K and the input query
q. For a standard FFN, given a query q ∈ Rd, its output FFN(q) is:

a = Act(q ·K + bk) (6)
FFN(q) = a · V + bv (7)

where Act(·) is a non-linear activation function (e.g., Relu or Gelu), a is the vector of activation
values, bk, and bv are two bias vectors. A patch is an extra neuron (an extra key-value pair) added
to the last FFN layer. After patching, the new output FFNp(q) is:

[a ap] = Act(q · [K kp] + [bk bp]) (8)

FFNp(q) = [a ap] ·
[
V
vp

]
+ bv (9)

where kp ∈ Rd is the patch key, vp ∈ Rd is the patch value, bp is a scalar named patch bias,
ap = Act(q·kp+bp) represents the activation value of the patch. With the substitution of equations 6
and 7, equation 9 can be reformulated as:

FFNp(q) = FFN(q) + ap · vp (10)

4.2 TRAINING A PATCH FOR EDITING

An ideal edit requires reliability, generality, and locality proposed in Section 3. For reliability, a
patch needs to be activated according to equation 10. Let qe represent the input query of the mistake,
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the patch key kp and patch bias bp should satisfy:

ap = Act(qe · kp + bp) ̸= 0 (11)

When Act is ReLU or GeLU, the above condition can be approximated as follows:

qe · kp + bp > 0 (12)

To meet the constraint 12, we propose a activation loss la to maximize the activation value:

la = exp(−qe · kp − bp)) (13)

Once a patch is activated, according to equation 10, it adds a bias term ap · vp to the output of the
last layer. Because we are editing the last layer of the model, the output of the model can be adjusted
to any result without worrying that other components of the model would cancel the editing effect.
To obtain the target output, we leverage the task’s original loss function and rename it as edit loss
le. Formally, for an edit example (xe, ye), the patched model’s output is pe, le is defined as:

le = L(ye, pe) (14)

where L(·) is a function of label ye and model output pe and depends on the specific task.

For locality, the model’s behavior should not be shifted on irrelevant examples, thus the patch should
not be activated by any irrelevant examples. When using ReLU or GeLU, it can be approximated as
that all queries from irrelevant examples qi should have a patch activation value less than or equal
to a threshold β, i.e., the maximum of them is less than or equal to β:

∀i ∈ Ixe
, qi · kp + bp ≤ β → max

i
(qi · kp + bp) ≤ β (15)

Thus we propose the memory loss lm to enforce the constraint 15. To imitate the distribution of
queries from irrelevant examples, we randomly retain some queries from previously seen examples
as memories. Each query is a d-dimensional vector and we can stack them as a matrix M ∈ Rdm×d,
where dm is the number of queries saved. Our proposed memory loss lm is the sum of two terms.
The first term lm1 is introduced to make the patch inactivated to all queries in M :

lm1 = S(M · kp + bp − β; k) (16)

where S(·; k) is a function that receives a vector v and outputs a scalar

S(v; k) = Avg[TopK(exp(v); k)] (17)

It first employs element-wise exponential function to v and then selects k largest elements to com-
pute their average as the output. Although constraint 15 is about the maximum, we employ TopK
here for more efficient optimization. In case that lm1 can not absolutely ensure the constraint 15,
we propose lm2 to distance the activation value of qe and qi. That is, the activation value of the
mistaken example is larger than that of the irrelevant examples by a certain margin γ.

lm2 = S((M − qe) · kp + bp − γ; k) (18)

To sum up, the loss lp for training a patch is defined as a weighted sum of the above losses:

lp = le + ala +mlm = le + ala +m(lm1 + lm2) (19)

where a, m are hyper-parameters. β is selected as -3 for GeLU and 0 for ReLu, since GeLU(-
3)≈0.004 is small enough and ReLU(0)=0. γ is selected as 3 for GeLU and 0 for ReLU.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS AND EVALUATION METRICS

We proposed an experimental pipeline for SME used for standard datasets with training set Dtrain,
validation set Dval, and test set Dtest. There are two differences between our setting and the previous
Model Editing setting. First, we employ multi-step editing rather than one-step. Second, previous
works usually generate counterfactual edit examples (e.g., replacing the answer to a question with a
random one), while we employ authentic examples where the model makes mistakes. We first split
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the original Dtrain into an edit set Dedit and a new training set D′
train. To evaluate generality, back-

translation could be utilized to generate the equivalent set Exe
for edit example xe ∈ Dedit following

previous works (Cao et al., 2021). To evaluate locality, a subset Dtr randomly sampled from D′
train

is used to see how the post-edit model performs on its training data. Our SME pipeline starts with an
initial model f0 trained on D′

train and validated using Dval, the model is sequentially edited while
encountering mistakes in Dedit. After the tth edit example (xt

e, y
t
e), we obtain a post-edit model ft.

Supposing that there are T total edits and I represents the indicator function, our proposed metrics
are calculated as follows:

1) Success Rate (SR): to evaluate the reliability, we test if the post-edit model outputs the desired
prediction. Thus, SR is:

SR =
1

T

T∑
t=0

I(ft(x
t
e) = yte) (20)

2) Generalization Rate (GR): to evaluate the generality, we test the post-edit model ft on the
equivalent set Ext

e
= {xt

e,1 · · · , xt
e,Nt

} of the edit example xt
e , thus GR is:

GR =
1

TNt

T∑
t=0

Nt∑
i=1

I(ft(x
t
e,i) = yte) (21)

3) Edit Retain Rate (ER): to evaluate locality and reliability, we evaluate how many past edits are
retained by the final model fT . In a real application, a reliable model editor should keep the fixed
bugs from recurring again, thus SR alone cannot evaluate reliability, and we define ER by testing
the final model on all its past edit examples Epe:

ER =
1

T

T∑
t=0

I(fT (x
t
e) = yte)/T (22)

4) Training Retain Rate (TrainR): to evaluate locality, we compare the performance of the final
model of fT and the initial model f0 on subsampled test Dtr. Thus, the TrainR is defined as:

TrainR =

∑
(x,y)∈Dtr

I(fT (x) = y)∑
(x,y)∈Dtr

I(f0(x) = y)
(23)

5) Test Retain Rate (TestR): to evaluate locality, we see if the post-edit model still retains the
generalization ability over unseen data. Then the TestR is defined as:

TestR =

∑
(x,y)∈Dtest

I(fT (x) = y)∑
(x,y)∈Dtest

I(f0(x) = y)
(24)

Datasets and Baselines Both classification and auto-regressive generation tasks are selected for
evaluation. Following Cao et al. (2021) and Mitchell et al. (2022a), we employ Fact-Checking (FC)
for classification and closed-book Question Answering (QA) for generation. For FC, we apply a
BERT base model (Devlin et al., 2019) and the FEVER dataset (Thorne et al., 2018). For QA, we
apply a BART base model (Lewis et al., 2020) and the Zero-Shot Relation Extraction (zsRE) dataset
(Levy et al., 2017). We directly use the equivalent set released by Cao et al. (2021). We use the
same data split as Cao et al. (2021). Both FC and QA are evaluated using accuracy. Our baselines
include (1) Fine-Tuning-based editors: The FT directly fine-tunes the model on the edit example.
Following Mitchell et al. (2022a), FT+KL is selected as a baseline. It fine-tunes the model with
an extra KL divergence loss lkl. Following Sinitsin et al. (2020) and Zhu et al. (2020), we report
fine-tuning-based baselines by fine-tuning all parameters (FT(all) and FT(all)+KL) or the last layer
(FT(last) and FT(last)+KL). (2) Two HyperNetwork-based editors: KE (Cao et al., 2021) and
MEND (Mitchell et al., 2022a). (3) SERA: a variant of the latest SOTA memory-based model editor
SERAC (Mitchell et al., 2022b). Other details of our baselines are reported in Appendix B.

Experiment Details Initial models for two tasks are obtained following the same training settings
as Cao et al. (2021). For FC, the accuracy of the initial model attains 94.1% on Dtr, 76.9% on
Dtest. For QA, the accuracy of the initial model attains 56.6% on Dtr, 23.1% on Dtest. To reduce
the experimental uncertainty, we randomly split the edit set into n = 20 folders to run SME 20
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Table 1: The Success Rate (SR), Generalization Rate (GR), Edit Retain Rate (ER), Training Retain
Rate (TrainR), Test Retain Rate (TestR) of Transformer-Patcher (T-Patcher) and the baselines on
FEVER and zsRE dataset. * denotes that the SR of the T-patcher on QA is 0.9987. † means the
method requires extra training phases and training data.

FEVER Fact-Checking zsRE Question-Answering

Editor
BERT-base (110M) BART-base (139M)

SR GR ER TrainR TestR SR GR ER TrainR TestR

FT(last) 1.00 0.61 0.59 0.893 0.946 1.00 0.58 0.30 0.914 0.924
FT(all) 1.00 0.74 0.83 0.968 0.994 1.00 0.68 0.43 0.865 0.910
FT(last)+KL 1.00 0.53 0.45 0.968 0.998 1.00 0.57 0.28 0.923 0.933
FT(all)+KL 1.00 0.71 0.49 0.998 1.011 1.00 0.68 0.39 0.889 0.925
MEND† 0.04 0.03 0.06 0.349 0.652 0.41 0.37 0.00 0.000 0.000
KE† 0.14 0.12 0.28 0.486 0.650 0.09 0.08 0.00 0.000 0.000
SERA† 1.00 0.89 1.00 0.904 0.916 1.00 0.90 0.98 0.906 0.901

T-Patcher 1.00 0.82 1.00 0.999 1.000 1.00* 0.82 0.99 0.997 0.996

Table 2: The experimental results when utilizing all data in Dedit as a single run of SME on QA
task. The results of the FC task are presented in Table 7 in Appendix C. E represents how many
edits have been conducted. N represents how many mistakes have been made by the initial model
f0 on the entire edit set Dedit.

Editor SR GR ER TrainR TestR E N

FT(all)+KL 1.00 0.69 0.14 0.936 0.974 2821 2766
SERA 1.00 0.90 0.97 0.728 0.694 3558 2766
T-Patcher 0.99 0.81 0.97 0.912 0.948 2308 2766

times and report the averaged performance as the final result. The initial model f0 makes about
63 mistakes in an FC folder and about 139 in a QA folder on average. For methods requiring
memories (fine-tuning with KL and ours), 40,000 memory examples are sampled from D′

train \Dtr

are employed for both tasks and are updated as editing proceed. The hyperparameters a and m are
selected as 1 and 10 respectively for both tasks to make the extra losses and the original task loss in
the same order of magnitude. Other details can be found in Appendix B.

5.2 EXPERIMENTAL RESULTS

Main results The experiment results are shown in Table 1. Our method achieves strong perfor-
mance in all five metrics across two tasks. It could make a series of model corrections (SR≈1)
while nearly retaining every past edit (ER≈1) and almost perfectly keeping the model’s overall per-
formance (TrainR≈1, TestR≈1). The fine-tuning-based editors could partly preserve the model’s
behavior and achieve high SR, but it is vulnerable to forgetting previous edits (low ER). Two
HyperNetwork-based editors fail in the SME setting. They have trouble retaining models’ over-
all performance (low ER, TrainR, TestR) and conducting a series of edits (low SR and GR). SERA
achieves the highest GR, while can only partially preserve the model’s overall performance (TestR,
TrainR≈0.9) compared to T-Patcher. Apart from being effective, our method is efficient enough as
well. Using a V100, one edit costs only 7.1s for FC and 18.9s for QA. We could further improve the
efficiency to 4.7s and 12.4s by decreasing the number of memory examples to 10,000.

Scale up to thousands of edits Table 1 shows that Transformer-Patcher achieves good perfor-
mance for about 60 edits on FC and 140 edits on QA, thus we wonder if it could handle more
edits. So we utilize all data in Dedit as a single data stream to run SME. As shown in Table 2,
Transformer-Patcher could effectively correct up to thousands of mistakes and retain the model’s
overall performance simultaneously compared with the other two strong baselines. It’s interesting
to notice that the number of edits E of Transformer-Patcher is less than the number of actual mis-
takes N made by the initial model. In other words, our method can fix some potential mistakes in
the initial model before the error actually happens. On the contrary, the fine-tuning-based method
fixes more mistakes than the original model, which means it created more errors during the editing
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process. It seems contradictory that our method attains fewer E and lower TestR, this may due to
the distribution shift between Dedit and Dtest. See more explanation in Appendix C. Furthermore,
the post-edit model only gets 1.4% larger for FC and 4.5% larger for QA. We believe this cost is
acceptable for automatically correcting the model’s mistakes from time to time during deployment.
In practice, we suggest using the transformer-patcher to provide a timely response for each mistake
online, and after accumulating certain quantities of mistakes, we could fine-tune the original model
on all accumulated mistakes, so that the patches can be removed. In this way, we could achieve a
good balance between model size and editing effectiveness.

5.3 ANALYSES
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Figure 4: Variation of success rate (SR) with the number of edits. Different methods have different
edit times, we plot until they converge.

The collapse of MEND and KE We discuss here why MEND and KE fail in the SME. Figure 4
presents how SR varies with the number of edits on both FC and QA. Figure 4 shows that MEND and
KE are effective in the first few steps, but shortly after they are no longer able to produce valid edits.
However, in their original paper (Cao et al., 2021; Mitchell et al., 2022a), they both reported that they
achieved high SR when dealing with one-step editing. We find this phenomenon reasonable since
both HyperNetwork-based editors are trained with the initial model f0 and thus strongly coupled
with the original parameters. As the editing proceeds, the model becomes more different from the
initial one, resulting in their failure. We tried to retrain HyperNets after every edit using the post-edit
model, but the cost for re-training is unacceptable as it costs hours to train a HyperNet model editor.

Table 3: The ablation results for two alternatives of memory loss.

Patch FEVER Fact-Checking zsRE Question-Answering

SR GR ER TrainR TestR SR GR ER TrainR TestR

w/o lm 0.99 0.94 0.61 0.737 0.844 0.99 0.94 0.21 0.069 0.154
KL 1.00 0.76 0.99 0.996 0.998 0.94 0.69 0.49 0.481 0.710
w/o lm2 0.95 0.82 0.95 0.994 0.992 0.95 0.82 0.94 0.991 0.984
T-Patcher 1.00 0.82 1.00 0.999 1.000 1.00 0.82 0.99 0.997 0.996

Memory loss To validate the effectiveness of our proposed memory loss, we apply several alter-
native patches: (1) T-Patcher w/o lm, (2) KL Patch, where lm is replaced with the KL divergence
loss, (3) T-Patcher w/o lm2 . The ablation results in Table 3 show that memory loss is critical. Sim-
ply adding patches without memory loss hurts the model’s overall performance severely. The KL
divergence partially alleviates this problem (higher TrainR, TestR, and ER) but is still unsatisfying
on the more complex QA task, which is similar to the Fintuning with KL results in Table 1. By
comparing w/o lm2

and T-Patcher, we observe that the main contribution of our proposed memory
loss comes from lm1

, while adding lm2
still improves the method’s performance. Furthermore, to

investigate whether our added patches do solely respond to the specific error we visualize the acti-
vation values of different patches on their corresponding mistakes in Figure 5 for the QA task. The
X-axis represents the mistake (8.2 represents the second mistake of the 8th edit example) and the
Y-axis represents the patch. Figure 5a shows that the patch can be activated by multiple irrelevant
queries without the constraint of memory loss, leading to low ER, TrainR, and TestR. Figure 5b is
a lot darker, indicating that the KL loss tends to deactivate patches to bridge the distribution gap
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Figure 5: The activation values of three different patches on their corresponding mistakes.

0.5

0.6

0.7

0.8

0.9

1

SR GR ER TrainR TestR

5000 10000 20000 40000

0.74 0.76
0.79 0.81

0.5

0.6

0.7

0.8

0.9

1

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

GR SR ER TrainR TestR

(a) Patched layer position

0.5

0.6

0.7

0.8

0.9

1

SR GR ER TrainR TestR

5000 10000 20000 40000

0.74 0.76
0.79 0.81

0.5

0.6

0.7

0.8

0.9

1

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

GR SR ER TrainR TestR

(b) Memory size

Figure 6: The ablation studies about patched layer position and the memory size .

before patching and after patching. And figure 5c presents a clear diagonal line, which means each
patch takes charge of its corresponding mistake. Further analysis of the activation value of different
patches is presented in Appendix C.

Patched layer position To validate the benefits of patching the last layer, we focus on the QA
task and patch each decoder layer separately. The ablation results are illustrated in Figure 6a. First,
patching the bottom layer (layer 0 and 1) can not make effect edits. This may be because patching the
bottom layer severely influences every token in the input sequence, making the patch’s optimization
more difficult. While the patches added to the last layer only influence correspondent mistaken to-
kens, Then, compared to the other metrics, what the patching position influenced most is GR, which
increases from 0.74 of layer 2 to 0.81 of layer 5, proving that patching the top layers may improve
the generality. This phenomenon is aligned with previous studies (Jawahar et al., 2019) which
found that high-level semantic features are encoded at the top layers and superficial information is
encoded in lower layers. Besides, patching the last layer could ameliorate the editing efficiency as
well. Because computation results of previous layers could be cached and reused while editing.

Memory size In order to verify the robustness of our method, we conduct experiments using
different memory sizes (from 5,000 to 40,000) on the QA task. As is shown in Figure 6b, our
method is not very sensitive to the size of the memory set. Reducing memory examples only causes
slight drops in SR, ER, TrainR, and TestR, and a slight increase in GR.

6 CONCLUSION

In this work, we proposed the Sequential Model Editing task, as well as its experiment pipeline
and evaluation metrics. We then introduce Transformer-Patcher, a practical method for sequentially
editing transformer-based language models. Experiments on both classification and autoregressive
generation tasks demonstrate its ability to edit the model up to a thousand times continuously. This
method could have a positive social impact by fixing serious mistakes in large PLMs, including
generating biased predictions and hate speech, benefiting a broad spectrum of audiences.
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Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2022.

Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. In Proceedings of the 2019 Annual Conference on Neural
Information Processing Systems, pp. 13122–13131, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning, pp.
1126–1135, 2017.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval Sadde, Micah Shlain, Bar Tamir, and Yoav
Goldberg. LM-Debugger: An interactive tool for inspection and intervention in transformer-based
language models. CoRR, abs/2204.12130, 2022.

Alex Hern. Facebook translates “good morning” into “attack them”, 2018. URL
https://www.theguardian.com/technology/2017/oct/24/facebook-p
alestine-israel-translates-good-morning-attack-them-arrest.
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A MULTIPLE NEURON PATCHING

In auto-regressive generation tasks, the model may make multiple mistakes in one example. Since
FFN is a position-wise network, every mistake in the output can be ascribed to one query to the
last FFN layer. Therefore, for an example where the model makes n mistakes, each mistake can
be ascribed to a query qi

e to the last FFN layer, and we add n patches to handle each of them.
Specifically, given an input query q, the new output FFNp(q) of a FFN with n patches is:

[a ap] = Act(q · [K Kp] + [bk bp]) (25)

FFNp(q) = [a ap] ·
[
V
Vp

]
+ bv (26)

where Kp ∈ Rd×n is the patch key, vp ∈ Rn×d is the patch value, bp ∈ Rn is the patch bias,
ap = Act(q · kp + bp) is a vector containing activation values of patches. With the substitution of
equations 6 and 7, equation 9 can be reformulated as:

FFNp(q) =

{
FFN(q) if ap = 0⃗

FFN(q) + ap · vp else
(27)

During calculating the activation loss for multiple patches, we just constraint the patch ki
p to be acti-

vated by its corresponding query qi
e, let qe ∈ Rn×d represent the matrix containing n corresponding

queries, then we can obtain A ∈ Rn which is defined as a vector containing activation values of each
patch on its corresponding query:

Ai = qi
e · ki

p + bip (28)
It can also be formulated as follows:

A = diag(qe · kp) + bp (29)
where diag is a function to select the diagonal elements from a matrix. Then the activation loss for
n patches can be calculated as follows:

la = S(−A; ka) (30)
where S is the function defined in Equation 17, ka is a hyper-parameter.

Memory loss lm for multiple patches remains the sum of two terms lm1 and lm2, where lm1 is
identical as Equation 16. As for lm2, we restrict that for i-th patch ki

p, all its activation value to a
query in M should be smaller than that to its corresponding query qie, thus lm2 becomes:

lm2 = S(M · kp + bp −A− γ; k) (31)

For initialization, every patch kip is initialized as its normalized related query qie
|qie|2

so that the initial
activation value is 1.

B EXPERIMENTAL DETAILS

Data splits We utilize the same data split of training and testing following Cao et al. (2021). For
closed-book fact-checking, the binary FEVER dataset originally has 104,966 training instances and
10,444 validation instances. In order to adapt it to the SME task, we keep the original validation set
intact and employ it as Dtest, and split the original training data into three subsets: a new training
set D′

train, a new validation set Dval and an edit set Dedit in the ratio of 0.8 : 0.1 : 0.1. As a result,
we get 10,496 instances for the edit set. Since the Bert-based classifier attains 88.3% on the edit set,
the ideal edit sequence length is 10496*88.3%/20=63 on average.

For closed-book question answering, we employ the zsRE dataset released by Cao et al. (2021),
which originally has 244,173 examples for training and 27,644 examples for validation. We first
filter out examples with only one answer and then employ the same data split process as FEVER
in the ratio of 0.9 : 0.075 : 0.025. Finally, we get 5,317 edit data and 15,982 for validation, and
24,051 for testing. Since the Bart-based model attains 47.9% on the edit set, the ideal edit sequence
length is 5317*47.9%/20=139 on average. For both datasets, we randomly sampled a subset from
D′

train with the size of 10,000 as Dtr, and the edit set Dedit is split into n = 20 folders to run SME
n = 20 times independently. For the model editor requiring memories (fine-tuning with KL and
Transformer-Patcher), we randomly sampled a subset from D′

train \ Dtr with the size of 40000 and
update it as the editing proceeds.

13



Published as a conference paper at ICLR 2023

Initial models training Initial models are trained following Cao et al. (2021). For the Fact-
Checking task, we fine-tune a BERT base model with an additional linear layer that maps the hidden
state of the BOS (beginning of a sentence) token to the probability of the positive label. We maxi-
mize the model likelihood and the final model attains an accuracy of 76.9% on Dtest, 94.1% on Dtr

and 88.3% on Dedit. For the QA task, we fine-tune a BART base model by maximizing the model
likelihood regularized with dropout and label smoothing. The final model attains an accuracy (exact
match between model prediction and ground truth) of 23.1% on Dtest , 56.6% on Dtr and 47.9%
on Dedit. And these results are comparable with results that the model trained and released by Cao
et al. (2021) has achieved.

Transformer-Patcher training details For FC, we add one patch for every edit example. For
QA, we employ the teacher forcing setting and count how many target tokens are not assigned to
the highest likelihood as the mistake number. For one edit example, we add up to 5 patches.FC
and QA task share almost the same hyper-parameters. We repeat one edit example 8 times and
feed them to Transformer-Patcher as a batch for training. The initial learning rate is set as 0.01.
Adam optimizer (Kingma & Ba, 2015) is applied for both tasks. Every patch is initialized with the
normalized corresponding query qe

|qe|2 . Such a method makes each patch activated with an initial
activate value 1. The patch value vp ∈ Rn×d is parameterized as element-wise production of two
matrices: v′

p ∈ Rn×d and np ∈ Rn×d, v′
p is initialized with the random number between 0 and 1,

and elements in np is initialized with an integer 5 to make the patch value dominant over existing
values V .The parameter ka mentioned in equation 30 is set as 5, and parameter k for memory loss
is set as 1000. All hyper-parameters are chosen by running a few examples on the validation set.

Baseline implementation details For KE, we directly utilize the released trained HyperNetwork
for conducting SME experiments (Cao et al., 2021).

For MEND, there is no HyperNetwork released and we re-implement the released code with hyper-
parameters set as Mitchell et al. (2022a). We employ fine-tuning-based methods following Mitchell
et al. (2022a) and Cao et al. (2021).

For all fine-tuning-based baselines, we set the learning rate as 1e-5 and utilize Adam’s optimizer
to fine-tune the model until the mistaken example is corrected. For the computation of KL loss for
fine-tuning +KL-constraints baselines, we randomly sample a batch of examples in a memory set
with the size of 512.

For SERAC (Mitchell et al., 2022b), we implement one variant of it: SERA. The SERAC main-
tains a cache of all edit examples. Given an input, it first employs a scope classifier to estimate if
the input is relevant to (falls in the scope of) any cached edit examples. If so, it then employs a
counterfactual model (needs to have the identical output space as the original model) to produce the
output relying on the most relevant cached example. Otherwise, it returns the output of the original
model. In our proposed SME experiment setting, the in-scope examples have the same label as the
edit example, thus the function of the counterfactual model is to reproduce the answer of the relevant
example. During the implementation of QA, we choose the Bart-base as the counterfactual model,
but we find is not trivial for the Bart model to reproduce the answer (the original paper use T5 for
generation tasks), thus it is more practical to directly return the label of the cached edit example.
We refer to this direct-return method as SERA and include it as our baseline for both Fact-Checking
and Question-Answering tasks. All other implementation details about SERA are the same as the
original paper (Mitchell et al., 2022b).

Environment details For all methods, we run SME experiment n=20 times on n different edit
folders simultaneously using 8 NVIDIA Tesla V100 GPUs. And it cost around 1 hour for running
Trnasformer-Patcher on FEVER and around 3 hours on zsRE.

C EXTRA EXPERIMENT RESULTS

Variation of locality with the number of edits The metric ER, TestR, and TrainR reflect the
locality of the final model, but how models behave in the middle is still unclear to us. Thus we
choose KE, MEND, FT(all)+KL, and Transformer-Patcher and investigate how their locality varies
with the number of edits on the QA task. The results are shown in Figure 7. As editing continues,
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Table 4: Mean and deviation of absolute patches activation values on three different kinds of exam-
ples

Patch FEVER Fact-Checking zsRE Question-Answering
Edit Past-edit Random Edit Past-edit Random

w/o lm 34.3±9.3 15.7±8.1 0.5±3.0 11.32±7.3 1.23±1.64 0.14±0.3
KL 9.15±2.7 0.01±0.16 0.05±0.2 1.12±1.87 0.03±0.06 0.12±0.1
T-Patcher 10.25±2.3 0.00±0.0 0.05±0.1 6.78±2.58 0.00±0.00 0.10±0.1

Table 5: The standard deviation of Edit Retain Rate (ER), Training Retain Rate (TrainR), Test
Retain Rate (TestR) of Transformer-Patcher (T-Patcher) and fine-tuning based baselines on FEVER
and zsRE dataset.

FEVER Fact-Checking zsRE Question-Answering

Editor
BERT-base (110M) BART-base (139M)

ER TrainR TestR ER TrainR TestR

FT(last) 0.05589 0.06242 0.03322 0.03981 0.00920 0.01860
FT(all) 0.07008 0.03368 0.02178 0.05168 0.02322 0.01781
FT(last)+KL 0.05929 0.02516 0.01635 0.03173 0.01293 0.01697
FT(all)+KL 0.06248 0.00677 0.01116 0.06433 0.01659 0.01953

T-Patcher 0.00000 0.00045 0.00048 0.00916 0.00101 0.00115
w/o lm 0.10332 0.21872 0.14569 0.23259 0.05063 0.15795
KL 0.00078 0.00536 0.00248 0.07124 0.08237 0.02469

more and more damage has been done to the model by other baselines, except Transformer-Patcher.
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Figure 7: Variation of ER, TestR, and TrainR with the number of edits on QA task.

Standard deviation of experiment results Since some values in Table 1 and Table 3 are very
close, we report the standard deviation in Table 5. Note that the SR and the GR are calculated using
all different folders at the same time, the standard deviation is therefore 0. According to Table 5,
Transformer-Patcher achieves the smallest deviation on ER, TrainR, and TestR.

Statistics of activation values of different patches In order to study the activation situation of
patches on different examples. we present the mean and deviation of absolute patches activation
values on three different mistakes: 1) Edit: the mistake for which the patch is added; 2) Past-edit:
mistakes from previous edit examples; 3) Random: mistake of examples randomly sampled from
Dtest. As BERT and BART utilize GeLU, both positive and negative activation values could activate
the patch. We employ absolute value to measure to what extent the patch is activated. The results are
shown in Table 4. First, the T-Patcher w/o lm attains the highest value for Edit queries, indicating
the effectiveness of our activation loss. Then our memory loss can effectively push the activation
values of Past-edit and Random queries to 0, thus disabling the patch on irrelevant examples. The
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Table 6: The Success Rate (SR), Generalization Rate (GR), Edit Retain Rate (ER), Training Retain
Rate (TrainR), Test Retain Rate (TestR) of Transformer-Patcher (T-Patcher) with a fixed memory
set.

FEVER Fact-Checking zsRE Question-Answering

Editor
BERT-base (110M) BART-base (139M)

SR GR ER TrainR TestR SR GR ER TrainR TestR

T-Patcher 1.00 0.82 0.999 1.000 1.000 1.00 0.82 0.97 0.999 0.997

Table 7: The experimental results when utilizing all data in Dedit as a single run of SME. E repre-
sents how many edits have been conducted. N represents how many mistakes have been made by
the initial model f0 on the entire edit set Dedit.

Taks SR GR ER TrainR TestR E N Editor

FEVER 1.00 0.82 1.00 0.999 1.000 998 1231 T-PatcherzsRE 0.99 0.81 0.97 0.912 0.948 2308 2766

FEVER 1.00 0.54 0.16 0.998 1.002 1250 1231 FT(all)+KLzsRE 1.00 0.69 0.14 0.936 0.974 2821 2766

FEVER 1.00 0.89 1.00 0.717 0.709 1588 1231 SERAzsRE 1.00 0.90 0.97 0.728 0.694 3558 2766

KL Patch has the lowest activation value of Edit query on both tasks, which explains the lower SR
of QA in Table 3.

Editing results of Transformer-Patcher with fixed memory set The experimental results 1 are
obtained using a memory set that is updated with the editing proceeds. Thus in Table 6 we present
the editing results of Transformer-Patcher using a fixed memory set. We only observe a slight decline
in ER and a slight rise in TrainR. The results further show the robustness of our method. Besides,
we have to highlight that our method allows us to save more previous edits as memory and leverage
more memories in the training process. Because we do not need to save original raw data but only
corresponding input queries (several constant vectors that do not require gradients). On the contrary,
KL requires feeding a mini-batch of raw data into the pre-edit model and post-edit model separately,
thus the GPU memory becomes a restriction of the number of memories utilized in one batch. But
Transformer-Patcher could apply hundreds of thousands of memory vectors in one batch and cost
minimal GPU memory and computation resources.

Contradictory of lower E and lower TestR in Table 2 It seems inconsistent that Transformer-
Patcher has achieved fewer E and lower TestR than FT(all)+KL method. Because one would expect
the model to reduce future errors and behave better on the test set by fixing errors. The phenomenon
may be because of the data distribution gap between the edit set and the test set. Thus the improve-
ment of “reducing future errors” can not directly lead to higher TestR. For FEVER, the accuracy of
the initial model attains 88.3% on the edit set and 76.9% on the test set. For zsRE, the accuracy of
the initial model attains 47.9% on the edit set and 23.1% on the test set. A distinct gap between the
edit set and test set is observed. Thus we should comprehensively consider all metrics to evaluate
methods. Another reasonable explanation is that our modified model may slightly overfit the edit
example. But fitting more to edit examples may be a desired feature in actual applications because
we expect the model to be closer to the real data met during deployment.
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